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Abstract. In this paper, a new and efficient method for welding simulation is proposed. This method, known as Smart-GFEM
introduces in a GFEM framework an enrichment function which is capable of adapting the approximation space optimally. The
enrichment function can be seen as a computational vademecum which depends on technological and material parameters of the
process and it is completely computed off-line. In this work we present how to perform the thermal analysis of the welding and a
general strategy to address the mechanical analysis.

INTRODUCTION

Welding is a very complex process which involves a large number of physical phenomena that must be suitably
modelled [1]. The most advanced simulation codes available are multiphysics, that is, they couple electromagnetic,
thermal, metallurgical and mechanical models in order to obtain accurate results. Even if one assumes that these
models are good enough to represent the physical process, the computational efficiency of the simulations must be
improved to meet the requirements of modern industries. On one hand, traditional approaches are not competitive
enough to explore the solution space if an important number of parameters are involved. On the other hand, new
paradigms arise, such as data-driven simulations and augmented reality, where the numerical simulations should be
performed in light computer platforms and deployed devices [2].

Model Order Reduction has formulated responses to these challenges, providing new powerful methods and
strategies [3, 4] and also enriching traditional approaches to significantly improve their computational efficiency, as
we do in this paper. We propose the Smart-GFEM [5] as an efficient global-local GFEM method [6] suitable for
simulating processes with localized physics such as welding and heat treatments. The main strengths of Smart-GFEM
are:

• The off-line computation of the local enrichment function.

• The conforming nature of the local problem.

• The explicit dependence of the enrichment function with respect to the technological and material parameters.

whilst preserving all the advantages of GFEM such us mesh-independent adaptivity [7] and allowance of a low-
intrusive implementation in existing FEM codes [8].
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Smart-GFEM FOR THERMAL ANALYSIS

The Generalized Finite Element Method (GFEM) was proposed by Melenk and Babuška [9]. The main idea of this
method is to introduce the available information we have about the solution into the trial space. The GFEM is based
in two properties: local approximability and conformity. This means that this method is able to construct a tailored
approximation space with inter-element continuity.

For a given PDE, the GFEM approximation uh of the solution u reads,

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I

Ne(x)
∑

j

φ jb j
e, (1)

where the first term is a traditional FEM approximation, which satisfies the partition of unity
∑

i Ni(x) = 1, ∀x ∈ Ω,
and the second one is the enrichment added. The set of nodes represented in I and Ienr is the subset of enriched nodes.
The functions φ j are responsible for introducing the prior information we have of the solution, and therefore depend
on the problem being solved.

The main issue of GFEM is selecting the set of enrichment functions. In the literature, analytical [10] and com-
putational constructions can be found [11, 6]. However, analytical constructions are not always available in practice
and computational ones can be expensive for industrial applicability.

The Smart-GFEM proposes an original way of constructing the enrichment function, which is tailored to the
problem in hand, being optimal at each instant of the simulation and having a negligible computational cost. Moreover,
only one enrichment function is constructed, minimizing the computational cost of adding an enriched trial space.

In the Smart-GFEM, the enrichment function comes from a computational vademecum à la PGD [3] which
contains the fundamental solution, φ, of the localized physics of the problem for any values of the technological pa-
rameters, pi, and for any essential boundary conditions,ul

Γ
, in its local domain. Thus, the Smart-GFEM approximation

reads,

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I

Ne(x)φ(x, p1, ..., pn, ul
Γ)be. (2)

For the sake of clarity, let us assume a thermal transient problem with a moving heat source s(x, t) in a domain
Ω and in the temporal interval T ∈ (0,T ),

ut − ∇ · (k∇u) = s(x, t) in Ω × T (3)

where the main variable u is the temperature and k the thermal diffusivity. The essential and natural boundary condi-
tions uD and uN are imposed on ΓD and ΓN respectively and the initial temperature is u0.

Attached to the source, an enrichment region is set. The geometry of this region is fixed and, at each time step,
the nodes located inside are affected with the optimal enrichment function that simply consists in particularizing the
computational vademecum precomputed off-line as can be seen in Fig.1 The next parameters were introduced in the
vademecum as extra-coordinates: the power of the heat source Q, the magnitude of the thermal source velocity V , the
region of incidence of the heat source described by σ and the temperature at the boundary of the enrichment region
uΓe.

The vademecum is computed off-line and it is particularized on-line during the global simulation to obtain the
optimal trial space in any instant. In Fig. 1, we can see that the enrichment function automatically adapts to the
presence of a Dirichlet boundary condition ΓD along the path of the heat source in the enrichment region (dashed
line).

Different tests were carried out, varying the technological parameters during the simulation. Very accurate results
with the Smart-GFEM were obtained, even when a very coarse mesh was used. Fig.2 shows a comparison between
the Smart-GFEM and a FEM solution, both computed in the same coarse mesh. If the area of incidence of the source
significantly changes during simulation, the updating of the enrichment function is critical. Errors up to 25% in the
maximum temperature in the thermal history of a material point were obtained when the enrichment function is
not appropriately adapted. We can observed this effect in Fig.3, where the Smart-GFEM solution is updated to the
parameter changes and the GFEM solution uses the same enrichment function during the complete simulation.
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FIGURE 1: Updating the enrichment function

FIGURE 2: Smart-GFEM vs FEM in a coarse mesh

Smart-GFEM FOR MECHANICAL ANALYSIS

In this section we address a new strategy for the mechanical analysis of welding processes with one eye on its industrial
applicability. This strategy is based on the Smart-GFEM, presented above, including other techniques of model order
reduction such as the proper orthogonal decomposition (POD) and the proper generalized decomposition (PGD). The
strategy, schematized in Fig. 4, is composed of two stages, off-line and on-line stages, with different blocks that are
elaborated below.

In the off-line stage, for each family of welding processes a POD analysis is carried out. A family of processes is
determined by certain technological, material and geometric parameters which are constant for all the snapshots while
the others may vary. The aim is to find, for each family, a reduced basis for any thermal history in the local material
volume. Thus, for any point at any instant, the temperature can be expressed as T =

∑N
i αiϕ(x, t), where the set of

POD modes ϕi(x, t) constitutes the reduced basis. The number of modes N should be small, let us say less than ten,
and the different families of processes should be created to achieve this goal. Optimizing the selection of families of
welding processes is the subject of current research.

The material volume must be large enough to capture the strong thermal gradients around the heat source. These
thermal snapshots can be computed using the Smart-GFEM. However, we use the commercial code SYSWELD
because all the metallurgical models are already included, which are not yet available in our Smart-GFEM implemen-
tation.

Then, a set of elasto-plastic problems are solved in the material local volume imposing homogeneous essen-
tial boundary conditions. We search the stress field σ0 generated by each thermal history defined by a point in the
N−dimensional α−space. The sampling in this space can be performed using different strategies [12, 13]. Then, a
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FIGURE 3: Thermal history of a material point

manifold of the resultant stress field, σ0 is built in the same α−space:

σ0 = σ0(α1, α2, · · · , αN). (4)

Finally, a computational vademecum for an elastic problem in the local material volume is constructed. The stress
field σ0(α1, α2, · · · , αN) constitutes the only force (body force), and the set of αi is introduced as extra-coordinates.
The boundary conditions are also considered as extra-coordinates. This vademecum provides the local displacement
field ul, for any σ0 stress and for any displacement boundary conditions, uΓ,

ul = ul(σ0,uΓ). (5)

In other words, it provides the local mechanical response of the local volume for any essential boundary conditions
and for any thermal history introduced in the local volume, when this thermal history is represented in the reduced
basis,

ul = ul(α1, α2, · · · , αN ,uΓ). (6)

This local solution ul constitutes the parametric enrichment, also denoted by φ, of our Smart-GFEM formulation.
This parametric enrichment is particularized at each time step in the on-line stage,

In the on-line stage, firstly, the thermal problem is solved using SYSWELD. Then, the thermal history of each
point located near to the welding line is projected onto the reduced basis composed of the set of ϕi modes, obtaining
the coefficients αi. With these coefficients and the values of the displacement field at the border of the enrichment
volume uΓ, a tailored enrichment function is computed. This enrichment function is nothing but the particularization
of the vademecum (6) at the current time-step. In practice, the values of uΓ used in this particularization are those
obtained at the previous time step.

Once the enrichment function is obtained, the traditional global mechanical problem is solved, but in a coarse
mesh. This is possible due to the fact that the approximation space in the heat and mechanical affected zone has im-
proved approximation properties as a result of the tailored enrichment added. It should be noticed that, the enrichment
region, as defined in the previous section, is a volume attached to the heat source. However, we are interested in
the thermal history and metallurgical composition of material points. Moreover, it is not only the nodes close to the
heat source at each instant must be enriched. Additionally, all the material nodes that are near to the weldline must
be enriched in order to compute the residual stress and induced deformations in the global piece. Thus, the relation
between our enrichment volume attached to the source and the material points of the global piece should be clarified.
We discuss briefly these technical aspects in the following section.

The importance of the reference frame
For the mechanical problem, since an elasto-plastic thermal model is solved, it may seem natural to consider a ref-
erence frame attached to the material points, i.e., a Lagrangian reference frame. However, due to the fact that we are
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FIGURE 4: Smart-GFEM FOR MECHANICAL ANALYSIS

neglecting the transient effects in our analysis, the Eulerian frame can take advantage of the steady-state conditions
that may exist with respect to the moving heat source. Thus, it could be more appropriate from the computational
point of view to construct the set of snapshots and to extract the reduced basis in an Eulerian reference frame attached
to the moving heat source.

Obviously, the mathematical model of the process should be conveniently modified to include this fact. Let us
consider a material point in the Lagrangian reference frame X and our enrichment volume attached to a heat source
with an steady velocity v. The coordinates of any point x in the reference frame of the moving volume are related to
the material points through the following expression:

x = X − vt. (7)

Thus, the transformation between any field ϕ(x) computed in the off-line stage in the reference frame of our
enrichment volume to the field ϕ̂(X, t) can be performed as follows:

ϕ̂(X, t) = ϕ(X − vt), (8)

∇Xϕ̂(X, t) = ∇xϕ(x), (9)

∂ϕ̂(X, t)
∂t

= −
∂ϕ(x)
∂x

· v, (10)

where − ∂ϕ(x)
∂x · v is the spatial derivative of ϕ along the streamline. The interested reader can find all the details of a

thermo-mechanical formulation for welding in this reference frame in [14]. This formulation is already implemented
in SYSWELD, and it was used to obtain the set of snapshots for each family of welding processes.

It is worth highlighting the fact that, in the Smart-GFEM, the Eulerian reference frame is only used in the off-
line process, because we are interested in the local behavior of the solution. Once the computational vademecum
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is constructed, in the on-line stage, the global problem is solved in a Lagrangian reference frame, a much more
convenient frame for introducing the global geometry and computing the residual stresses and induced deformations
of the entire piece.

CONCLUSIONS AND FUTURE WORK

In this work we have presented a new strategy to perform efficient thermal and mechanical analyses of welding
processes using the Smart-GFEM. We have seen that this technique allows us to precompute off-line complete fun-
damental solutions to improve the local approximation properties of our generalized finite element method. These
vademecums take into account explicitly the parameters of the processes and the conditions around the local region.
Even if some of these parameters vary during the process, the enrichment space is updated in the on-line stage with
no computational cost.

The construction of the vademecums is more efficient if performed in an Eulerian reference frame. Later, the
in-line stage, this field is pass to the material point with the transformation given.

Even when the Smart-GFEM has been validated for the thermal analysis, the validation of the proposed strategy
for the mechanical one is still a work in progress.
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