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Abstract. A large proportion of the overall costs of a wind farm is directly related to operation
and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective
approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure
models can help to understand the components’ degradation processes and enable the operators
to anticipate upcoming failures. Usually, these models are based on the age of the systems
or components. However, latest research shows that the on-site weather conditions also affect
the turbine failure behaviour significantly. This study presents a novel approach to model WT
failures based on the environmental conditions to which they are exposed to. The results focus
on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw
system. A penalised likelihood estimation is used in order to avoid problems due to for example
highly correlated input covariates. The relative importance of the model covariates is assessed
in order to analyse the effect of each weather parameter on the model output.

1. Introduction
Over the past years wind turbine (WT) operation and maintenance (O&M) has become an
emerging field of research. Wind farm operators can profit substantially from shifting towards
predictive maintenance strategies rather than employing corrective tasks. Understanding the
wind turbine degradation in operating conditions plays an important role in this transition.
Predictive maintenance models take into account age-dependent component reliability degra-
dation. Modelling the accessibility of wind farms is usually carried out including the weather
conditions at site. However, the impact of meteorological conditions on the component life-
time is mainly neglected. Yet, taking into account the environmental conditions that are more
likely to provoke component failures, could enhance predictive maintenance models significantly.

Several studies have been carried out investigating the failure behaviour of wind turbines.
Many different data bases have been analysed with the aim of quantifying failure rates and down-
time related to the wind turbine systems and their components. Examples are given in [1–6].
The change in failure rate over time is frequently modelled using Weibull distributions, deriving
the so-called bathtub curve. The latter is divided into three phases - early, random (useful life)
and ageing phase. Early life failures are characterised by a decreasing rate over time, while
ageing or wear-out is represented by an increasing failure rate. During the useful life period the
failure rates are assumed to be constant.

http://creativecommons.org/licenses/by/3.0
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Previous studies have shown that not only the turbine age, but also certain combinations
of weather conditions can affect their life-time negatively. During the useful life-time, the as-
sumption of constant failure rates does not always hold true, especially when considering shorter
time-intervals, such as for example the failure occurrences on a monthly basis. There are sig-
nificant variations in failure rates throughout the year that need to be taken into account by
the wind farm operators. With this they can react properly to upcoming failure by initiating
preventive or opportunistic maintenance actions.

Much research effort has been dedicated to identifying the critical meteorological parameters
that influence the WT failure behaviour negatively. One of the first extensive analysis on the
effects of weather on WT reliability was presented by Hahn et al. [7], showing increased failure
rates of certain WT components with rising average daily wind speeds. In Tavner et al. [8] an
annual periodicity in failure rates due to seasonal variation in weather conditions is reported,
by analysing the correlation between monthly averaged wind speed conditions and component
failures. The effects of wind speed on WT downtimes with regards to the turbines’ energy-
and time-based availability is examined by Faulstich et al. [9]. Wilson et al. [10] use artificial
neural networks to show that especially the gearbox and generator are very likely to fail in
changeable wind conditions. McMillan et al. [11] use Markov Chain models to calculate the
seasonal component failure rates and wind farm availability based on weather conditions. In
Wilkinson et al. [12] a strong relationship between high wind turbine downtime and temperature
and wind speed was found. Tavner et al. [13] cross-correlate component failures with average
monthly maximum and mean wind speed, maximum and minimum air temperature and average
daily mean relative humidity. The studies presented by Wilson et al. in [14, 15] use Markov
Chains and Monte Carlos simulations to model the WT failure behaviour with respect to certain
weather conditions. Recently, Faulstich et al. [16] included wind speed in an additive Weibull
failure rate model in addition to the three age-dependent phases of the bathtub curve. A study
published by Slimacek et al. [17] indirectly considers the environmental conditions for modelling
the rate of occurrence of wind turbine failures by taking into account the number of stops due to
harsh weather conditions. They conclude that the number of stops due to harsh environmental
conditions are the most important drivers of their model.

The mentioned research has proved that the failure behaviour of wind turbines and their
components is strongly influenced by the meteorological conditions the systems are exposed to.
Nonetheless, no models have been developed yet, to directly describe the WT failure behaviour
based on combinations of external covariates. Thus, this work presents a novel approach to
model the failures of WTs during the useful life including the effect of environmental conditions.
The model will be applied to a 2 MW case study wind farm and the failures of the whole turbine
system as well as four main components are modelled. In this context, failures are defined as
events that can be associated to a component breakdown, which causes a WT stop and needs
intervention such as replacement or repair.

2. Methodology
A regression model based on a generalised linear model (GLM) is applied to the data. The model
is set up with a Poisson response distribution and a logarithmic link function. Subsequently, a
ridge regression is employed to estimate the model parameters.

The ridge regression, see e.g. [18] and [19], is a penalised parameter estimation technique,
which is frequently used to estimate the parameters of a regression problem with a high number
of covariates. It introduces a penalty term on the squared `2-norm of the coefficient vector.
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The penalisation helps to avoid over-fitting due to the high number of covariates. Although
ridge regression is known to introduce a bias by shrinking the model coefficients towards zero,
it is capable of significantly reducing the variance, in comparison to for example ordinary least
square methods.

The Poisson regression model is given by:

ŷ = exp(β0 +

N∑
i=1

βix
T
i ) , (1)

where ŷ is the failure rate, x are the external covariates, N the number of observations and β
are model parameters. Eq. 1 is fitted by maximising the penalised likelihood:

maxβ,β0
1

N

N∑
i=1

(
yi(x

T
i β + β0) − ex

T
i β+β0

)
− λ

(
1

2

N∑
i=1

β2i

)
, (2)

with the number of observations N and a penalisation parameter λ. The latter dictates the
degree of shrinkage. Thus, larger values for λ result in more shrinkage and higher bias. At
the same time, however, with increasing λ values the variance decreases. Choosing a value of
the penalisation parameter λ is realised by fitting a model with maximum regularization and
subsequently decreasing it until the model becomes too complex and overfitting occurs. To
ensure computationally efficient parameter estimation the L-BFGS solver, see e.g. [20], is used.

2.1. Case Study
The model is applied to a case study including 30 turbines located in a wind farm in Spain. The
WTs are geared, three bladed and pitch-regulated machines, with a rated capacity of 2MW
each. The terrain complexity of the site is 4, which was classified using the normative IEC
61400-12-2, [21]. The data set consists of failure logbooks, SCADA and meteorological tower
(met-mast) data collected during three years of operation. At the start of the data collection the
turbines were five years old. An average wind farm year is modelled, whereas the observation
period is introduced into the model by means of an exposure variable called model offset. Thus,
the model outcome can be considered as the rate of failure occurrence in an average operational
year.

2.2. Data
In this study, the monthly failures of an average year will be modelled. In the results section
the months January to December are indicated with the numbers 1 to 12. The model covariates
include the monthly average wind speed (WS) and turbulence intensity (TI), and the monthly
maximum wind speed (MaxWS), measured at a height of 45 meters at the wind farm met-mast.
Additionally, the monthly mean relative humidity (RH), precipitation (Rain) and ambient tem-
perature (Temp) taken from closely located weather station are included. Table 1 shows the
minimum, median, mean, maximum and standard deviation values for each meteorological pa-
rameter of the input data. Additionally, as an indicator for the time operating at full capacity
the monthly mean power production (PWR) taken from the turbines SCADA systems divided
by the rated capacity, was chosen. In order to avoid problems due to the different covariate
magnitudes, the latter are centred to a mean of 0 and standardised by dividing by their stan-
dard deviation.

In a first step the model is applied to the whole data base, without further distinguishing
between the failed components. Subsequently, the failure data of four main components: the
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gearbox, generator, pitch and yaw system are extracted from the same set and the model is
applied again. In order to analyse the importance of each input variable, the standardised
model coefficients are compared. This is commonly done to interpret which of the covariates
contributes the most to modelling the output and helps to see which weather conditions are
important for modelling the failures.

Table 1. Statistical properties for each meteorological parameter .

Variable Minimum Median Mean Maximum Standard Deviation

WS (m/s) 4.238 6.535 6.675 10.87 2.408
TI (-) 0.105 0.118 0.119 0.134 0.012
MaxWS (m/s) 16.33 23.29 23.13 30.89 5.250
Temp (◦C) 4.414 12.18 12.59 20.92 6.020
RH (-) 0.634 0.657 0.673 0.719 0.035
Rain (mm) 5.067 37.20 39.78 94.00 30.02

2.3. Model Evaluation
The model performance is evaluated using the metrics root mean square error (RMSE), mean
absolute error (MAE) and the coefficient of determination R2. Due to confidentiality reasons
regarding the failure data and in order to enable the comparison of the five data input cases,
the first two metrics are displayed in a normalised form indicated by NRMSE and NMAE. The
metrics are defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, NRMSE =
RMSE

ymax − ymin
; (3)

MAE =
1

N

N∑
i=1

√
(ŷi − yi)2, NMAE =

MAE

ymax − ymin
; (4)

R2 = 1 − σ(ŷ − y)2

σ(y)2
; (5)

where ŷ is the modelled variable, y the original data value and σ denotes the standard
deviation. The values ymax and ymin are the maximum and minimum of the original data.

3. Results and Discussion
A summary of the model performance metrics for the five different cases is shown in Table 2.
The R2 value ranges from 0 to 1 and indicates how shows the goodness of fit of the model to
the data, where 1 indicates the best fit. It can be seen that in general the model performs well
for all five failure classes.

The models for the generator and pitch system, however, showed lower R2 and higher error
values than the other ones. This indicates that for these two components additional covariates,
which were not included in the model, could be of importance. This will be assessed in further
studies.

Figure 1 shows the original failures (black) and the modelled data (green) for wind turbine
system failures without distinguishing between their components. The values are normalised
to the maximum number of failures for confidentiality reasons. As an example for a separately
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Table 2. Model metrics for the different components.

Measure All failures Gearbox Pitch System Generator Yaw System

R2 0.7982 0.8139 0.5492 0.5623 0.8837
NMAE 0.1087 0.1034 0.2456 0.1697 0.0694
NRMSE 0.1218 0.1280 0.2894 0.2079 0.0884

modelled WT component, Figure 2 displays the original and the modelled data for yaw system
failures.
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Figure 1. Model vs. data: all failures
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Figure 2. Model vs. data: yaw system

It can be seen that in both cases the highest failure occurrences are recorded within the second
to fourth month of the year. This is consistent with previous literatures, where it is stated that
failures mainly occur during the winter months, e.g. [11] and/or the transition periods between
seasons, see e.g. [22].

Figures 3 to 7 show the standardised coefficient magnitudes. Positive coefficients (blue)
indicate that with increasing covariates the output increases as well, while negative coefficients
(orange) respectively describe the opposite behaviour. As the input data were centred and
scaled, these coefficients can be interpreted as the influence of every model covariate on the
dependent variable. For an easier interpretation the plots show the magnitudes as fraction of
the most important regressor, which is scaled to 1.

As a multivariate model is used, the coefficients have to be interpreted with care though.
The isolated effect of one regressor can theoretically only be interpreted, if the other regressors
were kept constant. As this is very unlikely for environmental conditions, which in many cases
are correlated, the effect should be analysed considering combinations of the meteorological
parameter. Furthermore, only relative effects can be investigated.

As shown in Figure 3 the input parameters TI, Temp and WS have the highest importance
for modelling the data including failures of any WT component. High monthly mean turbulence
intensity, high mean wind speed and low temperatures play a significant role. This is consistent



6

1234567890

WindEurope Conference & Exhibition 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 926 (2017) 012012  doi :10.1088/1742-6596/926/1/012012

Rain

MaxWS

RH

PWR

WS

Temp

TI

Standardized Coef. Magnitudes

0.0 0.2 0.4 0.6 0.8 1.0

Positive
Negative

Figure 3. Variable importance: all failures

with the aforementioned literature, which stated that higher mean wind speeds and low
temperatures can be correlated to higher number of WT failures. Low PWR values seem
to influence the failure behaviour as well, but not very dominantly. As the active power output
is usually positively correlated to wind speed, having positive coefficient magnitudes for wind
speed and negative ones for the PWR variable this might seem contradictory. However, under
faulty conditions the wind turbine is often performing below the expected capacity and under-
performance can be seen as indicator for component failures.
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Figure 4. Variable importance: pitch system

Rain

TI

MaxWS

RH

Temp

PWR

WS

Standardized Coef. Magnitudes

0.0 0.2 0.4 0.6 0.8 1.0

Negative
Positive

Figure 5. Variable importance: yaw system

In literature, e.g. [6] and [23], it has been shown that the different components react differently
to certain combinations of environmental conditions. Thus, these should be analysed separately
in order to obtain more meaningful results.

For the pitch system model (Figure 4) low temperatures and high monthly maximum wind
speeds are significant. In addition to that, high relative humidity and turbulence intensity play a
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role when modelling the pitch system failures. These are the conditions, where the pitch system
is mostly active in order to regulate the rotor speed and thus is subject to higher stresses and
possible damages.

Figure 5 shows the standardised coefficient magnitudes for yaw system failures. The
differences between the coefficient magnitudes are not as large as they are for the other WT
components. Many meteorological factor seem to play a role in this model. A clear under-
performance of the turbine can be seen, as rising wind speeds and falling PWR values lead
to increased numbers of yaw system failures. This leads to the assumption that despite the
higher mean wind speeds, the wind direction changed frequently and the yaw system had to be
constantly searching for the best wind direction. Thus, a possible yaw-misalignment resulted
in higher wear and under-performance. However, this should be investigated in more detail by
including the wind direction in further studies.
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Figure 6. Variable importance: gearbox
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Figure 7. Variable importance: generator

Modelling the number of gearbox failures is influenced mostly by high wind speeds, as
displayed in Figure 6. With higher mean wind speeds, the load on the gearbox is increasing and
the component is more likely to fail.

The generator failure model (Figure 7) is mostly driven by increasing turbulence intensity
and power output. Elevated TI introduces higher loads on the generator that has to adapt
to these varying input speeds. Positive coefficients for the variables PWR and WS indicates
that no under-performance was recorded before the failures. Additionally, it states that with
higher power production, the generators are more likely to fail. Generator failures usually occur
abruptly due to sudden changes in turbulence intensity and highly varying wind conditions, see
e.g. [24]. Furthermore, the amount of precipitation plays a significant role, as water intrusion
highly affects electronic equipment.

4. Conclusion
A methodology to model wind turbine failures based on the environmental conditions to which
the turbines are exposed to has been introduced and applied to five failure classes. It was
shown that the models work well and that it is possible to derive the relative importance of
each input variable in order to analyse the effect of different covariates on the modelling output.
This was used to assess which combinations of environmental conditions affected the respective
component the most. Furthermore, the models have shown, that mechanical components,
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especially the yaw system, come along with a significant turbine under-performance. Thus, these
failures could be anticipated by immediately detecting under-performance in combination with
certain environmental conditions. Hence, the herein presented models serve to identify which
environmental parameters influence the failure behaviour of certain wind turbine components.
This information can help to anticipate failures and significantly enhance predictive maintenance
models.

5. Outlook
In future studies the models will be refined and the performance of different modelling techniques
and input variables will be investigated. These should be capable of handling high numbers
of inputs and reduce collinearity. Further environmental variables will be tested, in order to
determine the ones that mostly affect the components’ failure behaviour. Instead of relative
humidity, absolute humidity is expected to lead to better interpretation of the results in terms
of the effect of humidity on the components. Especially yaw system failures should be modelled
taking into account wind direction and wind shear.

The model will be tested on larger data sets, including more wind farms and different turbine
technologies. The objective is to establish generic models describing the influence of environ-
mental conditions on WT component failures. These can then be used for failure prediction and
for assessing the environmental conditions that have the highest impact on WT components.
Furthermore, these models are expected to enhance predictive O&M strategies and contribute
to decreasing the overall cost of wind farms.
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