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The study of social contagion processes is of utmost importance for understanding the emergence of collective
social states. Here we introduce reinfections in the Susceptible-Infected-Recovered model so to incorporate the
possibility that an individual that cease its activity (recovered) can resume it due to secondary infections from
their active (infected) peers. We show that, when primary infection is less frequent than secondary ones, a
typical situation in many social contagion processes, the epidemic transition turns from second to first order.
As a consequence, macroscopic collective states can be triggered from the inactive (healthy) regime by a small
increment of the primary contagion rate.

PACS numbers: 89.65.-s, 89.75.Fb, 89.75.Hc

Contagion processes are at the core of the emergence of
many collective social phenomena including the spread of in-
formation and gossips, the adoption of beliefs and behaviors,
or the massive use of products and innovations [1–3]. The
study of such phenomena usually relies in epidemic models
[4, 5], thus assumming that ideas, products or beliefs spread
in a viral way through pairwise contacts between individuals
[6–8]. The recent advent of online social networks has ampli-
fied the number and coverage of such pairwise contacts, thus
reshaping the social contagion patterns [9–12]. As a product,
the unfolding of collective actions and protests, such as the
Indignados [13] and Occupy Wall Street [14] movements, has
turned into global and almost explosive phenomena.

The massive use of these new communication means has
challenged the mathematical frameworks aimed at describ-
ing contagion processes. In this way, the usual compart-
mental epidemic models, such as the Susceptible-Infected-
Susceptible (SIS) and the Susceptible-Infected-Recovered
(SIR) [15], have been recently reformulated to incorporate
the dynamical and structural ingredients of the interaction net-
works observed in real social systems [16–24].

The SIR and SIS models have been intensively studied
within the context of non-equilibrium phase transitions and
critical phenomena [26–28] as two cornerstones of epidemic
modeling [25]. In addition, these are also considered as natu-
ral frameworks for the study of social contagion [29–31]. The
SIR model assumes that when individuals recover after be-
ing infected they cannot catch the disease again. In a social
context, this implies that when individuals cease their activity
(usage of some product, or spreading any idea or innovation),
they are not allowed to resume it. This is not realistic in many
real social scenarios in which, for instance, being active means
using a product or spreading an idea. In such cases, the SIS
model is a more suitable framework as it gets rid off this con-
straint by considering multiple infections, so that individuals
can alternate the active and inactive states.

An important issue that is neglected under the SIS frame-
work is the difference between the primary infection and sec-

ondary ones. For instance, think of the dissemination of a
new online social network that we start using following the
recommendation of a peer. This primary contagion requires
us to make an effort due to, for instance, the unavoidable in-
stallation and training processes. However, if this contagion
is a reinfection, i.e., we resume using the platform after being
inactive, the effort invested will be much smaller.

In this Letter we explore the impact that reinfections have
on the onset of collective (epidemic) states. To this aim, we
transform the SIR model into a SIRI one [32–35] by incorpo-
rating secondary infections. As in the SIR case, in the SIRI
model individuals can be in three states or compartments:
S healthy (ignorant), I infected (active/spreader) and R re-
covered (inactive). The elementary transitions between these
compartments are defined as: (i) S + I → 2I with rate λ,
(ii) I → R with rate µ and (iii) R + I → 2I with rate λ′.
Thus, at variance with the SIR model, here recovered (inac-
tive) individuals can become again infected (spreaders/users).
However, in general, the reinfection rate is not equal, λ 6= λ′,
to that corresponding to the primary contagion.

A clear evidence of the strong influence that reinfections
have on the epidemic diagram is reported in Fig. 1. There we
show the fraction of recovered individuals r as a function of
the contagion rate λ for λ′ = 0 and λ′ = 0.15. The net-
work used is an Erdös-Renyi graph of N = 5 · 103 nodes and
average degree 〈k〉 = 6. For each value of λ we have run
102 Montecarlo (MC) simulations of the SIRI model as fol-
lows. We start by randomly choosing a small fraction, 0.05,
of individuals and set them as infected while the rest of the
population is set as healthy. Then we iterate the SIRI dynam-
ics as introduced above for a number of MC steps, until the
convergence to a stationary state is reached. In this way each
colored point in Fig. 1 represents the final value of r in the
steady state of a single realization of the SIRI dynamics.

The case λ′ = 0 in Fig. 1 corresponds to the usual SIR
model (no reinfections are allowed) and thus the curve r(λ)
shows that the steady value for the fraction of recovered indi-
viduals r grows smoothly with λ after some critical value λc.
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FIG. 1: (color online) Fraction of recovered individuals as a function
of λ. We show two diagrams of the SIRI one (solid curve) corre-
sponding to λ′ = 0 (SIR model) and another one (dashed curve)
where he reinfection rate is set to λ′ = 0.15. The recovery rate is
µ = 0.8. The color code indicates (as shown in the color bar) the
initial fraction of recovered individuals. The network used is an ER
graph with N = 5000 nodes and average degree 〈k〉 = 6.

As usual in the SIR dynamics, for λ′ = 0 no infected individ-
uals remain in the stationary state so that individuals are either
in states S or R. In sharp contrast, when reinfections are al-
lowed, λ′ = 0.15, the transition turns abrupt so that, close to
the epidemic onset, a small increment in the contagion rate λ
triggers a sudden raise in the fraction of recovered individuals.
Thus, surprisingly, the introduction of reinfections in the SIR
model affects dramatically the nature of its epidemic transi-
tion, that changes from second to first order.

The results shown in Fig. 1 provide a flavor of what one gets
when MC simulations are carried out for a range of the conta-
gion parameters λ and λ′. In Fig. 2 we show the diagrams (a)
r(λ, λ′) and (b) i(λ, λ′) for the same graph used in Fig. 1. As
in Fig. 1, we have plotted all the results obtained in each sin-
gle realization of the MC dynamics [102 realization per each
(λ, λ′) value explored]. From panel (a) we clearly observe the
impact of λ′ on the behavior of r(λ). Namely, for small values
of the reinfection rate λ′ the behavior of r(λ) is qualitatively
similar to that of the SIR model, i.e., it displays a smooth tran-
sition from the healthy (inactive) phase to the epidemic one.
The only effect of λ′ in this region is that, for λ > λc, the
fraction of recovered individuals slightly increases with λ′. In
this region, the fraction of infected individuals is zero, i = 0,
as in the SIR model (see panel (b)).

When λ′ increases beyond some value λ′c the picture
changes dramatically and the abrupt transition in r(λ) shows
up. The critical point λc remains almost equal to that of
the regime corresponding to small λ′. However, at λc the
abrupt transition drives the system from the healthy to another
regime, where a macroscopic part of the population was af-
fected by the disease. At variance with the region correspond-
ing to small reinfection rates, here the fraction of recovered

individuals at λ > λc is completely independent of the value
λ, and thus remain constant for λ > λc (as it was shown in
Fig. 1 for λ′ = 0.15). In addition, panel (b) shows another im-
portant novelty in relation to the SIR model, since infected and
recovered individuals coexist in the steady state when λ > λc.
Moreover, the curves i(λ) reveal that the phase transitions at
λc for the fraction of infected individuals are also abrupt.

To gain a deeper insight about the origin of the abrupt
transition observed via MC simulations, we considered the
Markovian evolution equations of the SIRI model on a com-
plex network. This approach, originally introduced for the
analysis of the epidemic SIS model [36–38], deals with the
the probabilities that each individual j is infected or recovered
at time t: p(t) = {pj(t)} and r(t) = {rj(t)} (j = 1, ..., N )
respectively. Given the contagion, λ and λ′, and recovery, µ,
rates, we can write the time-discrete evolution equations for
the former two sets of probabilities as:

pj(t+ 1) = pj(t)(1− µ) + rj(t)q
RI
j (t)

+[1− pj(t)− rj(t)]qSI
j (t) , (1)

rj(t+ 1) = pj(t)µ+ rj(t)[1− qRI
j (t)] . (2)

Here qSI
j (t) and qRI

j (t) are the probabilities that agent j be-
comes infected at time t, provided it is susceptible or recov-
ered respectively. The expressions for these probabilities are:

qSI
j (t) = 1−

N∏
l=1

(1− λAjlpl(t)) , (3)

qRI
j (t) = 1−

N∏
l=1

(1− λ′Ajlpl(t)) . (4)

where A = {Ajl} is the N × N adjacency matrix of the
underlying graph, defined as Ajl = 1 if agents j and l are
connected and Ajl = 0 otherwise.

Of particular importance are the solutions of Eqs. (1) and
(2) corresponding to stationary distributions for the probabil-
ities of being infected and recovered, {p∗j} and {r∗j }. These
solutions can be obtained by iterating Eqs. (1) and (2) from
the set of initial conditions, p(0) and r(0), until the probabili-
ties converge to their stationary value, p? and r?. To compare
with MC simulations we compute the fraction of infected (re-
covered) individuals as: i =

∑N
j=1 p

?
j/N (r =

∑N
j=1 r

?
j /N ).

The great accuracy of the solutions of the Markovian evolu-
tion equations is shown (solid and dashed curves) in Fig. 1.
Remarkably, the solutions of the Markovian equations fully
agree with those obtained via MC simulations and, impor-
tantly, they reproduce the abrupt transition when reinfections
(λ′ = 0.15) are at work.

We now analyze the fixed points of the Markovian Eqs. (1)
and (2) to understand the roots of the different behaviors of
r(λ) and i(λ) shown in Figs. 1 and 2. By imposing the sta-
tionary contiditon in Eqs. (1) and (2), pj(t+ 1) = pj(t) = p∗j
and rj(t+ 1) = rj(t) = r∗j , we obtain:

p∗j = p∗j (1− µ) + (1− p∗j − r∗j )qSI∗

j + r∗j q
RI∗

j , (5)

r∗j = p∗jµ+ r∗j (1− qRI∗

j ) . (6)
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FIG. 2: (color online) Fraction of (a) recovered, r, and (b) infected, i, individuals as a function of λ and λ′. As observed the transitions r(λ) and
i(λ) are discontinuous when λ′ is large enough. Note that the plots show 102 points for each value (λ, λ′). Each point represents the average
steady value of r and i in each of the 102 MC realizations of the SIRI dynamics. Panel (c) shows the evolution of the fraction of infected
individuals, i, as obtained from Eqs. (1) and (2). The values of the infection, reinfection and recovery rates are fixed to λ = 0.08 < λc,
λ
′
= 0.15 > λc (λc = 0.118) and µ = 0.8 respectively. The color of each point in (a) and (b) and each curve in (c) indicates, respectively,

the value of r, i and the initial fraction of infected individuals as indicated in the color bar (right). The network is the same as in Fig. 1.

By adding these equations we derive the following necessary
condition for the existence of such a stationary solution:

(1− p∗j − r∗j )qSI∗

j = 0 , (7)

which is satisfied when either r∗j + p∗j = 1 or qSI∗

j = 0 holds.

Note that the second condition is equivalent (for λ > 0) to
pj = 0 and thus it applies for the SIR-like regime (small
values of λ′) whereas the first condition appears to hold (as
observed from Fig. 2) in the large λ′ region, i.e., where only
infected and recovered individuals coexist. Thus, there is no
stationary solution containing a non-vanishing fraction of the
three compartments.

In the large λ′ region we can evaluate the stationary proba-
bilities p∗j (and r∗j ) by substituting r∗j = 1− p∗j in Eq. (6):

µp∗j = (1− p∗j )qRI∗

j . (8)

The above equation is equivalent to that of the stationary prob-
abilities for the infected individuals in the SIS model, when
replacing the compartment S by R. Thus we term as RIR
the large λ′ regime. Note also that the value of p∗j in the
RIR regime is independent of λ since the expression of qRI

j ,
Eq. (4), only depends on λ′. This is again in agreement with
the MC results shown in Fig. 2 for the RIR regime where the
stationary values i and r only depend on λ′.

Now we analyze the domain of the RIR regime. Consider-
ing that λ′ enhances the passage from R to I , the values of
the probabilities p∗j are expected to increase with λ′. Thus,
we now check what is the minimum value of λ′ so to have
an infinitesimally small fraction of infected individuals (co-
existing with a macroscopic fraction of recovered ones), i.e.,
the threshold λ′c for the RIR regime. By considering p∗j = εj

we get qRI∗

j ' λ′
∑N

l=1Ajlεl and thus neglecting terms of
second order in εj in Eq. (8) we obtain:

µ

λ′
~ε = A~ε . (9)

This yields that the threshold for the existence of the RIR
regime (r∗j + p∗j = 1) is equal to:

λ′c =
µ

max{Λ(A)}
, (10)

where max{Λ(A)} is the maximum eigenvalue of the adja-
cency matrix A. Above this value of λ′ the solution p∗j +r∗j =
1 exists. This threshold is again in agreement with the nu-
merical results shown in Fig. 2 as noted by the (dashed) line
pointing out the value λ′c = 0.118 obtained for the network
used in the MC simulations.

Interestingly, the independence of Eq. (10) with respect to
λ points out that the whole region λ′ > λ′c should display RIR
steady states, rj + pj = 1. On the contrary, as noted above, in
Fig. 2 there is a region of small values of λ (λ < λc) in which
the fraction of infected individuals is zero and that of recov-
ered ones is infinitesimally small. This suggest that, in this
region, bistability between the Healthy and the RIR phases
takes place. However, due to the small fraction of initially
infected agents used in the MC simulations in Figs. 2.a and
2.b , the system is driven directly towards the healthy regime.
To illustrate the bistability we show in Fig. 2.c the time evo-
lution i(t) for different initial conditions and with contagion
and reinfection rates lying in the bistable phase (λ = 0.08 and
λ′ = 0.15). In this case it becomes clear that an initial con-
dition containing more than 40% of infected individuals will
end up in the RIR regime, otherwise the dynamics evolves to-
wards the Healthy phase.

Finally, for λ′ < λ′c the RIR regime is no longer valid and
the steady condition that applies to satisfy Eq. (7) is pj = 0.
This condition is compatible with the usual steady states of the
SIR in its two possible phases: (i) Healthy phase, r∗j = rj(0)
for λ < λc, and (ii) Epidemic phase r∗j > rj(0). The critical
value λc can be evaluated by imposing pj(1) = pj(0) = εj �
1 in Eq. (1). The analysis was done in [39] yielding a critical
value λc equal to that of λ′c, Eq. (10). Thus for λ′ < λ′c and
λ < λ′c (λ > λ′c) the system lies in the Healthy (Epidemic)
phase.
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FIG. 3: (color online) Schematic representation of the phase diagram
of the SIRI model. Note the existence of a Triple point (TP) separat-
ing the Healthy, SIR and RIR phases.

Summarizing, from the theoretical side, we have shown that
the addition of reinfections to the SIR model (SIRI model)
changes dramatically its critical properties in a way that an
abrupt phase transition from the healthy phase to the epidemic
one shows up. In Fig. 3 we show a schematic picture of the
phase diagram of the SIRI model. For low values of the re-
infection probability λ′ we find the two typical phases of the
usual SIR model: Healthy phase for λ < λc and the Epidemic
phase for λ > λc in which the number of recovered individu-
als increases smoothly with λ whereas the number of infected
individuals vanishes. On the contrary, for λ′ > λ′c the situ-
ation is totally different. For λ > λc susceptible individuals
dissapear from the population (the RIR regime) as a conse-
quence of the non-zero steady number of infected individuals
due to the reinfections of recovered individuals. On the other
hand, if the the value of λ is small enough the RIR regime can-
not be activated unless the initial fraction of infected individu-
als is large enough. Thus, in this region there is a coexistence
(bistability) of the Healthy and RIR phases.

The most striking result is that for λ′ > λ′c the transition
between the Healthy phase and the RIR regime is abrupt. In
this way, a small change in the contagion probability λ drives
the system from a null invasion of the disease to a macro-
scopic one, being the corresponding transitions for both the
fraction of infected and recovered individuals of first order.
Interestingly, as shown in Fig. 3, the phase diagram includes a
Triple Point (TP) (λc, λ

′
c) in which the three possible phases

(Healthy, Epidemic SIR and Epidemic RIR) coexist [40]. The
fact that λc = λ′c indicates that, in the case that primary and
secondary infections are equally probable, λ = λ′, the epi-
demic onset lies just at the TP. In this particular case the onset
is abrupt for r(λ) and smooth for i(λ) so that the system dis-
plays a kind of mixed-order phase transition as a consequence
of being placed just on the TP in which two kinds of phase
transitions coincide. This result is presented in the Supple-
mental [41] accompanying this letter.

On the practical side, our results have important conse-
quences for the study of real spreading scenarios in which
reinfections play a key role in the long term dynamics. As
noted in the introductory part, the most paradigmatic scenario
where reinfections are more prone than primary ones is that
of social contagion of products, innovations, beliefs or ideas,
for which primary adoptions by ignorants are less probable
than secondary ones. In the language of the epidemic model
this feature implies that λ′ > λ, thus making the transition
towards collective contagion abrupt so that a successful dis-
semination of an ida or product becomes viral without almost
any early warning.
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[28] T. Tomé, and R.M. Ziff, Phys. Rev. E 82, 051921 (2010).
[29] C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591

(2009).
[30] M. Draief and L. Massoulié, Epidemics and Rumours in Com-
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