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Abstract

Finite difference methods for approximating fractional derivatives are
often analyzed by determining their order of consistency when applied to
smooth functions, but the relationship between this measure and their ac-
tual numerical performance is unclear. Thus in this paper several well-
known difference schemes are tested numerically on simple Riemann-Liou-
ville and Caputo boundary value problems posed on the interval [0, 1] to
determine their orders of convergence (in the discrete maximum norm) in
two unexceptional cases: (i) when the solution of the boundary-value prob-
lem is a polynomial (ii) when the data of the boundary value problem is
smooth. In many cases these tests reveal gaps between a method’s theoret-
ical order of consistency and its actual order of convergence. In particular,
numerical results show that the popular shifted Grinwald-Letnikov scheme
fails to converge for a Riemann-Liouville example with a polynomial solu-
tion p(x), and a rigorous proof is given that this scheme (and some other
schemes) cannot yield a convergent solution when p(0) # 0.
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1. Introduction

In this paper we are concerned with two-point boundary value problems
whose highest-order derivative is a fractional derivative of order &, with
1 < § < 2. That is, we consider the differential equation

Lu(z) := Dou(z) + b(z)u/ (z) + c(z)u(z) = f(z) for z e (0,1), (1.1)

together with some appropriate boundary conditions at x = 0 and = =
1 that we will specify later. Here D? is a fractional derivative of either
Riemann-Liouville or Caputo type; these terms are defined below.

For n = 1,2,..., denote by A"[0, 1] the set of functions g € C"~1[0, 1]
with g(®=1) absolutely continuous on [0,1], i.e., g exists almost everywhere
in [0,1] and

x
gV (z) = g™ 1(0) +/ g™M(t)dt for 0<z<1.
t=0
Clearly, C™[0,1] C A™[0,1].

For r € R with 7 > 0, and all g in the Lebesgue space L;]0, 1], define

the Riemann-Liouville fractional integral operator of order r by

1 xX

(J"g)(z) = [/ (z —t)"Lg(t) dt] for 0 <z <1, (1.2)
L'(r) Ji=o

Recall that 1 < § < 2. Assume that g € A2%[0,1]. Then the Riemann-

Liouville fractional derivative D%L is defined by

2
D%y gz) = (;i) (J?70g)(x) for 0 <z <1, (1.3)

and the Caputo fractional derivative DY is defined [1, Definition 3.2] in
terms of Df{ 1 by
Dgg = Diylg - T1g; 0]], (1.4)
where T1[g; 0] denotes the Taylor polynomial of degree 1 of the function g
expanded around x = 0. By [1, Theorem 3.1] one also has the equivalent
formulation
) 1 ¢ 1= n
Dbola) = 155 /t_o(x D0 dt for 0<z<1.  (L5)
In recent decades, a wide range of physical processes — in, e.g., physics,
finance, biology and chemistry — have been modelled using fractional dif-
ferential equations, and consequently the investigation of solutions of these
equations has received considerable attention (see for example [6] and its
references). Many papers have considered finite difference methods for (1.1)
and for its time-dependent analogue where u = u(z,t) and a time deriv-
ative of u (of integer or fractional order) also appears in the differential
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equation. In almost all of this published work, the accuracy of the nu-
merical method has been judged by performing Taylor expansions (e.g.,
[11, 12, 14]) or Fourier analysis (e.g., [7, 16, 17]) to estimate the trunca-
tion error, while assuming that the derivatives of u that are needed in this
analysis are bounded. This provides useful information about the prop-
erties of these methods, but it leaves open the question of how accurate
these methods are when they are applied to problems whose solutions u
are less well behaved—and as we shall see shortly, this lack of smoothness
in w is common when the right-hand side f is smooth. Our mission in
the present paper is to investigate numerically and theoretically how well
various numerical methods in the research literature perform when applied
to solutions of (1.1) that are of two types:

(i) well-behaved, i.e., with bounded derivatives;
(ii) less well-behaved, i.e., typical of solutions of (1.1) when the func-
tion f is smooth, which is a reasonable assumption in practice.

Thus our results will extend the results of the earlier papers by showing
how accurate their methods are when applied to more difficult (but realistic)
problems.

Our paper is structured as follows. In Section 2 we describe the two
examples that will be used to test the orders of convergence (in the dis-
crete maximum norm) of the finite difference schemes, and introduce some
terminology common to all these methods. Section 3 presents numeri-
cal results when the L2 scheme [8] and the spline-based scheme [12] are
used to approximate an example with a Caputo fractional derivative. The
Riemann-Liouville fractional derivative is investigated numerically in Sec-
tion 4, where we consider the classical L2 scheme [8], some schemes based
on the shifted and weighted Griinwald-Letnikov formula [7, 16, 17], and a
spline-based scheme of [14]. Furthermore, Section 4.5 provides a rigorous
proof that when the solution of the boundary value problem is a polyno-
mial p(z), the well-known shifted Griinwald-Letnikov scheme [7] fails to
converge if p(0) # 0. The schemes of [14, 16] are similarly deficient.

2. Our test problems

Throughout the paper we shall use as test problems the following two
examples, which correspond to the two types of problem described in the
previous section. In both we simplify (1.1) by taking b = ¢ = 0 in order
to focus attention on the effects of different discretizations of the fractional
derivative term in (1.1). Each example comprises a test problem for D%L
and a test problem for Dg.
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EXAMPLE 2.1. (Smooth solution u, nonsmooth f) Consider the differ-
ential equation
Dou(zx) = f(z) for z € (0,1), (2.1)
with Dirichlet boundary conditions «(0) = 1, u(1) = —1, where the func-
tion f is chosen such that u(r) = 1+3x—7x2+42% —2x% is the exact solution
of this boundary value problem. Here we remind the reader that D? can
be the Riemann-Liouville derivative D% ;, or the Caputo derivative Dg.
When D° = D9, then by [1, Example 2.4] we have
0 32170 14220 242379 48x49
f(z) = + - + - .
1-0) T'(2—0) T(3-0) T'(4-—0) T(5-0)
While u € C*°[0, 1], one has f € C*°(0,1] but f ¢ C|0,1].
When D° = D¢, then by [1, Appendix B] we have
142270 242%7°  48z47°
fa) = - + - .
ra—-¢) TrM@4d-96) I((B-9)
Now f € C*(0,1] N C[0,1] but f ¢ C*0,1].

EXAMPLE 2.2. (Smooth f, nonsmooth solution u) Consider the differ-
ential equation

Dou(z) =1 for z € (0,1), (2.2)
with Dirichlet boundary conditions u(0) = 0, u(l) = 2. Thus we have
chosen f(z) = 1.

When D? = D9, then from [1, p.54] it follows that
0

x 5—1
U =g T [2 (1 +5)] v
While f € C*[0,1], one has u € C[0,1] N C*(0,1] but u ¢ C1[0,1].

Note here that the general solution of the differential equation D}S{ LU=
1 includes a term kz°~2 (for some constant k), which implies that the only
possible value for the Dirichlet condition at x = 0 is the homogeneous
choice u(0) = 0 to force k = 0 (otherwise u(0) would not be defined). Some
authors deal with this troublesome term in a different way, by specifying
the value of lim,_ 22 %u(z), but the physical interpretation of this type
of boundary condition is contentious so we do not consider this possibility

here.

When D? = D¢, then from [1, p.55] it follows that

20

1
U = Fig ey T [2‘r<1+6>] ”
Thus v € C[0,1] N C>(0,1] but u ¢ C2[0,1].



FORMAL CONSISTENCY VERSUS ACTUAL ... 423

REMARK 2.1. (Other boundary conditions) The papers [3, 4, 15] con-
sider the problem (1.1) with D? = D¢, but with a Robin boundary condition
at x = 0. This boundary condition is needed to ensure that the boundary
value problem satisfies a maximum principle — a useful property that facili-
tates the analysis in these papers. We do not consider this type of boundary
condition here because its discretization would introduce a further element
of variability into our investigations, thereby weakening our focus on the
behaviour of different discretizations of the fractional derivative Dg.

The solution v of the problem considered in the three papers mentioned
in Remark 2.1 is analyzed thoroughly in [15] and it is shown that v €
C'0,1]NC°(0, 1] but in general v ¢ C?[0,1]. Thus the lack of smoothness
in the solution to Dgu = 1 that we observed in Example 2.2 carries over
to the general case of (1.1).

2.1. Formal order of consistency, mesh, tables. In the sections that
follow, each difference scheme has a “formal order of consistency”. By
this we mean the order of consistency that the scheme attains when its
truncation error is estimated using Taylor expansions under the assumption
that the derivatives in these expansions are bounded by some fixed constant
on all of [0, 1], as is frequently done in the literature.

We use the uniform mesh z; = jh for j = 0,1,..., N where N is a
positive integer and h := 1/N. In all our difference schemes the right-hand
side f of the differential equation is approximated at x; by f(x;).

Write the computed solution of each scheme as {u; : j =0,...,N}.
Each table of numerical results in the following sections displays the max-
imum nodal error

o
ey = max [u(z;) — ul,
of a particular scheme applied to an example from Section 2 for a range of
values of N and §. The orders of convergence p‘?\, are then computed in the

standard way:
(&)
= logy .
e

We shall see that in some cases the rate of convergence attained by a scheme
depends on the value of 6.

3. Caputo derivative: numerical results

This section examines the numerical behaviour of two well-known dif-
ference schemes that are used to solve Examples 2.1 and 2.2 with D = Dg.
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3.1. The L2 scheme. This scheme is described in [5] and [13], and it was
also used in [15]. For a proof that it is formally first-order consistent, see

[11].
The L2 scheme approximates the Caputo fractional derivative by
i—1
1 J
d ~
Deu(zj) = TG -0 kZO dj—k (W2 — 2upi1 + uk) (3.1)
where we set
d, = 7“_2[5 —(r— 1)3:5 for all integers r (3.2)
and
s ifs>0,
Sy = .
0 ifs<0.

Note that d,, = 0 for » < 0. The numerical results in Tables 1 and 2 show
that when it is applied to Examples 2.1 and 2.2 with D° = Dg, one obtains
first-order convergence in both cases, i.e., the order of convergence agrees
with the formal order of consistency.

y [ N=32 | N=64 | N=128 | N=256 | N=512 | N=1024 |
§=1.1] 6.45(-3) [ 3.12(-3) | 1.53(-3) | 7.60(-4) | 3.78(-4) | 1.89(-4)
1.045 | 1.025 | 1.014 | 1.008 | 1.004
5 =131 6.68(-3) | 3.22(-3) | 1.57(-3) | 7.73(-4) | 3.82(-4) | 1.90(-4)
1.050 | 1.036 | 1.024 | 1.015 | 1.010
5 =15 6.78(-3) | 3.31(-3) | 1.61(-3) | 7.92(-4) | 3.90(-4) | 1.93(-4)
1.035 | 1.035 | 1.028 | 1.021 | 1.015
5 =1.76.10(-3) | 3.11(-3) | 1.56(-3) | 7.78(-4) | 3.86(-4) | 1.92(-4)
0972 | 0998 | 1.006 | 1.008 | 1.007
5 =19 3.08(-3) | L.74(-3) | 9.35(-4) | 4.91(-4) | 2.55(-4) | 1.32(-4)
0.824 | 0895 | 0.929 | 0945 | 0.955

TABLE 1. Example 2.1 with D® = D‘sC: L2 scheme

3.2. Spline-based scheme [12]. This scheme appears in [13]; its source
is [12], where it is shown in [12, Theorem 1] to be formally second-order
consistent if u € C4[0, 1]. Now the Caputo fractional derivative is approxi-
mated by

1
D%’LL(:UJ) ~ m {aj0(2u0 — bug + 4ug — U3)

J
+ Z ajk (uk+1 — 2up + uk_l)} , (3.3)
k=1
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y [ N=32 | N=64 | N=128 | N=256 | N=512 | N=1024 |
§=1.11223(-2) [ 1.13(-2) | 5.68(-3) | 2.85(-3) | 1.43(-3) | 7.15(-4)
0981 | 0.990 | 0.995 | 0.998 | 0.999
5 =13 1.36(-2) | 7.02(-3) | 3.56(-3) | 1.80(-3) | 9.03(-4) | 4.53(-4)
0.959 | 0.978 | 0988 | 0.993 | 0.996
§=15 | 7.56(-3) | 3.99(-3) | 2.06(-3) | 1.05(-3) | 5.35(-4) | 2.70(-4)
0922 | 0951 | 0969 | 0.980 | 0.986
5 =1.7 || 3.04(-3) | 1.67(-3) | 8.97(-4) | 4.71(-4) | 2.45(-4) | 1.26(-4)
0.858 | 0.901 | 0.928 | 0.947 | 0.959
§=1.9 | 3.74(-4) | 2.22(-4) | 1.27(-4) | 7.01(-5) | 3.82(-5) | 2.05(-5)
0.752 | 0.812 | 0.852 | 0.878 | 0.898

TABLE 2. Example 2.2 with D% = D2,: L2 scheme

where
(j—1)379 — j279(j — 34 9) if k=0,

ajr=R (G —k+13 0 -2 —k)B3 0+ (G —k-13% if1<k<j-—1,
1 if k= j.

In Example 2.1 with D% = Dg, this scheme attains second-order con-
vergence, as exhibited in Table 3. But in Example 2.2 with D% = Dg, the
scheme is only first-order convergent — see Table 4. Thus our numerical
results seem to indicate that the order of convergence of the scheme (3.3)
is reduced below the order of consistency if the solution of the boundary
value problem is nonsmooth.

y | N=32 [ N=64 [ N=128 [ N=256 | N=512 | N=1024 |
6 =1.119.75(-4) | 2.44(-4) | 6.10(-5) | 1.53(-5) | 3.81(-6) | 9.54(-7)
1.998 | 1.999 | 2.000 | 2.000 | 2.000
6 =13 9.70(-4) | 2.43(-4) | 6.10(-5) | 1.52(-5) | 3.81(-6) | 9.53(-7)
1994 | 1.998 | 1.999 | 2.000 | 2.000
5 =15 | 9.50(-4) | 2.40(-4) | 6.04(-5) | 1.52(-5) | 3.80(-6) | 9.51(-7)
1984 | 1.992 | 1.995 | 1.997 | 1.998
6 =1.7 | 8.84(-4) | 2.27(-4) | 5.77(-5) | 1.46(-5) | 3.68(-6) | 9.27(-7)
1961 | 1.976 | 1.983 | 1.987 | 1.990
6=1.9 | 6.87(-4) | 1.79(-4) | 4.60(-5) | 1.18(-5) | 3.00(-6) | 7.65(-7)
1.945 | 1.958 | 1.966 | 1.970 | 1.974

TABLE 3. Example 2.1 with D° = D¢.: spline-based scheme [12]
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N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
5 =1.1] 5.36(-3) | 2.54(-3) | 1.20(-3) | 5.62(-4) | 2.82(-4) | 1.48(-4)
1.077 | 1.087 | 1.089 | 0.997 | 0.928
5 =1.3[2.61(-3) | 1.44(-3) | 7.83(-4) | 4.18(-4) | 2.20(-4) | 1.15(-4)
0.859 | 0.881 | 0.905 | 0925 | 0.941
§ =15 1.40(-3) | 7.78(-4) | 4.21(-4) | 2.22(-4) | 1.16(-4) | 5.95(-5)
0.845 | 0.888 | 0.920 | 0943 | 0.959
5= 1.7 || 4.79(-4) | 2.70(-4) | 1.46(-4) | 7.71(-5) | 3.99(-5) | 2.04(-5)
0.827 | 0.885 | 0.924 | 0951 | 0.968
5 =1.9 | 387(-5) | 247(-5) | 1.42(-5) | 7.69(-6) | 4.03(-6) | 2.07(-6)
0.646 | 0.800 | 0.883 | 0.931 | 0.960

TABLE 4. Example 2.2 with D° = DZ,: spline-based scheme [12]

4. Riemann-Liouville derivative: numerical results

Now we move on to examine the numerical behaviour of several well-
known difference schemes that are used to solve Examples 2.1 and 2.2 with
D® = D5RL. These experiments will show a more widespread discrepancy
between the formal consistency order and the order of convergence than
was the case for the Caputo boundary value problems of Section 3.

In particular, our experiments will show that the solution of the well-
known shifted Griinwald-Letnikov scheme does not converge to the solution
of Example 2.1 as the mesh diameter goes to zero; later, in Section 4.5, we
give a rigorous proof that this scheme cannot attain any positive order of
convergence for this problem.

4.1. The L2 scheme. The L2 scheme [8, p.140] discretization of D%, u(z) =
fis

LS (e — 2 ) 4+ 20 =)

(us — uo)(wj — wo)'°

(w1 — 20)I'(2 - 9)
where the coefficients d; are defined in (3.2).

This scheme is motivated by the following well-known relationship be-
tween the Riemann-Liouville and Caputo derivatives [1, Lemma 3.4]:

+ = f(z;) for j=1,2,...,N—1, (4.1)

U(O)l'ié + ul(o)‘xl*é + Dgu(aj) (42)

Dippu(x) = T(1-6)  T(2-0)




FORMAL CONSISTENCY VERSUS ACTUAL ... 427

Now one applies the L2 scheme of Section 3.1 to discretize the Caputo
derivative and a simple forward difference to discretize u/(0). As both of
these discretizations are formally first-order consistent, the L2 scheme (4.1)
is also formally first-order consistent.

N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
§=1.1] 1.15(-1) | 5.88(-2) | 2.95(-2) | 1.45(-2) | 7.37(-3) | 3.67(-3)
0.976 | 0.993 | 1.000 | 1.004 | 1.006
5 =131 6.84(-2) | 3.42(-2) | 1.69(-2) | 8.31(-3) | 4.09(-3) | 2.01(-3)
1.001 | 1.017 | 1.023 | 1.024 | 1.022
5 =15 3.72(-2) | 1.84(-2) | 9.01(-3) | 4.42(-3) | 2.18(-3) | 1.08(-3)
1.021 | 1.028 | 1.026 | 1.021 | 1.016
5 =1.7 [ 1.76(-2) | 8.72(-3) | 4.36(-3) | 2.19(-3) | 1.10(-3) | 5.54(-4)
1.012 | 1.001 | 0.994 | 0.991 | 0.990
5§ =19 5.21(-3) | 2.59(-3) | 1.32(-3) | 6.82(-4) | 3.54(-4) | 1.84(-4)
1.010 | 0970 | 0.953 | 0.947 | 0.947

TABLE 5. Example 2.1 with D° = D%, : scheme L2

Tables 5 and 6 display the numerical results when the L2 scheme is used
to solve Examples 2.1 and 2.2, respectively. These results show that the L2
scheme is first-order convergent if the solution is smooth but a reduction
in the order of convergence is observed if the solution is not smooth—in
fact when § is near 1 in Table 6, the scheme fails to converge. Thus the
behaviour of the L2 scheme for Riemann-Liouville derivatives is not the
same as its behaviour for Caputo derivatives.

N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
5 =111 7.10(-2) | 8.51(-2) | 9.72(-2) | 1.08(-1) | 1.16(-1) | 1.23(-1)
0261 | -0.192 | -0.149 | -0.112 | -0.082
5 =131 6.88(-2) | 7.29(-2) | 7.24(-2) | 6.88(-2) | 6.32(-2) | 5.67(-2)
-0.084 | 0.009 | 0.075 | 0.122 | 0.157
5 =15 3.20(-2) | 3.05(-2) | 2.68(-2) | 2.23(-2) | 1.79(-2) | 1.40(-2)
0.069 | 0.185 | 0.264 | 0.319 | 0.360
5 =1.7 || 8.91(-3) | 8.14(-3) | 6.70(-3) | 5.14(-3) | 3.75(-3) | 2.65(-3)
0130 | 0.282 | 0.383 | 0453 | 0.504
5§ =19 1.83(-3) | 1.01(-3) | 5.48(-4) | 3.43(-4) | 2.51(-4) | 1.73(-4)
0.857 | 0.882 | 0.673 | 0.453 | 0.535

TABLE 6. Example 2.2 with D? = D%L: scheme L2
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4.2. Shifted Griinwald-Letnikov scheme. This scheme is a variant of
an earlier scheme proposed independently by Griinwald and Letnikov: see [8,
p.136] and [10]. Schemes based on the Griinwald and Letnikov formula with
a shifting parameter were also considered, for example, in [2] and [8]. The
variant that we discuss is the best known; its popularity grew after it was
recommended in [7].

The shifted Griinwald-Letnikov approximation of D% pu(x) = fis

j+1
5N 1 s ,
D¢y suj = 78 E w,(g )uj,kﬂ = f(z;) for j=1,2,...,N—1, (4.3)
k=0

where

o) 5\  T(k—9)
o= () = T

(9)

To compute the coefficients w;’ one can use the recurrence relation

w =1, w® = (1 - 521) w | for k=1,2,...,j+1.  (44)

In [7, Theorem 2.7] it is proved that the approximation (4.3) is for-
mally first-order consistent provided that the extension of the domain of
definition of u to {z : < 0} by the function zero yields a function that
lies in C9*!(—o0, 1], so that [7, Theorem 2.4] can be invoked. A necessary
condition for this extension requirement is that 0 = u(0) = «/(0) = v”(0),
which is not satisfied by either of our examples.

An alternative argument in [13, Proposition 4], based on [10, Section
7.4], shows that for the polynomial solution of Example 2.1, the shifted
Griinwald-Letnikov approximation is formally first-order consistent.

N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
§=1.1] 7.71(-2) | 3.91(-2) | 6.55(-2) | 7.84(-2) | 8.46(-2) | 8.76(-2)
0.980 | -0.743 | -0.259 | -0.111 | -0.051
§ =13 1.53(-1) | 1.82(-1) | 1.96(-1) | 2.03(-1) | 2.06(-1) | 2.07(-1)
0251 | -0.107 | -0.048 | -0.022 | -0.010
5 =15 2.06(-1) | 2.22(-1) | 2.30(-1) | 2.33(-1) | 2.35(-1) | 2.36(-1)
-0.107 | -0.050 | -0.023 | -0.011 | -0.005
§=1.7 ] 1.66(-1) | 1.73(-1) | 1.77(-1) | 1.79(-1) | 1.80(-1) | 1.80(-1)
-0.063 | -0.031 | -0.015 | -0.007 | -0.004
5§ =191 6.84(-2) | 7.28(-2) | 7.51(-2) | 7.66(-2) | 7.74(-2) | 7.78(-2)
-0.090 | -0.046 | -0.028 | -0.014 | -0.007

TABLE 7. Example 2.1 with D® = D%, : shifted G-L scheme
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The numerical results in Table 7 for Example 2.1 seem to indicate that
for all values of §, the shifted Griinwald-Letnikov scheme fails to converge
as N — oo. This is indeed what happens — we shall prove rigorously in
Section 4.5 that for polynomial solutions (such as Example 2.1) this scheme
fails to converge when u(0) # 0.

N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
5 =1.1] 350(-2) | 3.31(-2) | 3.11(-2) | 2.91(-2) | 2.72(-2) | 2.54(-2)
0.082 | 0.091 | 0.096 | 0.098 | 0.099
5 =1.34.03(-2) | 3.32(-2) | 2.71(-2) | 2.21(-2) | 1.80(-2) | 1.46(-2)
0.280 | 0.290 | 0.295 | 0.298 | 0.299
5 =15 243(-2) | 1.75(-2) | 1.24(-2) | 8.84(-3) | 6.26(-3) | 4.43(-3)
0478 | 0.489 | 0.495 | 0497 | 0.499
5 =17 1.05(-2) | 6.61(-3) | 4.10(-3) | 2.54(-3) | 1.56(-3) | 9.64(-4)
0.675 | 0.688 | 0.694 | 0.697 | 0.698
5 =19 2.36(-3) | 1.29(-3) | 7.02(-4) | 3.79(-4) | 2.04(-4) | 1.10(-4)
0.873 | 0.880 | 0.888 | 0.894 | 0.897

TABLE 8. Example 2.2 with D® = D%, shifted G-L scheme

The solution of Example 2.2 is less smooth than the solution of Exam-
ple 2.1 but it does have the helpful property u(0) = 0. Numerical results for
this example are displayed in Table 8 and they indicate that the method
s O(h%~1) accurate. That is, the order of convergence of the method is
reduced and the degree of reduction depends on the order of the Riemann-
Liouville fractional derivative.

4.3. Weighted and shifted Griinwald-Letnikov scheme [16]. The
scheme was introduced in [16] and is reproduced in [17]. The approxi-
mation used is

Jjt+p
6 —2q 2p— 0
Diyu(z;) ~ s Z [ )“‘f(kfp) + muj—(k—q)

(6)

where the coefﬁ(:lents w,’ are defined in (4.4) and p,q are integers with
p > ¢q. In [16] the authors recommend (p,q) = (1,0) and (p,q) = (1, —1).

In [16, Remark 2.6] it is asserted that both these schemes are formally
second-order consistent under the assumption «(0) = 0; the function u is
extended by zero on (—o0,0) and [16, Theorem 2.4] is then invoked — but
the extension is not smooth at z = 0 so the hypotheses of [16, Theorem
2.4] are not satisfied.

We shall present numerical results only for (p,q) = (1,0) as the results
for (p,q) = (1, —1) are broadly similar. Tables 9 and 10 are for Examples 2.1
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and 2.2 respectively, with D® = D‘;L. In Example 2.1 the scheme fails to
converge for all values of &, while for Example 2.2 the scheme is O(h%~1)
convergent. These are the same orders of convergence that we observed for
the shifted Griinwald-Letnikov scheme (4.3).

y | N=32 | N=64 [ N=128 | N=256 | N=512 | N=1024 |
6=1.1[837(-2) [ 8.29(-2) [ 8.27(-2) | 8.27(-2) | 8.27(-2) | 8.27(-2)
0.014 | 0.003 | 0.001 | -0.000 | -0.000
6 =13 [| 1.62(-1) | 1.60(-1) | 1.60(-1) | 1.60(-1) | 1.60(-1) | 1.60(-1)
0.016 | 0.005 | 0.002 | 0.001 | 0.000
6 =15 [ 1.53(-1) | 1.51(-1) [ 1.50(-1) | 1.50(-1) | 1.49(-1) | 1.49(-1)
0.024 | 0.009 | 0.004 | 0.002 | 0.001
6 =17 9.34(-2) | 9.11(-2) | 9.00(-2) | 8.95(-2) | 8.93(-2) | 8.91(-2)
0.041 | 0.018 | 0.008 | 0.004 | 0.002
6 =19 [ 3.54(-2) | 3.68(-2) | 3.79(-2) | 3.86(-2) | 3.90(-2) | 3.93(-2)
-0.058 | -0.041 | -0.026 | -0.015 | -0.009

TABLE 9. Example 2.1 with D? = D%, : scheme of [16, 17]
with (p,¢) = (1,0)

y [ N=32 | N=64 [ N=128 [ N=256 | N=512 | N=1024 |
6 =1.115.39(-1) [ 5.02(-1) [ 4.69(-1) | 4.38(-1) | 4.08(-1) [ 3.81(-1)
0.102 | 0.099 | 0.100 | 0.100 | 0.100
6 =13 [| 1.53(-1) | 1.25(-1) | 1.01(-1) | 8.24(-2) | 6.69(-2) | 5.44(-2)
0.295 | 0.298 | 0.299 | 0.299 | 0.300
6 =1.5 1 3.96(-2) | 2.82(-2) | 2.00(-2) | 1.41(-2) | 1.00(-2) | 7.08(-3)
0491 | 0.496 | 0498 | 0.499 | 0.499
6 =1.7 [| 8.08(-3) | 5.03(-3) | 3.11(-3) | 1.92(-3) | 1.18(-3) | 7.29(-4)
0.686 | 0.693 | 0.696 | 0.698 | 0.699
6 =191 7.66(-4) | 4.18(-4) | 2.26(-4) | 1.22(-4) | 6.54(-5) | 3.51(-5)
0.873 | 0.887 | 0.893 | 0.897 | 0.898

TaBLE 10. Example 2.2 with D = D5RL: scheme of [16,
17] with (p,q) = (1,0)

4.4. Spline-based scheme of [14]. In [14] the authors approximate D%,
by the spline-based approximation ‘
1 j+1
) ~ .
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where
Qjk = aj_1k — 205, + ajy1k, for kK <j—1,
qjj = —2aj; + aj+1,5,
9j.5+1 = Qj+1,5+15
and

(G—k+13 90 —20 k)P0 +(—k—-139 i k<j—1,
ajp =
1 if k= .

This approximation was designed originally for a Riemann-Liouville
derivative defined on (—o0, 1], viz.,

Dip, —oog(@) = (;;)2 [r(zl—a) /tm m(x—t)“%(t) dt

for —oo <z < 1. In [14, Theorem 2] it is proved that the approximation is
formally second-order consistent if u € C*(R) with u®(z) = 0 for z < 0.
We examine here how this approximation performs in the bounded domain
[0, 1].

Table 11 contains the results obtained when this scheme is used to solve
Example 2.1. For every value of §, there is no convergence as N — oo.
Numerical results for Example 2.2 are presented in Table 12; similarly to
the shifted Griinwald-Letnikov scheme, this spline-based scheme has order
of convergence § — 1.

N=32 | N=64 | N=128 | N=256 | N=512 | N=1024
§=1.119.22(-1) | 9.20(-1) | 9.21(-1) | 9.22(-1) | 9.22(-1) | 9.22(-1)
0.003 | -0.002 | -0.001 | -0.000 | -0.000
§=1.3]832(-1) | 8.40(-1) | 8.43(-1) | 8.44(-1) | 8.45(-1) | 8.45(-1)
-0.012 | -0.005 | -0.002 | -0.001 | -0.001
5 =15 829(-1) | 8.40(-1) | 8.44(-1) | 8.47(-1) | 8.48(-1) | 8.48(-1)
-0.018 | -0.008 | -0.004 | -0.002 | -0.001
5 =17 8.76(-1) | 8.89(-1) | 8.95(-1) | 8.98(-1) | 9.00(-1) | 9.01(-1)
-0.022 | -0.010 | -0.005 | -0.002 | -0.001
5§ =19 9.40(-1) | 9.55(-1) | 9.63(-1) | 9.67(-1) | 9.69(-1) | 9.69(-1)
-0.023 | -0.011 | -0.006 | -0.003 | -0.001

TaBLE 11. Example 2.1 with D° = D%, : spline-based scheme [14]
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N=32 N=64 | N=128 | N=256 | N=512 | N=1024

5 =1.1]547(-1) | 5.08(-1) | 4.75(-1) | 4.43(-1) | 4.13(-1) | 3.86(-1)
0.106 0.099 0.100 0.100 0.100

5 =13 1.55(-1) | 1.26(-1) | 1.03(-1) | 8.36(-2) | 6.79(-2) | 5.52(-2)
0.296 0.298 0.299 0.299 0.300

5 =15 3.88(-2) [ 2.76(-2) | 1.96(-2) | 1.39(-2) | 9.81(-3) | 6.94(-3)
0.491 0.496 0.498 0.499 0.499

5=1.7 | 7.01(-3) | 4.37(-3) | 2.71(-3) | 1.67(-3) | 1.03(-3) | 6.35(-4)
0.682 0.691 0.696 0.698 0.699

5=1.9 | 3.84(-4) | 2.14(-4) | 1.17(-4) | 6.33(-5) | 3.41(-5) | 1.83(-5)
0.842 0.871 0.886 0.893 0.896

TABLE 12. Example 2.2 with D° = D%, : spline-based scheme [14]

4.5. Proof of failure of shifted G-L scheme for Example 2.1. In
this section we prove rigorously that the shifted Griinwald-Letnikov scheme
will fail to converge for a class of examples with polynomial solutions that
includes Example 2.1.

In this section the solution of the boundary value problem is denoted
by p to emphasize that here we discuss only polynomial solutions. To
discretize the boundary value problem D%, p = f where p(0) and p(1) are
given, we use the shifted Grinwald-Letnikov finite difference scheme

Dgy spj=f; for j=1,2,....N—1,
po = p(0), py = p(1), (4.6b)

where Dgg’ < is the approximation defined in (4.3). Denote by A% L. the
matrix associated with the scheme (4.6):

-1 0--- .. 0
wé&) wgé) w(()&)
) 1) ) )
i o w® Wl W
P &
W) ol Wl o
0 - 0 -1

Thus the approximation p := (po,p1, .. .,pn)’ defined by the scheme (4.6)

is computed by solving the linear system

Ag‘L,SﬁN =f, (4.7)
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with f = (—p(0), f1,..., fn_1,—p(1))T. Here we have multiplied the bound-
ary conditions by —1 to give all entries along the main diagonal of A‘sG LS
the same sign.

For any mesh function w let ||w||oc,q = max{|w;| : ¢ = 0,1,...,N}
denote the discrete maximum norm of w. The notation

p—pn = (0,p(x1) — p1,-...p(xN-1) — pn-1,0)"

is used to denote the vector of nodal errors.

We now show that when p(0) # 0, the shifted Griinwald-Letnikov
scheme cannot yield a positive order of convergence.

THEOREM 4.1. Assume that the solution of the Dirichlet boundary
value problem

D%y p(x) = f(z) for z € (0,1), p(0), p(1) given (4.8)
is the polynomial function p(xz) = Elm:o Cmx™ with | > 0 and ¢q # 0.

There do NOT exist positive constants C' and «, which are independent of
the mesh, such that the computed solution py of (4.6) satisfies

[P = Pilloc,a < CR™. (4.9)

P r o o f. Suppose the result is false, i.e., suppose that (4.9) is true.

For j = 1,2,...,N — 1, the sum of all the elements of the j** row of
the difference scheme matrix A‘SGLS is, from [10, (2.8) and (2.9)] and [9,
(1.2.8)],

j+1 j+1 .
— 60 _5 k—6—1 _s(i+1=9
) = () = ()

I'j—6+2)
F(1-0)r@G+2)
Consider the equation in the difference scheme that corresponds to j = 1
here; it states that

wpn(0) + w'py (h) + wlpn (2h) = F(B). (4.10)

—p 0

But
pn(0) =co, pn(h) =co+O(h)+O(h?), pn(2h) =co+ O(h) + O(h%)
by the smoothness of p and the assumed bound (4.9), while

Fny = 4 o
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like the calculation of f in Example 2.1. Substituting into (4.10) then
taking only the highest-order terms (which will dominate as h — 0), these
equations yield, as h — 0,

Coh_ér(:ﬁ - 5) C()h_(S

= 1 -order t

F(l — 5)F(3) F(l — 5) + lower-order terms,
— but this cannot be true as I'(3 — §) # I'(3). This contradiction implies
our result. |

REMARK 4.1. A similar argument shows that Theorem 4.1 also holds
true for the schemes of Sections 4.3 and 4.4. This negative result is born
out by Tables 9 and 11.

5. Conclusions

In this paper we considered simple two-point boundary value problems
whose highest-order derivative is either a Riemann-Liouville or a Caputo
fractional derivative. Approximate solutions to these problems were com-
puted by some standard different schemes from the research literature. Our
purpose was to explore how well standard schemes behave when applied to
problems with polynomial solutions (and consequently non-smooth right-
hand sides) and problems with smooth right-hand sides (and consequently
non-smooth solutions). Throughout the paper we use the discrete maxi-
mum norm — the most natural norm for finite difference methods.

The theoretical background for most schemes is a bound on the formal
consistency error (i.e., the order of consistency attained under the strong
hypothesis that the solution is smooth enough to permit Taylor series ex-
pansions or to induce fast decay at infinity of the Fourier transform of the
solution), but it is not clear theoretically that the same order of convergence
is achieved when the scheme is applied in practice. Our numerical experi-
ments are designed to give practical information about the true behaviour
of these schemes.

For a Caputo fractional derivative, we tested two schemes. These
schemes yielded orders of convergence equal to their formal orders of consis-
tency for a polynomial solution, but attained only first-order convergence
when the solution was nonsmooth despite one of the schemes having formal
second-order consistency.

The Riemann-Liouville fractional derivative is more challenging. The
well-known L2 scheme was first-order accurate for our polynomial solution
but the order of convergence deteriorated in the other example. The other
schemes that we tested all failed to converge for the polynomial solution
example, and were O(h®~1) accurate for the other example.
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When the solution u(z) is a polynomial, we proved rigorously that the
shifted Griinwald-Letnikov difference scheme (and some other schemes) fail
to converge if u(0) # 0. In a subsequent paper we shall examine how one
can improve the order of convergence of finite difference methods when
faced with situations like this.
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