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The phase diagram of the monoaxial chiral helimagnet as a function of temperature (7)) and magnetic field
with components perpendicular (H,) and parallel (H,) to the chiral axis is theoretically studied via the variational
mean-field approach in the continuum limit. A phase transition surface in the three-dimensional thermodynamic
space separates a chiral spatially modulated phase from a homogeneous forced ferromagnetic phase. The phase
boundary is divided into three parts: two surfaces of second-order transitions of instability and nucleation type,
in DeGennes terminology, are separated by a surface of first-order transitions. Two lines of tricritical points
separate the first-order surface from the second-order surfaces. The divergence of the period of the modulated
state on the nucleation transition surface has a logarithmic behavior typical of a chiral soliton lattice. The specific
heat diverges on the nucleation surface as a power law with logarithmic corrections, while it shows a finite
discontinuity on the other two surfaces. The soliton density curves are described by a universal function of H,
if the values of 7' and H, determine a transition point lying on the nucleation surface; otherwise, they are not

universal.

DOI: 10.1103/PhysRevB.95.224410

I. INTRODUCTION

Chiral magnets are currently the subject of intense in-
vestigations both because of their practical applications in
technology and their interesing properties from the point of
view of fundamental science. The applications exploit the
charge and spin transport properties of a chiral magnet, which
are strongly affected by the magnetic structure and thus can be
controlled by the application of suitable magnetic fields [1,2].
In addition, due to its topological nature, the magnetic structure
of a chiral magnet is protected against continuous deformations
to homogeneous magnetic states, as ferromagnetic states.
The chiral state can only turn into a homogeneous state
through phase transitions that take place at definite points
of the phase diagram. This robustness makes chiral magnets
excellent candidates as the main components of spintronic
devices [3] and, for instance, they are specially suitable as the
main components of information storage devices [4]. Besides
the applications, chiral magnets are very interesting objects
from a fundamental point of view, as chiral symmetry and its
breaking and restoration are ubiquitous phenomena appearing
virtually in any domain of science, from elementary particle
physics to astrophysics, and including chemistry, biology, and
geology [5].

In the monoaxial helimagnet [6], the competition between
the ferromagnetic (FM) and Dzyaloshinskii-Moriya [7,8]
(DM) interactions at low T give rise to a spatially modulated
chiral magnetic structure that, in absence of an applied field,
has the form of an helix propagating with period L, along
the chiral axis, which is called here the DM axis. At a
certain ordering temperature, 7y, a magnetic transition to
a paramagnetic (PM) phase takes place. The period L is
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independent of 7', but the local magnetic moment decreases
with T, and the transition to the PM state takes place at the
temperature where it vanishes. The nature of the transition
at Ty is not fully understood and considerable effort is being
devoted to clarify this interesting question [9—-15].

At temperatures lower than 7j, application of a magnetic
field perpendicular to the DM axis deforms the helix and a
chiral soliton lattice (CSL) appears [6,7,16—18]. This CSL,
which is realized [19] in CrNbsS¢, supports phenomena very
interesting for spintronics, like spin motive forces [20] and
tuneable magnetoresistence [10,11,21,22]. A theoretical anal-
ysis at zero temperature carried out long ago [16] concluded
that by increasing the field the period of the CSL increases
and, eventually, as the period diverges, a phase transition
takes place continuously to a forced FM (FFM) state. This
prediction has been recently confirmed experimentally [19,22]
and theoretically by computations at finite temperature [14].

If, on the other hand, the applied field is parallel to the
DM axis, the local magnetic moment acquires a constant
component along the axis and a conical helix is formed.
The conical helix propagates with a period Ly, which is
independent of temperature and field intensity. As the field
increases, the component of the local magnetic moment
parallel to the DM axis increases and the perpendicular
component decreases. A transition to a homogeneous FFM
state takes place when the perpendicular component vanishes.
The same happens if the temperature is increased at constant
parallel field.

A classification of the continuous transitions that take place
between spatially homogeneous and modulated states was
introduced long ago by DeGennes [23], who called nucleation
transitions those in which the period of the modulated state
diverges when the transition point is approached from the
modulated phase, and instability transitions those in which the
phase transition takes place when the intensity of the Fourier
modes with nonzero wave vector tend to zero, while the fun-
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damental wave vector remains finite and does not vanish. The
mechanisms for these two kind of transitions are qualitatively
different. In the monoaxial helimagnet, the transition between
the CSL and the FFM states as a perpendicular magnetic field
increases at sufficiently low temperature is of nucleation type
[14,16]. On the other hand, at zero-field mean-field theory
predicts an instability type continuous transition at the ordering
temperature Ty. The transition to the FFM in presence of a
parallel magnetic field is also of second-order instability type
phase transition.

Hence, by varying the temperature from 0 to Tj and/or the
applied field from completely perpendicular to completely par-
allel, the transition changes from nucleation to instability type.
How this change of regime takes place is a very interesting
question which may also have interesting phenomenological
consequences.

Recently, the zero temperature phase diagram of the
monoaxial helimagnet has been theoretically analized for
oblique magnetic fields [24], which are neither perpendicular
nor parallel to the DM axis. It has been found that in the
thermodynamic space formed by the parallel and perpendicular
components of the magnetic field two separated continuous
transition lines appear. The transitions along the line that
contains as limiting case the parallel field are of instability
type and the transitions along the other line, which contains
as limiting case the perpendicular field, are of nucleation
type. The two continuous lines are separated by a line of
discontinuous transitions. Two tricritical points separate the
discontinuous transition line from the continuous transition
lines.

Also recently the phase diagram of the monoaxial helimag-
net in the thermodynamic space defined by the temperature and
aperpendicular magnetic field has been theoretically studied in
Ref. [14]. The conclusion is that at low T, the transitions to the
FFM state induced by the perpendicular field are continuous,
of nucleation type, with the period of the chiral structure
diverging at the transition points. As temperature increases the
critical field decreases and vanishes at the zero-field critical
temperature, Ty. The transition at Ty is continuous of instability
type. The transition line in the vicinity of Ty is of first order and
it is separated from the low-T continuous transition line by a
tricritical point. This somehow unexpected behavior is rather
logical as it is difficult to imagine how to connect continuously
instability and nucleation transitions. The prediction of a
first-order transition and a tricritical point in the vicinity of Ty
may be a clue to the interpretation of the experimental results
on the phase diagram reported in Refs. [9—11]. A more refined
numerical computation around the 7y neighborhood, carried
out in this work, leads to the conclusion that the first-order
line does not actually end at Tj, but instead the transition
is of second-order instability type in a very short line that
ends at 7. Correspondingly, a second tricritical point appears
separating this short second-order line from the first-order line.
This tricritical point was unnoticed in Ref. [14].

In this work, we complete the theoretical study of the phase
diagram of the monoaxial helimagnet and the nature of its
phase boundaries by analyzing it in the 3D thermodynamic
space H, — H, — T, where H, and H, stand, respectively, for
the perpendicular and parallel components of the magnetic
field. The thermal fluctuations are treated classically and
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therefore the results are not valid at very low T, where it is
well known that a quantum treatment of thermal fluctuations
is necessary, for instance, to reproduce the behavior of the
specific heat. In the zero-temperature limit, however, thermal
fluctuations disappear and the semiclassical approximation
seems to describe well the ground state of these kind of
systems. The methods presented in this work can be applied
to other systems in which phase transitions from spatially
modulated phases to homogeneous phases take place, as for
instance cholesteric liquid crystals.

II. MODEL

Let us consider the model described in Ref. [14]: a
classical spin system with FM exchange and monoaxial
DM interactions, and single-ion easy-plane anisotropy, at
temperature 7 and in presence of an applied magnetic field
H.In what follows, we use the notation of Ref. [14], and take
the 2 coordinate axis along the DM axis.

To get the thermodynamical properties, we evaluate the free
energy, F, through the variational mean-field approximation,
which has been successfully applied to the study of the
double-exchange model of itinerant ferromagnetism [25-27]
and, in combination with ab initio techniques, to the study of
the temperature dependence of thermodynamic quantities in
itinerant ferromagnets [28-30]. The free energy is obtained
by minimizing the mean-field free energy, Fo, with respect
to the mean-field configuration, A71;. In the continuum limit,
taken along the lines described in Ref. [14], we get Fy =
€o [ dPrfo(F), with

1 N o - >
fo=3 D& @Y = qu? - (i x d.i) — g3 - + ),

(D
where

2 2

U=l y|Fra-3p2

2 m2
e sinh M M @)

of In — Mm ),
M

where 71 = F M is the mean local magnetic moment and F =
coth(M)/M — 1/M?,

The relation of the parameters entering Eqgs. (1) and (2) with
a more fundamental Hamiltonian is given in Ref. [14]. The &;
measure the spatial anisotropy of the FM exchange couplings.
By definition, £, = 1, and in this work we consider only
system of symmetry such that & =&, =&. The parameter
qo has dimensions of inverse length and gives the propagation
vector of the helical modulation at zero field. The remaining
parameters are dimensionless: ;> controls the continuum limit
and has to be large [14]; and y, «, and & are proportional to the
single-ion anisotropy, temperature (7'), and external magnetic
field (H), respectively. Finally, €, is an overall constant with
the dimensions of energy per unit length. All these parameters
might be obtained from ab initio calculations, but in practice
can be fit to experimental results to describe the phase diagram
of different samples and materials.
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III. METHOD OF SOLUTION

The minimum of F; is a solution of the corresponding
Euler-Lagrange equations. Clearly, the mean-field configura-
tion which minimizes F depends only on z and the equations
read

M = QM +2q2 x M + WM+ Y2 x M
+TIM.2 — g2h/F. 3)

The scalar functions 2, ¥, T, and IT depend on M and M'.
They are given in Appendix.

Equations (3) constitute a system of three second-order
differential equations, the general solution of which contains
six arbitrary integration constants. The task is to find the
particular solution which minimizes F,. We follow the method
described in Ref. [24]. On physical grounds, we expect
a periodic ground state', with period L. Hence, the free
energy density fo = F,/V, where V is the volume, is
equal to the free energy averaged over one period, that is,
fo=Q1/L) fOL fo(z)dz, and the boundary conditions (BC)

are M (0) = M(L). Since the equations are of second order,
these BC do not guarantee periodicity, which requires also
the equality of the first derivatives at the two boundaries:
M "(0) = M ’(L). These additional conditions cannot be gen-
erally imposed on the boundary value problem (BVP), since it
would be overdetermined. The strategy to find a solution to the
problem is as follows: with no loss, set M, (0) = M, (L) =0,
and for given L and M,(0) = M,, and M,(0) = M,, solve
numerically the BVP; for fixed L, tune M, and M,y until
periodicity is reached; then, compute f; via a numerical
quadrature algorithm. The equilibrium period is the minimum
of fy, which is found via a simple minimisation algorithm.

IV. PHASE DIAGRAM

Without any loss, we can choose a magnetic field with
components along £ and Z, and set 1, = 0. Two phases appear:
the homogeneous FFM state at high temperature and/or high
field and a spatially modulated structure at low temperature
and low field, which is generically named here helicoid.

A surface of phase transitions in the thermodynamic space
(T,H,,H,) separates the helicoid and FFM phases. The
transition surface can be described by giving one of the
thermodynamic coordinates as a function of the other two.
The dependent coordinate is denoted by 7., H,., or H,.

The transition points on the three axes of the thermo-
dynamic space can be analytically obtained: the critical
temperature at zero field, o, and the critical perpendicular and
parallel fields at zero temperature, k.o and h,g, respectively.
Their analytic expressions are

2

r 2 T
0l0=§(,u +D+—<v, ho=—

hy=142y. 4

!'Throughout this work, we use the term ground state for the spin
configuration, which minimizes the mean-field free energy. Although
an abuse of language, it is not uncommon to use the term ground
state at finite temperature to refer to the set of equilibrium correlation
functions determined by the density matrix.
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FIG. 1. H,-T phase diagram for H, = 0 (perpendicular field)
calculated with u?> = 120 and y = 2.58. The light and dark blue lines
correspond to second-order nucleation and instability type transitions,
respectively, and the red line to first-order transitions. The pink dotted
line marks the onset of the highly nonlinear CSL. The dashed black
line signals the crossover from PM to FM behavior. The tricritical
point closer to 7 was unnoticed in Ref. [14].

The corresponding dimensionful quantities, denoted by Ty,
H,y, and H,j, are directly measurable quantities: zero-field
critical temperature and zero temperature critical perpen-
dicular and parallel fields, respectively. It is convenient to
present the results in terms of T /Ty = o/ay, H,/Hy =
hy/hy, and H,/H,0 = h,/h,. We also use the notation

Hy = v/ H?) + HZ, and denote by 6 the angle formed by the
magnetic field and the DM axis: tan6 = H,/H,. Except in
the H, = 0 separate discussion given below, all the results
presented here correspond to w? =210, which is a value
appropriate to describe the phenomenology of CrNbsS¢ [14].

For H, =0, we have reanalyzed the transition line in
the very close neighborhood of the zero-field transition with
more detail and accuracy than in Ref. [14]. In this region,
there is instability caused by the critical fluctuations and the
numerical computations are more difficult. It turns out that
a second tricritical point, not detected in Ref. [14], appears
at T/Ty ~ 0.9989 and H, /H,y =~ 0.027. Hence the transition
line is of second-order nucleation type at low-temperature and
of second-order instability type at high temperature. These
two second-order lines are separated by a first-order line,
and two tricritical points separate the first-order line from the
second-order lines. The phase diagram is displayed in Fig. 1.
Notice the slight difference with the phase diagram published
in Ref. [14]. Although the region around the zero-field phase
transition, in which the fluctuations are expected to be strongly
correlated, is probably not well described by mean-field theory,
these results give a hint on what can be expected, before more
sophisticated approaches, like Monte Carlo simulations, are
fully developed. Work in this direction has been reported in
Ref. [15].

For H, = 0, the free energy is minimized by a conical
helix with pitch Ly independent of o and h,. The angle 6y,
which forms m with the DM axis, depends on temperature
and magnetic field. The transition to the FFM state takes
place continuously as cos6y — 1 and is of instability type.
An order parameter which vanishes in the FFM state is sin 6.
As the transition line is approached sin 6y vanishes as a power
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FIG. 2. 3D phase diagram without (top) and with (bottom) single-
ion anisotropy (y = 2.58). The second-order transitions take place
on the dark blue (instability) and light blue (nucleation) portions of
the transition surface. On the red portion, the transitions are of first
order. The tricritical lines separating the first-order surface from the
two second-order surfaces are displayed in green.

law, with the mean-field exponent: sinfy ~ (1 — /o )'/? or
sinfy ~ (1 — h,/h..)"%.

Three-dimensional representations of the phase diagram
without (y = 0) and with (y = 2.58) anisotropy are displayed
on the top and bottom panels of Fig. 2, respectively. The value
y = 2.58 has been chosen so that the critical parallel field of
CrNbsSg at relatively low T is reproduced [24].

Let us discuss first the general case with non vanishing
anisotropy. The transition surface is divided into three parts:
two surfaces of second-order transitions are separated by a
surface of first-order transitions. The second-order transitions
of the surface that intersects the H, = 0 plane are of instability
type, while the transitions of the other second-order surface are
of nucleation type. The instability surface is separated from
the first-order surface by a line of tricritical points that is called
the instability tricritical line (ITC). Analogously, the boundary
between the nucleation and the first-order surfaces is a line of
tricritical points called the nucleation tricritical line (NTC).
The tricritical points TCy and TCy found at T = 0 in Ref. [24]
belong to ITC and NTC, respectively.

Asy — 0, the nucleation surface shrinks and in the absence
of single-ion anisotropy (Fig. 2, top) is squeezed onto a line
on the H, = 0 plane. The transition surface contains a second-
order instability surface and a first-order surface separated by
the ITC line. The NTC line is reduced to a point on the H, = 0
plane.

In terms of T/ Ty, H,/H,o, and H,/H,y, the shape of the
transition surface is nearly independent of 1 provided that
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w? is large enough. It depends, however, on the value of the
single-ion anisotropy, although this dependence disappears
gradually as the anisotropy grows; in this case it shows
noticeably dependence on y only for T close to Ty. This
dependence is related to the fluctuations of mf athigh T'.

The structure of the modulated state depends on temper-
ature and magnetic field. For fields with small perpendicular
component, it is a slightly distorted conical helix, a quasilinear
structure to which only a few Fourier harmonics give a
noticeably contribution. As the perpendicular component is
gradually increased, higher-order Fourier harmonics appear
and the helix becomes a conical CSL. A highly nonlinear
CSL, receiving appreciably contributions from many Fourier
harmonics, appears only in the vicinity of the nucleation
surface, in complete similarity with the H, = 0 case [14].
The highly nonlinear CSL regime is not sharply defined, but
separated from the rest of the modulated phase by a crossover
surface very close to the nucleation surface. This crossover
surface is not shown in Fig. 2, but its intersection with the
H, = 0 plane is shown in Fig. 1 (highly nonlinear CSL onset
line).

V. SINGULARITIES ON THE TRANSITION SURFACE

On the first-order transition surface, the helicoid and FFM
states coexist. On both sides of the transition surface the two
states are present, one as stable and the other as metastable
state. As a consequence of the different entropies of these
two states, a latent heat accompanies the transition. The latent
heat vanishes on the boundaries of the first-order surface (the
tricritical lines) and thus reaches a maximum at an interior
point of each isothermal transition line, as can be seen in
Fig. 3. By increasing 7, the latent heat maximum increases
and its position is shifted towards smaller values of H, and
sz. The absolute maximum, reached at H, = 0, is about
3 x 1073 kg T, per magnetic ion, what amounts to 6 J kg~!
in the case of CrNbsS¢(7y &~ 125 K). Figure 4 displays the
latent heat as a function of 7'/ Ty for H, = 0. Notice the slight

2Recall that each pair (T,H,) defines a value of H, since the
transition line lies on the transition surface.
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FIG. 3. Latent heat per magnetic ion, in units of kg 7y, along the
first-order isothermal transition lines for 7'/ T indicated in the plot.
Parameters: 12> = 210 and y = 2.58.
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FIG. 4. Latent heat per magnetic ion, in units of kg7p, as a
function of temperature along the first-order transition line for
perpendicular field (H, = 0). It vanishes before reaching Tj, at a
tricritical point in the close vicinity of T, not detected in Ref. [14].
Parameters: 1> = 210 and y = 2.58.

difference with the analogous figure of Ref. [14], due to the
refined computations in the vicinity of Tj.

Figure 5 displays the behavior of the magnetization per
magnetic ion, M = (1/L)| fOL m(z)dz|, as a function of the
field strength for three fixed field directions, corresponding to
phase transitions of instability type (dark blue), of first-order
(red), and of nucleation type (light blue). Figure 6 shows M
versus the field direction at constant field strength, for three
values of the field strength that are representative of instability
(dark blue), first-order (red), and nucleation (light blue) phase
transitions. The field direction is characterized by the angle 6
that forms with the DM axis.

On the transition surface M is singular. It presents a finite
discontinuity, signaled by the broken line in Figs. 5 and 6, on
the first-order surface. On the two second-order surfaces, M
is continuous but attains the value of the FFM magnetization
in a singular way. On the instability surface the singularity is
not very sharp, and, numerically, it seems to be described by a
power law, with a critical exponent between 1/2 and 2/3.

0.5 —
04 —2.58°

1 —8.15°
0.3 r—18.66° 1
02| ]

T/Ty=0.86

01} ]
0.0

0.0 0.1 0.2 0.3

H/H,

FIG. 5. Magnetization per magnetic ion as a function of the field
strength for three directions of the field and 7/ T, = 0.86. The legend
shows the corresponding value of the angle (6) between the field and
the DM axis. The transitions are of second-order instability type (dark
blue), of first-order (red), and of second-order nucleation type (light
blue). Parameters: u> = 210 and y = 2.58.
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FIG. 6. Magnetization per magnetic ion as a function of the angle
() between the field and the DM axis, for three field strengths and
T /Ty = 0.86. The legend shows the corresponding values of H/Hj.
The transitions are of second-order instability type (dark blue), of
first-order (red), and of second-order nucleation type (light blue).
Parameters: u? = 210, y = 2.58.

The singularity on the nucleation surface is controlled by
the divergence of the period, L, since the difference between
the CSL and FFM magnetization scales as 1/L. An analysis
of the numerical results shows that when the transition point
is approached by tuning a parameter ¢, the period L satisfies
the scaling law

B(AqoL + 1)exp(—=AqoL) ~ (¢ — §)/&e, &)

where ¢ can be either T, H,, H,, H, or 6. It is motivated
by the well known logarithmic singularity [16] that appears
as H, - H,pat T = 0 and H, = 0 [14,24]. The scaling of L
(and therefore of M) is thus a universal feature of the CSL. Itis
interesting that the coefficient A depends only on the transition
point, and not on the parameter ¢ tuned to reach it.

The inverse of the period, 1/L, is the density of solitons.
It was shown in Ref. [14] that for a purely perpendicular field
the density of solitons is a universal function of H,/H,.,
independent of 7T, for temperatures below the nucleation
tricritical temperature. Above this tricritical temperature,
universality is lost. This universality also holds when the
field has a component along the DM axis, provided that the
transition point reached by increasing H, while T and H, are
kept constant lies on the nucleation surface. It is obvious that
the universality cannot hold in the whole phase diagram since
in the vicinity of the instability surface L is almost independent
of the field. Therefore the lost of universality is a way of
locating the nucleation tricritical line.

The universality of the magnetoresistance curves of
CrNbsSg in presence of a perpendicular field reported in
Ref. [22] was linked to the universality of the soliton density
curves. Measurements of the magnetoresistance with oblique
fields can be used to verify experimentally the universality
predicted in the present paper and to locate the nucleation
tricritical line of CrNbsSg.

VI. SPECIFIC HEAT

The specific heat can be computedas Cy = Tds/dT, where
s is the specific entropy (per unit mass), which, in the mean-
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field approach, is given by
kg 1 *
= 2 _ | [In(sinh M/M) —
pv L Jo
where p is the mass density and v the volume of the unit cell
of the underlying lattice and M(z) is the equilibrium mean-
field configuration (i.e., the solution of the Euler-Lagrange
equations that minimizes the free energy). This configuration
depends in principle on three parameters, the period L and the
two BCs, M, and M,y. However, as discussed in Sec. I1I, only
one of these three parameters can be independently chosen.
For a given value of L, the two BCs are determined by the
requirement of periodicity. Hence M is a function of z and
L, which in its turn is a function of the temperature and the
field. As a result, all the 7" dependence of s comes from its L
dependence. Hence we have
Co — as T JL )
VT oL oT
On the nucleation surface TdL/9dT diverges. From Eq. (5),
with ¢ = T, we get that for T — T,

aL 1 T,

oT AT, —T'

An expression for the factor ds/dL can be readily obtained
from (6):

8s kB 1
M—dz
,ov L

FM*dz, (6)

®)

+ l{k—B[ln(sinh Mo/Mo) — FM5] — s}, 9)
L | pv
where My = v/ M o+ M is the value of M at the boundaries
z=0and z = L and we used the fact that the derivative
with respect to M of the integrand of Eq. (6) is GM, with
G=F+MdF/dM.

In the T — T, limit, M and M, tend to the FFM mean
field as 1/L. Thus the two terms of the right hand side of
Eq. (9) vanish as 1/L? (the term in curly braces tends to the
difference of the CSL and FFM specific entropies and thus
vanishes as 1/L). This simply means that, since s tends to the
FFM entropy as 1/L, its derivative with respect to L vanishes

as 1/L%. Thus taking into account that L ~ In(T, — T), the
specific heat diverges on the nucleation surface as
Cv ~ 1/[(T. = T)In* (T, — T)]. (10)

The numerical computations confirm this behavior. A fit of the
parameters co and b of the function

co/I(1 = T/TH (1 = T/T,)] (an

to the computed Cy for fixed field in the region close to
T, gives b =2.08 £ 0.078, which is perfectly compatible
with b = 2. Therefore we may fix b = 2 and fit the single
parameter cy. The result is displayed in Fig 7. We observe a
perfect agreement of the numerical results with the theoretical
expectation. The divergence of the specific heat found here
is remarkable since in the “canonical” mean-field theory of
the PM-FM transition the specific heat has no divergence, but
shows a finite discontinuity at the critical point.
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FIG. 7. Divergence of the specific heat as a nucleation transition
point is approached. The legend displays the value of the field, which
is kept fixed, and of the transition temperature. Parameters: u? = 210
and y = 2.58.

On the first-order surface, the specific heat has obviously
a finite discontinuity. It shows also a finite discontinuity on
the instability surface, since L and its derivatives remain finite
there. For zero field, the specific heat jump at T = T can
be analytically computed as follows. The low-T ground state
is an helix with pitch Ly and M(z) = M, independent of z,
determined by

(1 + DF(My) — y Fi(My)/IMoG(Mp)] = . (12)

The left-hand side of the above equation attains its maximum
value at My = 0, which gives ¢ defined in Eq. (4). Thus,
for @ > «g, Eq. (12) has no solution and the system is in the
PM phase. The solution of (12) decreases monotonically with
o from My = oo (what implies saturation of magnetization,
m=1) at « =0 to My=0 at the critical point «y. The
transition to the PM phase at ¢ takes place continuously
and M, vanishes as a power law: My ~ (1 — T/Tp)"/?. It is
a second-order instability type transition. The specific entropy
is given by

k
s = —[In(sinh Mo/Mo) — F M?] (13)
pv
and the specific heat by
k M,
Cv = 2 GMpa =2 (14)
v o

Implicit differentiation of Eq. (12) with respect to « gives
IMy G*M; | Fy
da 1+ u?+y(F+3MoF + M2F> —

GFMy/Fy)’
(15)

For T — Ty (i.e., ¢ — ag), we have My — 0, and to leading
order in 1/M, the above equation gives

M, 45/2 1
~ —, (16)
da 1+ p2+(2/35)y M,
so that
ks S[ > +1+2/5)y ]
Cy=—22 + 0Ty —-T)|, a7
v pv2|:,u2+l+(2/35))/ -1} A7

where we have substituted G by 1/3, which is its value at
M =0, and « by the value o given by Eq. (4). In the PM
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FIG. 8. Specific heat vs T /T for three fixed values of the field
specified in the legend, in polar coordinates (H/Hy, 6). In the three
cases the phase transition takes place at 7,/ Ty, = 0.862 and are of
second-order instability type (dark blue), of first-order (red), and
of second-order nucleation type (light blue). The inset displays the
behavior in the vicinity of the transition. Parameters: u> = 210 and
y =2.58.

phase, mean-field theory gives My =0, s =0, and Cy = 0,
and therefore the specific heat jump at the zero-field critical
point is given by Eq. (17). Since u? > 1, the specific heat
jump is nearly independent of u? and y, and is given by
ACy =~ (5/2)ks/ pv.

The behavior of the specific heat as a function of T/ T
for fixed field is displayed in Fig. 8 for the three values of
the field shown in the legend. In the three cases, the transition
temperature is the same, 7./ Ty = 0.862. The phase transitions
are of instability type (dark blue), of first-order (red), and of
nucleation type (light blue). In the helicoid phase, the specific
heat is basically independent of the field, except in the close
vicinity of the phase transition, where it shows a rapid growth
in the case of the second-order transitions of both types.
However, as can be appreciated in the inset of Fig. 8, which
shows the behavior of Cy around T, the specific heat diverges
in the case of the nucleation transition but remains finite in the
instability case.

In the low-field case (light blue line), the specific heat
presents a broad shoulder in the high-temperature phase that
is associated to the crossover from PM to FFM behavior. This
defines a crossover surface in the 3D phase diagram, which
is not shown in Fig. 2. Its intersection with the H, = 0 plane,
however, is shown in Fig. 1.

VII. SUMMARY AND CONCLUSION

A complete characterization of the phase diagram of the
monoaxial helimagnet in the presence of a magnetic field with
components parallel and perpendicular to the DM axis has
been obtained by means of the variational mean-field approach.
The phase diagram contains a low-field and low-temperature
phase in which the ground state is a spatially modulated
chiral magnetic structure and a high-field/high-T" phase in
which the system is in a homogeneous forced ferromagnetic
state (paramagnetic at zero field and high temperature).
The phase boundary is a surface in the three dimensional
thermodynamic space defined by the temperature and the
parallel and perpendicular components of the magnetic field.
The transition surface is divided into three parts: one surface of

PHYSICAL REVIEW B 95, 224410 (2017)

first-order transitions separates two surfaces of second-order
transitions, in one of which the transitions are of instability
type and in the other one of nucleation type. The first-order
surface is separated from the second-order surfaces by two
lines of tricritical points.

It is worthwhile to recall that mean-field theory, which
approximates the thermal fluctuations by the uncorrelated
fluctuations of the trial “Hamiltonian”, usually fails in the
critical domain, where the fluctuations are strongly correlated.
In our case, except for a small neighborhood of the zero-field
transition, the fluctuations are not expected to be critical,
since the transitions are driven by the magnetic field, and
the computations should be accurate, or at least qualitatively
correct. Only in the vicinity of the zero-field phase transition,
where critical fluctuations are expected, mean-field theory may
fail, and other techniques, as Monte Carlo simulations, are
necessary to validate or disproof the mean-field results.

The period of the modulated state diverges on the nucleation
surface. The divergence obeys a logarithmic scaling law,
Eq. (5), which is a distinct feature of the CSL. It induces
a singularity in the magnetization also characteristic of the
CSL. The specific heat is also divergent on the nucleation
surface, with a scaling law that has the form of a power law
with logarithmic corrections. This is remarkable since in the
“canonical” mean-field theory of the FM-PM transition the
specific heat does not diverge, but shows a finite discontinuity.

The soliton density is a universal function of the reduced
perpendicular component of the field, H,/H,.. Universality
means independence of the temperature and of the parallel
component of the field, and holds only if the transition point
obtained by tuning H,, keeping fixed 7 and H,, lies on
the nucleation surface. Otherwise, universality is lost. Thus
this universality can be used to locate the tricritical line that
separates the first-order surface from the nucleation surface.

The picture that emerge from this work should serve to
stimulate the experimental study of the magnetic properties of
compounds like CrNbsSg, and to interpret some of the already
known and forthcoming experimental data. For instance, the
phase diagram in the immediate vicinity of the zero-field
ordering transition has a complex structure, with first and
second-order transitions separated by a tricritical point, and
deserves a thorough experimental investigation.
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APPENDIX: SOME DETAILS ABOUT THE
EULER-LAGRANGE EQUATIONS

In this appendix, we give some details about the derivation
of the Euler-Lagrange equations, Eq. (3). On physical grounds,
the minimum of 7y = €y [ d°r fo(F), with f; given by Eq. (1),
is a function of the coordinate z along the DM axis only. Hence,
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in the search for the minimum, we can restrict the functional
to mean-field configurations that depend only on z, and the
functional reads Fy = A€ [ dzfo(z), where A = [dxdy is
the area of the sample cross section perpendicular to the DM
axis and

fo(z) = 3i'? — qoz - (it x ) — g3(h -+ U), (A1)

where the prime stands for the derivative with respect to z and
U is given by Eq. (2). The Euler-Lagrange equations then read

d dfy  df

=20 =0 (A2)
dZ 8Ml aMl

for i € {x,y,z). Since m = FM, with F = coth(M)/M —
1/M?, we have

w?=FM - -TM +G*M - LM, (A3)

vyhere Cj =F+ MF,, with F| =dF/dM, and the matrices
T and L are, respectively, the orthogonal projectors onto the
subspaces transverse and longitudinal to M:

- M;M; . M;M;
Ti; =6 — YR Lij = o (A4)
The Euler-Lagrange equations have then the form
(FT + G*L)M" = W(M, M), (AS)

where the vector W depends on M and M’, but not on M".
It is obtained in an straightforward way, but has a lengthy
expression and is not explicitly written here. The matrix
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entering the left hand side of the above equation can be readily

inverted, and we get an explicit equation for M”:
i 1 - O Tr/
M" = [ET + EL:| W(M,M"), (A6)

which has the form of Eq. (3). The explicit form of the

functions entering Eq. (3) are readliy obtained from the above
equation. Defining F, = d*>F /d M?, they read

Q= —2F/F)M, (A7)
¥ = ®+ gl — p’F) + OM?/M?, (A8)
T =2go(F\/F)M', (A9)
M = 2q5y(1 = 3F)/(F*M?), (A10)
where M' = dM/dz = M’ - M/ M,
® = —I - 3qzy F1/(MG?), (A1)
and
o= L —5(1\71/2 - M?) + (2F /F — F,)M"
G|l M
V20 ks (0 x M il i
M FM
Fi/M
+967 52 (A12)
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