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este Trabajo Fin de Máster por su apoyo durante todo este tiempo. Por sacar
siempre un hueco para resolver las dudas que han ido surgiendo y por confiar
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Resumen

Influencia de la rigidez de la matriz estracelular en la
migración celular en tres dimensiones

En el presente Trabajo Fin de Máster se pretende estudiar uno de los tipos
de migración celular conocidos del que todav́ıa no se entiende con certeza
qué condiciones deben darse para que se produzca, migración basada en
lobopodia.

Para la ingenieŕıa de tejidos, aśı como enfermedades en las que enten-
der los procesos de migración celular tiene un papel fundamental, resulta
necesario realizar estudios tanto experimentales como computacionales para
avanzar en su conocimiento. Hasta ahora la mayoŕıa de estudios se han real-
izado en dos dimensiones(2D), sin embargo, con el avance de la tecnoloǵıa y
la posibilidad de realizar ensayos en tres dimensiones (3D) se ha descubierto
un nuevo tipo de migración celular, migración basada en lobopodia.

Este tipo de migración sólo aparece en matrices extracelulares 3D, aunque
sólo bajo ciertas condiciones que todav́ıa no están claras. En ella, la célula
crea una protusión a través de la cual el núcleo comienza a pasar y actúa
de pistón, dividiendo la célula en dos partes y aumentando la presión en la
parte delantera.

Una de las hipótesis existentes sobre cuándo aparece este tipo de mi-
gración es que depende de las propiedades mecánicas de la matriz extracelu-
lar. Según si ésta es elástica lineal o elástica no lineal (además de otros
factores qúımicos) aparecerá el lobopodio y el núcleo comenzará a pasar a
través de él.

Para intentar dilucidar si las propiedades mecánicas de la matriz tienen
influencia o no en la elección del tipo de migración, se ha desarrollado un
modelo de elementos finitos partiendo de un ensayo realizado en el laboratorio
del M2BE, en el cual una célula de fibroblasto migra usando lobopodia,
para simular distintas matrices con diferentes propiedades mecánicas (rigidez,
compresibilidad, elástica lineal o dependiente de la deformación).
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Abstract

The role of the matrix stiffness on 3D cell migration

In this Master’s Thesis, we study a cellular migration type that is known
as lobopodia-based migration. The conditions under which this type of mi-
gration occurs is at least unknown.

For tissue engineering, just like human diseases in which understanding
the cellular migration processes plays a fundamental role, it is necessary
to carry out experimental and computational studies to progress in their
knowledge. Until now, the most of studies have been made in two dimensions
(2D), however, with the advance of technology and the possibility to make
tests in three dimensions (3D), it has been discovered a new type of cellular
migration, lobopodia-based migration.

This type of migration only appears in extracellular matrices 3D, although
only under certain conditions which are not yet clear. In lobopodia-based
migration, the cell creates a protrusion through which the nucleus begins to
pass and acts as a piston, dividing the cell in two parts and increasing the
pressure in the front part.

One of the existing hypotheses about when this type of migration appears
is that it depends on the mechanical properties of the extracellular matrix.
Depending on whether it is linear elastic or non-linear elastic, the lobopodio
will appear and the nucleus will begin to move (in addition to other chemical
factors).

In order to elucidate if the mechanical properties of the extracellular ma-
trix are crucial in the choice of cell migration, we propose here a finite element
model in which we simulate a test lab for different matrices with different
mechanical properties and behaviours (stiffness, compressibility, linear elastic
or strain-dependent) for a single cell migration using lobopodia-based.
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Chapter 1

Introduction

In recent years, several studies have investigated the mechanical properties
of the extracellular matrix (ECM) and the mechanisms of cellular migration
[1, 2, 3]. Understanding how and why cells are able to sense the ECM stiff-
ness and select the best migration strategy have become crucial to progress
in other areas, such as, tissue engineering, cancer progression or injury re-
generation.

Cell migration on two dimensions (2D) has been extensively described
on previous experimental works. These studies have revealed some basic
migration mechanisms, such as lamellipodia, adhesion-mediated traction or
actomyosin contractility [4]. There are different studies relating the mode of
cell migration with the mechanical properties of the ECM [2, 5, 6, 7, 8]. These
mechanisms depend on the cell type and their physical environments. To bet-
ter understand the cellular behaviour, several authors studied the influence
of ECM molecular composition [9], the density and orientation of fibrillary
elements, the bulk and local stiffness [10] and the mechanical response of the
ECM [5].

However, cell movement in the human body mainly occurs on three di-
mensions (3D). Petrie et al. [5] proposed a new mode of single cell migration,
lobopodia-based (Figure 1.1 a), which only takes place in 3D ECMs. The
nucleus acts as a piston which polarizes internal pressure and creates protru-
sions that facilitate cell movement. The pressure in the leading edge is three
times bigger in lobopodia-based than in lamellipodia-based migration. On
lamellipodia-based migration (Figure 1.1 b), the cell uses different lamellae
to move instead of a single large cylindrical protrusion (lobopodia). These
experiments have been mainly performed with primary human fibroblasts.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Scheme of cell Lobopodio (a) and cell Lamellipodio (b) [6].

Petrie et al. [7] showed that a single fibroblast may switch from actin-
driven lamellipodial protrusion to a nuclear piston lobopodial-driven mode
of migration. The migration mode depends on the mechanical properties
of ECM. To elucidate when and where this kind of migration is used, they
carried out a study with different ECMs [5]. Two mechanical parameters
were analysed, the elastic or Young’s modulus (E) and strain stiffening, a
measurement of how the stiffness of a material depends on the strain. They
used an atomic force microscope (AFM) to measure the force and the strain
applied, after that, they computed the Young’s modulus. They obtained
Emed from this measure and Ehigh from another measurement of Young’s
modulus with a greater force and deformation. For a linear elastic material
the Young’s modulus is constant (Ehigh/Emed = 1), however, a non-linear
material presents strain-dependency and the elastic modulus increases with
the strain (Ehigh/Emed > 1).

Their main conclusion is that the mechanical response of the ECM is
related with the mode of cell migration, but the reason of these differences
are still unclear.
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The purpose of this Master’s Thesis is to elucidate how the mechanical
properties of the ECM may affect lobopodial-based migration. To determine
the influence of ECM non-linear elastic behaviour, we analyse the nucleus
displacement, the gradient of hydrostatic pressure between the front and the
back part of the nucleus in the cytoplasm, the stresses in the nucleus and the
deformation levels in the ECM in function of its mechanical behaviour.



Chapter 2

Materials and Methods

In this section, it is shown the process followed in order to create Finite
Element-based models that allow the three-dimensional (3D) simulations of
single cell migration using lobopodia. Initially, it is presented the geometry
of the cell and the corresponding discretization. Secondly, the mechanical
behaviour of the different materials that define our problem are presented,
distinguishing between cell and ECM. Finally, the initial boundary and load-
ing conditions are described.

2.1 Geometry and FE discretization

The initial geometry established for all simulations is a cube with 150x100x100
(µm) for the extracellular matrix and an axisymmetric section defined in Fig-
ure 2.1 for the cell body with the corresponding cytoplasm and nucleus. This
geometry was obtained from a video filmed on a cell migration experiment
from M2BE lab (Figure 2.2).

Regarding the finite element discretization, the model is simulated us-
ing coincident nodes condition to reduce the computational cost and favour
the convergence. Table 2.1 shows the number and type of elements used
in the model. On the one hand, we use solid mechanics and pore pres-
sure elements for the cytoplasm because we consider it as a solid and fluid
two-phase composition. On the other hand, we use solid mechanics hybrid
elements for the nucleus in order to get better convergence because of the
quasi-incompressibility of the nucleus. Furthermore, a mesh sensitivity study

4
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Figure 2.1: Cell section (units µm).

Figure 2.2: Cell in a 2 mg/ml of collagen matrix. Photos taken in a real
experiment from M2BE laboratory.

was performed by increasing the total number of elements up to 3.745.614;
the results were comparable, but the calculation time significantly increased.
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Part Element type Number of elements

ECM 631922 Tetrahedral solid mechanics
(C3D4)

Cytoplasm 28387 Tetrahedral solid mechanics
and pore pressure (C3D4P)

Nucleus 1651 Tetrahedral solid mechanics
hybrid (C3D4H)

Table 2.1: Number and type of elements used in the model.

2.2 Materials

We simulate five different matrices (Table 2.2). Three of them with con-
stant Young’s modulus: CDM (cell-derived matrix) [5], dermal explant [5]
and elastic collagen (a simulation of the 2 mg/ml collagen hydrogel without
strain-dependent behaviour, Figure 2.3). And the other two with a strain-
dependent behaviour: 2 and 4 mg/ml collagen hydrogel [11].

Matrix Initial Young’s modulus (Pa) Strain-dependent

2 mg/ml collagen hydrogel 118 Yes
4 mg/ml collagen hydrogel 340 Yes

Elastic collagen 118 No
CDM 627 No

Dermal explant 6427 No

Table 2.2: Summary of matrix properties.

The matrices CDM and dermal explant are obtained from the work of
Petrie et al. [5]. Otherwise, to obtain the equivalent elastic modulus from the
2 mg/ml collagen hydrogel, we use the relation between the shear modulus
and Young’s modulus and Poisson’s ratio:

G =
E

2 · (1 + ν)
(2.1)

were G is the shear modulus, E is the Young’s modulus and ν the Poisson’s
ratio. We fix the Poisson’s ratio to 0.48 following Petrie et al. [5]. Table
2.3 shows shear stress versus shear strain for a computational shear test
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(Appendix B). All linear elastic matrices are modelled as a elastic material
defined by the Young’s modulus and the Poisson’s ratio.

Figure 2.3: Shear stress versus shear strain (Appendix B) for 2 mg/ml col-
lagen hydrogel and a linear elastic matrix with the same initial Young’s
modulus (elastic collagen).

To represent solid phase of collagen matrices, we use a hyperelastic con-
stitutive model based on a uniform continuous fiber distribution [12]. This
model captures the major features of the material properties of collagen gels,
including non-linear elasticity, tension-compression non-linearity, and strain-
dependent Poisson’s ratio. To characterize the parameters from equation
2.2, we carried out a computational shear stress test (Appendix B) using
experimental data [11]. This test simulates a ECM sample in a rheometer.



8 CHAPTER 2. MATERIALS AND METHODS

The strain energy function for the hyperelastic model used for collagen hy-
drogels is:

U = C ·
(

Î1 − 3
)

+
1

D
·







(

Jel
)2

− 1

2
− ln Jel





+
k1

2 · k2
·
N
∑

α=1

{

exp
[

k2
〈

Ēα

〉2
]

− 1
}

(2.2)

with

Ēα = κ ·
(

Î1 − 1
)

+ (1− 3 · κ) ·
(

Î4(αα) − 1
)

(2.3)

where C,D, k1, k2 and κ are material parameters, N is the number of families
of fibers (N ≤ 3), Î1 is the first invariant of the right Cauchy-Green defor-
mation tensor, Jel is the elastic volume ratio and Î4(αα) are pseudo-invariants
of the right Cauchy-Green deformation tensor. Parameter κ is fixed 0.33
assuming the material isotropic.

To simulate the cell, several simplifications are made and only two parts
are taken into account: nucleus and cytoplasm. The nucleus is considered a
Neo-Hookean hyperelastic material with an equivalent Young’s modulus and
Poisson’s ratio of 10 kPa and 0.49 respectively, in accordance with the work
of Friedl et al. [13] and Vaziri et al. [14]. The strain energy function presents
the following form:

U = C ·
(

Î1 − 3
)

+
1

D
·
(

Jel − 1
)2

(2.4)

Finally, the cytoplasm is simulated as porous-elastic material. This is con-
stituted by two distinct phases, the solid matrix (which is also modelled as
a Neo-Hookean material) and the fluid flowing through solid matrix porous.
On the solid phase, we assume a Young’s modulus of 500 Pa and a Poisson’s
ratio of 0.3 (C = 96.2Pa and D = 4.8 · 10−3Pa constants for Neo-Hookean
equation), but also a case with 0.4 is simulated. To define the fluid phase,
we use the permeability of the solid phase (wherein is implicit the viscosity
of the fluid [15]), the void ratio and the specific weight. We chose values of
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Cytoplasm

Young’s modulus of solid phase 500 Pa
Poisson’s ratio of solid phase 0.3

Permeability of fluid 4 ·10−20 m4

N ·s

Table 2.3: Mechanical properties of cytoplasm.

cytoplasm stiffness and permeability that are compatible with previous stud-
ies [16, 17]. We also perform a finite element model to study the relationship
between the Young’s modulus for a elastic material and for the solid phase of
a porous-elastic material (Appendix A). Since the fluid phase increases the
apparent stiffness on the transitory analysis, we decrease the elastic modulus
of the solid phase of the cytoplasm. The permeability is reduced 5 orders of
magnitude to reproduce the pressures measured into the cytoplasm by Petrie
et al., [7]. All mechanical properties of cytoplasm are shown in the Table 2.3.

Furthermore, we perform another model in which the cytoplasm is simu-
lated as fluid, using the fluid-structure interaction (FSI) calculation scheme.
Nonetheless, FSI model is discarded because of the quasi-static movement of
the nucleus.

2.3 Boundary and loading conditions

As a initial conditions, we fix all displacement of the ECM external surface,
we assume zero pressure inside the cytoplasm and we also fix the flow rate
through the interface cell-matrix to avoid lost of fluid in the cytoplasm.

In addition, we apply pressure on the back surface of the nucleus to
simulate core movement (Figure 2.4a). We increase this pressure from 0 to
400 Pa in the first 50 seconds and it remained constant in the last 50 seconds
(Figure 2.4b). The total time simulated is 100 seconds.
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Figure 2.4: Description of boundary conditions and pressure application (a)
and instant pressure applied (b).



Chapter 3

Results and discussion

We focus our analysis of the simulation results on the advance of the nucleus
inside of the lobopodio, the generation of a pressure gradient between the
front and back part of the nucleus, the stresses on the cell nucleus and the
ECM strains. All measurements are taken at time 50 seconds, when the
pressure applied is 400 Pa.

3.1 Nucleus displacement through lobopodio

First, we analyse the displacement of the back edge of the nucleus (Figure
3.1). The displacement depends on the capability of the nucleus to deform the
cytoplasm and the surrounding matrix. Figure 3.2 shows the displacement
along time for all the matrices studied. As expected, nucleus displacement is
larger on softer matrices in the case of linear elastic matrices (elastic collagen,
CDM and dermal explant). For all simulations, the nucleus deformation is
not taken into account (less than 3%).

To study the influence of the matrix Poisson’s ratio, one case is computed
with the CDM matrix but varying νECM to 0,3. The results obtained from
the CDM matrix with 0,48 and 0,3 Poisson’s ratio show that the nucleus
displacements and velocity increase for higher compressibility (Figure 3.2).
Thus, the Poisson’s ratio of the matrix is relevant for lower elastic modulus
or higher velocities, in other case it is not an important parameter for which
is needed good accuracy.

11
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Figure 3.1: Scheme of trailing edge displacement.

Figure 3.2: Trailing edge displacements.
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Moreover, we simulate a case with 0,3 Poisson’s ratio for the cytoplasm
instead of 0,4 and we do not observe any changes on our results.

Regarding the results from linear and non-linear elastic matrices, we ob-
serve different behaviour. On collagen hydrogels, the nucleus velocity is not
constant and its decreases with time due to the strain stiffening. Neverthe-
less, the velocity of the nucleus is constant on elastic matrices. We can see
this difference in Figure 3.2, comparing the velocities of nucleus in 2 mg/ml
collagen hydrogel and elastic collagen matrices. For elastic collagen matrix
the velocity is constant, but for 2 mg/ml collagen hydrogel it starts with a
higher velocity and decreases until being lower.

The velocities obtained for the pressure values applied on the nucleus are
in the order of 10−2µm/s. These results are compatible with the measure-
ments obtained experimentally by Petrie et al. [7] for the CDM matrix.

3.2 Hydrostatic pressure in the cytoplasm

Petrie et al. [7] measured the intracellular hydrostatic pressure in the front
and back part of the nucleus obtaining values of 2400 Pa and 900 Pa respec-
tively for the CDM matrix. On cell migration, there are several phenomena
that can increase the internal pressure in the cell, such as actomyosin contrac-
tility. However, the pressure gradient between the front compartment and
the back compartment of the cell is mainly caused by the nucleus movement.
Nonetheless, our computational model simulates the nucleus movements but
it does not take into account other cell mechanism. So that, the pressure
gradient has been measured instead of absolute pressure values.

Figures 3.3 and 3.4 show hydrostatic pressure of the fluid for the linear
elastic and strain-dependent matrices respectively. The pressure gradient is
higher on the case in which nucleus displacement is larger. The value of the
pressure gradient is close to 850 Pa for the elastic collagen and 2 mg/ml
collagen hydrogel matrices. In addition, the absolute values of pressure are
similar in the front and back part of the nucleus. Thus, the gradient pres-
sure is similar on the simulations with linear elastic and strain-dependent
matrices. With respect to the effect of Poisson’s ratios of the CDM matrix
and solid phase of the cytoplasm, there are not differences in the hydrostatic
pressure. Finally, the gradient pressure for dermal explant matrix is the lower
of all cases and it is close to 320 Pa.
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Therefore, there are not differences in the hydrostatic gradient depending
if the matrix is elastic or strain-dependent, but there are with the displace-
ment and the velocity.

Figure 3.3: Hydrostatic pressure in the cytoplasm; a) CDM matrix, b) elastic
collagen, c) CDM with νcytoplasm = 0,4, d) dermal explant, e) CDM with νECM

= 0,3 (units mPa).

In spite of all results are taken at the end of the transient state, because
of the we are interesting in the transient response of the system, we also
simulate 50 seconds with a constant pressure applied. In this time, the fluid
part of the cytoplasm starts to relax and the pressure decreases.

3.3 Strains of the matrix

Other result analysed is the matrix strains on our model. For all cases
simulated, the pressure applied to the nucleus is the same, thereby the main
factor regulating the cell deformation is the matrix. In Figures 3.5 and 3.6
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Figure 3.4: Hydrostatic pressure in the cytoplasm; a)2 mg/ml collagen hy-
drogel, b)4 mg/ml collagen hydrogel (units mPa).

we can observe the strains on linear elastic and strain-dependent matrices
respectively. For a dermal explant matrix (Figure 3.5d) there is almost no
matrix deformation due to its high elastic modulus. However, the elastic
collagen (Figure 3.5b) shows strains of 60 % (and very close to the nucleus).
For CDMmatrices, matrix strain distribution is similar to elastic collagen but
with lower values. In addition, the Poisson’s ratios of matrix and cytoplasm
solid phase are not relevant for the results. In all CDM cases, matrix strains
are under 20 %.

Regarding strain-dependent matrices (Figure 3.6), the strain distribution
is different from linear elastic matrices. They show lower matrix strains
due to the stiffening. Strains are more distributed on the matrix and the
maximum value is 40 % for 2 mg/ml collagen matrix instead of 60 % for
elastic collagen matrix (comparison of Figures 3.5b and 3.6a).
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Figure 3.5: Strain on the ECM; a) CDM matrix, b) elastic collagen, c) CDM
with νcytoplasm = 0,4, d) dermal explant, e) CDM with νECM = 0,3.
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Figure 3.6: Strain on the ECM; a)2 mg/ml collagen hydrogel, b)4 mg/ml
collagen hydrogel (units mPa).

3.4 Nucleus stress

Finally, we analyse the mechanical state of the nucleus. We obtain the maxi-
mum tensile stress (Figures 3.7 and 3.8) and the maximum compressive stress
(Figures 3.9 and 3.10) of the cell nucleus.

In all simulations, the cell nucleus is mainly under compression because
of we are pushing forward it. Figures 3.7 and 3.8 show similar distribution
of tensile stress, for all cases except for dermal explant matrix which is all
under compression. The others six cases simulated show a focus area in the
leading edge in which appears tensile stresses of 25 Pa.

Regarding the maximum compression stress, we observe also a similar
distribution in all cases. The front part of the nucleus show lower stress,
possibly because of the surrounding material (cytoplasm) have lower Young’s
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Figure 3.7: Maximum tensile stress on the nucleus; a) elastic collagen matrix,
b) dermal explant matrix, c) CDM matrix , d) CDM matrix with νcytoplasm
= 0,4, e) CDM matrix with νECM = 0,3 (units mPa).

modulus. However, the highest compression stresses appears on the interface
between the surface where we apply the pressure and the surface where we
do not apply it. Thus, this maximum values may be erroneous due to our
boundary conditions.

Therefore, we do not observe differences between linear elastic and strain-
dependent matrices on the nucleus stress, neither between the variants of
CDM matrix. However, we observe that the elastic modulus of the matrix
has effect on the values of the stresses. The higher the Young’s modulus, the
higher the compression stresses.
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Figure 3.8: Maximum tensile stress on the nucleus; a) 2 mg/ml collagen
hydrogel, b) 4 mg/ml collagen hydrogel (units mPa).

Figure 3.9: Maximum compression stress on the nucleus; a) elastic collagen
matrix, b) dermal explant matrix, c) CDM matrix , d) CDM matrix with
νcytoplasm = 0,4, e) CDM matrix with νECM = 0,3 (units mPa).
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Figure 3.10: Maximum compression stress on the nucleus; a) 2 mg/ml colla-
gen hydrogel, b) 4 mg/ml collagen hydrogel (units mPa).



Chapter 4

Conclusion

In this Master’s Thesis, we develop a finite element model of lobopodial-
based migration in different linear and non-linear matrices. We consider
the surrounding matrix as linear elastic and strain-dependent materials, the
cytoplasm as porous-elastic and the nucleus as Neo-Hookean material.

One of the main difficulties we found to properly model and simulate cell
migration is to accurately characterise the cytoplasm mechanical properties.
Cytoplasm is a very heterogeneous part of the cell and it is composed by a
large number of organelles through which flows the cytosol. Hence, we con-
sider the cytoplasm as a homogeneous porous elastic material. Nevertheless,
measuring the properties of fluid and solid phase is a difficult task. Thus,
considering the instantaneous response of the cytoplasm , we do not use ex-
actly the same permeability value shown on Taber et al.[16] and it is only
taken as a reference value. The value of elastic modulus of the solid phase is
approximated using an additional finite element model and the experimental
data by Efremov et al. [17].

Otherwise, one of the main objectives of this study is to elucidate if linear
and non-linear elastic matrices affect the lobopodia-based migration. To
compare directly both matrices, the elastic collagen has the same properties
initialy as 2 mg/ml collagen hydrogel, however, collagen becomes stiffer with
the strain. The work of Petrie et al. [5] conclude with a three-question
path to know what type of cell migration is going to appear; what is the
dimensionality of the matrix, what is the level of RhoA activity, and is the
3D matrix linearly elastic? For strain-dependent matrices they find that cells
will choose lamellipodia.

21
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Thereby, we analyse hydrostatic pressure inside the cytoplasm, nucleus
stresses, matrix strains and nucleus displacement as main results.

The hydrostatic pressure gradient between the leading and trailing edge of
the nucleus was compatible with experimental work of Petrie et al. (2014) [7]
for the force applied. Nevertheless, we do not find large differences between
linear and non-linear matrices, but between the different linear matrices de-
pending on the elastic modulus.

For the stress on the nucleus, we only observe differences in the elastic
modulus of the matrix. This is a normal result because with higher stiffness,
the nucleus find more resistance to advance.

Analysing the matrix strains, we observed different distributions for linear
and non-linear matrices due to in the local zones where the strain is higher the
stiffness increases. And, as expected, strains are higher on softer matrices
because of the nucleus displacement is larger. But again, we do not find
significantly differences between linear and non-linear matrices.

Finally, nucleus displacements and velocities are also compatible with
experimental works [7] for CDM matrix. Regarding the differences between
linear and non-linear elastic behaviour, we observe the stiffening of the matrix
with a decrease of the nucleus velocity. In spite of this, the nucleus advances
more in a 2 mg/ml collagen hydrogel than in a CDM linear matrix.

Thus, we have not found a mechanical explanation for the preference
of cells to use lamellipodia-based migration instead of lobopodia-based for
strain-dependent matrices. First, we can think that the stiffening causes the
cell to change from lobopodia- to lamellipodia-based cell migration. However,
the simulation of matrices with different behaviours show how there are not
evidences of this hypothesis. The gradient pressure generated by the nucleus
is very similar for a cell in collagen hydrogel of 2 mg/ml and in elastic
collagen matrix. The stresses suffer by the nucleus are also very similar
for linear elastic and strain-dependent material, it depend with the stiffer
of the matrix but not with the behaviour. And finally, despite of there are
differences in the matrix strain distribution, the nucleus in a 2 mg/ml collagen
hydrogel advances more than in a CDM matrix, which is no strain-dependent
but it have a higher elastic modulus.
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4.1 Future work

In a future work, it is possible to extend this model adding actomyosin con-
traction behaviour of cell in order to obtain the real hydrostatic pressures
instead of a gradient. Furthermore, it may reveal an explication about why
exist this difference between linear and non-linear matrix behaviour that
only with the nucleus movement we cannot observe. In addition, it is also
possible add membrane cell or organelles, contributing stiffness to cell and
heterogeneity to the cytoplasm respectively.

Moreover, it may be interesting to study the influence of the nucleus
properties. There are studies where the nucleus Poisson’s ratio take negative
values [18] or becomes stiffer due to the effect of drugs [19]. Both parameters
may be important in cell migration.
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