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Abstract: The aim of this paper is show the software ‘Sustainable Electronics’
(SE), developed in the University of Zaragoza as an environmental impact
assessment tool, specially developed to design components taking into account
the presence of critical and valuable raw materials consumption; simulating
environmental impact and measuring the overall raw material consumption,
taking into account material composition of the electronic components. It
considers raw material acquisition, manufacturing processes, transports and end
of life. This software allows us to easily update and use the datasets provided
by Life Cycle Inventory databases, such as, for example, Ecolnvent, developed
by the Swiss Centre for Life Cycle Inventories. The methodology has been
tested through the software in an electronic board of a touch control used in an
induction hob. As result, it has been obtained that there is a high consumption
of materials such as copper, tin or aluminium.
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This paper is a revised and expanded version of a paper entitled ‘Environmental
assessment tool to analyze the presence of critical and valuable raw materials’
presented at the 27th European Modeling & Simulation Symposium
(EMSS2015), Bergeggi, Italy, 21-23 September 2015.

1 Introduction

Nowadays, companies and the society are truthfully concern on reducing the
environmental impact of products and services. The concept of eco design began in the
1990s in order to produce more sustainable products and also with the purpose of
prevention in the design instead of correction afterwards. Focused on the design stage,
material selection takes an important role on the environmental performance, as it affects
the whole product life cycle, from raw material acquisition to the end of life of the
product.

In order to reduce the environmental impact of a product, methodologies and
techniques such as life cycle assessment (LCA) allow researchers to assess and reduce
the impacts to the ecological environment. LCA is a ‘cradle to grave’ method to analyse
the environmental impact of products or processes (Guinée, 2002; U.S. EPA, 20006);
allowing to evaluate the environmental impact throughout the life cycle by means of
ISO 14040 standards (International Standard Organization, 2006). This tool has been
used to model a wide range of products: from wind turbines (Martinez et al., 2009, 2015),
electronic boards (Elduque et al., 2014) or induction hobs (Pina et al., 2015) to compost
production (Leiva-Lazaro et al., 2014), food packaging (Fernandez et al., 2013) or wine
production (Jiménez et al., 2014).

Currently, in the electronic industry there is a large concern about the materials that
affect environmental impact and it is considered important to measure the environmental
impact of a component considering the influence of the material composition. The
composition of an electronic component must be analysed taking also into account the
presence of critical raw materials.

The criticality of a material is determined by means of the environmental risk,
economic importance and supply risk (European Commission, 2014). Firstly, the concept
of critical material emerged in 1939 by the US Administration. But when determining the
criticality of a material is necessary to consider that the demand of materials is volatile in
time.

With technological change, an increase in the demand of some materials in a specific
moment supposes the decrease of others, creating changes in risk indicators of these
materials (European Commission, 2010; Achzet and Helbig, 2013). For example, in
2010, the restrictions on the exportation of neodymium in China caused a global supply
chain crisis, as a result, prices increased by one order of magnitude (Sprecher et al.,
2015).

Nowadays the methodology used to determine the criticality of a material is based in
the combination of three main indicators (Chapman et al., 2013; Binnemans et al., 2013;
Graedel and Nuss, 2014):
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e cconomic vulnerability: the end of life recycling has to be taken into account and
also the economic benefit that these raw materials have at the sectors in which them
arise

e supply risk: this value arises from a combination of the stability in the production of
the material in a specific country, the substitutability of the material and end-of-life
recycling rates of the studied material

e ccological risk: this value is estimated taking into account similar criteria than supply
risk, raw material country concentration, the ability to be substituted and the
recyclability of the material.

As Peck points out (Peck et al., 2015), critical materials are ‘invisible’ as they are
normally alloyed with other materials. For this reason, researchers are using LCA and life
cycle sustainability assessment to systematically compile inventories of the consumption
of resources (Mancini et al., 2015; Sonnemann et al., 2015). Environmental impact
indicators for criticality are still currently being developed, as authors are developing
several perspectives (Dewulf et al., 2015; Gloser et al., 2015; Rorbech et al., 2014; Adibi
et al., 2014). The consumption of critical materials has been studied for products such as
solar photovoltaics (Goe and Gaustad, 2014), bulbs (Lim et al., 2013) or iron alloys (Nuss
etal., 2014).

Currently, there is a huge increase in the demand of electronic devices, due to their
cheap prices and high efficiency. This demand supposes the generation of huge quantities
of waste of electrical and electronic equipment (WEEE) and consequently, the European
Union has introduced several laws as the WEEE Directive (European Parliament, 2012)
with the purpose of reduce waste production, or energy-using products (EuP 2005/32/CE)
(European Parliament, 2005) and energy-related products laws (ErP2009/125/CE)
(European Parliament, 2009) to protect the environment by means of eco design.
Furthermore, European Union laws have focused on reducing the environmental impact,
by means of chemical control and restriction of hazardous substances (REACH
1907/2006) (European Parliament, 2006) (RoHS 2002/95/CE) (European Parliament,
2003).

Several authors have studied ways to reduce the overall consumption of critical
materials, focusing specially on recycling (Rademaker et al., 2013; Dhammika Bandara
et al., 2014; Eckelman et al., 2014), recovery (Gutierrez-Gutierrez et al., 2015; Funari
et al., 2014; Hennebel et al., 2015) and also on reducing the consumption of raw critical
materials in new products, such as permanent magnets (Mcguiness et al., 2015).

From an environmental point of view, the application of a suitable eco design
methodology is very interesting in the electrical and electronic industry, improving all
phases of the product's life cycle and analysing the influence of material composition on
the environmental impact (Goémez et al., 2015).

The aim of this paper is to show the software ‘Sustainable Electronics’, developed in
the University of Zaragoza as an environmental impact assessment tool, specially
designed to simulate environmental impact and to measure the overall raw material
consumption, allowing researchers to reduce the consumption of critical and valuable
materials.
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2 ‘Sustainable Electronics’ environmental assessment methodology

Nowadays, most LCA models are carried out with professional databases such as
Ecolnvent, which is one of the most used Life Cycle Inventory databases, developed by
Swiss Centre for Life Cycle Inventories. However, these databases provide generic data
that are not always adequate for specific products. Our methodology is based on a LCA
model, which uses customised datasets to simulate the environmental impact and also
quantify the critical materials consumption.

2.1 General approach

The main goal of the methodology, shown in Figure 1, is to calculate the critical material
consumption of an electrical or electronic component, simulating the environmental
impact. For this reason, it is necessary to know all material compositions of all the parts
in a component or product.

Once analysed and compared the critical material composition of the components and
also, of the products, the user decides the design of the component or the product
depending on the life cycle of the component.

This methodology allows the user to compare different designs of the same
component depending on the quantity of critical materials in the composition of the
component. The user could choose the component with less critical or valuable raw
material and also with less environmental impact.

Figure 1 Methodology diagram (see online version for colours)
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2.2 Life cycle stages

The software carries out environmental impact simulations by means of a LCA model
that takes into account all the critical and valuable materials consumed in the life cycle.
All the life cycle phases (Figure 2) of the component have to be taken into account, from
getting raw materials to the end of life of the component.

Figure 2 Life cycle stages (see online version for colours)

ml

$ Use Waste and
emissions
C"’a ('5 Distribution
"“iPlociucuon ~n [
& }\? L @ Recycled

[3 Raw Materal
({;§ Extraction E3Raw Material

@Energy

Raw material extraction, directly associated with material composition and also with the
presence of critical materials, is the beginning of the life cycle of a product, followed by
production process and distribution stage, where must be considered all energetic
consumption and raw materials. Finally, use phase and the end of life of the component,
where in the last one, it has been considered two treatments, recycling and land filling.
By mean of recycling treatment, the component is transformed into raw material after the
end uses.

There will be processes that have more critical materials consumption than others,
affecting also the environmental impact simulation results, so all of the processes must be
taken into account.

2.3 Environmental impact

The calculation methodology consists of an improved LCA adjusted to critical materials,
where the total amount of critical materials is obtained from the life cycle using the
critical materials in raw materials of the components, critical and strategic materials in
production and in distribution processes. Furthermore, the end of life phase is considered
in the calculations of critical materials (Figure 3).
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Figure 3  Critical material calculation (see online version for colours)
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The methodology considers different end of life scenarios to calculate the amount of
critical materials and the environmental impact.

Also, the LCA has been calculated with ReCiPe Endpoint methodology and IPCC
2013 method. The first one, ReCiPe has been developed as an endpoint attempt to align
the CML 2002 midpoint and Eco-indicator99 systems, while IPCC 2013 is an update of
the method that lists the climate change with a timeframe of 20, 100 and 500 years
(Goedkoop et al., 2013).

2.4 Results

The methodology can carry out the LCA model calculations, taking into account all the
critical and valuable materials consumed in the life cycle.

Results should be clear and concise, in order to help the user to understand them. So
that, the results would be:

e list of critical and strategic materials
e environmental impact simulation results
e summary of critical and strategic materials percentages.

In order to obtain appropriate results with this methodology, it is necessary to build a
customised database structure that helps calculations. As this methodology will be
applied to the electrical and electronic field, these are the components that should be
considered for the particularisation of the methodology in that field: materials, boards,
components, connections and processes.

3 ‘Sustainable Electronics’ software
This methodology has been implemented by means of a software tool, named

‘Sustainable Electronics’. This tool has the aim of calculate the critical materials content
and simulate the environmental impact of electrical and electronics devices.
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The structure of this software is divided in three main blocks, which are: new
project/load project, databases and also results (Figure 4), where the user could evaluate
quantity of critical materials and environmental impact. In the figure is shown the
program flow, which gives a general view about the program tools. From ‘new project’,
the user could named a project, while in block ‘load project’ it could be selected an
existing project. The block ‘database’ shows the completed database that is available in
the tool, it is allowed to create filters and manage the database.

Figure 4 Software structure (see online version for colours)
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This structure of the software is represented in the main screen of the program (Figure 5).

Figure 5 Main screen of the software (see online version for colours)
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3.1 Database (LCA model inputs)

Selecting ‘database’ button from the main screen, the software shows the complete
database (Figure 6). As mentioned before, navigating in this screen the user can filter and
also manage the database, creating, editing and deleting inventory data.
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Figure 6 Software database (see online version for colours)
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After customising the database, the software allows to select the required components, in
order to create the inventory (Figure 7). For an electronic board, the researcher can select
between components, boards, production processes and also connections and other
elements thanks to the previous work and research that have been performed in order to
create the database.

Figure 7 Database personalisation’s (see online version for colours)
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The most complex option in this screen is block ‘new/edit’ where the inventory could be
created, filling the required fields, and also editing those that already exist.
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3.2 Software development

‘Sustainable Electronics’ software allows researchers and engineers to analyse different
design alternatives in order to reduce the impact to the ecological environment and
diminish the use of critical raw materials, showing the overall quantity of critical and
valuable raw materials in each component, process, board or connection.

Users can take design decisions taking into account critical materials and according to
the environmental impact.

Figure 8 Project screen (see online version for colours)
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Figure 8 shows ‘new project’ and ‘load project’ options, where there are several tabs such
as project, components, processes, boards and connections and others, the user can
navigate through them creating its own project. The main screen is ‘project’, where it is
shown a summary of the project with data such as the name, the creation date or an image
of the project, among others.

All of these screens are prepared for easily adding data from the inventory to the
project and in each screen the inventory data of each type are available. Thereby, in
‘board’ screen appears inventory data regarding that field (Figure 9).

Figure 10 Critical materials screen (see online version for colours)
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Once data are added, in project screen the results could be calculated and viewed by
users. In panel ‘total data’ appears environmental impact and also, pressing ‘critical
materials’ button, critical materials window is shown (Figure 10), where the user can see
the quantities of critical and strategic materials.

These screen shows 43 critical and strategic materials, where 22, marked in bold
letters, are considered by the latest EU report as critical (European Commission 2014).

4 Software application

The main goal of the software application is to show the methodology and the software,
and at the same time, show the performance of the tool.

4.1 Touch control

As previously mentioned, this implementation will be carried out in the field of
electronics, specifically the tool is used to calculate critical materials content and
simulate the environmental impact in a touch control device, shown in Figure 11.
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Figure 11 Touch control (see online version for colours)
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It is an electronic control board, called ‘touch control’, used in induction hobs.

4.2 Touch control inventory

The inventory for this application consists on data related to electronics, such as
capacitors, resistors, diodes, transistors and so on, boards and processes as welding SMD
technology.

The entire inventory used in this software application, shown in Table 1, has been
obtained from the manufacturer of the touch control and desoldering the electronic
components. Also manufacturer’s datasheets of the components have been used in order
to consider the exact composition of the components of the studied case, the touch
control of an induction hob, following the same methodology shown in Gémez et al.
(2015).

Table 1 Summarised touch control inventory (see online version for colours)
Touch control induction hob

Name Material Units W;fgtht(éer
Small plastic parts Nylon 6 7 0.199
Foam cylinders Polyurethane, flexible foam 13 0.311
Ceramic capacitors SMD Capacitor, for surface-mounting 52 0.0053
SMDO0603 resistor Resistor, surface-mounted 79 0.0019
Diode BAV 99 Diode, glass-, for surface-mounting 6 0.009
Tantalum capacitor Capacitor, tantalum 1 0.237
Logical IC Integrated circuit, logic type 5 0.102
Memory IC Integrated circuit, memory type 2 0.057
Resonator Resonator CPM SMD 1 0.013
7-segment displays 7 Segment display 6 0.75
LEDS Light emitting diode 9 0.0015
PCB Printed wiring board 1 37.995
Welding SMD technology Mounting, surface mount technology 1 0.9355
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Once the inventory is completed, elements that are not in the database of the software
should be introduced in the tool from ‘new/edit database’ option (Figure 12).

Figure 12 Add or create data screen (see online version for colours)
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Weight of each component has to be introduced in the software every time that user
wants to introduce a new component in database (Figure 13).

Figure 13 Weight introductions (see online version for colours)
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After all the inventory of the project has been created, the next step is creating the
application case. For that, it is necessary to access to ‘new project’ (Figure 14), where
appears the main menu and it is compulsory named the project.

Browsing in tabs project, components, processes, boards, connections and others, data
from the inventory should be introduced. Depending on the type of data it will be added
in ones or in others (Figure 15).
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Figure 14 Project screen (see online version for colours)
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4.3  Touch control case results

Afterwards, once the project is completed, ‘project’ screen gives tool’s options for
calculating both critical materials and environmental impact.

‘Sustainable Electronics’ enables applying several ends of life scenarios, such as end
of life by composition or by weight (Figure 16). The results simulated by the software
show an environmental impact measurement in recipe of 642.9 mPt and of 6.19 Kg eq.
CO; in carbon footprint.
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Figure 16 End of life by composition scenario
End of Life Scenarios

" Without End of Life
 With End of Life by Weight Calculate

 With End of life by Compasition

Nombre Comentarios Recipe GwWP CRM1

» % Reciclado (null) (null} (null) 0.85000000

% Reciclado (null) (null} (nully 0,18400000

K I
Impact (mpt) KgCO2 eq

+ WO Eol [ 1.00533E+03 [ 6.29460E+00
= * 3.62391E+02 | ~1,00306E-01
Total \ 6.42939E+02 [ 6.19429E+00

In order to get more information regarding environmental impact or critical material
composition, the results can be exported in an Excel file by means of button ‘inventory
and graphics’.

The PWB creates most of the environmental impact, followed by the SMD
components. Although these components have a low overall weight, they generate a
significant amount of impact and critical material consumption.

Table 2 Overall material consumption

Material Consumption (g)
Copper 34.93585
Tin 0.981889
Aluminium 0.526671
Barium 0.218226
Tantalum 0.128728
Silver 0.089304
Nickel 0.086837
Iron 0.065517
Lead 0.025029
Manganese 0.012595
Molybdenum 0.01047
Gold 0.009901
Zinc 0.005100
Feldspar 0.004296
Limestone 0.001060
Silicon 0.000934
Palladium (PGM) 0.000666

Chromium 0.000192
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Table 2 and Figure 17 show the consumption of critical and strategic materials in the
studied touch control. The quantity of copper is the highest, mostly due to its use in the
printing wiring board, followed by tin, used in components soldering, and aluminium,
which is used mainly in the buzzer.

Figure 17 Overall material consumption (see online version for colours)

Silver;0,088304  _Nickel; 0,086837 __Iron; 0,065517
Tantalum; 0,128728 Lead: 0,025029

Barium; 0,218226

Aluminium; 0526671 Manganese; 0,012595
Molybdenum; 0,01047
Tin; 0881889
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Zinc; 0,0051
Feldspar; 0,004296
Limestone; 0,00106
Silicon; 0,000934
Palladium (PGM); 0,00066€
Chromium; 0,0001%2

Furthermore, there is an option in the software that allows highlighting materials with a
high consumption, either global consumption or in percentage. It can be really useful for
future regulations, also could be implemented to adapt the software to the legislation.

Table 3 and Figure 18 show critical and strategic material consumption of SMD
components. These are essential because, although SMD components have a low weight,
the total consumption of critical and strategic material and the environmental impact is
important.

Table 3 SMD components material consumption
Material Consumption (g)
Copper 1.427462
Aluminium 0.526671
Barium 0.218226
Tantalum 0.128728
Nickel 0.077808
Iron 0.065517

Tin 0.055989
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Table 3 SMD components material consumption (continued)
Material Consumption (g)
Silver 0.046820
Lead 0.025029
Manganese 0.012595
Molybdenum 0.010472
Gold 0.008097
Zinc 0.005100
Feldspar 0.004296
Limestone 0.001060
Silicon 0.000934
Palladium (PGM) 0.000666
Chromium 0.000192

Figure 18 SMD components material consumption (see online version for colours)
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The value of copper consumption is the highest in SMD components, followed by
aluminium, barium and in fourth place tantalum.

Once analysed the environmental impact and the overall critical and strategic material
consumption, several conclusions can be reached. For example, there are several
materials with economic importance, such as gold and silver. The first one, gold, with a
consumption of 0.0099 grams, was used mostly in integrated circuits and transistors
whereas silver, with 0.0089 grams, was used in soldering processes. On the other hand,
there are also materials that present supply risk, such as palladium and chromium, which
are used in SMD resistors.
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5 Conclusions

The software ‘Sustainable Electronics’, developed in Visual Basic .NET, allows the user
to quantify the critical and strategic materials associated with the design of a component;
also the user can simulate the environmental impact.

The user interface makes easy for the user to compare between different components
design, making material selection easier. It consists on an improved LCA adjusted to take
into account the composition and the presence of critical materials, which has been
calculated with ReCiPe and IPCC 2013 methodology.

Furthermore, the influence of material composition has been taken into account
analysing the presence of critical raw material and although it has been developed for
electrical and electronic components, it could be adapted to other sectors easily.

The simulation of the environmental impact of an induction hob delivers an
environmental impact result of 642.9 mPt in Recipe and 6.19 Kg eq. CO, in carbon
footprint. Furthermore, the consumption of copper, tin and aluminium supposes a
significant amount of environmental impact and material consumption.

This analysis can be used to generate new eco design proposals, changing critical
components by others with less critical material consumption. For example, the
substitution of SMD transistors for components without gold content, such as the ones
offered by several electronic components suppliers, would decrease the environmental
impact, and also reduce cost and supply risk.

All these results can be achieved thanks to the modelling and simulation of the
environmental impact carried out in this study. This approach will allow companies to
reduce supply risk, environmental impact and costs.
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