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Abstract The detection of tremors can be crucial for the early diagnosis and
proper treatment of some disorders such as Parkinson’s disease. A smartphone-
based application has been developed for detecting hand tremors. This ap-
plication runs in background and distinguishes hand tremors from common
daily activities. This application can facilitate the continuous monitoring of
patients or the early detection of this symptom. The evaluation analyzes 1770
accelerometer samples with cross-validation for assessing the ability of the
system for processing unknown data, obtaining a sensitivity of 95.8% and a
specificity of 99.5%. It also analyzes continuous data for some volunteers for
several days, which corroborated its high performance.

Keywords accelerometer · mobile application · pervasive healthcare · tremor
detection · wearable sensors

1 Introduction

Tremors are one of the most common movement disorders. Tremors are defined
as the rhythmic and involuntary oscillation of a body part, and are usually
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caused by muscle innervations that imply repetitive contractions [17]. From
the dynamic point of view, this disorder can be classified as resting or ac-
tion tremors [22]. Resting tremors occur when the body part is relaxed and
supported by gravity. Action tremors occur when some muscle is voluntarily
contracted, and can be classified as either postural, isometric or kinetic. The
first kind happens when the body part is held against gravity, while the second
one occurs when the muscle is contracted against stationary objects. Kinetic
tremors occur when the muscle is contracted for actually moving the body
part. The tremors can also be categorized by their causes [17,22], which can
be several diseases. The most frequent causes are the Parkinson’s Disease (PD)
and the Essential Tremor (ET).

Due to the diseases that affect a considerable amount of the population
and have the symptom of tremors, its detection is relevant in medicine. The
methods for tremor detection can be categorized between conventional clinical
methods and laboratory measurement methods [17]. The conventional clinical
methods are based on the observation by a doctor. There are several validated
scales such as the Unified PD Rating Scale (UPDRS) and Tremor Rating Scale
(TRS), respectively for PD and ET. The laboratory measurement methods
can be classified as accelerometry, electromyography (EMG), spiralometry,
and analysis of spike trains. Accelerometry uses accelerometers attached to
the body parts that suffer tremors. Generally, these tests require hospital or
specialized equipment, and users may not take these tests until they are already
aware of their tremors.

The goal of the current work is to detect and register tremors with smart-
phones in unconstrained environments. The system is transparent for users,
who are not required to perform any specific movement or posture. Users only
need to utilize their smartphones in their daily lives without restrictions. The
implementation of this system is called Hand Trembling detector App (HTrem-
bApp). This app can be installed and run as a background service permanently.
It detects involuntary hand tremors, and distinguishes these from activities of
daily life (ADL). The application both collects and processes the data. It
notifies the user when tremors are detected. To avoid battery depletion, com-
putation is based on simple rules. To the best of authors’ knowledge, there
is not any tremor detection system that allows users to perform movements
without restrictions and uses smartphones at the same time.

The current tremor detector system has been evaluated with a database
of tremors and ADL generated by a group of volunteers. In this manner, the
current work assesses the sensitivity, the specificity and the accuracy of the
detector. The ability of the detector to properly classify unknown data has
been determined by means of a cross-validation strategy. It also reports the
analysis of continuous data of three subjects.

The implications of this work are not only the substitution of a laboratory
accelerometer. The presented application could have several utilities. One of
these would be the continuous monitoring of hand tremors, which provides
useful information for tracking the evolution of some diseases such as PD and
ET. Another utility would be the early detection of hand tremors, so that
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patients can get early treatments for these diseases. Recent studies show that
early detection of PD may help in selecting the appropriate treatment [15].
Finally, this application could also be useful for monitoring the individual
responses to therapies.

The remainder of this article is organized as follows. The next section
introduces some related works highlighting the gap of the literature that the
current work covers. Section 3 describes the design of the tremor detector
system, and section 4 introduces its implementation. Section 5 presents the
evaluation of the current detector with the group of volunteers. Finally, section
6 indicates the conclusions, and depicts some future lines of research.

2 Related work

The existing solutions for tremor detection use different kinds of inputs such
as EMG, spike trains, sub-cortical data, and accelerometers, although more
extensive information is provided for the latter. Section 2.1 introduces the tests
that use any input different from accelerometers, which usually take place in
clinics, hospitals or health centers. Section 2.2 mentions the related approaches
that are based on accelerometers. Section 2.3 specifically indicates some tremor
detection systems that use smartphones. Finally, section 2.4 discusses the main
gap of the literature that is covered with the current approach.

2.1 Detection of tremors using non-accelerometer signals

To begin with, some works use EMG signals for detecting tremors. For in-
stance, De Marchis et al. [9] presented an algorithm that is based on the
calculation of a second order moment function of a moving time interval in
EMG signals. It detected more tremors than the alternatives even with low
signal-to-noise ratios.

Other works use sensors that are specific from the neuroscience field. For
example, Kim et al. [16] introduced a method for the continuous tracking of
the frequency and amplitude of tremors from spike trains. Their method ap-
plies a novel smoother that uses the Kalman filter. It can detect statistically
significant tremors in a motorization with discontinuous tremors. Its main nov-
elty was to detect tremors by means of neuroscience techniques (in particular
analysis of spike trains). In addition, Camara et al. [4] presented a system that
classifies different kinds of tremors within the PD disorder. The high impact of
their work relies on the possibility of determining different kinds of treatment
in the future for the different variations of PD regarding their classification of
tremors. Their system processed sub-cortical data dealing directly with brain
signals. They applied clustering techniques for performing the classification of
tremors.

Some works perform detections of tremors by combining inputs from EMG
signals and accelerometers data. For instance, Hossen et al. [13] presented an
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algorithm for distinguishing whether certain tremors are caused by PD or ET.
These two disorders have tremors that may not be distinguished by simple vi-
sual observation of a doctor, but the former disorder has greater consequences
with more disabilities than the latter. There are medical tests that distinguish
these diseases, but these tests are intrusive (e.g. injection of a radioactivity-
labeled dopamine transporter ligand), and require expensive medical equip-
ment and a considerable amount of time. The algorithm of Hossen et al. re-
ceives input from a light piezoelectric accelerometer (i.e. about 2 grams) and
an EMG signal. Their application was trained with several patients of PD and
several patients of ET. Their recordings were performed by asking patients to
have a very specific posture that consisted of hands and fingers actively to a
0Âo position with the resting forearm. They achieved a success ratio of 85%
in discriminating PD from ET in a different set of patients.

Some studies highlight the importance of detecting tremors not only in
ad-hoc postures or movements, but also in ADL. Cole et al. [6] proposed the
use of a device in each limb, which includes a measure of acceleration and
surface EMG (sEMG). Normal activities were considered, such as walking,
sitting and standing. Eight features were extracted from 1 s time windows, 5
from acceleration and 3 from sEMG. A subset of them fed either a Dynamical
Neural Network or a Dynamical Support Vector Machine. Both systems had
some trouble to detect tremor in the presence of certain movement states (e.g.
walking).

Nevertheless, most of these approaches usually require that patients get
to a hospital, a clinic, a health center or a similar place to perform the tests,
since all these require specific medical equipment. Their tests were designed to
be applied in controlled environments with the patients in a specific posture
or situation. Only in [6] other movements were considered, but with a full set
of sensors and with a fusion of sEMG and accelerometry.

2.2 Accelerometer-based detectors for tremors

Accelerometry is quite popular in tremor detection due to the ease of its appli-
cation. Simple visual inspection of accelerometer traces can give some informa-
tion, like in [3] where the postural tremor traces of PD patients are classified in
three groups: sinusoidal, increased and aperiodic. However, the most common
way to analyze signals is in frequency domain. Barroso et al. [2] calculated
several parameters from the frequency spectrum: peak frequency and its am-
plitude, power around the peak, total power and power split into low (1-4 Hz)
and high (4-7 Hz) frequency bands. The accelerometer was attached to the
wrist and measurements were taken with the arm extended along the body.
Except the peak frequency, all of them were able to fully discriminate between
10 normal subjects and 10 people with PD. Geman et al. [11] considered the
wavelet transform to better characterize tremor. Data was recorded with the
Wiimote of Nintendo in three groups of volunteers: 28 PD patients, 24 people
“suspicious of PD” and 30 with normal tremor (healthy). In particular, they
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observed strong similarities between the PD tremor signals and suspect PD
tremor signals. However, the results depended on the type of mother wavelet
and its scale.

Besides detecting tremor as a dichotomy problem, its severity can also
be assessed. Hoff et al. [12] used a continuous ambulatory multichannel ac-
celerometer to assess resting tremor in patients with PD. Duration and in-
tensity of tremor were correlated with the clinical score for resting tremor
(Spearman’s rank correlation: 0.66-0.77). In [18] an automated method for
both resting and action or postural tremor assessment was proposed using a
set of accelerometers mounted on up to six patient’s body segments. Action
and posture recognition was based on a set of features that measure relative
and absolute orientation, as well as the low frequency energy of the signals.
Tremor severity was assessed with features in the frequency domain: dominant
frequency, amplitude of the dominant frequency and the energy of the har-
monic motion. Two Hidden Markov Models were used, one for action/posture
recognition, and the other one for severity classification. The volunteers fol-
lowed a set of directed activities (sitting, walking, finger to nose movement
etc.). The system quantifies tremor severity with 87% accuracy, discriminates
resting from postural tremor and tremor from other PD motor symptoms.
D’Addona et al. [7] used the Wiimote for detecting tremors resulting from a
previous sport exercise. Their system provided a quantitative assessment of
these tremors. Their resulting measurement values were especially relevant for
sports that need ability. These tremors were usually related to the fatigue. In
their test, the subjects held the Wiimote for 90 seconds in a specific posture.
They outperformed similar methods that used spiralometry and laser-pointing
systems.

Van Someren et al. [20] proposed some test with ADL, besides some ad-
hoc postures. Volunteers wore in their wrist a commercial available actigraph,
the Actiwatch. Data acquisition took place during neurological examination,
including walking, standing, sitting, arm rest, arm extension and arm move-
ments. Five descriptors are calculated in a period-amplitude analysis of 2 s time
windows: the maximal period length (MaxPer), the minimal period length
(MinPer), the number of upward zero crossings (ZC), the peak amplitude
(AMP) and the difference between the minimal and maximal period length
(PerDiff). The distributions of these descriptors showed some differences be-
tween patients and control, but no single variable could discern tremor from
other movement. Thus, the authors proposed a set of heuristic rules to calcu-
late a summed likeliness, which provided and accurate classification of 71% of
tremor time, and a false positive classification of 0.5% in controls. The authors
suggested a possible extension to daily living in the future.

Different from most previous studies, our work targets tremor detection in
unconstrained activities. Although in [20] similar ideas are presented, in the
present work a wide range of activities is tested as well as some continuous
data of three volunteers. In addition, the use of smartphones for continuous
monitoring can reach a larger population since these devices are very popular.
However, smartphones pose new challenges because there are more movements
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that can be confused with or interfere the detection of tremors, like writing
on the phone, and because it has the additional difficulty that it is not known
whether the smartphone is actually held by the user.

2.3 Detection of tremors with smartphones

Since smartphones include accelerometers, some researchers have started using
these devices for measuring tremors. For instance, Joundi et al. [14] interpreted
the output of a general-purpose smartphone application (i.e. iSeismo) in an
iPhone. They concluded that their results almost matched the precision of the
clinical tests with expensive equipment. ISeismo is a general-purpose applica-
tion that had been implemented by developers different from the authors of
that work. The iSeismo application just shows the accelerometers variations,
and the authors interpreted this graphical output. The work of Saifee et al.
[19] also used an smartphone as measurement technology with successful re-
sults although the sample was reduced (only four patients). Carignan et al. [5]
compared the results obtained with a smartphone with another measurement
instrument based on accelerometers. Their work showed a high correlation be-
tween both outputs, and they concluded that the smartphones are appropriate
for quantifying the pathological tremors. In this context, the work of Daneault
et al. [8] is very complete. In their work, the smartphone application not only
acquired the data, but also processed them in Blackberry phones. They found
that the processing is possible, and the results were highly correlated with the
software developed for PC, except for finding the frequency peak. In addition,
they compared their results with a laboratory accelerometer. They found dif-
ficulties for measuring tremors with low amplitude in phones. However, if the
amplitude of tremors surpassed 1 mm, all the frequency features were highly
correlated between laboratory accelerometers and phones (r > 0.88). Finally,
they proved that the results with their smartphone application were highly
correlated with the clinical scales, although this correlation was lower for ki-
netic tremors due to the difficulty of separating the information related to
the voluntary movements. Therefore, smartphones can properly acquire and
process data related to tremors providing useful information for the clinical
evaluation.

Moreover, Arora et al. [1] presented a method for discriminating subjects
with PD from the control subjects. Their work was based in a diagnosis with
a smartphone application that assesses voice, posture, gait, finger tapping and
response time. The subjects had to perform the five tasks concerning these
features four times a day for a month. Their test also provided the modified
motor proportion of the UPDRS.

Furthermore, Woods et al. [21] presented a mobile application that classifies
patients with tremors between PD and ET. Their application receives input
from the tremors of the subjects distinguishing the attention and distraction
intervals. Their application could properly classify patients between PD and
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ET, since these disorders usually imply different patterns of tremors in relation
to attention and distraction periods.

However, none of the previous studies based on smartphones used them in
everyday life.

2.4 Discussion

In most of the aforementioned works about tremor detection, the tests required
that the subjects had a specific posture and/or mental state without doing
any other activity. To the best of authors’ knowledge, the current work is the
first one that detects hand tremors distinguishing these from other movements
corresponding to ADL with a smartphone. Hence, the current approach is the
first one that monitors people during their daily lives with only a smartphone
app for detecting tremors.

3 Design of the tremor detector system

The current detector has been designed to properly distinguish tremors from
the common movements in ADL. Section 3.1 firstly introduces some features
that characterize oscillatory movements. The current detector uses these fea-
tures as parameters for the calibration and internal functioning of the detector.
Section 3.2 presents the algorithm that detects hand tremors based on these
parameters. Finally, section 3.3 discusses why the current approach filters the
common tremor-like ADL.

3.1 Detector parameters

The current tremor detector has several parameters that determine which
kinds of shakes will be detected. These parameters also implicitly determine
which kinds of shaking or other movements are discarded. In this way, the de-
tector can warn about hand tremors that are common in some patients of some
diseases such as PD and ET. By contrast, it discards other movements such
as walking with the mobile device, going upstairs, going downstairs, jogging,
standing up, sitting down and the vibration of the device. These parameters
follow:

– Number of shakes: It represents the number of shakes that must be detected
before considering a movement to be a tremor. A shake is considered to
take place each time the device changes its acceleration from one direction
to another. Usually, each movement is counted as two of these shakes (i.e.
acceleration and deceleration). This parameter allows the detector to dis-
card movements that do not include a sequence with enough shakes such
as standing up or sitting down.
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– Still acceleration: This is the total acceleration (i.e. considering the three
direction components X, Y and Z of the device) when the device is still.
Ideally, it should be gravity but it can be slightly different from phone to
phone due to sensor’s bias. This feature is more related to the device than
the movement. In order to make the current approach hardware indepen-
dent, the app can automatically calibrate it. In particular, the user only
needs to press a calibration button when the device is still without entering
any specific value.

– Maximum alpha (α). This parameter establishes a threshold of maximum
inclination of the device. In particular, α refers to the angle between the Z
axis of the device (perpendicular to the screen surface) and a vertical line.
In this manner, the detector only detects hand tremors when the screen
is face-up and nearly horizontal. Users commonly use the smartphone in
this kind of positions. This allows the detector to discard movements such
as carrying the device in the pocket with a complete different orientation
of the device. This parameter also allows users to calibrate how much
horizontal the device needs to be for detecting tremors.

– Minimum and maximum intensity : This parameter is composed of two
thresholds about the intensity of a movement. The intensity is assumed
to be the difference between the current acceleration and the still acceler-
ation. This parameter discriminates whether a movement is considered a
shake. The minimum intensity allows the detector to ignore slight move-
ments different from hand trembling, such as writing on the smartphone.
The maximum intensity makes the detector discard stronger movements
different from hand trembling, like jogging for example.

– Logging Intensity : This establishes a threshold of minimum intensity of
movements for reporting this intensity in the logs. This parameter does not
actually influence the detections of hand trembling, but it does the logs.
Low values of this parameter allow the detectors to provide very detailed
logs, while high values make the detector output summarized logs easier
to be tracked in the mobile device screen for example.

– Minimum and maximum interval : This parameter delimits the time inter-
val from one shake to another to be considered trembling. It is composed of
two thresholds. Specifically, the maximum interval discards several move-
ments that are not related to each other. It also implicitly determines the
minimum frequency of shakes. For example, some movements such as going
for a walk have lower frequencies than tremors. In addition, the minimum
interval discards repetitive movements with very high frequencies such as
the vibration of the device.

3.2 Algorithm for detecting hand tremors

The application has a listener of sensor events specifically for the accelerometer
changes. Figure 1 shows the dataflow diagram of the algorithm that is executed
each time it receives an accelerometer event change. This diagram uses some
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direction <- obtainDirection(sensorEvent)
currentTimestamp <- obtainCurrentTimeStamp()

direction <> 0 AND
 direction <> lastDirection

diff <- currentTimestamp - lastTimestamp

yes

minInterval <=diff AND
diff <= maxInterval

lastDirection <- direction
lastTimestamp <- currentTimestamp

countShakes<-countShakes+1

yes

countShakes<-1
lastDirection<-direction

lastTimestamp<-currentTimestamp

countShakes>=numShakes

countShakes=0
lastDirection=0

lastTimestamp=0
warnTrembling()

no

no

yes no

A shake is detected with

different direction than 

before.

The interval from the 

last shake is within 

the established limits.

The number of 

shakes achieves

the establsihed

value.

The user is

warned about

their trembling.

The counter

of shakes is

reset to one.

direction=2 OR
direction=-2

countShakes <- 0
lastDirection <- direction

lastTimestamp <-0

The shake surpasses 

the maximum limit 

of intensity.
yes no

The counter

of shakes is

reset to zero.

alpha<-obtainAlpha(sensorEvent)

alpha<=maxAlpha

yes noThe screen is face up 

and near to horizontal.

Fig. 1: Dataflow diagram that is executed when the accelerator sensor perceives
a change.

of the detector parameters that were introduced in section 3.1, with proper-
ties with similar names (i.e. “numShakes”, “maxAlpha”, “minInterval” and
“maxInterval”). The algorithm also uses some variable properties, which are
initiated with some initial values when starting the detector. These properties
may change in each execution of the method algorithm, and are conserved from
one invocation of this algorithm to the next invocation. Table 1 describes the
meanings of these variable properties, and indicates their initial values when
starting the detector. The algorithm has the following steps:
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Table 1: Variable properties of the detector

Property Meaning Initial
value

“countShakes” It represents the counter of shakes within the same trembling. A tremor
is detected when this counter reaches the number of shakes determined in
the parameter Number of shakes.

0

“lastTimestamp” It stores the timestamp of the last shake. In this manner, the detector can
check that the interval from the last shake is within the minimum interval
and maximum interval parameters.

0

“lastDirection” It indicates the direction of the last shake. It represents as 1 the positive
shake that had total acceleration values higher than the still acceleration
parameter. It represents the negative movements with -1, when the total
acceleration values are below the still acceleration parameter. It uses other
values such as 0 when there was not any shake that could not be considered
part of the possible current trembling.

0

1. Check the screen is face-up: This step guarantees that the remaining of the
algorithm is only executed if the screen is face up and near to horizontal.
This is performed by obtaining the α angle of the device inclination, and
checking that this value is less than or equal to the maximum alpha calibra-
tion parameter. The calculation of α is performed with the “ObtainAlpha”
method that will be introduced later in this section.

2. Discard strong movements: This step checks whether the intensity sur-
passes the maximum limit of intensity. In this case, the detector discards
the movement, resets the counter of shakes to zero, and finishes the man-
agement of the current event. If the intensity does not surpass the maxi-
mum limit, the algorithm goes forward to the next step. The probation of
intensities of shakes is performed by means of the result provided by the
“ObtainDirection” method that will be described later in this section.

3. Alternative directions: This step checks (1) that the device is actually hav-
ing a shake with more intensity than the minimum limit, and (2) that this
shake has a different direction from the previous registered shake. The ac-
celeration event can be raised many times per second, and consequently
this algorithm is invoked several times during the same shake. This algo-
rithm distinguishes as a different shake when the direction has actually
changed from the previous shake.

4. Check frequency : Shake frequency is implicitly checked by measuring the
interval from the current shake and the last shake, by calculating the differ-
ence of the current timestamp (obtained from the system) and the times-
tamp of the last shake (previously stored). This step checks whether this
interval is within the minimum interval and maximum interval calibration
parameters. In case it is not, the current shake is considered as the first
one in a possible tremor, ignoring all the previous shakes up to the present.
In case the interval is within the limits, the algorithm goes forward to the
next step.

5. Count shakes: The algorithm counts the shakes that have been admitted in
the previous steps (i.e. alternative shakes with the appropriate intensities
and frequency). In the handling of each event, it increases the counter of
shakes. It checks whether the counter has arrived to the number of shakes
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Fig. 2: Classification for obtaining the direction of a movement.

totalAceleration <- obtainTotalAcceleration(sensorEvent)
diff = totalAcceleration - stillAcceleration

diff>maxIntensity

diff>minIntensity

return 2

return 1

yes
no

yes no

diff<(-maxIntensity)

diff<(-minIntensity)

return -1 return 0

yes no

yes no

return -2

Fig. 3: Dataflow diagram for obtaining the direction of a movement.

established in the detector parameter. If so, the user is notified of its hand
trembling in the mobile device, and all the variables properties are reset to
their initial values for detecting future tremors.

The aforementioned algorithm (previously introduced in Figure 1) invokes
the ObtainDirection method that discriminates the direction of the movement
in five possible categories: excessive positive (i.e. 2), positive (i.e. 1), exces-
sive negative (i.e. -2), negative (i.e. -1) or neutral (i.e. 0). Figure 2 graphically
illustrates the categories of this classification with a repetitive acceleration
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function that represents a tremor. Figure 3 shows the dataflow diagram of
this classification method. This classification considers the intensity as the
difference of the total acceleration from the still acceleration, denoted with
the “diff” variable. This classification uses the minimum intensity and max-
imum intensity parameters (referred as “minIntensity” and “maxIntensity”),
so that the detector only considers movements with intensities between the
corresponding intervals. In particular, if the total acceleration of the device is
greater than the still acceleration parameter with the intensity between the
limits, the movement is considered to have a shake with positive direction.
If the total acceleration is lower than the still acceleration with the intensity
within the limits, the direction is classified as negative. If the movement has a
total acceleration near the still acceleration considering the minimum intensity
threshold, the direction is classified as neutral. Finally, if the difference from
the still acceleration surpasses the maximum intensity parameter, this method
classifies the movement as excessive positive or excessive negative regarding
the sign of the difference.

As mentioned before, the direction of the movement is calculated from
the total acceleration of the device. This total acceleration is calculated from
the 3-axis accelerometer values (referred as “ax”, “ay” and “az”), and is also
known as acceleration magnitude. In particular, the total acceleration of the
device is calculated as:

a =
√

ax2 + ay2 + az2 (1)

Finally, the ObtainAlpha method calculates the angle α of the Z-axis of
the device with a vertical line. The following formula calculates this angle in
radians:

α = acos(min(1, az/as)) (2)

where as is the still acceleration parameter. Then, it converts this angle to
degrees, so that it can be compared with the maximum alpha calibration
parameter that may be introduced by the user.

3.3 Detection of real tremors and filtering of tremor-like ADL

The tremors produce alternate peaks in the accelerometer trace. However,
there are many ADL that also produce alternate peaks. Figure 4 presents the
accelerometer traces for the tremors of a patient and some examples of ADL
with alternate peaks.

Specifically, Figure 4a shows the example of a real tremor in a patient.
This tremor was detected by the current approach. One can observe that
the accelerometer magnitude has at least seven alternate peaks. These are
separated with interval durations within the corresponding interval limits. The
intensities of these peaks are also within the corresponding intensity limits.
The intensity limits are represented with lines in this chart and in the one
representing writing on the smartphone.
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(a) Tremors (b) Writing on the smartphone

(c) Walking (d) Going upstairs

Fig. 4: Accelerometer traces of tremors and other ADL.

Figures 4b, 4c and 4d present respectively the accelerometer traces of the
ADL of writing on the smartphone, walking and going upstairs. One can ob-
serve that, although all of these traces have alternate peaks, the current work
distinguishes these traces from tremors by properly calibrating the detector
parameters with a training set. In the case of writing on the smartphone, the
peak amplitude is lower than in tremors. However, in the case of walking and
going upstairs, the peak amplitude is greater than in tremors. Hence, the sys-
tem can properly perform the classification by adjusting the parameters called
minimum and maximum intensity. Many other ADL have been considered in
the detector training as it will be indicated in section 5.

4 Implementation

The current approach has been implemented with HTrembApp. This appli-
cation can be executed in any mobile device (e.g. smartphones and tablets)
whose operative system is Android 2.3 or above. Once the HTrembApp has
been installed and started, the detector can be directly visualized as a fore-
ground User Interface (UI), but it also runs as a background service when the
user leaves the application. In this manner, users are not required to check
HTrembApp and can carry on their daily routine.
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(a) Main activity (b) Notification details

Fig. 5: UI of the app.

The main activity of the UI is shown in Figure 5a. As one can observe, it has
the “Latest Detections” label with the number of recent detections between
parentheses. Below, it has a scrollable list with the dates and times of the last
tremor detections. In case the list is longer than the available space, the user
can scroll the list. The user can also reset the list of detections to an empty
list, by pressing the “Clear” button.

This UI also has a scrollable area for showing some abbreviated logs of the
application. These are especially useful for calibrating the application. Below,
there are several number-fields so that the user could calibrate the application
by changing the detector parameters. When the user presses the “‘Calibrate”
button, the detector starts using the new parameters. The user must press
this button when the device is still, since the app automatically calibrates
the still acceleration based on this assumption. This calibration can be based
on performing certain real movements with the device, observing whether the
application detects tremors, and observing the generated logs. The calibration
process is only recommended for advanced users.

The logs report the information that is collected when the device is face-up
and near to horizontal according to the corresponding detector parameter. The
logs show the intensities of the detector that are greater than or equal to the
logging intensity parameter. These intensities are outputted with the variable
letter “i” (in m/s2). Each time a shake is detected, the elapsed time from
the previous one is shown in milliseconds with the variable letter “t”. Each
time the counter of shakes increases, this counter is printed out with the letter
“S”. After a new calibration, the word “calibrated” appears alongside all the
detector parameters. In the logs, the “Detected” word refers to a hand tremor
detection. The logs have a reverse chronological order, so that the latest logs
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are firstly shown. These logs let advanced users to know for example which
parameters should be calibrated for detecting or discarding certain movements
of the device.

The application also allows the user to save all the results to a text file,
including the latest detections and the logs. This operation is performed by
pressing the “save” button and then this information is saved in the “HTrem-
bApp” folder in the device root using the date and time as the file name with
the format “dd-mm-yyyy hh-mm-ss.txt”.

Each time the application detects a hand tremor, the user is notified. In
case the application is running in foreground, the application changes its back-
ground color to red for one second. Otherwise, when the application is running
in background, a notification of the tremor is inserted in the top notifications
bar with an icon representing a hand. This notification can be consulted by
the user, and it is titled “Hand Trembling”. Its message contains the time
and date of the detection of the hand trembling. Figure 5b shows an example
of a user consulting the details of a hand trembling notification. If another
tremor is detected, this notification is updated with the date and time of the
last detection. The user can click this notification, so that the application is
brought to foreground with all the detections including the last one notified.

The background mode is especially useful for detecting involuntary hand
tremors that might be not perceived in controlled tests. In earlier stages of
some diseases such as PD, patients may voluntarily force themselves to have
the hand still in a controlled test, while they have this symptom in some ADL
such as consulting their smartphones or writing on it.

The application was initially tested with a Samsung Galaxy Trend Plus
smartphone, which has a 1.2 GHz Dual core processor and a built-in accelerom-
eter (range ±2g, sampling frequency 100 Hz).

Moreover, an off-line version of the detector was developed for performing
the calibration and evaluation from a database of accelerometers records. This
application receives input from text files with accelerometer and time data,
and was developed as a standalone Java application.

5 Performance evaluation

The presented tremor detection system is evaluated by considering four possi-
ble situations evaluated in time windows: True Positive (TP), the user had a
tremor while holding the device and the system properly detected the tremor;
False Positive (FP), the system detected a tremor, but instead it was a nor-
mal ADL; True Negative (TN), the system does not warn about any tremor
detection in an ADL of a person without tremors; and False Negative (FN),
the system did not detected any tremor in a person with tremors while holding
the device. The current evaluation considers time windows of three minutes.

The system reliability was measured in a similar way as other event detec-
tors such as fall detectors. The sensitivity is calculated as TP/(TP+FN), and
measures the performance in detecting tremors. The specificity is obtained by
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TN/(TN+FP), and assesses the ability of exclusively detecting tremors. The
accuracy is expressed with the formula (TP+TN)/(TP+TN+FP+FN), and
represents the ratio of true results provided by the considered detector. In some
cases, this paper also presents the percentage of FP (FP%), i.e. FP/(TN+FP),
and the percentage of FN (FN%), i.e. FN/(TP+FN).

5.1 Cross-validation

In order to train the trembling detector, the current work used a database
with the accelerometer traces of tremors and ADL generated by two groups of
volunteers. The first group included 11 people with tremors, while the second
group included 10 people without tremors. In the first group, there were five
people who actually suffered from the symptom of resting and/or postural
tremors. They were 58.2 years old in average, and three of them were women.
The first group also had six people who simulated resting and/or postural
tremors. They were 34.5 years old in average, and one of them was a woman.
Finally, in the second group, none of the participants had tremors. Their aver-
age age was 31.4 years old, and three of them were women. The study protocol
was approved by the Ethical Committee for Clinical Research of Aragon (CE-
ICA). All subjects received oral and written information about the study, and
written informed consent was obtained from them.

The database has 62 samples of people with tremors while holding the
device. In these samples, they were reading and writing on the smartphone.
The database also has 1708 samples of people without tremors performing
ADL such as reading on the smartphone, writing on it, walking, standing up,
sitting down on a hard chair, sitting down on soft surface such as a sofa, getting
into a car, getting out of it, lifting the smartphone, picking up something from
the floor, squatting, lying on a bed, getting up from bed, going upstairs, going
downstairs, jogging, jumping, taking the smartphone out of the pocket for
talking, putting it on the pocket, leaving a handbag with it on a table or
lifting the handbag from the table. During some ADL, the smartphone was
worn on a pocket or in a handbag. However, the smartphone was held in hand
before and after each recorded activity. The number of samples of ADL is
greater than the number of samples of tremors, since this work considers a
high number of ADL that could be confused with tremors.

In order to assess the validity of the current system for processing unknown
data, this work applied the k-fold stratified cross-validation method. In this
method, the data is divided in k subsets in a balanced way. The detector system
is calibrated and validated k times. Each time the system is calibrated with
k-1 subsets, and then it is validated with the remaining subset. The current
experimentation has selected the value of ten for k, since the ten-fold stratified
cross-validation is widely accepted as appropriate for limited sets of data.

The appropriate calibration of detector parameters requires training the
system with a representative amount of data. Each parameter influences both
the sensitivity and specificity of the system. In particular, Figure 6 presents the
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(a) Relationship when modifying maximum
intensity

(b) Relationship when changing maximum
interval

Fig. 6: The relationship between FN and FP when changing each parameter,
while the other parameters are fixed to the values of Table 2.

Table 2: Parameters of the trembling detector.

Parameter Value
Number of shakes 6.90

Maximum α (degrees) 30.54Âo

Minimum Intensity (m/s2) 0.72
Maximum Intensity (m/s2) 1.75
Minimum Interval (ms) 126.70
Maximum Interval (ms) 1381.20

relationship of the percentage of FN and the percentage of FP when varying the
most relevant parameters. In particular, Figure 6a shows this relationship when
changing the parameter of maximum intensity while the other parameters are
fixed. Specifically, these are fixed to the values that will be introduced later in
Table 2. Figure 6b shows this relation when altering the parameter about the
maximum interval.

The detector system was calibrated with theWhite Box Calibration method
[10] for each step of the cross-validation. Table 2 determines the average val-
ues of the parameters of the detector after the calibrations, considering all the
steps of the cross-validation.

Table 3 indicates the sensitivity, specificity and accuracy, considering the
average results in the cross-validation runs. Although 4.17% of time windows of
people trembling were ignored, it is worth mentioning that the system detected
tremors in all the people that actually had or simulated these. For the present
tremor detector system, the specificity can be considered more important than
the sensitivity, because (1) users may not want to be warned unnecessarily, (2)
detecting a particular tremor is not as urgent as other events such as falls for
example, and (3) users with the trembling symptom periodically have tremors,
and it is irrelevant that the system misses a few of these.

In the group with tremors, this work analyzed the correlation between the
kind of volunteer (i.e. either having real tremors or simulating these) with the
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Table 3: Sensibility, specificity and accuracy of the trembling detector.

Index Value (%)
Sensitivity 95.83
Specificity 99.51
Accuracy 99.41

Table 4: Results considering several groups of ADL

Activity FP(%) FN(%)
Reading / Writing on the phone 0.00 3.39
Pick the phone up and speaking with it 0.00
Picking / leaving a bag with the phone 0.00
Getting to bed / getting up from it 1.57
Getting in/out of a car 0.61
Standing up / sitting down 0.46
Jogging 0.79
Jumping 0.90
Picking something from the floor / squatting 0.00
Going upstairs / downstairs 0.45
Walking 0.00

results of the detector (i.e. their numbers of FN). The Point-Biserial Corre-
lation analysis was applied as a particular case of the Pearson’s correlation
analysis, obtaining a Pearson correlation of 0.043 and a significance (sig.) (2-
tailed) value of 0.900. Thus, there is not any statistically significant correlation
about this.

In order to analyze the possible reasons of the FP, Table 4 presents the
percentages of FP distinguishing between several groups of ADL. Some groups
of ADL are always properly discarded such as (1) reading/ writing on the
phone, (2) answering and speaking with it, (3) picking the phone up and
speaking with it, (4) picking something from the floor/ squatting, and (5)
walking. Conversely, getting to bed/ getting up from it is the only group
of activities that obtains FP over 1%. The reason may be that getting to
a mattress with springs may produce movements similar to trembling. The
remaining activities obtain FP% in the (0% - 1%) interval. These can be either
related to (a) sitting in a soft surface (e.g. inside a car or in a sofa.) or (b) doing
a physical exercise (e.g. jogging, jumping and going upstairs/downstairs). The
former can be caused by the bouncing movements after sitting. The latter can
be caused by some fatigue. In fact, it is well-know that physical exercise can
cause some tremors in some cases [7]. This table only presents the percentage
of FN when reading and writing of the phone, since the system is aimed at
detecting tremors in these particular situations. Finally, it is worth mentioning
that this work also checked that the vibration of the smartphone was not
detected as a tremor with a 0.00% of FP. However, this datum was omitted in
the table for not strictly being an ADL.
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Fig. 7: Analysis of the battery consumption

5.2 Analysis of continuous data

Besides the experiments in a controlled environment, three volunteers collab-
orated in acquiring continuous data information. These volunteers were asked
to follow their daily routines using their smartphones while running the pre-
sented mobile application. Two volunteers did not have tremors, while the
other one simulated postural tremors. In total, the experimentation analyzes
118 h of the volunteers.

In particular the application monitored 88 h of the volunteers without
tremors. This time is distributed into 40 h working in indoors jobs, 30 h being
at home, 12 h outdoors, 2 h driving a car, and 4 h in a gym. In all this
time, the volunteers regularly did activities such as walking, sitting down,
lying, using several applications in the phone (Internet browsers, WhatsApp,
email, camera, notes, alarms), activities at home (cooking meals, brushing their
teeth, housekeeping), practicing some sports (running, spinning and lifting
dumbbells) and other ADL.

Moreover, the application analyzed 30 h of the volunteer with tremors. This
time is distributed into 8 h working in an indoors job, 18 h being at home,
3 h being outdoors and one hour driving a car. In all this time the volunteer
did regular activities, very similar as in the previous case except that no sport
activities were done.

The applications did not detect any tremor in all the time of the volun-
teers without tremors. Thus, the application worked properly, obtaining the
maximum specificity value in this continuous data experiment. In addition,
the application detected 34 tremors in the volunteer that actually had these.
Thus, the application also worked properly for warning a person with tremors
about these, and consequently the application also has a high sensitivity.

Finally, this work performs a brief analysis of the battery consumption of
the application. Figure 7 shows the consumption of the smartphone battery in
three experiments that only differ in the state of the presented application. In



20 Iván Garćıa-Magariño et al.

the control experiment, HTrembApp was not installed. In the second experi-
ment, HTrembApp was installed and run as a background service, completely
transparent to the user. In the last experiment, HTrembApp was running with
an open window. The remaining conditions were similar. In all the experiments,
the smartphone was connected to Internet with WiFi, and had the same apps
running: a web browser, a file browser, and the BatteryLog app. All the logs
of the battery were recorded with this last app. As one can observe in Figure
7, the battery consumption was similar in the three experiments. Hence, ac-
cording to these experiments, the repercussion of the HTrembApp execution
on battery consumption is not notorious.

6 Conclusions and future work

This paper presents a smartphone-based application that detects tremors of
their users during their ADL. To the best of the authors’ knowledge, this
application is the first one that distinguishes tremors from other movements
during ADL with a smartphone. This allows users to detect this symptom at
the earliest stages. User can even install the application before presenting the
symptom and it will run as a background service without any required explicit
testing action. Then, the application will notify them when they present the
symptom if this happens. The early detection of this symptom can be crucial
for the proper treatment of diseases such as PD and ET, as the literature
reveals. Other utilities of this application can be to continuously track the
evolution of certain diseases or to get feedback about the individual responses
to a therapy.

The performance of the tremor detector has been evaluated with some
healthy people and some people with tremors (real and simulated). The ex-
perimentation applied cross-validation with ten subsets to assess the ability
of the current approach for properly classifying unknown data. The detector
shows a high sensitivity for detecting tremors, and a high specificity when
analyzing ADL without tremors. These results were also corroborated by an-
alyzing continuous data of the daily routines of several volunteers.

The application is planned to be enhanced to emit reports based on the
number of detections during a week (or a particular number of days). This re-
port will include a final conclusion about whether the patient has the symptom
of tremors. Users will be explicitly notified only if the result of this report is
positive. This application will also be able to share these reports with a group
of caregivers. The future evaluation will determine if these reports properly
classify users.

Furthermore, the application will be extended to collect feedback of users
about the correct and wrong classifications. The information will be used to
automatically re-calibrate the detector for properly classifying similar situa-
tions. This feedback will be also automatically sent to the authors, so that the
current approach can be improved taking this feedback into account.
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