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ABSTRACT
This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, 
which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and 
image-based computational methods were used to estimate Young′s modulus and porosities of 
different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures 
with different porosities were characterized. Additionally, some open-cell structures were scanned 
using a microcomputed tomography system (μCT) to non-destructively predict specimen Young′s 
modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. 
A 3D reconstruction and FE analyses were used. The experimental and computational results with 
different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared 
with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young′s 
modulus and porosities. The specimens with high and low volume fractions were best represented 
by linear and quadratic tetrahedrons, respectively. These results could be used to develop new 
osteoporosis-prevention strategies.

1. Introduction

Bone strength reflects the integration of two main features: 
bone mineral density, expressed as grams of mineral per 
area/volume, and bone quality, which consists of bone 
architecture, turnover, damage accumulation, collagen 
cross‐linking, and bone mineralization (Cowin 1989). 
In combination with cortical bone, trabecular bone is 
a major load-bearing biological tissue in human bone. 
Trabecular bone is involved in bone femur fractures 
and is the primary site for the insertion of orthopaedic 
implants (Eswaran et al. 2006). Substantial direct and indi-
rect social and economic costs are associated with these 
fractures, which emphasize the need for the prevention 
and treatment of osteoporotic disease (Daszkiewicz et al. 
2017). Osteoporosis is now recognized as a major pub-
lic health problem facing postmenopausal women and 
ageing individuals irrespective of gender (Stauber et al. 
2014). In fact, osteoporosis is a widespread skeletal dis-
ease that is responsible for deleterious fractures (Hambli 
2013). In this context, in silico medicine may prove useful 
(Viceconti et al, 2015).

Because bone is anisotropic, it is particularly diffi-
cult to handle in finite element analysis (FEA) involving 

cancellous bone as the trabecular struts themselves run 
in different directions. The properties of cancellous bone 
vary greatly as a function of their apparent density. For 
cancellous bone, the elastic compressive modulus at 75% 
porosity is approximately around 160 MPa, which is close 
to the human bone trabecular compressive modulus 
(Pioletti 2010).

Many computational models to predict the mechan-
ical properties of trabecular bone have been developed. 
For instance, the elastic behaviour of trabecular bone 
was studied using several different approaches, involv-
ing analytical and computational techniques. Analytical 
studies represent trabecular bone as a cellular solid and 
express its Young′s modulus by power law relations in 
terms of density (Gibson and Ashby 1982; Gibson 1985; 
Rajan 1985; Gibson and Ashby 1999; Gibson et al. 2010, 
1982). Although density is a key parameter in determining 
the properties of trabecular bone, density alone cannot 
fully capture the mechanical behaviour of bone. Other 
researchers have defined a fabric tensor, which charac-
terizes the textural or structural anisotropy of trabecular 
bone, and described the relationships between the elas-
tic constants of trabecular bone and its fabric tensor and 
density (Turner et al. 1990; Kabel et al. 1999; Zysset 2003). 
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methods have been proposed to further describe the 
influence of changes in bone microstructure on bone 
mechanical properties (Hildebrand and Rüegsegger 
1997; Jinnai et al. 2002; Gomberg et al. 2003; Zysset 
2003). It is also possible that heterogeneity may locally 
weaken the trabecular bone structure and ultimately 
initiate failure. This possibility casts doubt on the reli-
ability of failure prediction based on average morpho-
metric indices and the appropriate interpretation of the 
mechanical results from compression testing (Stauber 
et al. 2014).

The structure of open-cell rigid foams resembles that 
of human cancellous bone. The cell structure is over 
95% open and the cell size ranges from 1.5 to 2.5 mm. 
Furthermore, these foams are suitable for a variety of 
applications that require an open-cell structure, such as 
dynamic testing or cement injection, prior to clinical pur-
poses. Therefore, this study involved in vitro and in silico 
characterization of commercial open-cell structures to 
quantify the influence of voxel-mesh and smooth mesh 
geometries for the prediction of the mechanical properties 
of trabecular bone. Our results will reveal new research 
strategies to prevent osteoporotic fractures. To achieve 
this goal, Young′s modulus was compared between three 
commercial open-cell structures (Sawbones; Malmö, 
Sweden) with different porosities to assess the best ele-
ment type that represents trabecular bone microarchitec-
ture (linear tetrahedral, quadratic tetrahedral or voxel). A 
3D reconstruction from μCT images was performed and 
μFE models were developed using MIMCS (Materialise 
NV, Leuven, Belgium). Subsequently, the computation-
ally estimated Young′s modulus and porosity results 
were compared with the experimental and commercial 
Sawbones data.

2. Materials and methods

Three different open-cell structures were studied 
(Sawbones; Malmö, Sweden) (Table 1). Henceforth, we 
will refer to these as specimen #30 (Sawbones, product 
No. 1522–525; Malmö, Sweden; Figure 1), specimen #20 
(Sawbones, product No. 1522–524; Malmö, Sweden; 
Figure 1) and specimen #15 (Sawbones, product No. 
1522–526-1; Malmö, Sweden; Figure 1). Their densities 
resembled trabecular bone and varied from 0.24 to 0.48 g/
cm3 (Table 1). We had 53 cubic specimens (17 of specimen 
#15, 18 of specimen #20 and 18 of specimen #30) (Figure 
1). First, an in silico characterization was performed to 
simulate the experimental compressive test. Then, an in 
vitro characterization was performed (Figure 1).

Both results were compared with Sawbones specifica-
tions (Figure 1). The apparent Young′s moduli and poros-
ities were assessed.

Trabecular bone architecture, which is characterized by the 
thickness, number and separation distance of individual 
trabecula as well as their three-dimensional connectivity, 
plays an important role in its response. Thus, high-res-
olution imaging techniques, that account for actual 
trabecular bone architecture, such as micro- computed 
tomography (μCT), were used in combination with the 
finite element method (FEM) to predict Young′s modulus 
of trabecular bone (Müller and Rüegsegger 1995; Ulrich 
et al. 1998; Bourne and van der Meulen 2004; Dobson 
et al. 2006; Follet et al. 2007; Harrison et al. 2008; Pahr 
and Zysset 2008). Generally, finite element (FE) models 
of bones may be categorized into two groups: micro- 
finite element (μFE) models, in which the trabecular 
bone morphology is modelled in detail (Homminga et al. 
2004; Verhulp et al. 2006; Fields et al. 2009; Nawathe et al. 
2013), and homogenized continuum-level (hFE) models, 
in which one element covers a larger bone region, which 
is considered a homogeneous material (Faulkner et al.  
1991; Martin et al. 1998; Pistoia et al. 2001; Crawford et al.  
2003; Imai et al. 2006; Schileo et al. 2007; Pahr and Zysset, 
2009; Pahr et al. 2012). hFE models have been used for 
diverse clinical applications such as predicting bone 
strength (Zysset et al. 2013) and mechanical properties 
(van Rietbergen et al. 1995), but meshing (Viceconti et al. 
1998; Treece et al. 1999; Ito et al. 2006) and material map-
ping (Pahr and Zysset, 2009; Taddei et al. 2007) may be 
challenging. The limitations of quantitative morphometry 
for the prediction of bone failure have been demonstrated 
in previous studies, which showed that the strength of 
trabecular bone specimens depends on the orientation 
of the applied load (Bevill et al. 2009; Parkinson et al. 
2012) and on local variations in the trabecular network 
(Perilli et al. 2008). From a geometric or mesh point of 
view, one can distinguish between voxel-mesh (Keyak et 
al. 1997; Crawford et al. 2003; Dall’Ara et al. 2013) and 
smooth mesh geometries (linear tetrahedral and quadratic 
tetrahedral) (Jones and Wilcox 2007; Yosibash et al. 2010; 
Luisier et al. 2014; Zysset et al. 2015). Although these ele-
ments are normally used in full-bone meshes (Pahr and 
Zysset 2016), it would be interesting to observe the effects 
of these element types on the prediction of the mechanical 
properties of trabecular bone.

Indeed, trabecular bone plays an important role in 
load transmission and energy absorption at major joints 
such as the knee, hip, and spine. It is believed that, in 
addition to the bone volume fraction (the ratio of the 
volume of bone tissue to the overall bulk volume), the 
detailed microarchitecture, including trabecular orien-
tation and connectivity, is important in governing the 
mechanical properties of trabecular bone (Wang et al. 
2015). For this reason, efforts to quantify structural 
properties have gained prominence, and many different 
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2.1. In silico characterization

First, among the 53 specimens only 18 (6 of each type) 
were scanned along their height with a microcomputed 
tomography system prior to the compression tests (μCT50, 
General Electric; Milwaukee, WI, USA), using a 50-μm 
nominal resolution to assess the architecture of the tra-
beculae. The scanned images were reconstructed using a 
semiautomatic reconstruction (MIMICS, Materialise NV; 
Leuven, Belgium). All specimens were also digitally cut to 
exclude bone fragments that might have been generated 
from the cutting process and to exclude unintentionally 
cut trabeculae. Therefore, the representative volume ele-
ment (RVE) dimensions were 10 mm in base, 10 mm in 
height and 10 mm in thickness (10 × 10 × 10 mm).

The threshold μCT images of trabecular bone were con-
verted to μFE models using the 3-Matic tooling module 
(Materialise NV; Leuven, Belgium) and the Voxel Create 
Mesh Module supplied by MIMICS (Materialise NV, 
Leuven, Belgium). After the mesh was constructed, the 
resulting μFE models were imported into the commercial 

FE software package ABAQUS v.6.14 (Dassault Systèmes 
Simulia Corp.; Suresnes, France).

Three mesh types were analysed. First, a voxel mesh 
based on the original μCT images of trabecular bone 
(8-node brick element) was constructed. The voxel size 
was 12  μm (Figure 2). Then, a linear tetrahedral mesh 
(mean element size: 25 μm) and a quadratic tetrahedral 
mesh (mean element size: 25 μm) were considered (Figure 
2). The final tetrahedral mesh size was defined after mesh 
convergence analysis.

The bulk material was assumed to be linear elastic 
and isotropic. Therefore, the elements of the FE meshes 
were assigned a Young′s modulus of 3200 MPa (EFE

tissue). 
The Poisson’s ratio was defined as 0.3. Previous mechan-
ical properties were provided by Sawbones (Sawbones; 
Malmö, Sweden).

The boundary conditions for the μFEM model were 
based on idealizations of those of a uniaxial compression 
test (Wang et al. 2015); a uniaxial displacement (strain 
of 2%) was applied to the top surface of the cubic bone 

Table 1. open-cell specimen dimensions, densities, volume fractions and Young′s modulus.

Specimen
Number of speci-

mens Density (g/cc)
Porosity specifica-

tions (%)

Young′s modulus 
Sawbones specifi-

cations (MPa) Base (mm) Height (mm) Thickness (mm)
#15 17 0.24 85 53 20 40 20
#20 18 0.32 79 105 20 40 20
#30 18 0.48 69 270 20 40 20

Figure 1. Workflow for the in vitro and in silico characterization of the open-cell structures of trabecular bone.
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Furthermore, we could also calculate and compare the 
above mentioned porosities with the porosity associated 
with the specimen dimensions:

where Vapp is obtained from the FE material assignment 
module in MIMCS (Materialise NV; Leuven, Belgium) 
and V is the specimen volume size without pores (V ≈ 
1000 mm3) obtained after the 3D specimen reconstruction.

2.2 In vitro characterization

Briefly, compression experiments were conducted using 
a servo-hydraulic material testing machine (Microtest, 
model EFH; Figure 1). Each specimen was placed between 
steel plates at room temperature (approx. 23  °C) and 
loaded in the direction of their axis of symmetry (Figure 
1). The quasi-static compression load was measured with 
a commercial load cell (10 kN) applied at a constant 
velocity rate of 1 mm/min (Keaveny et al. 1993). Then, 
the force-displacement curves were measured for each 
test, and the Young′s modulus was calculated.

3. Results

The experimental data clearly showed an increase in 
Young′s modulus with bone volume fraction (Figure 

(3)Psp =

(

1 −
Vapp

V

)

× 100

samples (Wang et al. 2015). The bottom surface was 
kept fixed (van Lenthe et al. 2006), and the sides were 
calculated as traction-free (Hamed et al. 2012) (Figure 
1). In addition, contact between the upper and lower 
surfaces of the specimen and the plates was modelled 
using contact elements with a zero friction value to 
ensure that only compressive forces were transmitted 
(Hambli 2013).

Non-linear FE analyses were performed in ABAQUS 
v6.14 (Dassault Systèmes Simulia Corp.; Suresnes, 
France) and run in a computational cluster of 224 cores 
and 576 GB of RAM. After the FE analysis, the apparent 
Young′s modulus (1) was calculated using the following 
equation:

in which F is the force calculated from each FE simula-
tion (N), A is the apparent specimen cross-section (mm2), 
ΔL = 0.2 mm and L is the specimen length (L = 10 mm). 
Once the apparent Young′s modulus was calculated, the 
apparent porosities (PVoxel

app ) were obtained using Equation 
(2), in which n was determined to be equal to 2 for an 
open-cell structure (Hamed et al. 2012):

(1)E
Voxel
app =

�app

�app

=
F∕A

ΔL∕L

(2)P
Voxel
app = 1 −

n

√

√

√

√

E
Voxel
app

E
FE
tissue

Figure 2. three-dimensional reconstruction of the trabeculae using linear tetrahedral (C3d4), quadratic tetrahedral (C3d10) and voxel 
(C3d8) elements.
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1566   S. J. RAMOS-INFANTE AND M. A. PÉREZ

fractions near 0.20 (Figure 3), the Young′s modulus results 
and estimated porosity were similar to the real values. 
Despite these results, we found that the standard devia-
tions seemed to increase as the volume fraction increased 
(Table 2).

With regard to estimated porosities (Table 3), large cor-
relations between the estimated and real porosities were 
observed regardless of mesh type (Figure 3(b)). In addi-
tion, the mean porosities and standard deviations seemed 
to increase as the volume fraction increased (specimen 
#30). Nevertheless, the porosity results showed that linear 
tetrahedral elements were more suitable for representing 
the actual porosity of specimen #30.

4. Discussion

Anderson et al. (2007) outlined the major steps required 
to build a conceptual model that is a simplification of the 
actual conditions of interest and to then build a physical 
model (laboratory experiment) and a mathematical (FE) 

3(a)). Furthermore, our experimental results for Young′s 
modulus are close to the values provided by Sawbones 
(Sawbones; Malmö, Sweden) for specimen #15 and #20. 
In contrast, specimen #30 had a lower Young′s modulus 
(Figure 3(a)) than the Sawbones specifications.

With regard to the apparent Young′s modulus (Table 
2), we observed that, depending on the mesh type used to 
perform the FEA, different values for the apparent Young′s 
modulus could be obtained. For instance, the quadratic 
tetrahedral elements were more suitable for representing 
the real mechanical properties of the specimens that pos-
sessed lower volume fractions (Figure 3(a)) but also over-
estimated apparent Young′s modulus. The use of quadratic 
tetrahedral elements resulted in a reduction in the inher-
ent stiffness of linear tetrahedral elements. In contrast, 
linear tetrahedral elements were capable of representing 
the real mechanical properties of specimens with higher 
volume fractions (Figure 3) but underestimated the appar-
ent Young′s modulus. Similarly, we observed that regard-
less of the mesh type used to perform the FEA, for volume 

(a)

(b)

Figure 3. Comparison among experimental, computational and sawbones specifications of (a) Young′s modulus (mpa) and (b) porosity 
(the dashed line represents sawbones specifications).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Z

ar
ag

oz
a]

 a
t 0

4:
37

 2
2 

D
ec

em
be

r 
20

17
 



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING   1567

affects the induced force-displacement curve of the whole 
specimen. Furthermore, Hambli (2013) observed that 
in some cases, Young′s modulus increases significantly 
because the progressive contact of the trabeculae generates 
compaction of the specimen microstructure (specimen 
#15). In fact, the loading rate plays an important role due 
to the stiffer behaviour bone exhibits when it is loaded at 
a higher rate, whereas bone that is loaded more slowly will 
appear to be less stiff (Burr 2016). Despite these limita-
tions, our experimental results are in agreement with the 
mechanical properties provided by Sawbones (Sawbones; 
Malmö, Sweden).

Second, μFE models were used and continue to be 
an important simulation tool. These models help inter-
pret the results of mechanical tests and can reduce in 
vitro testing. However, we should take into account the 
numerical errors and uncertainties that occur with these 
methods (Ladd and Kinney 1998; Hamed et al. 2012). 
Therefore, in this paper, the effects of element type and 
element size and the effects of different specimen vol-
ume fractions were investigated. The results showed that 
the element type had some effects on the predicted yield 
behaviour. Due to the better bending behaviour for quad-
ratic elements in specimen #15, the predicted Young′s 
modulus were considerably lower than those obtained 
using linear elements (Verhulp et al. 2008). In contrast, 
specimens #20 and #30 showed better correlations for 
Young′s modulus prediction with linear tetrahedral ele-
ments. A poor correlation was predicted using the voxel 
FE mesh for specimen #30. This result could be due to 
the substantial lack of connections during voxel meshing 
(Ulrich et al. 1998). Nevertheless, some simplifications 
in our model have been assumed, so further analysis is 
needed.

In the present study, we found that the variance in vol-
ume fraction in a single specimen can be relatively large 
(Stauber et al. 2014) due to the cutting process during 
specimen manufacture. Therefore, the first challenge is 
how to set a threshold value for μCT images to accurately 
capture bone architecture and porosity. FE predictions of 

model from the conceptual model. After testing and sim-
ulation, the results are compared, the uncertainties are 
analysed, and a statistical statement is formulated that 
determines whether the simulation model fits the exper-
iment. Therefore, in this work, an in vitro and in silico 
characterization of open-cell structures of trabecular bone 
was performed.

Daszkiewicz et al. (2017) obtained a broad range of 
bone volume fraction (BV/TV) for the healthy femur of 
0.242 ± 0.060. Therefore, to accurately predict the mechan-
ical properties of both healthy and osteoporotic cancel-
lous bone, we used three different specimens of open-cell 
structures (Sawbones; Malmö, Sweden) (Figure 1) of the 
same size but different densities.

We obtained experimental and computational results 
through compression tests and μFE analyses, respectively, 
of previous open-cell structures. A major strength of this 
study was the use of specimens with large variations in 
their microarchitecture and bone volume fraction for the 
experimental validation so that an accurate prediction of 
the mechanical properties of the artificial cancellous bone 
was achieved.

The gold standard for determining bone competence is 
an assessment of its mechanical properties in a functional 
mechanical test that determines the resultant stress and 
strain. (Burr 2016). First, experimental tests have been 
proposed to assess specimens. The experimental data 
clearly show an increase in Young′s modulus with the bone 
volume fraction. Furthermore, our experimental results 
for Young′s modulus are on the higher side but are on the 
lower side of the values provided by Sawbones (Sawbones; 
Malmö, Sweden) depending on the volume fraction. 
Hamed et al. (2012) showed that machining bone samples 
may cause significant surface defects that may result in a 
reduction in the mechanical properties of the specimen, 
that is, a reduction in Young′s modulus (specimen #30). 
In fact, our initial specimens (20 × 20 × 40 mm) were cut 
from a larger specimen with a volume of 40 × 40 × 40 mm. 
Additionally, Dendorfer et al. (2008) showed that the 
accumulation of trabecular tissue damage and fracture 

Table 2. Young′s modulus (mean ± sd) obtained experimentally and through three different finite element analyses.

Specimen Dimensions (mm) Aapp (mm2) Eexperimental (MPa) E
lintet
app (MPa) E

quadtet
app (MPa) E

Voxel
app (MPa)

#15 10 × 10 × 10 15.39 ± 3.20 62.74 ± 4.14 89.93 ± 5.45 67.15 ± 19.82 85.89 ± 22.33
#20 10 × 10 × 10 23.36 ± 2.53 111.35 ± 8.24 118.67 ± 25.70 121.38 ± 30.17 121.16 ± 27.36
#30 10 × 10 × 10 26.18 ± 2.70 187.47 ± 20.53 257.57 ± 45.29 228.58 ± 43.55 178.05 ± 39.44

Table 3. estimated porosities (mean ± sd) obtained experimentally and through three different finite element analyses.

Specimen Dimensions (mm) Psp(%)  Plintetapp (%) P
quadtet
app (%) P

voxel
app (%)

#15 10 × 10 × 10 83.21 ± 3.98 84.15 ± 2.44 86.38 ± 2.21 84.55 ± 2.44
#20 10 × 10 × 10 80.31 ± 2.96 79.15 ± 2.38 79.75 ± 2.59 79.15 ± 2.48
#30 10 × 10 × 10 76.59 ± 4.34 72.30 ± 2.75 74.02 ± 2.81 77.38 ± 2.99
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of the compressive testing machine by Dr. Carlos Javierre from 
the University of Zaragoza.
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the compression test procedures (Keaveny et al. 1997), 
and in some cases, can lead to surprisingly low values 
for Young′s modulus (Hou et al. 1998; Ladd and Kinney 
1998). Finally, to avoid large computation time that can 
arise for more complex analyses, some authors (Niebur 
et al. 2000; Jaasma et al. 2002; Bayraktar and Keaveny 
2004; Lü et al. 2015) have instead used smaller sub-re-
gions, but this approximation was already said to result in 
errors as large as 9.5% in predictions of apparent stiffness 
(Bayraktar et al. 2004).

To summarize, our results indicate differences among 
the element type used for the FEA (linear tetrahedral vs. 
quadratic tetrahedral vs. voxel mesh). For instance, it 
could be concluded that quadratic tetrahedral elements 
were more suitable for representing the actual mechanical 
properties of specimens with lower volume fractions (high 
porous structures); that is, osteoporotic cancellous bone 
failure was able to be predicted using quadratic tetrahedral 
elements. In contrast, linear tetrahedral elements were 
capable of representing the real mechanical properties 
of specimens with higher volume fractions (low porous 
structures). Similarly, we observed that regardless of the 
mesh type used to perform the finite element analysis, 
both Young′s modulus and estimated porosity were simi-
lar to the values in actual cases when the volume fractions 
were near 0.20. The use of linear and quadratic tetrahedral 
elements has not only allowed us to predict the mechanical 
properties of trabecular bone, but also led to a considera-
ble reduction in computational costs.

A detailed in vitro and in silico characterization of 
open-cell structures was performed in this study. Our 
results will contribute to new strategies for osteoporotic 
fracture prevention that should be tested in vitro and sup-
ported by computational models.
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