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RESUMEN 

Los riñones son órganos muy eficientes que llevan a cabo múltiples funciones 

en el organismo. Una de las principales funciones que realizan es la eliminación 

de productos de desecho y exceso de fluido del cuerpo a través de la orina. La 

regulación de las sales y el contenido de ácido, son funciones desempeñados 

por estos órganos. En el riñón también tiene lugar la producción de diferentes 

hormonas. El riñón está constituido por las nefronas, que son las unidades 

estructurales y funcionales de estos órganos. Dentro de las nefronas podemos 

diferenciar las siguientes estructuras: El glomérulo, que es la primera parte de 

la nefrona donde el plasma es filtrado desde la sangre. Inmediatamente 

después, encontramos el túbulo, cuya estructura es semejante a un tubo largo 

y estrecho, donde el fluido filtrado desde la sangre es procesado y convertido 

en orina. A lo largo del túbulo, encontramos los siguientes segmentos: túbulo 

proximal, asa de Henle, túbulo distal y tubo colector.  

En esta Tesis Doctoral, nos centraremos en el estudio del segmento formado 

por el túbulo proximal (TP) [1]. La principal función desempeñada por el TP es la 

reabsorción y secreción de metabolitos y para realizar estas funciones las células 

del TP cuentan con un gran contenido de diferentes transportadores de 

membrana [2-5]. El túbulo proximal está formado por células epiteliales, las 

cuales están polarizadas, característica que nos permite distinguir entre dos 

zonas bien diferenciadas, la zona apical y la zona basolateral. Las células del TP 

contienen una estructura denominada borde en cepillo que aumenta el área de 

superficie de las células y este incremento es útil durante los procesos de 

reabsorción [6]. Conviene destacar que las células renales están continuamente 

expuestas al ultra filtrado del plasma y que el flujo luminal genera una fuerza de 

cizallamiento (shear stress, SS) sobre la superficie apical de las células. Las 

células del TP pueden detectar estas SS a través del cilio primario o de las 
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microvellosidades del borde en cepillo. La señalización intracelular 

desencadenada por la SS luminal es un estímulo fisiológico clave para las células 

tubulares renales [7]. A pesar de la relevancia del flujo luminal en la nefrona, así 

como en el desarrollo de enfermedades, hay relativamente pocos estudios in 

vitro que incluyan este estímulo. El flujo luminal debería ser un requisito 

imprescindible para la generación de un modelo de función tubular in vitro, 

fisiológicamente más similar al que encontramos in vivo.  

Las células del TP in vivo presentan unas características dinámicas diferentes 

en ambos compartimentos. Cuando se trabaja in vitro, se alteran esas 

características dinámicas ya que las células son expuestas a la inmovilización de 

su compartimento basolateral, en contacto con la superficie donde las células 

crecen y en el lado apical se renueva el medio cada 2-4 días, eliminando el efecto 

que el SS ejerce en ambos compartimentos. La ausencia del flujo luminal, así 

como la alteración de las características dinámicas de las células en ambos 

compartimentos, son dos de los problemas que encontramos en las condiciones 

de cultivo convencional 2D, eliminando la posibilidad de reproducir la función 

tubular renal, la cual consiste en concentrar o diluir los solutos en el fluido 

luminal. Por tanto, es evidente que las técnicas de cultivo convencionales 2D, a 

pesar del gran conocimiento que nos han aportado sobre la función celular y 

molecular, no son capaces de reproducir el ambiente fisiológico de las células 

del TP. Esto a la vez, podría explicar la dificultad en la traslación de los resultados 

in vitro a aplicaciones in vivo [8].  

En los últimos años y con el objetivo de aproximarse a la creación in vitro de 

microambientes fisiológicamente más similares a los encontrados in vivo, han 

surgido colaboraciones entre las áreas de Ingeniería y las áreas de Biología [9] 

interesadas en el desarrollo de dispositivos microfluídicos [10] para su uso en 

estudios de epitelio renal. Los dispositivos mencionados anteriormente, son 
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estructuras situadas en la escala micro y nano, que han posibilitado el desarrollo 

de los microchips, dispositivos miniaturizados capaces de imitar sistemas 

naturales de forma precisa si se acoplan a sistemas continuos de perfusión en 

los canales que componen estos dispositivos, los cuales son habitados por las 

células sembradas en ellos. Estos dispositivos ofrecen ventajas como la 

reproducción de la arquitectura multicelular o de la interfaz tejido-tejido, la 

recreación del microambiente físico-químico y la perfusión vascular, originando 

niveles de tejidos funcionales, que no pueden obtenerse con los métodos de 

cultivo 2D o 3D. Otra ventaja, es que al trabajar en escala micro-nanométrica, el 

ahorro de las soluciones necesarias paras el mantenimiento de las células, o para 

la ejecución de experimentos, se ve drásticamente reducido. A nivel 

experimental, este tipo de dispositivos presentan gran potencial en el área de la 

organogénesis y la fisiología y, en el contexto del descubrimiento y desarrollo de 

nuevos fármacos, tiene especial valor en el estudio de los mecanismos de 

acción, toxicidad e identificación de biomarcadores. 

A partir de la información expuesta anteriormente, se detectó un problema 

y se propuso una hipótesis: las herramientas de cultivo convencionales no 

recrean con precisión el ambiente fisiológico donde crecen las células y por 

tanto, esto puede originar la pérdida de reproducibilidad de la respuesta celular 

contra agentes tóxicos y mecanismos de reparación unidos a daño renal. Con el 

objetivo de aceptar o rechazar la hipótesis propuesta se propone la creación de 

un modelo de nefrotoxicidad, usando dispositivos de cultivo biomiméticos que 

tendrán acoplados las herramientas necesarias para poder usar flujo, y de esta 

manera reproducirán mejor el microambiente de las células del TP. 

La elección del TP para desarrollar esta Tesis, se basa en que en este 

segmento de la nefrona se procesa la mayoría de tóxicos y fármacos y tiene lugar 

el daño agudo y crónico renal. Por tanto, desde el punto de vista clínico y con el 



Resumen 

9 
 

objetivo de estudiar nefrotoxicidad, el TP representa un segmento cuyos 

estudios pueden aportar mucho conocimiento. Con el objetivo de crear un 

modelo de nefrotoxicidad, el uso de cultivos primarios de células del TP 

humanas (hPTPC), daría lugar a una fácil traslación de los resultados a la clínica.  

La molécula elegida para la creación del modelo de nefrotoxicidad es el 

cisplatino, un compuesto antitumoral usado en el tratamiento contra diversos 

tipos de cánceres, entre los que destacan pulmón, testículo y cérvix. Uno de los 

principales efectos secundarios de este compuesto es la nefrotoxicidad [11] en 

el TP. Los mecanismos de acción del cisplatino incluyen su paso al interior de las 

células del TP mediante los transportadores basolaterales OCT2 y CTR-1, así 

como la enzima GGT1, encargada de la conversión del cisplatino en una 

molécula mucho más reactiva tras entrar en contacto con esta enzima [12].  

A partir de las hPTPC y del modelo de nefrotoxicidad que se desarrolló, se 

estudió el efecto de la estimulación mecánica proporcionado por el flujo, sobre 

la sensibilidad al cisplatino, permitiendo recrear un ambiente más semejante al 

que encontramos in vivo. 

Los resultados obtenidos a lo largo de esta tesis nos sugieren que: 

1. El protocolo de aislamiento empleado para la obtención de células 

primarias de TP procedentes de nefrectomías humanas, hPTPC, y la 

posterior caracterización de las células, nos permitió obtener un cultivo 

formado mayoritariamente por células de TP que expresaban los 

principales marcadores de este segmento de la nefrona. 

2. El uso combinado del ensayo de actividad enzimática de GGT1 y el 

ensayo de viabilidad, nos permitió distinguir los efectos del cisplatino. La 

combinación de estos ensayos se validó como una herramienta útil a la 

hora de monitorizar la función celular y viabilidad celular. 
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3. El modelo de nefrotoxicidad empleando cisplatino fue consistente para 

su uso en células creciendo en dispositivos fluídicos. 

4. El cultivo de hPTPC aislado y caracterizado durante esta tesis, no mostró 

diferencia en la sensibilidad al modelo de cisplatino en dispositivos 

fluídicos en presencia de la estimulación mecánica proporcionada por el 

flujo y comparado con células en condiciones estáticas. 
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SUMMARY 

The kidneys are very efficient organs that perform multiple functions in the 

body. One of the main functions performed by the kidneys is the elimination of 

waste products and excess fluid from the body through the urine. The regulation 

of body salts and acid content are functions played by these organs. In the 

kidney also takes place the production of different hormones. The kidney is 

made up of nephrons, which are the structural and functional units of these 

organs. The nephrons are composed by the following structures: The 

glomerulus, which is the first part of the nephron, where the plasma is filtered 

from the blood. Immediately afterward, we find the tubule, which structure is 

like a long narrow tube, where the filtered fluid from the blood is processed into 

the urine. The tubule is divided into different segments: proximal tubule, loop 

of Henle, distal tubule and collecting tube. 

In this Thesis, we focused on the study of the segment formed by the 

proximal tubule (PT) [1]. The main role played by the PT is the reabsorption and 

secretion of metabolites and to perform these functions, PT cells have a high 

content of different membrane transporters [2-5]. The PT is formed by epithelial 

cells, which are polarized, a feature that allows us to distinguish between two 

distinct areas, the apical zone, and the basolateral zone. PT cells contain a 

structure called brush border that increases the surface area of the cells, and 

this increase is useful during the reabsorption processes [6]. It should be noted 

that renal cells are continually exposed to ultrafiltration of the plasma and that 

the luminal flux generates a shear stress (SS) on the apical surface of the cells. 

PT cells can detect this SS through the primary cilium or the brush border. The 

intracellular signaling triggered by the luminal SS is a physiological stimulus 

essential for renal tubular cells [7]. Despite the relevance of luminal flow in the 

nephron, as well as in the development of diseases, there are relatively few in 
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vitro studies including this stimulus. Luminal flow should be a prerequisite for 

the generation of an in vitro physiological model to study tubular function, 

similar to what is found in in vivo environment. 

PT cells in vivo exhibit different dynamic characteristics in both 

compartments. When we are working with these cells in vitro, these dynamic 

characteristics are altered since the cells are exposed to the immobilization of 

their basolateral compartment, in contact with the surface where the cells grow, 

and on the apical side, the medium is renewed every 2-4 days, eliminating the 

effect that the SS exerts on both compartments. The absence of luminal flow, as 

well as the alteration of the dynamic characteristics of the cells in both 

compartments, are two of the problems found in conventional 2D culture 

conditions, eliminating the possibility of reproducing renal tubular function, 

which consists of concentrating or diluting the solutes present in the luminal 

fluid. Therefore, it is evident that conventional 2D culture techniques, despite 

the high knowledge that they have provided us on the cellular and molecular 

function, are not able to reproduce the physiological environment of the PT 

cells. This could explain the difficulty we have in translating in vitro results into 

in vivo applications [8]. 

In the last years, with the aim of creating in vitro microenvironments 

physiologically similar to those found in vivo, we observe an increase in the 

number of collaborations between the areas of Engineering and Biology [9] 

interested in the development of microfluidic devices [10] for use in renal 

epithelial studies. The devices mentioned above are structures in the micro and 

nano scale, which have enabled the development of microchips, miniaturized 

devices capable of accurately mimicking natural systems since they contain 

continuous infusion systems in the channels that make up these devices, 

covered by the cells seeded in them. These devices offer advantages such as 
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reproduction of the multicellular architecture or the tissue-tissue interface, the 

recreation of the physicochemical microenvironment and the vascular 

perfusion, resulting in levels of functional tissues, which cannot be obtained 

with 2D or 3D culture methods. Another advantage is the size of these devices, 

in the micro-nanometric scale. This supposes to save solutions for the 

maintenance of the cells, or for the execution of experiments because their 

volume is drastically reduced. At the experimental level, this type of device has 

great potential in the area of organogenesis and physiology and, in the context 

of discovery and development of new drugs, it has a special value in the study 

of the mechanisms of action, toxicity, and identification of biomarkers. 

From the above information, a problem was detected and a hypothesis was 

proposed: the conventional culture tools do not accurately recreate the 

physiological environment where the cells grow and therefore, this can cause 

the lack of reproducibility of cellular response to toxic agents and repair 

mechanisms linked to renal damage. With the objective of accepting or rejecting 

the proposed hypothesis, it was proposed to create a model of nephrotoxicity 

using biomimetic culture devices that will have the necessary tools coupled to 

be able to use flow. This will help to reproduce the microenvironment of PT cells 

more accurately. 

The choice of PT to develop this Thesis is based on the fact that in this 

segment of the nephron the majority of toxins and drugs are processed and here 

is where acute and chronic renal damage take places. Therefore, from the 

clinical point of view and with the aim of studying nephrotoxicity, PT represents 

the segment of choice. In order to create a model of nephrotoxicity, the use of 

human primary cultures of PT cells (hPTPC), would lead to an easy translation of 

the results to the clinic. 
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The molecule chosen to create the nephrotoxicity model is cisplatin, an 

antitumor compound used in the treatment of various types of cancers, 

including lung, testis and cervix. However, one of the major side effects of this 

compound is nephrotoxicity [11] in PT. The mechanism of action of cisplatin 

includes the entrance of the molecule to the hPTPC through the basolateral 

transporters OCT2 and CTR-1, as well as the enzyme GGT1, responsible for the 

conversion of cisplatin into a much more reactive molecule after entering in 

contact with this enzyme [12].  

From the hPTPC and the nephrotoxicity model developed, we proposed to 

study the effect of mechanical stimulation on cisplatin sensitivity produced 

under flow. This allowed us to recreate a more physiological environment, closer 

to what we find in vivo. 

The results obtained along this Doctoral Thesis suggest: 

1. The isolation protocol employed to obtain primary PT cells from human 

nephrectomies, hPTPC, and the posterior cell characterization, allowed 

us to obtain a highly enriched culture of PT cells, expressing the main PT 

markers. 

2. Combined use of GGT1 activity and cell viability assays allowed us to 

distinguish different cisplatin effects and were validated as useful assays 

to monitor cell function and cellular status. 

3. The cisplatin nephrotoxicity model was consistent and amenable for its 

use on cells grown in microfluidic devices. 

4.  The hPTPC isolated and characterized along this Thesis did not present 

any difference in the sensitivity to cisplatin model in fluidic devices in the 

presence of the mechanical stimulation created by flow and compared 

with cells growing in static condition. 
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LIST OF ABBREVIATIONS 
 

a.s.    After Seeding 

αSMA    alpha Smooth Muscle Actin 

APM    Aminopeptidase M 

AQP1    Aquaporin-1 

ATL   Ascending Thin Limb 

ABC    ATP-binding cassette transporter family 

ASP+  4-4 dimethylamino styryl-N-methylpyridinium iodide 

BM    Basement Membrane 

BCA    Bicinchoninic Acid 

BEC    Biliary Epithelial Cells 

BMC    Bone Marrow stromal Cells 

BSA    Bovine Serum Albumin 

BCRP    Breast Cancer Resistence Protein 

CB28    Calbindin-28  

CDDP    Cisplatin  

CKD    Chronic Kidney Disease 

CD    Collecting Ducts 

CTR1    Copper Transporter 1  

CV    Crystal Violet 

COP    Cyclic Olefin Copolymer 

CD13+    Aminopeptidase N 

CD10+    Acute lymphocytic leukemia antigen 

DTL    Descending Thin Limb  

DPPIV    Dipeptidyl Peptidase IV  

DT    Distal Tubule  

EMT    Epithelial-Mesenchymal Transition 
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ECM    Extracellular Matrix  

GMNA    γ-glutamyl-4-methoxy-2-naphthylamide  

GGpN    Gamma Glutamyl-p-nitroanilide  

GGT1    Gamma Glutamyl Transferase 

GPpN   Glycine Proline-p-nitroanilide 

GFR   Glomerular Filtration Rate  

GSH   platinum-glutathione conjugates 

HK2    Human Kidney-2  

hPTPC    human primary proximal tubular cells  

HPg    Hydrostatic Pressure in the glomerulus  

MCR    Medio de Células Renales  

MATEs    Multidrug and Toxin Extrusion proteins 

MRP2/4   Multidrug Resistance Proteins 2 and 4  

NFP    Net Filtration Pressure 

NaPi    Sodium-Phosphate transporter  

OAT    Organic Anion Transporter  

OATP4C1   Organic Anion Transporting Peptide 4C1  

OCT    Organic Cation Transporters 

P-gp    P-glycoprotein 

PC    Polycarbonate 

PDMS    Polydimethylsiloxane  

PMNA    Polymethylmethacrylate 

PS    Polystyrene 

PCT    Proximal Convoluted Tubule 

PST    Proximal Straight Tubule 

PT    Proximal Tubule  

PB    PrestoBlue 

RT-PCR  Reverse Transcriptase-Polymerase Chain Reaction  
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SS    Shear Stress  

SGLT-2    Sodium-Glucose Linked Transporter-2 

SM    Stromal Matrix  

TAL    Thick Ascending Limb  

ZO-1    Zonula Ocludens 1 protein 
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1.1 INTRODUCTION 

1.1.1 Anatomy of the Kidneys  

The kidneys are located outside the peritoneal cavity and on each side of 

the spine, we can find one. The shape of the kidneys is quite similar to a 

bean. The kidney size is dependent on body weight, so in an adult 

human, each kidney measures around 12-14 cm of length, 6-8 cm 

largeness and 4 cm of thickness. The kidney can be divided into two 

regions: the cortical and the medullar region. The cortex is the granular 

outer layer surrounding the medullar region. The medulla is the darker 

inner region of the kidney that can be subdivided into the outer and 

inner medulla. The cortex and medulla have properties structurally and 

functionally different: the cortex has a granular appearance, absent in 

the medulla, and each medullary pyramid is divisible into a zone adjacent 

to the cortex and a zone that includes the papilla. All these distinctions 

reflect the arrangement of the various tubules and blood vessels. The 

rounded, outer convex surface of each kidney faces the side of the body, 

and the indented surface, called the hilium, is medial. Each hilum is made 

up by a renal artery, renal vein, nerves, and a ureter. The ureter is a tube 

that carries urine from the kidney to the urinary bladder. There are two 

ureters, one attached to each kidney. The ureter can be divided in two 

parts: the upper half of the ureter is located in the abdomen, and the 

lower half of the ureter is located in the pelvic area. The renal pelvis is 

the dilated proximal part of the ureter in the kidney. In humans, the renal 

pelvis is the point of convergence of two or three funnel-like structures 

called major calyces. Every major calyce is formed from minor calyces, 

and this last structure fits over the renal tissue called pyramids. The tip of 

each pyramid is called a papilla and it projects into a minor calyx. The 
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calyces act as collecting cups for the urine formed by the renal tissue in 

the pyramids. The pyramids constitute the medulla of the kidney. 

Overlying the medullary tissue is found the cortex, and covering the 

cortical tissue on the very external surface of the kidney is find a thin 

connective tissue capsule (Figure 1.1). The cortex and the medulla are 

constructed almost entirely of functional structures like tubules and 

blood vessels. Between the tubules and blood vessels lies an interstitium, 

which comprises less than 10% of the renal volume. The interstitium 

contains the specific cells that synthesize an extracellular matrix of 

collagen, proteoglycans, and glycoproteins. The kidney is an organ highly 

vascularized receiving 20% of cardiac output and the renal vascular 

system comprises a renal artery and vein, respectively routes of entry 

and exit of blood to the kidney [1, 2]. 
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Anatomic representation of a human kidney. a) Frontal section of right 
kidney. b) Anterior view of right kidney. The kidney can be divided in two 
different portions: the outer portion is formed by the cortex, and it contains 
all the glomeruli. The inner portion is known as medulla, and it is 
constituted by pyramids able to drain into the renal pelvis calyces, that in 
turn, it is formed by minor calyces. Source: Gerard J. Tortora and Bryan 
Derrickson, Principios de Anatomía y Fisiología, 2013 [3] .  

1.1.2 Function of the kidneys 

The kidneys are essential organs in the homeostatic regulation of the 

human body, able to handle 180 L of plasma filtrate every day, to finally 

excrete about 1.5 L per day in the form of urine containing waste 

products or foreign substances.  
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The kidneys perform different functions for the body, most of which 

are essential for life. Below, the main functions are listed: 

Function 1: Regulation of Water and Electrolyte Balance. The kidneys 

match renal excretion to the intake of water and electrolytes to regulate 

the osmolality and volume of body fluids. Differences between input and 

output are regulated by the kidney. So, a deficit of water or electrolytes 

can be compensated by increasing the intake and the retention, whereas 

excesses are compensated by varying the output of water in the urine. 

Electrolytes like Na+, K+, and Mg2+ amongst others, form part of our diet 

and they are present in our body [4]. 

Function 2: Regulation of Arterial Blood Pressure. The kidneys play a 

central role in the regulation of arterial blood pressure. Blood pressure 

depends on blood volume, and the kidneys’ maintenance of sodium and 

water balance achieves regulation of blood volume. Renal artery 

perfusion pressure regulates the blood pressure through the sodium 

excretion and influences the activity of various vasoactive systems such 

as the renin-angiotensin-aldosterone system that regulate smooth 

muscle in the peripheral vasculature [5]. 

Function 3: Excretion of Metabolic Waste. The kidneys work as filters, 

removing metabolic wastes and toxins from the blood and excreting 

them through the urine. Some of these metabolic wastes are the urea, 

uric acid, creatinine, the end products of hemoglobin breakdown, among 

others. Usually, theses waste products of metabolism are toxic and 

should be removed from the body [6]. 

Function 4: Excretion of Bioactive Substances. The excretion of 

bioactive substances includes hormones and drugs that affect the body 

function. In the organism, there are different forms of excretion of these 
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types of bioactive substances performed by different organs like the 

liver, the lungs and the kidneys amongst others, and it is worth to 

mention the role of the specific drug transporters played in these organs 

[7]. 

Function 5: Regulation of Red Blood Cell Production. The erythrocytes 

production takes place in the bone marrow under the control of a 

peptide hormone called erythropoietin [8], which major source of 

secretion is the kidney. EPO is secreted in the kidney by the 

juxtaglomerular cells, and its secretion is produced in response to 

decreased O2 delivery and increased levels of androgens. EPO stimulates 

the bone marrow to increase its production of erythrocytes [9]. 

Function 6: Regulation of Vitamin D Production. Vitamin D synthesis 

involves a series of biochemical transformations. The last biochemical 

transformation takes place in the kidneys. The active form of vitamin D 

(1,25-dihydroxyvitamin D3) plays a critical role in calcium and 

phosphorus metabolism, bone growth, and tissue differentiation [10]. 

Function 7: Gluconeogenesis. Although the liver has the critical role of 

maintaining blood glucose homeostasis and therefore, is the major site 

of gluconeogenesis, a substantial fraction occurs in the kidneys, 

particularly during physiological conditions such as a prolonged fast and 

pathological conditions, as liver failure. The kidney can provide glucose to 

the blood via renal gluconeogenesis. In the renal cortex, glutamine is the 

preferred substance for gluconeogenesis [11]. 

Function 8: Regulation of acid-base balance. The correct maintaining 

of a normal body pH is essential to the efficient functioning of many 

physiological processes. In the kidneys take place the excretion of the 

acids and also, the acid-base regulation, through the reabsorption of the 



Natalia Sánchez-Romero 

30 
 

filtered bicarbonate. In the acid-base balance, the kidney is responsible 

for the reabsorption of filtered bicarbonate and the excretion of acids. 

Both processes involve secretion of H+ into the lumen by the renal tubule 

cells, but only the second leads to excretion of H+ from the body [12]. 

1.1.3 The nephron 

The nephron is the structural and functional unit of the kidney. The 

human kidney contains approximately 1 million nephrons. Every nephron 

is constituted by the renal corpuscule, a spherical structure that works as 

a filtering component and the renal tubule, that is a long narrow tube 

where the filtered fluid is processed and converted into urine, and it is 

constituted by different segments: Proximal Tubule, Loop of Henle, Distal 

Tubule, Collecting Duct. (Figure 1.2) [13]. 
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Figure 1.1: Structure and location of the nephron. The renal corpuscule is the 
filtration component and it is constituted by the glomerulus and the capsule. 
Here is where the blood is filtered. The tubule is constituted for the different 
segments represented in the figure, and its mission is to process and convert 
into urine the filtered fluid. Source: Esley A. Inker and Ronald  D. Perrone, 
Assessment of kidney function, 2015, UpToDate [14]. 

1.1.3.1 The renal corpuscle  

The renal corpuscle is formed by the glomerulus, a compact structure 

with interconnected capillary loops and the Bowman's capsule, a hollow 

capsule surrounding the glomerulus. Blood enters and leaves Bowman's 

capsule through arterioles. The Bowman's space, located inside the 

capsule, receives the filtered fluid. The Bowman's capsule has an outlet 

that leads into the first portion of the tubule. 

The filtration barrier consists of three layers: the endothelium of the 

glomerular capillaries, the basement membrane and a single layer of 
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epithelial cells. The first layer consists of endothelial cells permeable to 

all components found in the blood except erythrocytes and leucocytes. 

The middle layer is the basement membrane constituted by 

glycoproteins and proteoglycans. The last layer is formed by podocytes, 

which are epithelial cells. The podocytes have structures called pedicels 

extended from each branch of the podocyte and embedded in the 

basement membrane. The pedicels of some podocytes are interdigitated 

with those of adjacent podocytes and the space created between the 

pedicels is the way by which the filtrate, once it travels through the 

endothelial cells and the basement membrane, passes to enter the 

Bowman's Space. The anatomical constitution explained so far is 

fundamental since it allows the filtration of large volumes of liquid from 

the capillaries into the Bowman's space, while it restricts the filtration of 

large plasma protein molecules. Finally, we find the mesangial cells in the 

central part of the glomerulus that act as phagocytes and remove the 

trapped material from the basement membrane [15, 16]. 

1.1.3.2 The Tubule 

The renal tubule is the part of the nephron in which the filtrate from 

the glomerulus enters and the molecules and substances are reabsorbed 

or secreted. Along the different segments of the renal tubule, the single 

layer of epithelial cells resting on a basement membrane exhibits very 

large differences in morphology, protein expression patterns, and very 

specific activities. The different segments found in the renal tubule are 

[17-21]: 

1.1.3.3 Proximal tubule 

The proximal tubule (PT) is the first part of the renal tubule. It is 

divided into three segments (S1, S2 and S3) whose structural complexity 

http://www.interactive-biology.com/dictionary/glomerulus/
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decreases from the S1 to the S3 segment. The S1 corresponds to the first 

half of the proximal convoluted tubules (PCT) and gets the primary urine 

of the glomerulus, in the renal cortex; the S2 segment includes the 

second half of the PCT and the first half of the proximal straight tubule (P 

ST) [22]; the S3 is the resting half of the PST, in the medulla. The PST 

leads the urine to the first part of the Henle’s Loop. The cells that form 

the PT contain brush border and strong basolateral folds. It has an 

acidophilic cytoplasm due to the number of mitochondria. In PT, the bulk 

of ion and water reabsorption takes place, important substrates like 

glucose and protein (amino acids) are reabsorbed, and organic anions 

and cations including drugs and toxicants, are secreted into the lumen. 

PT is also the place for important metabolic and endocrine activities. 

High metabolic rates and exposure to toxins make the PT more exposed 

to hypoxia and chemical insult than other nephron segments. 

Accordingly, most in vitro models of renal function have focused on 

reproducing PT function. 

1.1.3.4 Loop of Henle  

After filtrates leave the PT, it enters the loop of Henle. The loop of 

Henle has an ‘U’ shape and it can be found in two different loop lengths: 

a short loop and a long loop. The short Henle loops have a descending 

thin limb and a thick ascending limb. The long Henle loops have a thin 

descending and a thin and thick ascending limb. The loop of Henle has 

three parts well defined:  

• Descending Thin Limb (DTL). The TDL is highly permeable to H20, 

but it has low permeability to ions and urea. 

• Ascending Thin Limb (A TL). The ATL is impermeable to H2O, but 

it is permeable to ions. 

http://www.interactive-biology.com/dictionary/loop-of-henle/
https://en.wikipedia.org/wiki/Urea
https://en.wikipedia.org/wiki/Thin_ascending_limb_of_loop_of_Henle
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• Thick Ascending Limb (TAL). The TAL is the part where Na+, K+, Cl− 

ions are reabsorbed from the urine by the cotransporter NKCC2. 

It is impermeable to the H2O. 

The DTL and the ATL are made up of flattened epithelial cells, not very 

specialized. The TAL is constituted of specialized epithelial cells with a 

huge number of mitochondria necessary for high active NaCl transport 

rate. The TAL includes the specialized Macula densa cells, which are in 

contact with the mesangial cells of the glomerulus. The Macula densa 

forms part of juxtaglomerular apparatus which main function is to 

regulate blood pressure and the filtration rate of the glomerulus. 

1.1.3.5 Distal Tubule 

The distal tubule (DT) is constituted by cuboidal cells without a brush 

border, showing an epithelium with structures (microvilli, mitochondria) 

that allow high absorption processes. In this segment, we can identify 

two parts: 

• The pars recta that constitutes the start of the DT  

• The pars convoluta that constitutes the end of the DT. 

The principal function of the DT is reabsorbing Na+ and Cl-. It is 

relatively impermeable to H2O but in the presence of antidiuretic 

hormones, its permeability to H2O increases making urine concentrated. 

Aldosterone is highly active in this segment. The DT also secretes 

ammonium ions and hydrogen ions.  

1.1.3.6 Collecting Duct 

The last segment of the renal tubule is the Collecting Ducts (CD) [23]. 

The CD is in charge of collecting urine from the nephrons and moves it 

into the renal pelvis. The CD are lined with cuboidal epithelium 

https://en.wikipedia.org/wiki/Thick_ascending_limb_of_loop_of_Henle
http://www.interactive-biology.com/dictionary/juxta/
http://www.interactive-biology.com/dictionary/hormone-2/
http://www.interactive-biology.com/dictionary/permeability/
http://www.interactive-biology.com/dictionary/urine/
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containing two cell types: principal cells and intercalated cells. The 

principal cells reabsorb Na+ and H2O and secrete K+. These functions are 

regulated by ADH and aldosterone. The intercalated cells participate in 

the acid-base homeostasis, and there are two types: α-intercalated cells 

secrete hydrogen ions via an apical H+ ATPase and a H+/K+ exchanger and 

reabsorb bicarbonate. ß-intercalated cells secrete bicarbonate via 

pendrin and reabsorb acid. The intercalated cells play important roles in 

the kidney's response to acidosis and alkalosis.  

The Figure 1. 3 shows the different segments of the renal tubule 

explained in this section. 

 

Figure 1.2: Functional 3D interactions for a renal tubule. (A) Nephrons are the 
kidney functional units. They consist in longitudinal tubule structures made of 
epithelial cells. Every nephron starts at the renal corpuscle, where it meets the 
vasculature and plasma is filtered through the glomerular capillaries. Then, 
ultrafiltrate flows along the proximal tubule (PT), the loop of Henle and the 
distal nephron, eventually draining into CD. Abrupt morphological changes occur 
at every segment transition, reflecting very different functions. (B) Cells within 
each tubule are exposed to four independent interactions. Luminal flow creates 
a shear stress (SS) over the apical surface. Binding to surrounding protein matrix 
(ECM, fibers) serves to sense mechanical and biochemical cues important for 

http://www.interactive-biology.com/dictionary/cell/
http://www.interactive-biology.com/dictionary/function/
http://www.interactive-biology.com/dictionary/intercalated/
http://www.interactive-biology.com/dictionary/cell/
https://en.wikipedia.org/wiki/Acidosis
https://en.wikipedia.org/wiki/Alkalosis
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tubule differentiation and function regulation. Neighboring interstitial and 
tubular cells send paracrine signals to modulate function and repair process 
(TAL, CD). Finally, oxygen, nutrients and hormones supply is ensured by blood 
perfusion through surrounding capillaries (BV) Source:  N. Sánchez-Romero, P. 
Meade and I. Giménez, Microfluidic-Based 3D Models of Renal Function for 
Clinically Oriented Research, 2016 [24]. 

1.1.4 Basic processes performed by the nephrons 

Urine formation and blood composition are processes that take place 

in the nephron, and at the same time, it involves three processes: 

glomerular filtration, in the glomeruli and secretion and reabsorption, in 

the renal tubules. These processes are going to be detailed as follows. 

1.1.4.1 Glomerular Filtration 

Glomerular filtration is the first step in urine formation, and it is a 

passive and very selective process, in which hydrostatic pressure forces 

fluids through the glomerular membrane. During the glomerular 

filtration, the blood is filtered and the molecules and waste products in 

this filtrate are removed from the glomerular capillaries. The glomerulus 

is a very efficient filter with a large surface area and extremely 

permeable to water and solutes. Molecules such water, glucose or amino 

acids are really small, usually smaller than 3 nm in diameter can pass 

freely from the blood into the Bowman’s space. Molecules larger than 5 

nm pass with greater difficulty, and they are barred from entering the 

tubule. 

The Mechanisms of Filtration 

The process by which glomerular filtration occurs is called renal 

ultrafiltration. The force of hydrostatic pressure in the glomerulus (HPg) 

is the driving force that pushes filtrate out of the capillaries and into the 

nephron. The osmotic pressure works against the greater force of 



Introduction 

37 
 

hydrostatic pressure, and the difference between these two determines 

the force by which molecules are filtered. The net filtration pressure 

(NFP) is the responsible for filtrate formation. The glomerular filtration 

rate (GFR) is directly proportional to the NFP.  

Regulation of Glomerular filtration rate 

GFR is regulated by intrinsic and extrinsic controls. 

1. Intrinsic controls: It works by adjusting its own resistance to blood 

flow and it is known as renal autoregulation. The renal autoregulation 

entails two types of controls:  

• Myogenic mechanism. The myogenic mechanism reflects the 

tendency of vascular smooth muscle to contract when stretched.  

• Tubuloglomerular feedback mechanism. It is performed by the 

macula densa cells. When GFR increases, the macula densa cells 

release a vasoconstrictor chemical (ATP) that causes intense 

constriction of the afferent arteriole and a decrease of NFP and 

GFR. When the macula densa cells are exposed to slowly flowing 

filtrate with its low NaCl concentration, ATP releases is inhibited, 

causing vasodilation of the afferent arterioles, and an increase of 

the NFP and GFR.  

2. Extrinsic controls: This type of control regulates the GFR 

maintaining the systemic blood pressure through neural and hormonal 

mechanisms. It entails two types of controls: 

• Sympathetic nervous system controls. This control works with the 

goal to satisfice the needs of the body. When the volume of the 

extracellular fluid is normal, the sympathetic nervous system does 

not work and is the renal autoregulation that prevails. 
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• Renin-angiotensin mechanism. This mechanism is activated when 

various stimuli cause the granular cells to release the hormone 

renin. The hormone renin has to be transformed to regulate the 

GFR. The renine acts enzymatically on angiotensinogen, converting 

it to angiotensin I. This, in turn, is converted to angiotensin II by 

angiotensin converting enzyme. Angiotensin II acts in four ways to 

stabilize systemic blood pressure and extracellular fluid volume: 1. 

As a potent vasoconstrictor. 2. Stimulating the reabsorption of 

sodium. 3. Stimulating the hypothalamus to release antidiuretic 

hormone and activating the hypothalamic thirst center. 4. 

Increasing fluid reabsorption by decreasing peritubular capillary 

hydrostatic pressure.  

It is important to mention that there are other factors affecting GFR. 

Usually, these factors are produced by renal cells that have the capacity 

to secrete a battery of chemicals, many of which act as a paracrine 

factor: prostaglandin E2 (PGE2), adenosine and intrarenal angiotensin II 

[25, 26]. 

The volume and solute contents of the final urine are quite different 

from those of the glomerular filtrate because its composition is altered 

through the tubular reabsorption and tubular secretion. 

A combination of filtration, reabsorption, and secretion is applied 

specifically for each plasma substance. 

1.1.4.2 Tubular reabsorption 

The tubular reabsorption is a selective transepithelial process that 

begins when the filtrate enters the proximal tubules. The reabsorbed 

substances can follow the transcellular or paracellular route with the goal 
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to reach the blood. In the transcellular route, transported substances 

move through the luminal membrane, the cytosol, and the basolateral 

membrane of the tubule cell. In the paracellular route, the movement of 

substances across the tubule cells is limited because these cells are 

connected by tight junctions. 

Sodium Reabsorption 

The most abundant cations in the filtrate are Na+ ions. The active Na+ 

reabsorption is promoted by two processes: 

1. Na+ is actively transported out of the tubule cell by primary active 

transport through a Na+-K+ ATPase pump. Then, Na+ is brushed 

along by the bulk flow of water into adjacent peritubular 

capillaries.  

2. Active pumping of Na+ from the tubule cells results in a strong 

electrochemical gradient that favors its passive entry at the 

luminal face via secondary active transport carriers or via 

facilitated diffusion through channels.  

The reabsorption of Na+ by primary active transport provides around 

the 80% of the energy for reabsorbing almost every other substance. 

Reabsorption of Nutrients, Water, and Ions  

Substances reabsorbed by secondary active transport include glucose, 

amino acids, lactate, and vitamins. Mechanisms for passive tubular 

reabsorption include osmosis, diffusion and facilitated diffusion and the 

substances move down their electrochemical gradients. Here, it is 

important to mention the role of aquaporin, transmembrane proteins 

that form water channels across cell membranes [27]. 
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1.1.4.3 Tubular secretion 

The tubular secretion is the process where substances such as 

creatinine, K+, H+, NH4
+, drugs and some organic acids are transferred 

from the peritubular capillaries into the filtrate through the tubule cells 

or are synthesized in the tubule cells and secreted.  

The tubular secretion occurs in the opposite direction to the 

mechanism of reabsorption, and we can distinguish between two types 

of transports: passive diffusion and active transport. 

Tubular secretion plays an essential role in the body to eliminate 

excess K+, to remove substances, such as certain drugs and metabolites, 

which are closely linked to plasma proteins, to control the pH of the 

blood and to discard end products, toxic products and undesirable 

substances that have been reabsorbed by passive processes [28]. 

1.1.5 The evolution of nephropharmacology  

The correct maintenance of the kidneys is essential but unfortunately, 

there is a high incidence of acute and chronic kidney disease (CKD), a 

rising global health problem with significant morbidity and mortality. 

These conditions affect 5–7% of the world population [29, 30]. In 2012 in 

the United States, total medical care expenditures for chronic kidney 

disease were near $58 billion [31]. This problem emphasizes the need to 

explore new strategies to slow down or reversing renal disease 

progression. Nephropharmacology is the discipline that studies the 

connection between clinical pharmacology and nephrology [32].  

This discipline started almost 50 years ago, with the contribution of 

Kunin et al. in 1959 when they demonstrated the dependence of drug 

elimination half-life (t1/2) on renal function. Currently, the scope in 
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nephropharmacology focuses on research related to specific drug 

therapy of renal diseases, as well as renal drug safety, because each year 

an estimated 18-27% of acute kidney failures are caused by drugs [33]. 

The development of novel drugs is both a time-consuming and cost-

intensive process, and about one-third fails due to toxicological concerns 

and/or lack of suitable testing methods capable of predicting clinical 

usefulness and drug toxicity during pre-clinical development [34, 35]. For 

these reasons, suitable model systems for reliable pre-clinical testing are 

essential to validate clinical safety. Presently, the test systems in use only 

cover certain aspects of nephrotoxic side effects [36]. The conventional 

models available to study nephropharmacology include 2D PT cells 

cultures and animal models. The problem with these models is that they 

do not reliably recapitulate the in vivo human response to drugs, and 

about 7% of drug candidates fail as a consequence of undetected 

nephrotoxicity in pre-clinical testing with 2D cell cultures and animal 

models [37, 38] At the same time, it is estimated that 30–50% of all cases 

of severe acute renal failure in patients are due to drug–induced 

nephrotoxicity [37, 39]. These facts highlight that the conventional 

methods used in nephropharmacology are not satisfactory enough to 

predict the human response. The most advanced approaches are 

focusing on the generation of 3D cell culture models because these 

models exhibit features that are closer to the physiological conditions 

[40, 41], and they are more realistic for translating the study findings for 

in vivo applications [42]. The generation of 3D renal cultures as suitable 

model systems includes the incorporation of advanced biocompatible 

materials or functionalized biopolymer hydrogels as matrices in 

combination with highly differentiated renal cells. These new 

technologies are expected to revolutionize our ability to understand and 
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predict clinically relevant renal responses for their application in kidney 

disease. 

1.1.6 Engineered renal models for reducing animal studies 

To study nephropharmacology the models currently applied include 

animal models [43] and test models in cell monolayer (2D) cultures [44]. 

Drug testing studies and toxicological screenings use different animal 

species like mice, rats, hamsters, rabbits, fishes (zebrafish, trout), birds 

(mainly chicken), guinea pigs, amphibians (Xenopus frogs), primates, 

dogs, cats, etc. The number of animals used in research every year has 

gone up with the advancement in medical technology [45]. Aside from 

ethical considerations, the use of animals in pharmacology preclinical 

testing is very time consuming, laborious and expensive [46]. These 

disadvantages have forced researchers to find new alternatives to 

decrease the time and the money involved in the studies and, of course, 

to decrease the number of animals used. Russell and Burch have defined 

these alternatives by three R's - Reduction, Refinement and Replacement 

[47]. These alternative strategies include a wide variety of new in vitro 

techniques, as 3D cell cultures.  

No new drug can be used in patients until it has been extensively 

tested in animals, but the new alternative methods can help to reduce 

the number of animals required for nephropharmacology studies. 2D cell 

culture models offer the advantage of being simple, are compatible with 

high-throughput drug screenings and are low in cost [48]. However, in 

conventional 2D cell culture, cells spread mainly in the horizontal 

direction, resulting in flattened cells that easily dedifferentiate and are 

therefore less physiologically relevant compared to 3D cell culture [49, 

50] (Table 1.1). The design of pharmacological studies based on 2D cell 
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cultures could, therefore, be biased. Another disadvantage of these 

models is their incapacity of recapitulating the complexity of the in vivo 

environment [51, 52]. It has been shown that 2D cell culture models 

require higher doses over longer time periods to induce a toxic response 

compared to in vivo and/or in humans toxicity responses[53]. These 

limitations could be improved using 3D cell cultures of human cells. In 

nephropharmacology, the use of 3D cell culture models reflects the 

physiological situation better. In support, it was demonstrated that a 3D 

cell culture system was more sensitive to nephrotoxic compounds than 

the same cells grown in 2D, due to a preserved epithelial character. 

Additionally, long-term studies revealed the utility of the 3D model for 

chronic toxicity studies as well [38].  
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Table 1.1: Overview of conventional 2D cell culture versus 3D cell 
culture models  

 

1.1.6.1 Renal cells in use  

The development of this Thesis is focused in a specific type of cells: 

The proximal tubular cells [54]. From now on, every different section of 

 Advantages Disadvantages 

2D cell 

culture 

- Simple model 

- Low-cost 

- Flattened cells 

- Studies can be biased 

- Incapacity to mimic the 

physiological environment 

- Exposure of high dose over 

time to induce a toxic response 

3D cell 

culture 

- Improvement of 

physiological environment 

- Easy detection of 

biomarkers indicative for 

nephrotoxicity 

- It is a translational model 

from the in vitro to the in vivo 

situation 

- More sensitive to drug 

exposure  

- Novel and more relevant 3D 

models are still under study. 

- It will need time to adapt this 

technology to the labs and 

companies 
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this manuscript will be focused mainly on these cells or to the segment of 

the nephron where these cells are located, the PT. 

Some of the most important morphological characteristics of PT cells 

include a columnar shape epithelium with a cobblestone formation, the 

presence of a brush-border and the possibility to distinguish between an 

apical and a basolateral membrane because of cell polarization. Also, PT 

cells are characterized by the differential expression and activity of 

specific membrane transporters and metabolizing enzymes. One of the 

most critical steps in the development of in vitro models to study 

nephrotoxicity is to be able to cultivate large numbers of cells with these 

specific phenotypical features. Below, the available sources of cells with 

defined renal phenotypes will be discussed, with a special focus on cells 

reproducing PT cells phenotype. 

Renal primary cell cultures 

Renal primary cell cultures are defined as cells that have been freshly 

isolated and derived from the original kidney or kidney explants from 

donors. In the last years, also isolating renal epithelial cells from human 

urine has successfully been achieved [55]. Renal Primary cells closely 

mimic the physiological state of cells in vivo, but the principal limitation 

of these cells is the process of dedifferentiation and the predetermined 

number of cell divisions before entering senescence. We already 

mentioned the PT is the best-studied segment from a clinical perspective. 

Thus, reports appear periodically describing new or improved methods to 

isolate and grow PT cells [56-58]. 

Immortalized Cell Lines of Renal Origin 

The use of permanent cell lines began in the 1970s by renal and 

transport physiologists when they recognized that some of these cells 
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retained some kidney-specific characteristics. More recently, continuous 

renal cell cultures have gained importance for investigating the 

pharmacology of potentially nephrotoxic xenobiotics, medicines and in 

general, to study nephropharmacology. These studies have revealed 

highly robust and reproducible PT cells specific functional results over 

prolonged culturing [59]. 

Several permanent cell lines of renal origin have been established, in 

order to overcome the limitations of primary cells. The immortalization 

process is usually elicited by transfection and/or injection of Simian virus 

(SV40), papillomavirus (16E6/E7) genes, human Telomerase reverse 

transcriptase (hTERT) or transformation into primary cells of defined 

nephron origin; this has been carried out with renal cells from various 

species, including human cells. Transformed cells acquire the ability to 

proliferate indefinitely; however, in most cases, these cells had already 

suffered some dedifferentiation allowing them to grow under artificial 

conditions. Careful isolation, purification, and characterization have 

allowed for the generation of specific cell lines with adequate 

preservation of characteristic functional markers of defined nephron 

segments. In Table 1.2 the most widely used renal cell lines are 

represented, with a special focus on cells reproducing PT phenotype. 

In addition to human cell lines, animal-derived cell lines like MDCK, 

LLC-PK1, NRK-52 and OK have been extremely useful for in vitro research 

of normal and altered renal epithelial function because these cells retain 

enough phenotypic parameters to allow for studying specific 

characteristics or activities, and have lesser requirements and proliferate 

indefinitely, unlike primary culture.  
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Table 1.2:  Representation of the most widely used renal 
continuous cell lines. 

 

Cell line 

 

Species 

 

Presumed Cell type origin 

 

References 

SGE-1 Wistar rat Glomerulus [60] 

NRK-52E Norway rat Proximal tubule [61] 

LLC-PK1 Hampshire pig Proximal tubule [62] 

OK American opossum Proximal tubule [63] 

MCT Mouse Proximal tubule [64] 

JTC-12 Cynomolgus 

monkey 

Proximal tubule [65] 

HK-2 Human Proximal tubule [66] 

CiPTEC Human Proximal tubule [55] 

RPTEC Human Proximal tubule [67] 

caki-2 Human Renal carcinoma [68] 

mTAL  Rabbit Medullary TAL [69] 

MDCK Dog Distal tubule and 

collecting duct 

[70] 

A6 Xenopus Laevis Distal tubule and 

collecting duct 

[71] 

PAP-HT25 Rabbit Inner medullary 

epithelium 

[72] 
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1.1.7 Experimental models using renal cell cultures   

The tubular structure is encased in the basement membrane (BM), a 

thin layer made of laminin, collagen IV, entactin/nidogen, and sulfated 

proteoglycans. As mentioned before, the renal tubule is a tiny tube 

subdivided in different segments, where the glomerular filtrate with 

wastes, extra fluid and other recyclable substances, like Na+ and PO43−, 

passes through. 

Renal tubules are in contact with the vascular network, the 

interstitium, and other renal tubules. All these relationships should be 

kept in mind if the goal is to understand and reproduce renal function. 

For this reason, a recreation of the environment of the tubular structures 

is essential. Depending on the biological question that needs to be 

elucidated, multiple culture formats are available. The most relevant 

culture formats used in the field of nephropharmacology are discussed 

here in more detail. 

1.1.7.1 Role of the extracellular matrix 

In native kidneys, cells are embedded in a complex extracellular 

matrix (ECM). The ECM is a very dynamic and highly charged structure, 

and it plays a very important role as an active component in cell 

signaling, support, morphogenesis, reparation and regeneration [73]. In 

addition to its mechanical support function, the ECM harbors essential 

growth factors and signaling molecules important for tissue organization 

and function. The importance of cell-ECM interactions in driving 

differentiation towards a particular phenotype is well described [74], and 

an example of these interactions is found in the Human Kidney-2 (HK2) 

cell line, which showed an improved proximal tubular phenotype when 
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they were cultured on micro-scaffolds obtained by decellularizing 300 

μm fragments of renal stroma [75].  

The ECM is composed of basement membrane (BM) and the stromal 

matrix (SM): The BM is a sheet-like scaffold and comprises fibronectin, 

proteoglycans, laminin and collagen IV and it provides a number of 

physical and chemical interactions that cells need for proper self-

recognition and differentiation. BM plays important roles in the kidney, 

illustrated by the fact that defects in renal BM are associated with kidney 

malfunction [76, 77]. Obviously, renal cells recognize the roughness and 

hardness of the BM in the same way than other tissues [78]. These 

properties were used in attempts to recreate artificial ECM substrates 

[79, 80] where it was appreciated that the topology offered by the 

polymeric structures could actually be more important than the bioactive 

signals they provide [81-83]. The SM is composed of collagen I, 

proteoglycans and glycosaminoglycans, which form fibrous structures 

providing the major structural support of the ECM. The SM is responsible 

for holding together nephrons, blood vessels and other elements from 

the kidney parenchyma [84]. Integrins, transmembrane receptors located 

in the PT cells play an important role as the mediators in the cell-ECM 

adhesion and signaling [85]. After understanding the role of ECM in cell 

adhesion, structure and function, it is essential to incorporate its 

components in a 3D model.  

1.1.7.2 Two-and-a-half-Dimensional Renal Cell Culture  

A drip culture is a cell culture format reflecting 2.5D, where the cells 

grow on top of an ECM and the growth medium of cells contains diluted 

ECM proteins. The advantage of this type of culture is the induction of a 

more physiological architecture than conventional 2D cultures [44, 86]. 
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Some of the most relevant applications of this cell culture format are for 

imaging and antibody staining.  

1.1.7.3 Two-and-a-half-Dimensional Renal Cell Culture in Transwell 

Devices 

A Transwell is a membrane insert used for cell cultures, which ensures 

the formation of a compartmentalized system, allowing the cells to 

polarize. This also offers the possibility to work with co-cultures in 

independent compartments that communicate by the release of 

signaling molecules. However, due to the high costs and the fact that 

working with Transwells is laborious, these devices are extensively used 

in industry, but they have not been widely adopted in academia. 

1.1.7.4 Three-Dimensional Renal Cell Culture on ECM-Coated Surfaces for 

Bioartificial Kidney Applications  

The increasing incidence of end-stage renal disease, a shortage of 

kidney organ donors, and the significant impact on patient’s life of 

current dialysis and hemofiltration techniques, generates an urgent need 

for alternative renal replacement therapies. One of the most actively 

pursued potential renal replacement therapies in the last years is the 

bioartificial kidney [35], a cell therapy based on in vitro culture of renal 

cells. It consists of the combination of a hemofilter in series with a 

bioreactor unit containing renal PT cells , termed a renal assist device 

[42]. Cells are seeded and grown as a confluent monolayer in the lumen 

of hollow fibers. The hemofiltrate is passed through the lumen and the 

blood through the space between the fibers. The goal is that cells will 

reabsorb biologically relevant substances from the filtrate, will secrete 

toxins into the filtrate, and will produce metabolic and endocrine 

functions of renal epithelia. In this way, the hemofilter would provide the 
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glomerular function while the cell-based cartridge will be delivering 

those functions of the tubular portion in the nephron [87, 88].  

1.1.7.5 Three-Dimensional Renal Cell Culture in Hydrogel  

Culture systems that better mimic the biological milieu are needed to 

bridge the gap between conventional cultures and complex native in vivo 

environments. Hydrogels are good tools for getting this goal. A hydrogel 

is a biocompatible polymer network with high water content and with 

physical properties that closely mimic the natural ECM. This ability to 

swell under biological conditions makes them an ideal class of materials 

for biomedical applications, such as drug delivery and tissue engineering 

[89-91]. A renal cell 3D culture system consists of cells embedded in an 

ECM gel generated by mixing the renal cells with a liquid ECM matrix at 

the time of seeding [86, 92]. These gels then polymerize based on 

physical (e.g. temperature or light) or chemical (e.g. pH or ionic strength) 

stimuli [93]. 

1.1.8 Other nephropharmacological models 

The formation of a complex architecture in vitro and the 

incorporation of factors such as shear stress forces due to luminal fluid 

flow represent new 3D kidney model alternatives to apply in the area of 

nephropharmacology. These include decellularized kidney as native ECM 

scaffolds, kidney on a chip technology and 3D bioprinting techniques. 

Below all these nephropharmacological models will be discussed. 

1.1.8.1 Decellularized kidney 

Recent developments within the field of regenerative medicine also 

include the generation of bioscaffolds through organ decellularization. In 

this process, the ECM is isolated from a tissue by removing its inhabiting 
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cells and leaving a native ECM scaffold. Various researchers 

demonstrated that decellularized kidneys from animals or human could 

be used as 3D biological scaffolds. The decellularization process 

conserves the mechanical and biological properties of the ECM, 

generating a template that can maintain natural stromal architecture and 

some residual molecules and thus may promote attachment, 

differentiation and proliferation of newly grafted cells [94, 95]. 

Eventually, the regenerated tissue can be used as a transplantable organ. 

Since the kidney has one of the most complex architectures of the body, 

generating an efficient decellularization method that preserves the 

vascular networks and parenchymal anatomy of the native kidney has 

been a strongly pursued objective in regenerative medicine. Next to 

being a source for organ transplantation, decellularized-recellularized 

kidneys can also be used as a model to study the interaction of drugs 

affecting tissue failure and enhancing repair mechanisms. Currently, the 

principal limitation to obtain functional recellularized kidneys is the 

complexity of the organ, requiring advanced bioengineering processes. 

For recellularization, knowledge can be obtained from the rapidly 

evolving field of mini-organs, called kidney organoids[96-98]. These mini-

organs form more sophisticated models to fill the gap between in vitro 

and in vivo understanding of functional kidney development and repair  

[99]. 

1.1.8.2 Bioprinting 

3D kidney bioprinting is a new technology with the goal of developing 

functional full-size kidneys. This new emerging technology is based on 

the use of computers and modified printers-based technology, where 

biomaterials chosen to create de novo full-size kidney are used to print 
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layer-by-layer specific biological materials, with spatial control of the 

placement of functional components [100, 101]. Currently, researchers 

do not have the capacity for building a complex and large 3D kidney; 

therefore, the most relevant studies published have focused on kidney 

3D bioprinting on a small scale with the generation of ‘mini-tissue’ 

building blocks [100, 101]. The creation of de novo kidneys is the goal of 

3D bioprinting, but other applications include developing high-

throughput 3D-bioprinted tissue models for research, such as drug 

discovery and toxicology.  

1.1.8.3 Microfluidic devices 

To recreate the physiological environment found in vivo in 3D cell 

models, the addition of bioreactor systems is essential because it will 

allow a continuous fluid flow on the cells. This new approach is possible 

with the use of microfluidic devices, such as kidney microchips. It has 

been the technology used for the development of this thesis. 

Microchips technology is defined as a cell culture model in a system 

with a micrometer scale that incorporates important features like 

dimensional and morphological relevance, flow shear stress, mechanical 

strain and co-culture capabilities, among others [102]. A variety of cells 

of renal origin have been grown in microfluidic devices: e.g. primary 

human proximal tubule [49], primary inner medullary collecting duct 

[103] and HK-2 cells [104]. The design of the microchip depends on the 

desired purpose. One parameter necessary to design a microchip is the 

geometry of the system. The material selected for the fabrication could 

be a limitation, for this reason, it is necessary to choose materials very 

carefully. For instance, when used in combination with live imaging, 

materials should have optimal optical properties to avoid auto-



Natalia Sánchez-Romero 

54 
 

fluorescence. During the design phase, it is also necessary to consider 

whether the available microscope set up is compatible with microfluidic 

devices [24].  

The use of microfluidic devices present some advantages compared 

with traditional cell culture models: 1) It saves expensive reagents 

because of the small volumes running through the micro-scaled 

chambers. 2) It could prolong culture of cells without the need for 

subpassaging or repeated media changes, 3) the incorporation of 

mechanical stimulation that can be interesting for those cells or tissues 

that endure such stimulation in vivo and respond to it by acquiring 

specific phenotypes. 

A large part of the work with microfluidic devices demonstrated that 

this new technology is widely applicable in biomedical research, so this 

technology is highly valuable for studying renal physiology and 

pathology. For example, in the nephropharmacological area, Chocha-

Snoub et al. developed a microfluidic kidney model to study the 

nephrotoxic effects of ifosfamide [105]. Ifosfamide is a drug metabolized 

by the liver into a bioactive and nephrotoxic compound. Using a liver 

micro-device directly linked to a kidney device, they demonstrated the 

interaction between the two organ systems, mimicking the sequence of 

events. The kidney cell toxicity was apparent only when the liver 

metabolized ifosfamide and then was perfused through the kidney 

device, but not when the order of exposure was reversed. Another 

relevant example was published by Jang et al. and they showed that the 

cells under fluid flow performed better at recovering from cisplatin 

toxicity than the cells in static culture, suggesting a role for shear-stress  
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in renal repair. In addition to renal toxicology, efficient cell 

differentiation [106] and kidney stone formation [104] have been 

addressed by using microfluidic devices.
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1.2 HYPOTHESIS AND RESEARCH AIMS 

The conventional models and tools for cell culture available are not 

satisfactory enough to predict the human response, basically because 

they cannot recreate the physiological environment where the cells grow 

in vivo and thus, this may lead to the lack of reproducibility of the cellular 

response against toxic and reparation mechanisms linked to renal 

damage.  

 

1.2.1 Objectives 

General objectives: Development and experimental validation of an 

innovative culture system based on microfluidics where human renal 

proximal cells can be grown in a biomimetic environment for studying 

renal damage and repairing. 

 

Specific objectives: 

1. Development of methods and procedures for the isolation and cell 

culture of human primary proximal tubular cells (hPTPC). 

2. Phenotypic characterization of cells obtained from the primary 

culture at the level of gene expression, protein markers, enzymatic 

activity in living cells and transporters. 

3. Development and validation of a new nephrotoxicity model using 

cisplatin for the study of cell viability and expression of specific 

markers implied in the bioactivation of this molecule.  

4. Screening of molecules potentially repaired of the damage 

produced by the cisplatin.   
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5. Development of the protocol for differentiated proximal tubular 

cell cultures in a device that allows us the application of Shear 

Stress (SS).  

6. Determination of the SS effect in the sensibility to cisplatin in 

hPTPC.



Natalia Sánchez-Romero 

58 
 

 



Bibliography 

59 
 

1.3 BIBLIOGRAPHY 

[1] M.A. Wallace, Anatomy and physiology of the kidney, AORN J 68(5) (1998) 
800, 803-16, 819-20; quiz 821-4. 
 
[2] H.G. Preuss, Basics of renal anatomy and physiology, Clin Lab Med 13(1) 
(1993) 1-11. 
 
[3] G.J.T.a.B. Derrickson, Principio de Anatimía y Fisiología, 2013. 
 
[4] C. Langston, Managing fluid and electrolyte disorders in renal failure, Vet Clin 
North Am Small Anim Pract 38(3) (2008) 677-97, xiii. 
 
[5] H.M. Wadei, S.C. Textor, The role of the kidney in regulating arterial blood 
pressure, Nat Rev Nephrol 8(10) (2012) 602-9. 
 
[6] M.S. Lipkowitz, Regulation of uric acid excretion by the kidney, Curr 
Rheumatol Rep 14(2) (2012) 179-88. 
 
[7] S. Masuda, Functional characteristics and pharmacokinetic significance of 
kidney-specific organic anion transporters, OAT-K1 and OAT-K2, in the urinary 
excretion of anionic drugs, Drug Metab Pharmacokinet 18(2) (2003) 91-103. 
 
[8] H. Gibb, N.J. Sanders, R.R. Dunn, S. Watson, M. Photakis, S. Abril, A.N. 
Andersen, E. Angulo, I. Armbrecht, X. Arnan, F.B. Baccaro, T.R. Bishop, R. Boulay, 
C. Castracani, I. Del Toro, T. Delsinne, M. Diaz, D.A. Donoso, M.L. Enriquez, T.M. 
Fayle, D.H. Feener, Jr., M.C. Fitzpatrick, C. Gomez, D.A. Grasso, S. Groc, B. 
Heterick, B.D. Hoffmann, L. Lach, J. Lattke, M. Leponce, J.P. Lessard, J. Longino, 
A. Lucky, J. Majer, S.B. Menke, D. Mezger, A. Mori, T.C. Munyai, O. Paknia, J. 
Pearce-Duvet, M. Pfeiffer, S.M. Philpott, J.L. de Souza, M. Tista, H.L. Vasconcelos, 
M. Vonshak, C.L. Parr, Climate mediates the effects of disturbance on ant 
assemblage structure, Proc Biol Sci 282(1808) (2015) 20150418. 
 
[9] J.W. Adamson, Regulation of red blood cell production, Am J Med 101(2A) 
(1996) 4S-6S. 
 
[10] F. Perwad, A.A. Portale, Vitamin D metabolism in the kidney: regulation by 
phosphorus and fibroblast growth factor 23, Mol Cell Endocrinol 347(1-2) (2011) 
17-24. 
 
[11] J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll, Renal gluconeogenesis: its 
importance in human glucose homeostasis, Diabetes Care 24(2) (2001) 382-91. 
 
[12] C. Yucha, Renal regulation of acid-base balance, Nephrol Nurs J 31(2) (2004) 
201-6; quiz 207-8. 
 



Natalia Sánchez-Romero 

60 
 

[13] J.F. Bertram, R.N. Douglas-Denton, B. Diouf, M.D. Hughson, W.E. Hoy, 
Human nephron number: implications for health and disease, Pediatr Nephrol 
26(9) (2011) 1529-33. 
 
[14] L.A.I.a.R.D. Perrone, Assesment of kidney function, 
http://www.uptodate.com, 2015. 
 
[15] M.R. Pollak, S.E. Quaggin, M.P. Hoenig, L.D. Dworkin, The glomerulus: the 
sphere of influence, Clin J Am Soc Nephrol 9(8) (2014) 1461-9. 
 
[16] J.A. Roth, T.D. Wilson, M. Sandig, The development of a virtual 3D model of 
the renal corpuscle from serial histological sections for E-learning environments, 
Anat Sci Educ 8(6) (2015) 574-83. 
 
[17] V. Vallon, The proximal tubule in the pathophysiology of the diabetic 
kidney, Am J Physiol Regul Integr Comp Physiol 300(5) (2011) R1009-22. 
 
[18] D. Pearce, R. Soundararajan, C. Trimpert, O.B. Kashlan, P.M. Deen, D.E. 
Kohan, Collecting duct principal cell transport processes and their regulation, 
Clin J Am Soc Nephrol 10(1) (2015) 135-46. 
 
[19] A.R. Subramanya, D.H. Ellison, Distal convoluted tubule, Clin J Am Soc 
Nephrol 9(12) (2014) 2147-63. 
 
[20] D.Y. Huang, H. Osswald, V. Vallon, Sodium reabsorption in thick ascending 
limb of Henle's loop: effect of potassium channel blockade in vivo, Br J 
Pharmacol 130(6) (2000) 1255-62. 
 
[21] D.B. Mount, Thick ascending limb of the loop of Henle, Clin J Am Soc 
Nephrol 9(11) (2014) 1974-86. 
 
[22] A. Galvan, T. Fladvad, F. Skorpen, X. Gao, P. Klepstad, S. Kaasa, T.A. Dragani, 
Genetic clustering of European cancer patients indicates that opioid-mediated 
pain relief is independent of ancestry, Pharmacogenomics J 12(5) (2012) 412-6. 
 
[23] M.L. MacDougall, T.B. Wiegmann, Urate excretion by the isolated perfused 
rat kidney and modification by drugs, Proc Soc Exp Biol Med 192(3) (1989) 276-
80. 
 
[24] N. Sanchez-Romero, Meade, P. , Giménez, I., Microfluidic-Based 3D Models 
of Renal Function for Clinically Oriented Research, Elsevier2016. 
 
[25] M. Franco Guevara, L.G. Navar, J. Herrera-Acosta, D. Bell, [The regulatory 
mechanisms of glomerular filtration: the tubuloglomerular feedback system, 
physiological aspects and their participation in the physiopathology of kidney 
diseases], Gac Med Mex 130(3) (1994) 139-45; discussion 146-7. 

http://www.uptodate.com/


Bibliography 

61 
 

 
[26] M.J. Holechek, Glomerular filtration: an overview, Nephrol Nurs J 30(3) 
(2003) 285-90; quiz 291-2. 
 
[27] W.J. O'Connor, Tubular reabsorption in normal renal function, Ren Physiol 
7(4) (1984) 193-204. 
 
[28] E.B. Berkhin, M.H. Humphreys, Regulation of renal tubular secretion of 
organic compounds, Kidney Int 59(1) (2001) 17-30. 
 
[29] K.C. Leung, M. Tonelli, M.T. James, Chronic kidney disease following acute 
kidney injury-risk and outcomes, Nat Rev Nephrol 9(2) (2013) 77-85. 
 
[30] V. Jha, G. Garcia-Garcia, K. Iseki, Z. Li, S. Naicker, B. Plattner, R. Saran, A.Y. 
Wang, C.W. Yang, Chronic kidney disease: global dimension and perspectives, 
Lancet 382(9888) (2013) 260-72. 
 

[31] U. U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of 
Chronic Kidney Disease and End-Stage RenalDisease in the United States, 
National Institutes of Health, National Institute of Diabetes and Digestive and 
Kidney Diseases,Bethesda, MD, 2013., 2013. 

[32] A.J. Atkinson, Jr., S.M. Huang, Nephropharmacology: drugs and the kidney, 
Clin Pharmacol Ther 86(5) (2009) 453-6. 
[ 
33] M. Loghman-Adham, C.I. Kiu Weber, C. Ciorciaro, J. Mann, M. Meier, 
Detection and management of nephrotoxicity during drug development, Expert 
Opin Drug Saf 11(4) (2012) 581-96. 
 
[34] I. Kola, J. Landis, Can the pharmaceutical industry reduce attrition rates?, 
Nat Rev Drug Discov 3(8) (2004) 711-5. 
 
[35] J.L. Stevens, T.K. Baker, The future of drug safety testing: expanding the 
view and narrowing the focus, Drug Discov Today 14(3-4) (2009) 162-7. 
 
[36] L. Fliedl, M. Wieser, G. Manhart, M.P. Gerstl, A. Khan, J. Grillari, R. Grillari-
Voglauer, Controversial role of gamma-glutamyl transferase activity in cisplatin 
nephrotoxicity, ALTEX 31(3) (2014) 269-78. 
 
[37] T.C. Fuchs, P. Hewitt, Biomarkers for drug-induced renal damage and 
nephrotoxicity-an overview for applied toxicology, AAPS J 13(4) (2011) 615-31. 
 
[38] T.M. DesRochers, L. Suter, A. Roth, D.L. Kaplan, Bioengineered 3D human 
kidney tissue, a platform for the determination of nephrotoxicity, PLoS One 8(3) 
(2013) e59219. 
 



Natalia Sánchez-Romero 

62 
 

[39] N. Pannu, M.K. Nadim, An overview of drug-induced acute kidney injury, 
Crit Care Med 36(4 Suppl) (2008) S216-23. 
[40] C.A. Nickerson, E.G. Richter, C.M. Ott, Studying host-pathogen interactions 
in 3-D: organotypic models for infectious disease and drug development, J 
Neuroimmune Pharmacol 2(1) (2007) 26-31. 
 
[41] Y. Xia, I. Sancho-Martinez, E. Nivet, C. Rodriguez Esteban, J.M. Campistol, 
J.C. Izpisua Belmonte, The generation of kidney organoids by differentiation of 
human pluripotent cells to ureteric bud progenitor-like cells, Nat Protoc 9(11) 
(2014) 2693-704. 
 
[42] M. Ravi, V. Paramesh, S.R. Kaviya, E. Anuradha, F.D. Solomon, 3D cell 
culture systems: advantages and applications, J Cell Physiol 230(1) (2015) 16-26. 
 
[43] J.C. Gautier, B. Riefke, J. Walter, P. Kurth, L. Mylecraine, V. Guilpin, N. 
Barlow, T. Gury, D. Hoffman, D. Ennulat, K. Schuster, E. Harpur, S. Pettit, 
Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated 
with Cisplatin, Toxicol Pathol 38(6) (2010) 943-56. 
 
[44] J.C. Chen, J.L. Stevens, A.L. Trifillis, T.W. Jones, Renal cysteine conjugate 
beta-lyase-mediated toxicity studied with primary cultures of human proximal 
tubular cells, Toxicol Appl Pharmacol 103(3) (1990) 463-73. 
 
[45] S.K. Doke, S.C. Dhawale, Alternatives to animal testing: A review, Saudi 
Pharm J 23(3) (2015) 223-9. 
 
[46] D.K. Badyal, C. Desai, Animal use in pharmacology education and research: 
the changing scenario, Indian J Pharmacol 46(3) (2014) 257-65. 
 
[47] T. Arora, A.K. Mehta, V. Joshi, K.D. Mehta, N. Rathor, P.K. Mediratta, K.K. 
Sharma, Substitute of Animals in Drug Research: An Approach Towards 
Fulfillment of 4R's, Indian J Pharm Sci 73(1) (2011) 1-6. 
 
[48] Y. Wu, D. Connors, L. Barber, S. Jayachandra, U.M. Hanumegowda, S.P. 
Adams, Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of 
renal proximal tubule injury potential of compounds, Toxicol In Vitro 23(6) 
(2009) 1170-8. 
 
[49] N. Ferrell, R.R. Desai, A.J. Fleischman, S. Roy, H.D. Humes, W.H. Fissell, A 
microfluidic bioreactor with integrated transepithelial electrical resistance 
(TEER) measurement electrodes for evaluation of renal epithelial cells, 
Biotechnol Bioeng 107(4) (2010) 707-16. 
 
[50] K.J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S. Chung, K.Y. Suh, D.E. 
Ingber, Human kidney proximal tubule-on-a-chip for drug transport and 
nephrotoxicity assessment, Integr Biol (Camb) 5(9) (2013) 1119-29. 



Bibliography 

63 
 

 
[51] M.J. Bissell, D.C. Radisky, A. Rizki, V.M. Weaver, O.W. Petersen, The 
organizing principle: microenvironmental influences in the normal and 
malignant breast, Differentiation 70(9-10) (2002) 537-46. 
[52] Q. Guo, B. Xia, S. Moshiach, C. Xu, Y. Jiang, Y. Chen, Y. Sun, J.M. Lahti, X.A. 
Zhang, The microenvironmental determinants for kidney epithelial cyst 
morphogenesis, Eur J Cell Biol 87(4) (2008) 251-66. 
 
[53] M. El Mouedden, G. Laurent, M.P. Mingeot-Leclercq, P.M. Tulkens, 
Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts, 
Toxicol Sci 56(1) (2000) 229-39. 
 
[54] V. Napadow, J. Liu, T.J. Kaptchuk, A systematic study of acupuncture 
practice: acupoint usage in an outpatient setting in Beijing, China, Complement 
Ther Med 12(4) (2004) 209-16. 
 
[55] M.J. Wilmer, M.A. Saleem, R. Masereeuw, L. Ni, T.J. van der Velden, F.G. 
Russel, P.W. Mathieson, L.A. Monnens, L.P. van den Heuvel, E.N. Levtchenko, 
Novel conditionally immortalized human proximal tubule cell line expressing 
functional influx and efflux transporters, Cell Tissue Res 339(2) (2010) 449-57. 
 
[56] D.A. Vesey, W. Qi, X. Chen, C.A. Pollock, D.W. Johnson, Isolation and 
primary culture of human proximal tubule cells, Methods Mol Biol 466 (2009) 
19-24. 
 
[57] M.J. Valente, R. Henrique, V.L. Costa, C. Jeronimo, F. Carvalho, M.L. Bastos, 
P.G. de Pinho, M. Carvalho, A rapid and simple procedure for the establishment 
of human normal and cancer renal primary cell cultures from surgical specimens, 
PLoS One 6(5) (2011) e19337. 
 
[58] C.C. Sharpe, M.E. Dockrell, Primary culture of human renal proximal tubule 
epithelial cells and interstitial fibroblasts, Methods Mol Biol 806 (2012) 175-85. 
 
[59] T.T. Nieskens, J.G. Peters, M.J. Schreurs, N. Smits, R. Woestenenk, K. Jansen, 
T.K. van der Made, M. Roring, C. Hilgendorf, M.J. Wilmer, R. Masereeuw, A 
Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 
and 3 Expression Predictive for Antiviral-Induced Toxicity, AAPS J 18(2) (2016) 
465-75. 
 
[60] M. Yamada, M. Kawaguchi, H. Takamiya, H. Wada, T. Okigaki, Establishment 
and characterization of an epithelial cell line, SGE1, from isolated rat renal 
glomeruli, Cell Struct Funct 13(6) (1988) 495-513. 
 
[61] J.E. de Larco, G.J. Todaro, Epithelioid and fibroblastic rat kidney cell clones: 
epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus 
transformation, J Cell Physiol 94(3) (1978) 335-42. 



Natalia Sánchez-Romero 

64 
 

 
[62] R.N. Hull, W.R. Cherry, G.W. Weaver, The origin and characteristics of a pig 
kidney cell strain, LLC-PK, In Vitro 12(10) (1976) 670-7. 
 
[63] H. Koyama, C. Goodpasture, M.M. Miller, R.L. Teplitz, A.D. Riggs, 
Establishment and characterization of a cell line from the American opossum 
(Didelphys virginiana), In Vitro 14(3) (1978) 239-46. 
[64] T.P. Haverty, C.J. Kelly, W.H. Hines, P.S. Amenta, M. Watanabe, R.A. Harper, 
N.A. Kefalides, E.G. Neilson, Characterization of a renal tubular epithelial cell line 
which secretes the autologous target antigen of autoimmune experimental 
interstitial nephritis, J Cell Biol 107(4) (1988) 1359-68. 
 
[65] Y. Takuwa, E. Ogata, Differentiated properties characteristic of renal 
proximal epithelium in a cell line derived from a normal monkey kidney (JTC-12), 
In Vitro Cell Dev Biol 21(8) (1985) 445-9. 
 
[66] M.J. Ryan, G. Johnson, J. Kirk, S.M. Fuerstenberg, R.A. Zager, B. Torok-Storb, 
HK-2: an immortalized proximal tubule epithelial cell line from normal adult 
human kidney, Kidney Int 45(1) (1994) 48-57. 
 
[67] M. Wieser, G. Stadler, P. Jennings, B. Streubel, W. Pfaller, P. Ambros, C. 
Riedl, H. Katinger, J. Grillari, R. Grillari-Voglauer, hTERT alone immortalizes 
epithelial cells of renal proximal tubules without changing their functional 
characteristics, Am J Physiol Renal Physiol 295(5) (2008) F1365-75. 
 
[68] J. Fogh, Cultivation, characterization, and identification of human tumor 
cells with emphasis on kidney, testis, and bladder tumors, Natl Cancer Inst 
Monogr (49) (1978) 5-9. 
 
[69] D.M. Scott, Differentiation in vitro of primary cultures and transfected cell 
lines of epithelial cells derived from the thick ascending limb of Henle's loop, 
Differentiation 36(1) (1987) 35-46. 
 
[70] C.R. Gaush, W.L. Hard, T.F. Smith, Characterization of an established line of 
canine kidney cells (MDCK), Proc Soc Exp Biol Med 122(3) (1966) 931-5. 
 
[71] K.A. Rafferty, Jr., R.W. Sherwin, The length of secondary chromosomal 
constrictions in normal individuals and in a nucleolar mutant of Xenopus laevis, 
Cytogenetics 8(6) (1969) 427-38. 
 
[72] S. Uchida, N. Green, H. Coon, T. Triche, S. Mims, M. Burg, High NaCl induces 
stable changes in phenotype and karyotype of renal cells in culture, Am J Physiol 
253(2 Pt 1) (1987) C230-42. 
 
[73] F.T. Bosman, I. Stamenkovic, Functional structure and composition of the 
extracellular matrix, J Pathol 200(4) (2003) 423-8. 



Bibliography 

65 
 

 
[74] B. Lelongt, P. Ronco, Role of extracellular matrix in kidney development and 
repair, Pediatr Nephrol 18(8) (2003) 731-42. 
 
[75] G. Finesilver, J. Bailly, M. Kahana, E. Mitrani, Kidney derived micro-scaffolds 
enable HK-2 cells to develop more in-vivo like properties, Exp Cell Res 322(1) 
(2014) 71-80. 
[76] R. Timpl, Macromolecular organization of basement membranes, Curr Opin 
Cell Biol 8(5) (1996) 618-24. 
 
[77] J.H. Miner, Renal basement membrane components, Kidney Int 56(6) (1999) 
2016-24. 
 
[78] D.H. Kim, P.P. Provenzano, C.L. Smith, A. Levchenko, Matrix 
nanotopography as a regulator of cell function, J Cell Biol 197(3) (2012) 351-60. 
 
[79] E.K.A. Nur, I. Ahmed, J. Kamal, M. Schindler, S. Meiners, Three-dimensional 
nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells, 
Stem Cells 24(2) (2006) 426-33. 
 
[80] M. Schindler, I. Ahmed, J. Kamal, E.K.A. Nur, T.H. Grafe, H. Young Chung, S. 
Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and 
morphogenesis for cells in culture, Biomaterials 26(28) (2005) 5624-31. 
 
[81] M.H. Kim, Y. Sawada, M. Taya, M. Kino-Oka, Influence of surface topography 
on the human epithelial cell response to micropatterned substrates with convex 
and concave architectures, J Biol Eng 8 (2014) 13. 
 
[82] J. le Digabel, M. Ghibaudo, L. Trichet, A. Richert, B. Ladoux, Microfabricated 
substrates as a tool to study cell mechanotransduction, Med Biol Eng Comput 
48(10) (2010) 965-76. 
 
[83] A.G. Sciancalepore, F. Sallustio, S. Girardo, L. Gioia Passione, A. Camposeo, 
E. Mele, M. Di Lorenzo, V. Costantino, F.P. Schena, D. Pisignano, A bioartificial 
renal tubule device embedding human renal stem/progenitor cells, PLoS One 
9(1) (2014) e87496. 
 
[84] D. Kuraitis, C. Giordano, M. Ruel, A. Musaro, E.J. Suuronen, Exploiting 
extracellular matrix-stem cell interactions: a review of natural materials for 
therapeutic muscle regeneration, Biomaterials 33(2) (2012) 428-43. 
 
[85] Y.S. Kanwar, J. Wada, S. Lin, F.R. Danesh, S.S. Chugh, Q. Yang, T. Banerjee, 
J.W. Lomasney, Update of extracellular matrix, its receptors, and cell adhesion 
molecules in mammalian nephrogenesis, Am J Physiol Renal Physiol 286(2) 
(2004) F202-15. 
 



Natalia Sánchez-Romero 

66 
 

[86] E.R. Shamir, A.J. Ewald, Three-dimensional organotypic culture: 
experimental models of mammalian biology and disease, Nat Rev Mol Cell Biol 
15(10) (2014) 647-64. 
 
[87] J. Jansen, M. Fedecostante, M.J. Wilmer, L.P. van den Heuvel, J.G. 
Hoenderop, R. Masereeuw, Biotechnological challenges of bioartificial kidney 
engineering, Biotechnol Adv 32(7) (2014) 1317-27. 
 
[88] F. Tasnim, R. Deng, M. Hu, S. Liour, Y. Li, M. Ni, J.Y. Ying, D. Zink, 
Achievements and challenges in bioartificial kidney development, Fibrogenesis 
Tissue Repair 3 (2010) 14. 
 
[89] J. Lee, M.J. Cuddihy, N.A. Kotov, Three-dimensional cell culture matrices: 
state of the art, Tissue Eng Part B Rev 14(1) (2008) 61-86. 
 
[90] M.P. Lutolf, Biomaterials: Spotlight on hydrogels, Nat Mater 8(6) (2009) 
451-3. 
 
[91] S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture, Nat 
Methods 13(5) (2016) 405-14. 
 
[92] T.M. Desrochers, E. Palma, D.L. Kaplan, Tissue-engineered kidney disease 
models, Adv Drug Deliv Rev 69-70 (2014) 67-80. 
 
[93] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A 
review, J Adv Res 6(2) (2015) 105-21. 
 
[94] J.P. Hodde, R.D. Record, H.A. Liang, S.F. Badylak, Vascular endothelial 
growth factor in porcine-derived extracellular matrix, Endothelium 8(1) (2001) 
11-24. 
 
[95] J. Hodde, R. Record, R. Tullius, S. Badylak, Fibronectin peptides mediate 
HMEC adhesion to porcine-derived extracellular matrix, Biomaterials 23(8) 
(2002) 1841-8. 
 
[96] R. Morizane, A.Q. Lam, B.S. Freedman, S. Kishi, M.T. Valerius, J.V. 
Bonventre, Nephron organoids derived from human pluripotent stem cells 
model kidney development and injury, Nat Biotechnol 33(11) (2015) 1193-200. 
 
[97] A.C. O'Neill, S.D. Ricardo, Human kidney cell reprogramming: applications 
for disease modeling and personalized medicine, J Am Soc Nephrol 24(9) (2013) 
1347-56. 
 
[98] M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. 
Parton, E.J. Wolvetang, M.S. Roost, S.M. Chuva de Sousa Lopes, M.H. Little, 



Bibliography 

67 
 

Kidney organoids from human iPS cells contain multiple lineages and model 
human nephrogenesis, Nature 526(7574) (2015) 564-8. 
 
[99] J.A. Davies, Self-organized Kidney Rudiments: Prospects for Better in vitro 
Nephrotoxicity Assays, Biomark Insights 10(Suppl 1) (2015) 117-23. 
 
[100] A. Peloso, R. Katari, S.V. Murphy, J.P. Zambon, A. DeFrancesco, A.C. Farney, 
J. Rogers, R.J. Stratta, T.M. Manzia, G. Orlando, Prospect for kidney 
bioengineering: shortcomings of the status quo, Expert Opin Biol Ther 15(4) 
(2015) 547-58. 
 
[101] S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs, Nat Biotechnol 
32(8) (2014) 773-85. 
[102] M.J. Wilmer, C.P. Ng, H.L. Lanz, P. Vulto, L. Suter-Dick, R. Masereeuw, 
Kidney-on-a-Chip Technology for Drug-Induced Nephrotoxicity Screening, Trends 
Biotechnol 34(2) (2016) 156-70. 
 
[103] K.J. Jang, K.Y. Suh, A multi-layer microfluidic device for efficient culture and 
analysis of renal tubular cells, Lab Chip 10(1) (2010) 36-42. 
 
[104] Z. Wei, P.K. Amponsah, M. Al-Shatti, Z. Nie, B.C. Bandyopadhyay, 
Engineering of polarized tubular structures in a microfluidic device to study 
calcium phosphate stone formation, Lab Chip 12(20) (2012) 4037-40. 
 
[105] L. Choucha-Snouber, C. Aninat, L. Grsicom, G. Madalinski, C. Brochot, P.E. 
Poleni, F. Razan, C.G. Guillouzo, C. Legallais, A. Corlu, E. Leclerc, Investigation of 
ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip, 
Biotechnol Bioeng 110(2) (2013) 597-608. 
 

[106] M. Zhou, H. Ma, H. Lin, J. Qin, Induction of epithelial-to-mesenchymal 
transition in proximal tubular epithelial cells on microfluidic devices, 
Biomaterials 35(5) (2014) 1390-401. 

 
 



68 
 

 

  



69 
 

 

 

2 CHAPTER 
 

Isolation and 
characterization of 

human proximal 
tubular primary 

cells  
in culture 



70 
 

 



Isolation and characterization of hPTPC 

71 
 

2.1 INTRODUCTION 

The kidney is made up of more than a dozen different cell types. This 

cell heterogeneity is well known in terms of morphology and physiology. 

Among the different cell types, the PT cells plays a major role in the 

reabsorption of filtered substances such as glucose and amino acids [1] 

and in the excretion of xenobiotics such as environmental chemicals, 

drugs, or endogenous waste products originating from metabolism, by 

secreting them into the urine [2]. So, the PT constitutes the segment of 

the nephron, where the majority of toxins and drugs are processed and 

here is where acute and chronic renal damage take places [3, 4]. 

Morphologically, the PT epithelium is made up of polarized epithelial 

cells [5, 6] that differentiate in two parts: the apical surface and the 

basolateral surface, separated by members of the epithelial barrier 

proteins of the tight and adherent junctions [7-9]. On the apical portion of 

the cell membrane, the PT cells present a brush border. The brush border 

morphology increases the cell surface area. This increment of the cell 

surface area is especially useful in reabsorptive processes, where the cells 

need a large surface area in contact with the substance to be efficient [10]. 

The cytosol of the proximal tubule cells has a big number of mitochondria 

per cell reflecting the high levels of intracellular energy required to play 

different functions. PT cells are equipped with a range of transporters, 

consisting of multiple carriers with overlapping substrate specificities that 

cooperate in basolateral uptake and luminal secretion [11]. PT cells uptake 

of organic anions is mediated by members of the solute carrier (SLC) 

family, known as organic anion transporter 1 and 3 (OAT1/3; SLC22A6 and 

A8) and the bidirectional Organic Anion Transporting Peptide 4C1 

(OATP4C1; SLCO4C1) [12, 13]. Cellular efflux of organic anions is facilitated 
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by members of the ATP-binding cassette (ABC) transporter family, known 

as the Multidrug Resistance Proteins 2 and 4 (MRP2/4; ABCC2 and -C4), P-

glycoprotein (ABCB1; MDR1/P-gp) and Breast Cancer Resistance Protein 

(BCRP; ABCG2), through ATP-dependent transport [14, 15]. The uptake of 

organic cations is mediated by the SLC22 family of organic cation 

transporters (OCTs) present at the basolateral membrane of the PT cells.  

In the human kidney, OCT2 (SLC22A2) is considered one of the most 

important organic cation influx proteins. At the brush border membrane, 

the SLC47 multidrug and toxin extrusion proteins (MATEs) are expressed. 

OCTs and MATEs transport a wide variety of structurally unrelated organic 

cations [16-18]. (Figure 2.1). 

Biochemically, PT cells are characterized by the expression of markers 

as Megalin, SGLT-2, gamma glutamyl transferase (GGT1), dipeptidyl 

peptidase IV (DPPIV), aminopeptidase M (APM), amongst others [8, 9]. 
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Figure 2.1: Schematic model of the major organic anion (OA-)/ organic cation 
(OC+) transporters in human renal proximal tubular cells. SLC transporters are 
depicted in blue and ABC transporters in red. Grey arrows depict the movement 
of driving ions. Transporters that are currently considered important for the 
clearance of organic cations are labeled in bold. Source: Sanchez-Romero, N., 
Schophuizen, C. M., Gimenez, I., Masereeuw, R. In vitro systems to study 
nephropharmacology: 2D versus 3D models; Eur J Pharmacol, 2016.  

Taking into account the physiological role played by these cells in vivo; 

PT cells constitute a very interesting in vitro model used to study different 

aspects of physiology or pharmacology. 

Currently, there are several established cell lines of human origin 

available for in vitro models of PT (see Table 1.2 in Introduction). These 

cell lines have the ability to proliferate indefinitely or at least, between 20-

80 passages and are used as a cost-effective tool in basic research. 

However, these cell lines are less used as a biologically relevant option, 
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basically, because important characteristics of the original tissue are lost 

once the cells are isolated. For example, the HK-2 cell line cannot grow if 

the cell confluence is higher than 60% [19], a circumstance that does not 

happen in vivo. As a consequence of these limitations, human PT primary 

cells constitute a good in vitro model to study this specific segment of the 

nephron and more important, they constitute a biologically more relevant 

tool, for this reason, many researchers are focused in the development of 

procedures for the isolation of PT cells.  

The protocols for the isolation of these type of cells described in the 

literature are classified as mechanical disruption, enzymatic disruption or 

the mix between both procedures followed by purification steps.  

The typical mechanical treatment used for isolation of PT cells is to 

mince the kidney into slices or small fragments [20, 21] or by using a tissue 

homogenizer operated by hand. The constant agitation of the tissue is also 

considered a mechanical treatment. Enzymatic disruption, specifically the 

proteolytic digestion, is the most widely applied method to isolate PT cells. 

Some proteolytic enzymes used are the dispase, pronase, and elastase, 

either alone or in combination, but the most used are collagenase and 

trypsin. Trypsin is considered a very aggressive enzymatic process because 

it digests many exoproteins in the cellular membrane. The final result can 

originate severely damaged cells, thus potentially hampering the 

subsequent attachment step. However, some primary cultures using 

trypsin digestion have been described [22, 23]. In the case of collagenase, 

it is considered the enzyme of choice for proteolytic digestion because the 

collagenase preparation contains a high number of hydrolytic enzymes, 

such as hyaluronidase, clostripain and neutral protease favoring a 
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complete and mild digestion of the tissue and also because the basal 

membrane is composed fundamentally of collagen [24].  

The complex cellular architecture of the kidney, constituted by more 

than one dozen different cell types forces the researchers to use a 

purification step after the isolation procedure. The purification methods 

include several techniques, ranging from simple filtration to more complex 

methods such as immunological selection (Table 2.1). 

Table 2.1: Principal isolation and purification methods used for PT 
cells. 

Source 
Enzymatic 

Digestion 

Mechanic 

Disaggregation 
Purification method Ref. 

Nephrectomy 
Dispase 

Collagenase 

Yes • Iodixanol density 
fraction 

[25] 

Nephrectomy 
Collagenase 

DNase 

Yes • Cell strainer of 100 
and 45 μm 

[26] 

Nephrectomy 
Collagenase 

DNase 

Yes 

• Cell strainer of 120 -
μm 

• Percoll gradient 

• Immuno- 
separation 

[27] 

Nephrectomy Collagenase Yes 
• Percoll gradient 

• Immuno-separation 

• Flow sorting 

[28] 

Nephrectomy 

Collagenase 

Trypsin-EDTA 
Yes • Cell strainer of 100 

and 40-μm 

[29] 
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After the isolation, the phenotypical characterization is essential 

(Table 2.2 and 2.3). The characterization of the isolated cells is one of the 

most important and at the same time critical step of the isolation protocol 

since it determines the purity of the isolated cells.  

Table 2.2: Expression markers for phenotypic characterization of 
renal epithelial cells 

 

Marker Technique of choice 

Megalin ICC, IF 

Gamma Glutamyl Tranferasa-1 (GGT1) ICC, WB 

Alkaline Phosphatase ICC, WB 

N-acetyl-beta-D-glucosaminidase ICC, WB 

Glutamine synthetase ICC, WB 

Sodium-Phosphate transporter (NaPi) IF, WB 

Aquaporin-1 (AQP1) IF, WB 

Lectin IHC, IF 

Alanine aminopeptidase M (CD13) IF, FC 

Dipeptidyl peptidase 4 DPPIV (CD26) IF, FC 

Tetragonolobus agglutinin IHC, IF 

Sodium glucose cotransporter (SGLT2) IH, IF, WB, qPCR 

Aminopeptidase A IHC, IF 
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Table 2.3: Functional markers for phenotypic characterization of renal 
epithelial cells. 

Marker Function 

Albumin uptake Endocytosis through the apical 

membrane 

Gamma Glutamyl Tranferasa-1 (GGT) Brush border enzyme 

Alkaline Phosphatase Brush border enzyme 

N-acetyl-beta-o-glucosaminidase Lysosomal enzyme 

Glutamine synthetase  Cytosolic enzyme 

Hormone-induced cAMP production cAMP production dependent on 

expression of hormone receptor 

Glucose uptake Sodium -dependent glucose 

Sodium uptake Cotransported with glucose, amino 

acids, bicarbonate. 
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2.2 OBJECTIVES 

This chapter will focus on:  

1. Development of methods and procedures for the isolation and cell 

culture of human primary proximal tubular cells (hPTPC). 

2. Phenotypic characterization of cells obtained from the primary culture 

at the level of gene expression, protein markers enzymatic activity in 

living cells and transporters. 

3. Development and validation of a new nephrotoxicity model using 

cisplatin for the study of cell viability and expression of specific markers 

implied in the bioactivation of this molecule.  

4. Screening of molecules potentially repaired of the damage produced by 

the cisplatin. 

5. Development of the protocol for differentiated proximal tubular cell 

cultures in a device that allows us the application of Shear Stress (SS).  

6. Determination of the SS effect in the sensibility to cisplatin in hPTPC. 

 

 

  



Isolation and characterization of hPTPC 

79 
 

2.3 MATERIAL AND METHODS 

2.3.1 Source of renal tissue 

The human primary proximal tubule cells (hPTPC) used in this Thesis 

were obtained from discarded healthy human renal tissue from surgical 

procedures carried out at Hospital Clínico Universitario Lozano Blesa, 

Zaragoza, Spain. Informed written consent was obtained from all patients. 

2.3.2 Cell culture medium 

hPTPC were cultured in DMEM-HAM’s F12 (Lonza, BE12-719F) medium 

containing 2% (v/v) FCS (Sigma, F7524), 100 units/mL penicillin 

(BioWhittaker, 17-745H), 100 units/mL streptomycin (BioWhittaker, 17-

745H), 0.25 μg/mL amphotericin (BioWhittaker, 17-745H), 5 μg/ml insulin 

(Sigma, I6634), 5 μg/ml transferrin (Sigma, T8027), 10 ng/mL selenium 

(Sigma S5261), 5x10-8 M dexamethasone (Sigma, D8893), 10-9 M tri-

iodothyronine (T3) (Sigma, T5516) and 10 ng/ml EGF (Sigma, E4127). The 

medium and its components were filtered using a sterilized 0.22 μm filter 

(Fisher Sci, 10268951). From here on, this medium will be named as MCR 

medium (acronyms of Renal Cell Medium in Spanish).  

2.3.3 Collagen coating of culture vessel surface  

Cell culture plates were coated with Collagen I from calf skin (Sigma, 

C8919). The stock solution of Collagen I was diluted 10 times in cold MiliQ 

H20, and the resulting solution was pipetted in the cell culture plate using 

between 10-12 μg/cm2 of this coating as a surface coverage. The cell 

culture plates were stored at 4ºC overnight, to get a correct 

polymerization and after that, they were washed 2 times with MiliQ H2O. 

The cell culture plates coated with Collagen I can be maintained at 4 ºC for 

maximum 2 weeks in the fridge. 
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2.3.4 Protocol used in human renal cell isolation. 

2.3.4.1 Preparation of materials and solutions used for the isolation of 

renal cells 

1. Prepare the media (see Table 2.4) that we are going to use and put them 

to oxygenate on ice for 30 minutes before beginning the protocol. 2. Once 

in the flow hood, filter all media prepared with the aid of a 20 mL syringe 

and a sterile 0.22 μm filter. 3.Turn on the centrifuge and set the 

temperature to 4 ° C. 4. Turn on the bath water and set the temperature 

to 37 ° C. 5. Sterilize the surgical material (scissor and forceps) with a 

sterilizer with quartz beads. 

Table 2.4:  Solutions used in the isolation protocol 

 

EBSS + collagenase 0.025% 

 

 

 

 

 

Reagent Stock Working 

concentration 

Volume 

needed 

EBSS medium 

(Lonza, BE02-027F) 

Liquid  25 mL 

Collagenase 

(Sigma, C2674) 

Liquid 50 mg/mL 0.025% 121,4 mL 
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EBSS + Bovine Serum albumin (BSA) 0.2% 

 

 

 

 

 

 

 

2.3.4.2 Isolation protocol of proximal tubular cells 

1. When the kidney sample arrived at the cell culture facility, it was 

weighed on a scale, placed in a shallow Petri dish into the flow hood and 

then, the capsule and fatty matter were discarded. 

2.  After that, sample weight was recorded to compare later the number 

of cells obtained versus the sample size processed.  

3. To process the sample, cortical areas were dissected and minced with 

scissors and forceps into pieces of approximately 1 mm3. 

4.  The resultant fragmented tissue was transferred to a falcon tube 

containing ice-cold EBSS medium and centrifuged at 4ºC, 400 g during 8 

minutes to remove waste material. 

5.  After the centrifugation, the protocol continued with the resulting 

pellet, which was placed in a small bottle in the presence of EBSS medium 

with 0.025% collagenase. This bottle was incubated at 37ºC in a water bath 

for 10 minutes with continuous agitation and oxygenation, after which the 

tissue fragments are allowed to sediment. The supernatant obtained 

contains the resulting cells after the combination of enzymatic and 

Reagent Stock Working 

concentration 

Volume 

needed 

EBSS medium 

(Lonza, BE02-027F) 

Liquid  40 mL 

BSA 

(Lonza, A7906) 

Dry powder 0.2% 0.8 g 
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mechanical dissociation, and it was centrifuged in a 50-mL falcon tube at 

1000g for 10 minutes and subsequently, the pellet was resuspended and 

maintained in ice-cold EBSS medium and 0.2% of BSA until the purification 

step (7). 

6.  The steps explained in points 4 and 5 were repeated four times, in 

order to obtain a satisfactory isolation protocol with a large percentage of 

starting material. 

7.  The medium containing the BSA was sieved through a 100-μm cell 

strainer into a 50-mL centrifuge tube. 

8.  Then, the resulting filtrate was sieved through a 40-μm cell strainer 

into another 50-mL falcon tube. The size of 40 μm cell strainer removed 

tubular fragment and glomeruli respectively.  

9. The medium that passed the 40 μm cell strainer (CF fraction) and the 

material retained in this cell strainer (C40 fraction) was used to generate 

the primary cultures. Cells in CF and C40 fraction were pelleted at 1000 g 

for 5 minutes. 

10.  After that, the cells of CF fraction were resuspended in 20 mL of PBS 

and cells of C40 fraction were resuspended in 5 mL of PBS (without 

Ca2+/Mg2+) (Lonza, BE17-516F) and 1 mL of each fraction was used to 

determine the efficacy of the isolation protocol through the tubules 

present in the sample (tubulocrite). Then, the cells from CF and C40 were 

centrifuged at 800 g for 5 minutes to remove red blood cells present in the 

sample. This step was repeated twice (The volume to determine the 

tubulocrite was drawn once). 

11.  In the final step, the pellet was resuspended in 5 mL of MCR medium. 

1 mL of CF and C40 fraction was prepared for RNA extraction, then used 

to perform PCRs. The remaining volume (4 mL) in each fraction was seeded 

in 3 wells of a 6 wells plate (TPP, 92006) and each well was filled with a 
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total volume of 2 mL (MCR containing the cells and additional MCR). The 

cells were transferred to an incubator at 37°C, 5% (v/v) CO2 (Figure 2.2). 

12.  24 hours after the seeding the hPTPC cells were washed 2 times with 

PBS and then the MCR medium was renewed. After that, the cell medium 

was refreshed every 2-3 days till reach the confluence. 

 

Figure 2.2: Schematic diagram of the different steps performed to obtain the 
hPTPC isolation. 

2.3.5 Cell culture 

2.3.5.1 Passage of hPTPC 

Cultures of hPTPC were obtained as described previously. In passage 1, the 

cells were cultured on a 6 wells plate till reach 80% of confluence. Then, 

cells were subcultured: first, cells are washed with PBS (without Ca2+/Mg2+) 

and then, incubated with 0,25% trypsin (Lonza, BE02-007E) at 37ºC in a 5% 

CO2 incubator until the cells start to detached. After that, cells were 

resuspended in MCR medium to stop the effect of the trypsin, centrifuged 
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at 66g for 5 minutes and counted using a Neubauer camera. One mL of cell 

suspension was taken for RNA preparation, and 4000 cells/cm2 were 

seeded. The growth medium was changed twice a week until confluence 

was reached. Doubling times for each passage were calculated and are 

discussed later in this chapter. 

2.3.5.2 Cell freezing and thawing 

Leftover cells after each trypsinization was frozen at a cell 

concentration of 0.5x106 cells/mL in DMEM (Lonza, BE12-604F) + 20% FBS 

(Sigma, F7524), + 10% DMSO (Sigma, 472301). Freezing was a slow process 

keeping the cells in a cryocooler for 4 hours, and after that, cells were 

transferred liquid nitrogen until their use. 

Thaw process was very quick. The cryovial with cells was submerged in 

a bath water at 37ºC, once thawed, cells were resuspended in 5 mL MCR 

medium, centrifuged at 66g for 5 minutes and seeded at the desired 

concentration. 

2.3.6 Analysis of phenotypic markers expression by Reverse 

transcriptase-polymerase chain reaction (RT-PCR) 

2.3.6.1 RNA isolation 

RNA isolation was performed with 1mL of cell suspension (unknown 

cell number) in the isolation protocol and 25.000 cells in culture from 

passages 1-4, with the commercial kit Total RNA Purification (Norgen 

Biotek, 37500) according to manufacturer’s instructions. A sample human 

kidney tissue was used as a control. The RNA isolation for the control was 

performed using TriZol reagent (Invitrogen, 15596-026) according to 

manufacturer’s instructions. Isolated RNA was quantified using a 

Nanodrop spectrophotometer (Thermo Sci., Nanodrop 2000) and its 
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integrity was tested using a 1% agarose gel with TBE buffer (Fisher Sci., 

15881-044).  The isolated RNA was kept at -80ºC to avoid degradation. 

2.3.6.2 cDNA synthesis 

The isolated RNA was retrotranscribed into cDNA through the 

commercial kit High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, 4387406) according to manufacturer’s instructions. 

2.3.6.3 RT-PCR 

Twelve pairs of primers were combined in a multiplex PCR (Table 2.5). 

Table 2.5: Multiplex primers. 

 

 

Mix Primer Sequence Amplicon Location 

1 

Megalin 

PF:CATCCCAAGCGAATGGATCTG 

  PR:CAGTACAATCCACATCGCCATC 
185 bp TP 

KSP 

   PR:TCCCATGCCTACCTCACCTT 

   PF:TTGCAGCGACACACGATCA 
125 bp 

Kidney-specific 

cadherin 

DPPIV 

 PF:TACTACTGGCTGGGTTGGAAG 

 PR:TGTCTGTAACCTTCTTCATTGCTG 
102 bp TP 

2 

APN 

 PF:GAACGATCTCTTCAGCACATCAG 

   PR:GAAGAGGGTGTTGTTCAGCG 
232 bp TP 

GADPH 

   PF:TTGACGCTGGGGCTGGCATT 

PR:GTGCTCTTGCTGGGGCTGGT 
157 bp 

Endogenous 

control 

GGT1 

  PF:TGAGCCCAGAAGTGAGAGCAGT 

  PR:ATGTCCACCAGCTCAGAGAGGG 
185 bp TP 
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RT-PCR was set up using the commercial kit DSF-Taq (Bioron, 101005). 

The final volume of the reaction mixture was 20 µL, and 1 µL of cDNA was 

added (Table 2.6). 

Table 2.6: Reagents and working concentration for mixes of PCR 

 

3 

THP 

PF:GAGTGTCACCTGGCGTACTG 

PR:CATGGGTTTCATTCCTCGTCAAC 
358 bp TAL 

αSMA 

PF:CAGGCATGGATGGCATCAATCA 

PR:ACTCTAGCTGTGAAGTCAGTGTC 
172 bp Myofibroblast 

SGLT-2 

PF:ACGCCTGATTCCCGAGTTCT 

PR:AGAACAGCACAATGGCGAAGT 
110 bp TP 

4 

AQP-2 

PF: ATCACGCCAGCAGACATCC 

PR:AGCACGTAGTTGTAGAGGAGG 
350 bp CD 

NKCC2 

PF:GGGGAGTCATGCTCTTCATTCGC 

 PR:CCACGAACAAACCCGTTAGTTG 
149 bp TAL 

NCC 

PF: CACCAAGAGGTTTGAGGACATG 

PR: GACAGTGGCCTCATGCCTTGAA 
70 bp DT 

Reagent (concentration) Working concentration 

Buffer incomplete 10x 1x 

Mg2+ 4 mM 0.16 mM 

dNTP 10 mM 200 µM 

Primers 4 mM 0.5 µM 

Taq polymerase 5*10-4 U 
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RT-PCR cycles were as follows (Table 2.7):  

Table 2.7: PCR procedure 

 

The PCR products were separated on a 2% agarose gel with TBE buffer 

and stained with ethidium bromide (Sigma, E7637). The gels were 

visualized using a camera GBOX (Sygene) with an ultraviolet light 

integrated. 

2.3.7 Analysis of phenotypic markers by Immunofluorescence 

Cells were plated at a concentration of 8.000 cells/cm2 on glass 

coverslips (VWR, ecn 631-1577) covered with Collagen I from calf skin. 

Confluent monolayers were fixed with 4% paraformaldehyde for 10 

minutes and then washed with PBS [30]. The fixed cells were 

permeabilized with 0.2% Triton-X 100 (Sigma, X100), incubated for 10 

minutes and washed with PBS. Afterward, cells were incubated for 10 

minutes in a quenching solution, using 50 mM NH4Cl, and then washed 

again. The blocking solution, PBS, 0.1% Tween 20 (Sigma, P5927), 0.1 % 

BSA and 10 % Goat Serum (Sigma, G6767), was incubated for 30 minutes 

at room temperature (RT) and then, cells were incubated with primary 

Cycle repetitions Temperature Time Process 

1x 94ºC 2’ Initialization step 

40x 94ºC 45’’ Denaturation step 

40x 62ºC 30’’ Annealing step 

40x 72ºC 1.30’ Elongation step 

1x 74ºC 5’ Final elongation: 

1x 4ºC ∞ Final hold 

https://en.wikipedia.org/wiki/Denaturation_(biochemistry)#Nucleic_acid_denaturation
https://en.wikipedia.org/wiki/Annealing_(biology)
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antibodies in blocking solution overnight at 4°C. The primary antibodies 

used were ZO-1 (1:40; Santa Cruz Biotechnology, SC-10804) and acetylated 

tubulin (1:100, Sigma, T6793). Cells were incubated with secondary anti-

mouse Alexa 555 (1:1000; Invitrogen, A31621) or anti-rabbit antibodies, 

Alexa 488 (1:100; Invitrogen, A-11008)) for 1 hour in blocking solution 

buffer at room temperature. Coverslips were mounted in Vectashield Hard 

Set TM Mounting Medium (VectorLabs, H-1400) with DAPI (1:1000). 

Coverslips were examined under a fluorescence microscope (Olympus 

IX81). Control cells without primary antibody were used to detect the 

unspecific binding of the secondary antibody. 

2.3.8 Analysis of phenotypic markers by Immunocytochemistry 

8.000 cells/cm2 were plated on glass coverslips coated with type I 

Collagen from calf skin. Confluent monolayers were fixed with 4% 

paraformaldehyde for 10 minutes at RT  and permeabilized with 0.1% 

Triton X100 for 10 minutes [31]. After the permeabilization step, cells were 

washed with PBS and incubated with 3% H2O2 (quenching solution for 

endogenous peroxidase activity) for 5 minutes. Non-specific binding sites 

were blocked by incubation with Vectastain Elite ABC kit (VectorLabs, PK-

6100) according to manufacturer’s instructions and finally, cells were 

incubated overnight at 4°C with GGT1 (1:50), Megalin (1:50; SantaCruz 

Biotechnology, SC-47025), Calbindin 28 (1:50, Sigma C9848) and α-SMA 

(1:50, Sigma, A5228) primary antibodies. Afterward, coverslips were 

washed and then exposed to their corresponding biotinylated secondary 

antibodies (1:200) for 1 hour at RT. The protocol continued with the 

incubation of the reagents from Vectastain Elite ABC kit (VectorLabs, 

PK6100) to create the Avidin/Biotinylated Complex, followed by the 

incubation with Sigmafast DAB kit (Sigma, D0246), the precipitated 
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substrate system to peroxidase, till the cells changed the color. Cells were 

counterstained with hematoxylin-eosin (Vector, H3404), mounted in 

Vectashield Hard Set TM Mounting Medium and examined in an inverted 

microscopy (Olympus IX81). Unspecific binding and residual background 

peroxidase activity could be detected in control cells processed without 

the primary antibody. 

2.3.9 Cytochemical demonstration of GGT1 activity  

2.3.9.1 Gamma Glutamyl Transpeptidase (GGT1) cytochemical staining 

This assay let us visualize the GGT activity obtained through the 

reaction between a diazonium salt and the naphthylamine released by 

hydrolysis of a syntactic GGT substrate, γ-glutamyl-4-methoxy-2-

naphthylamide (GMNA). 

Cells were fixed for 10 min with ice-cold methanol (Fisher Sci. 

M/3950/21) and ice-cold acetone (Sigma, 90872) (1:1) and washed with 

0.85% NaCl (Saline solution). Then, cells were incubated with the working 

solution (Table 2.8) for 20 minutes in the dark and again, they were 

washed with saline solution. To stop the reaction, cells were incubated 

with a 0.1 M solution of cupric sulfate (Sigma, C1297) for 2 min and then, 

washed with a saline solution [32]. The pictures were taken using an 

inverted microscope (Olympus IX81). 
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Table 2.8: Working substrate solution for a volume of 5 mL 

*The substrate solution was filtered through a Whatman Nº. 1 filter paper just 
before use to remove any insoluble aggregates of the substrate. 

 

2.3.10 Analysis of phenotypic markers by flow cytometry 

Confluent monolayers were washed twice with PBS. For detachment, cells 

were incubated with 0.25% trypsin until they were completely detached. 

Aliquots with a cell suspension of 5x105 cells were resuspended in 50 µL 

PBS and incubated for 1 hour at RT with 50 µL of labeled antibodies 

CD10+(Immunostep, 10A-100T), CD13+(Acris, SM1856FT), CD26+ (Acris, 

SM2264RT [33]. Cells were pelleted by centrifugation at 262g for 10 

minutes and resuspended in 500 µL PBS twice. The resulting pellet was 

resuspended in 250 µL PBS and incubated with propidium iodide to check 

the cell viability. The specificity of these antibodies was shown by isotype 

labeling. The labeled cells were analyzed using a flow cytometer (BD, 

FACSAria) [34]. Some experiments were performed using the triple 

positive population of sorted cells by FACS. The separated cells were 

Substrate solutions* Working concentration Volume 

GMNA solution 2.5 mg/mL 

(SC, 215216) 

0,25 mM 0,25 mL 

Tris buffer, pH 7.4 0.1 M 1,25 mL 

NaCl (Saline solution) 0.85% 3,5 mL 

Glycylglycine (Sigma, G3915) 3,78 mM 2,5 mg 

Fast blue salt hemi zin chloride 

(Sigma, F3378) 

1,20 mM 2,5 mg 
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seeded, and 7 days after the seeding, they were analyzed by multiplex-

PCR. All the performed flow cytometry analysis included negative controls 

to quantify and subtract the autofluorescence profile.  

2.3.11 Determination of Enzyme activity in live cultured cells. 

The enzyme activity of GGT1 and DPPIV were analyzed by measuring 

the conversion of a specific enzyme substrate: GGpN and GPpN 

respectively. The reaction of these enzymes consisted in the enzymatic 

conversion of the substrate gamma glutamyl-p-nitroanilide (Sigma, 

G6133) and glycyl glycine, a glutamyl acceptor and Gly-pro-p-nitroanilide 

(Sigma, G0513) in the presence of the specific enzyme GGT1 and DDPIV 

respectively. The liberated reaction product, p-nitroaniline, is a yellow-

colored compound whose rate of formation is determined optically as the 

measure of the gamma-glutamyl transferase (GGT1) and dipeptidyl 

transferase IV (DPPIV) activity (Figure 2.3). 

Figure 2.3:  GGpN and GPpN reaction 

To determine the activity of gamma-glutamyltransferase 1 (GGT1, 

CD224) and dipeptidyl peptidase IV (DPPIV, CD26) as marker enzymes for 

the proximal tubule, 8000 cells/ cm2 were grown in 96 wells plate (TPP, 

92096). When confluence was reached, the cells were rinsed with HBSS 

buffer and the substrate solutions were prepared: 
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1. The GGT1 activity was assessed using 2 mM y-glutamyl-p-

nitroanilide and 50 mM glycylglycine as a substrate, in 1 mL PBS. This 

preparation was incubated during 1h at 37ºC in a plate reader [35]. 

2. The activity of DPPIV was determined using 1 mM Gly-Pro-p-

nitroanilide as a substrate in 1 mL PBS. This preparation was incubated 

during 1h at 37ºC in a plate reader [36]. 

The resulting product, p-nitroaniline, in both reactions is directly 

proportional to the enzyme presents in the sample. P-nitroaniline 

concentration was measured at 410 nm using a microplate reader (BioTek, 

Synergy HT) and the measures were taken every 20 minutes during an 

hour. The result was represented as absorbance at 410 nm. To determine 

the activity, a standard curve with 3 known concentrations for p-

nitroaniline (Sigma, 185310) was performed, and the results were 

expressed as mmol p-nitroaniline/min/cm2 or mmol p-nitroaniline/h/cm2 

(Figure 2.4). 

 

Figure 2.4: . p-nitroaniline calibration curve. 



Isolation and characterization of hPTPC 

93 
 

2.3.12 Transporter Assays 

2.3.12.1 How do the fluorescence-based experiments work? 

To evaluate xenobiotic handling in in vitro systems, fluorescent based 

functional assays are performed. These assays are based on the use of 

fluorescent probes that can pass the plasma membrane by diffusion or by 

using transporters. Usually, these fluorescent probes are substrates for 

certain transporters or precursors [37-39], so when the substrate comes 

in, the fluorescence in the cells can be quantified. At the same time, these 

substrates can be combined with apical/basolateral transporter inhibitors 

and consequently, the resulting decreasing or increasing of intracellular 

fluorescence can be measured and correlated to transport activity (Figure 

2.5). The transporters activity in hPTPC were investigated analyzing the 

presence of two important basolateral transporters, OAT1 and OCT2 and 

three apical transporters, BCRP, MRP4 and P-gp. To this end, cells were 

exposed to ASP+ (influx basolateral OCT2 transporter), calcein-AM (influx 

cell membrane and efflux apical BCRP, MRP, P-gp transporters) and 

fluorescein (influx basolateral OAT1 transporter and efflux apical 

MRP/BCRP transporters), in the presence or absence of model inhibitors  

for OAT1 (Probenecid), BCRP (KO143), P-gp (PSC833) and MRPs (MK571). 
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Figure 2.5: Graphic presentation of substrate handling and transport inhibition. 

2.3.12.2 Cell culture 

hPTPC were seeded at a density of 8000 cells per cm2 in 96 wells plates 

and cultured in MCR medium at 37 °C. in a 5% CO2 atmosphere during 7 

days until confluence was reached. 

2.3.12.3 Organic anion transporter 1 (OAT1) 

Confluent cells were washed twice with HBSS buffer (Lonza, BE10-

527F). To determine the uptake by the OAT1 transporter [40], cells were 

incubated in a concentration gradient of Fluorescein 0-100 μM (Sigma, 

F6377) during 40 minutes. To evaluate the inhibition of the transporter, 

some wells with cells were pre-incubated using 100 μM probenecid 
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(Sigma, P8761) during 15 minutes, and then, the cells were incubated with 

the inhibitor and fluorescein (6 μM), during 40 minutes at 37ºC. After the 

incubation time in presence or absence of inhibitors, cells were washed 

with HBSS buffer, lysed with 0.1 M NaOH and shaken for 20 minutes. The 

fluorescence was measured in a plate reader at 485 nm of excitation and 

535 nm of emission.  

2.3.12.4 BCRP 

Fluorescein is a known fluorescent substrate of ABC transporter family 

[19]. This substrate can enter into the cell through OAT1, and the exit could 

be possible by MRP and BCRP. Here, we evaluated BCRP transporter. Cells 

were washed twice with HBSS buffer and pre-incubated with 15 μM KO143 

(Sigma, K2144), a specific inhibitor of BCRP for 15 minutes. After the 

incubation with the inhibitor, cells were exposed to 5 μM of fluorescein in 

the absence and presence of the inhibitor for 40 minutes at 37ºC. Before 

reading the results, the cells were washed with HBSS and lysed with 0.1 M 

NaOH. The fluorescence was measured in a plate reader at 485 nm of 

excitation and 535 nm of emission.  

2.3.12.5 P-glycoprotein transporter (P-gp) and Multidrug resistance 

protein (MRP) 

The activity of the ABC efflux transporters P-gp and MRP was 

performed by measuring the accumulation of the typical cell viability 

substrate calcein-AM (Sigma, 17783)[41]. Cells were washed twice with 

HBSS buffer and incubated with 1.25 μM calcein-AM in HBSS buffer, in the 

presence or absence of the inhibitors PSC-833 (6 μM; Tocris, 121584-18-

7) or MK571 (50 μM; Tocris, 115104-28-4) at 37ºC for 40 minutes. After 

the incubation, cells were washed with HBSS buffer and lysed with a 

solution containing 1% Triton X100. The lysate was kept in agitation for 20 
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minutes. The resulting fluorescence was measured in a plate reader at 488 

nm of excitation and 518 nm of emission.  

2.3.12.6 Organic Cation Transporter 2 (OCT2) 

The activity of the renal OCT2 transporter was investigated in hPTPC by 

using a method adapted from Brown et al. [2]. Cells were washed twice 

with HBSS buffer and then, they were incubated in solutions containing a 

concentration gradient between 0-100 μM for the fluorescent OCT2 

substrate, ASP+ (4-(4-(dimethylamino)styryl)- N-methylpyridinium 

iodide); Sigma, D3418), in HBBS at 37ªC during 30 minutes. After the 

incubation, the cells were washed with HBSS and the accumulation of 

substrate by hPTPC was measured using a plated reader by the analysis of 

fluorescence intensity (excitation 450 nm, emission 642 nm). 

2.3.13 Statistics 

Differences between groups were considered to be statistically 

significant when p<0.05 using two-tailed Student’s t-test in Excel. 
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2.4 RESULTS 

2.4.1 Protocol of hPTPC isolation 

Forming colonies of attached hPTPC could not be identified easily 24 

hours after the seeding, as a consequence of the waste material 

(erythrocytes, cells no attached) present in the well plate. By 48 hours, 

small cellular colonies were identified (Figure 2.6). Small colonies were 

constituted approximately by 20 cells, and these cells presented the 

typical cuboidal epithelial shapes with large, spherical and central nuclei. 

Figure 2.6: a) Representation of the status of the cell culture 24 hours after the 
seeding, with abundant waste material. On the left bottom side, can be identified 
some single cells.  b) The picture shows a small cellular colony of hPTPC 48 hours 
after the seeding. 

 

The efficiency of isolation was calculated as follow: 

Tubulocrite % = mg Tubules / resuspended volume x 100 

The result of tubulocrite percentage for CF fraction was 1.5 % (+/- 1.18 

%) and for C40 fraction was 1.6 % (+/-3.17 %). These results were 
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expressed as the average of the 36 samples processed over the last three 

years +/- SD. 

2.4.2 Evolution of hPTPC morphology and doubling time through 

subcultivation 

All kidney samples from nephrectomies processed to isolate proximal 

tubular cells contained viable single cells with the ability to proliferate into 

cell colonies and form a confluent cell monolayer. 

Small colonies formed two days after isolation. To observe a confluent 

cell monolayer, cells needed to grow an average of approximately 7 days 

in each cell passage. Primary cultures showed the classic cobblestone 

appearance of epithelial cells in passage 1, 2 and 3 and a heterogeneous 

morphology in passage 4 (Figure 2.7 and 2.8).  

Figure 2.7: Evolution of morphology in hPTPC cultured from fraction CF. 
Representative phase contrast image of primary cells in passage 1 (a), passage 2 
(b), passage 3 (c) and passage 4 (d). Cells maintain epithelial morphology and form 
a characteristic monolayer till passage 3. 
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Figure 2.8: Evolution of morphology in hPTPC cultured from fraction C40. 
Representative phase contrast image of primary cells in passage 1 (a), passage 2 
(b), passage 3 (c) and passage 4 (d). Cells maintain epithelial morphology and form 
a characteristic monolayer till passage 3. 

We observed an in vitro lifespan of approximately one month per cell 

passage, and the cells lost their proliferative activity at passage 4. We 

could not observe any morphological differences between the cells in CF 

and C40 fraction by phase contrast microscopy. The doubling time was 

determined in each fraction (Figure 2.9), as well as the number of collected 

cells per fraction (Figure 2.10). 
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Figure 2.9: Doubling time (hours). Graph comparing doubling times between CF 
and C40 fraction. 7 days after the seeding, cells were harvested and counted via 
Neubauer camera. Doubling time was calculated as: number of cells obtained 
after cell passage/ number of cells seeded= 2number of divisions. Data are shown 
as mean ± S.D, n=3 

Figure 2.10: Cells number per area surface. Graph comparing the number of 
harvested cells per square centimeter in each passage. Data are shown as mean 
+/- SD, n=3.  
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2.4.3 Transcriptional expression of phenotypic markers in hPTPC 

The multiplex PCR was designed to overcome a potential problem with 

the use of microfluidic devices, the limited number of harvested cells. A 

multiplex PCR offers the possibility to amplify several different DNA 

sequences simultaneously from the same sample. In this case, 12 reactions 

were combined in 4 mixes of 3 targets each, one included an endogenous 

control. The selected primers were specific for PT, for other segments of 

the nephron and also for dedifferentiation.  

The purity of the isolated hPTPC was evaluated by using multiplex RT-

PCR. Single cells from the protocol of isolation were analyzed at passage 

0, with the goal to determine the initial purity of the fractions (Figure 

2.11). The cultured cells used for the experiments were analyzed from 

passage 1-4 (Figure 2.12) to determine the phenotypic stability of the cells 

over time. 

In agreement to their in vivo expression, the RT-PCR results showed 

that hPTPC cells were positive for Megalin, KSP-Cad, DPPIV, SGLT-2, APN 

and GGT1, all of them specific marker for PT at passages 1, 2, 3 and 4, 

indicating that these cells are phenotypically stable at least over four 

passages. In addition, over four passages, NCC and NKCC2 expression was 

persistent, indicating cell contamination from others segments from the 

nephron. However, the expression of THP and AQP2 was lost from passage 

2. RNA from whole human kidney was positive for all markers tested. 

There were not observed differences in the expression of markers 

between the CF and C40 fraction.  
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Figure 2.11: Multiplex RT-PCR. Analysis of initial purity comparing CF and C40 
fraction. There was not different in the expression of the markers between 
fractions. The red box showed primer dimer. 

 

Figure 2.12: Multiplex RT-PCR. Expression of the different markers analyzed from 
passage 1 -4. The positive control was the RNA from the whole kidney. The 
principal markers from PT cells were maintained from P1 to P4. However, the 
expression of NCC and NKCC2 was also maintained over cell passages, indicating 
this is not a 100% pure culture for PT cells. The red box showed the primer dimers.  
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The Megalin marker supposed a problem in the multiplex RT-PCR 

analysis because it was not positive consistently. We think this loss of 

expression may be due to the small starting amount of cDNA from passage 

1-4 used to perform the RT-PCR, because analyzing this mix separately, 

megalin was positive (Figure 2.13) and with another type of techniques, as 

an IF, it was also positive. 

Figure 2.13: Megalin expression by RT-PCR. The cDNA analyzed in the Figure 2.12 
(P 1-4) by multiplex PCR was also analyzed for Megalin as a single primers pair in 
the RT-PCR reaction. The hypothesis of the small starting amount of cDNA to 
perform the RT was confirmed with this result since in the multiplex RT-PCR 
Megalin was not detected.  

2.4.4 Immunofluorescence analysis by using epithelial markers 

The immunofluorescence of the hPTPC was performed 7 days after the 

seeding when cells reached the confluence to demonstrate the epithelial 

origin of these cells by using the antibody ZO-1 and acetylated tubulin. The 

immunofluorescences were performed until passage 3.  

The analysis using ZO-1 was performed to confirm the epithelial origin 

of cells, emphasizing their cell polarity [42]. The expression of ZO-1 

showed a linear distribution of the tight junction protein (Figure 2.14a). 

We also observed different morphologies present in the cell culture, 

although ZO-1 was expressed in all cells. 
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We used acetylated tubulin to detect primary cilia. These organelles 

are present in epithelial cells, and they are fundamentals for fluid 

mechanosensing and regulation of tubular morphology [43]. When we 

examined the expression of acetylated tubulin, we detected the typical 

structure of this cell type: the primary cilia (Figure 2.14b). 

The culture of hPTPC revealed a well-defined confluent monolayer with 

the positive expression of the ZO-1 protein and acetylated tubulin, both 

specific markers of epithelial cells.  

Figure 2.14: Proximal tubular epithelial origin of hPTPC. The hPTPC seeded on 
coverslips coated with collagen I were analyzed by IF, 7 days after the seeding. 
The analyzed cells belonged to CF fraction of a cell culture in passage 2. a) 
Expression of epithelial marker ZO-1 [44] confirmed the formation of tight 
junctions. b) The analysis of acetylated tubulin showed the expression of 
primary cilia (brighter dots in yellow). 

2.4.5 Immunocytochemistry characterization 

Markers for proximal tubule (GGT1 and Megalin), distal tubule (CB-28) 

and Myofibroblast (αSMA) [45] were tested for the first three passages in 

both fractions. Immunocytochemistry showed different levels of 

expression of the specific stains between the cells in all cell passages. No 
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differences were found in marker expression between the fractions CF and 

C40. 

Gamma-glutamyl transpeptidase (GGT1) is a glycoprotein located in 

the brush border of proximal tubular cells. GGT1 cleaves gamma-glutamyl 

peptide bonds in glutathione and other peptides and transfers the 

gamma-glutamyl group to acceptors [46]. This glycoprotein was studied 

with different techniques to show its expression for 2 reasons: the first 

one is because in the kidney it is specific for PT cells. The second reason is 

for the role played in nephrotoxicity area (explained in chapter 3). The 

result obtained for this marker in hPTPC confirmed a high expression. 

Approximately, the 80-90% of the cells showed positive staining for this 

marker (Figure 2.15a). 

Megalin is a multiligand receptor belonging to the low-density 

lipoprotein receptor family gene. It is expressed and localized in the brush 

border and the endocytic pathway of the renal proximal tubule 

epithelium. Megalin plays a specific key role in the proximal tubular uptake 

of glomerular-filtered albumin and other low-molecular-weight-protein 

[47, 48]. The immunocytochemistry using this receptor showed that 

between the 80-90% of the hPTPC had a positive expression (Figure 2.15b). 

Calbindin-28 (CB28) is an intracellular calcium-binding protein. In the 

kidney, this protein is exclusively localized in the distal tubule and the 

proximal part of the collecting ducts [49]. The expression of Calbindin 28 

in hPTPC was slightly positive only in some cells, representing a 5% of 

positive staining in the cell culture. This result showed that the human 

primary cell culture is heterogeneous (Figure 2.15c). 

The alpha smooth muscle actin (αSMA) is a typical marker of 

myofibroblasts [50]. The expression of this marker was confirmed over the 
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cell passages, indicating some degree of epithelial–mesenchymal 

transition [51] has taken place (Figure 2.15d). 

It is very important to highlight that the level of expression of CB-28 

and αSMA was weak, compared with the higher expression of GGT and 

Megalin.  
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Figure 2.15: Representative immunocytochemical images. a) hPTPC, CF fraction, 
cell passage 3 stained with GGT1. The expression of the brush border enzyme 
GGT1 was highly positive compared with the control. b) hPTPC C40 fraction cell 
passage 3 stained with Megalin. The expression of this marker was also very high. 
The positive expression of GGT1 and Megalin confirmed the proximal tubular 
origin of the hPTPC. c) CB-28 was used to stain the hPTPC CF fraction cell passage 
2. The expression of this marker was weakly positive, compared with the control. 
This result indicated contamination of distal cells in our human primary cell 
culture. d) The marker αSMA is a specific marker of Myofibroblast.  Its positive 
expression in hPTPC CF fraction cell passage 2 confirmed a possible EMT. 
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2.4.5.1 Cytochemical demonstration of GGT1 activity 

The presence of proximal tubular brush border enzyme GGT1 in hPTPC 

was confirmed using an enzyme cytochemistry assay previously described 

by Rutenburg et al. [1]. GMNA cytochemical staining is a simultaneous 

coupling azo dye method for the histochemical demonstration of γ-

glutamyl transpeptidase activity using the substrate GMNA. The reaction 

caused the precipitation of an insoluble, reddish-brown dye, at cell sites 

containing enzyme activity. The intensity of the staining was variable, with 

areas of intense reddish-brown staining next to areas of less intensity, or 

absent staining. The positive reddish brown staining of hPTPC can be 

observed in Figure 2.16. 

Figure 2.16: Light microscopy of GGT1 staining of hPTPC. 

2.4.6 Flow cytometry analysis 

The flow cytometry was used to get a pure population of PT cells. By 

using this technique, we quantified the relative expression of three 

specific markers expressed in the brush border of the proximal tubule 

cells: CD13+ (Aminopeptidase N, APN), CD10+ (Acute lymphocytic leukemia 

antigen, CALLA) and CD26+ (Dipeptidyl peptidase IV, DPPIV). We decided 
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to perform the flow cytometry analysis using these antibodies previously 

described in the literature where it was reported that cells double positive 

for CD10/CD13 constitute a pure, functional and stable proximal tubular 

epithelial cell population [28, 33, 52], and exactly the same happened for 

CD26+ [52]. After the gating, the average percentage of CD13+, CD26+, 

CD10+, the double positive for CD13/CD26 and the triple positive for the 

three markers were calculated and represented as mean ± SD (Table 2.9) 

These results confirmed the expression and the presence in the cell culture 

of these typical proximal tubule markers (Figure 2.17).  

Figure 2.17: a) Flow cytometry analysis revealed about a 79.8% double positive 
cell population labeled with antibodies against CD26 (FITC) and CD13 (PE). b) The 
double positive cell population was also analyzed for CD10 (APC) obtaining a 
61.2% of the triple positive cell population. 
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Table 2.9: Cells markers analyzed by flow cytometry 

 

 

 

 

Positive triple cells were separated by FACS and seeded and 7 days 

after the seeding, a multiplex RT-PCR was performed. The markers not 

specific of PT cells remained positive (Figure 2.18). So, the goal to obtain a 

100% pure population of PT cells was not reached with this method. 

Figure 2.18: Analysis of markers by multiplex PCR. The sorted cells double positive 
for CD13/CD26 were seeded and 7 days after the seeding, a multiplex PCR was 
performed.  No differences were observed compared with results of multiplex 
PCR where the cells were not previously sorted. The red box showed dimer 
primer. 

 CD13 CD26 CD10 

Mean (%) ± SD 86.15 ± 7.59 (n=4) 98.675 ± 0.77 (n=4) 61.95 ± 1.48 (n=2) 

 CD13/CD26 CD13/CD26/CD10 

Mean (%) ± SD 82.6 ± 6.77 (n=3) 61.1 ± 0.14 (n=2) 
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2.4.7 Determination of Enzyme activity in live cultured cells 

The activity of GGT1 and DPPIV was quantified in hPTPC by measuring 

the liberation rate of p-nitroaniline from specific substrates (GGpN and 

GPpN, respectively). This technique was not an end point assay, so it let us 

study the changes in the enzymatic activity along the time with a specific 

cell culture. The use of this technique will be very useful in the microfluidic 

devices, where it is convenient follow the progression of cells along time.  

Then, to verify that the measures for hPTPC corresponded with what 

would be expected from PT, a validation was carried out by performing a 

test comparing the p-nitroaniline accumulation using the substrate GGpN 

in the presence of different cell types. The chosen cell types were BEC 

(biliary epithelial cells), cells with high expression of GGT1, BMC (bone 

marrow stromal cells), cells without expression of GGT1 and the hPTPC 

(Figure 2.19). The results were consistent with what we expected.  

Figure 2.19: Absorbance intensity of GGpN. The graph showed the absorbance 
intensity of the liberated p-nitroaniline in BEC, BMC and hPTPC cells 
demonstrating the specificity of the product. The data were represented as mean 
+/- SD (n=2). 

In hPTPC, a linear increase in the absorbance produces for p-nitroaniline 
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 was observed over 60 min (Figure 2.20), with an end activity of 

approximately 110 and 83.87 mmol p-nitroaniline/h/cm2 respectively 

(Figure 2.21). These results showed the presence of GGT1 and DPPIV, 

specific enzymes for PT cells, in the hPTPC. 

Figure 2.20: Determination of enzymatic activity. GGT1 and DPPIV activity was 
determined by measuring the p-nitroaniline liberated from the artificial 
substrates GGpN (n=23) and GPpN (n=4) respectively, over 60 min. The 
absorbance was represented as mean +/- SD. 

Figure 2.21: Determination of GGT1 and DPPIV activity by p -nitroaniline 
concentration. GGT1 and DPPIV activity was determined by measuring the p-
nitroaniline liberated from the artificial substrates GGpN (n=23) and GPpN (n=4) 
respectively, after of 60 min incubation. The concentration was calculated from 
p-nitroaniline calibration curve as mean +/- SD. 
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Usually, GGT1 enzymatic activity was analyzed 7 days after seeding. 

However, some experiments were analyzed 14 days after seeding (Figure 

2.22) showing an increased activity compared with GGT1 activity at 7 days.  

Figure 2.22: GGT1 enzymatic activity. The enzymatic activity of GGT1 was 
analyzed in culture 7 and 14 days after the seeding. GGT1 increased its activity 
almost the double after 14 days in culture, compared with the result at 7 days 

2.4.8 Transporter Assays 

2.4.8.1 Organic anion transporter 1 (OAT1) 

OAT-mediated fluorescein transport was investigated using a 

concentration gradient of the substrate. This assay helped us to determine 

if there was uptake by the OAT1 transporter and also if the uptake was 

substrate concentration dependent (Figure 2.23). 
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Figure 2.23: OAT1 activity. The fluorescence intensity indicated that the 
fluorescein was uptake by OAT1 in a concentration-dependent way. Data were 
expressed as mean ± SD of two independent experiments. 

To demonstrate the uptake was transporter mediated, specific inhibition 

of fluorescein uptake in the presence of probenecid was studied (Figure 

2.24). 

 

Figure 2.24: OAT1 inhibition. The use of probenecid, an inhibitor of OAT1, 
produced a reduction in the fluorescence intensity, indicating the uptake of 
fluorescein is transporter mediated. Data were expressed as mean ± SD of two 
independent experiments. *p=0.01  
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The uptake of fluorescein and also its inhibition demonstrated the 

OAT1-mediated fluorescein transport. These results demonstrated the 

presence of OAT1 in hPTPC.   

2.4.8.2 ABC transporter family 

As we mentioned before, the uptake of fluorescein is OAT1 mediated. 

Here, we studied the fluorescein efflux by using an inhibitor of BCRP 

(KO143) activity. The use of this inhibitor increased the retention of 

fluorescein in a ratio of 1.3. (Figure 2.25). 

 

Figure 2.25: BCRP activity. The fluorescein was accumulated in the cells in 
the presence of KO143 inhibitor. Data were expressed as mean ± SD of two 
independent experiments. *p=0.02. 

2.4.8.3 Activity of P-glycoprotein transporter (P-gp) and Multidrug 

resistance protein (MRP)  

The activity of P-gp and MRP transporter was determined by using the 

lipophilic non-fluorescent substrate calcein-AM. Calcein-AM penetrates 

the cell membrane and once inside, it is metabolized by esterases activity 

to render a fluorescent substrate, calcein. To determine the fraction of 

calcein efflux through P-gp and MRP transporters, hPTPC cells were 
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incubated with Calcein-AM in the presence of inhibitors PSC833 (P-pg) and 

MK571 (MRP). As represents the Figure 2.26, an increase in the 

fluorescence intensity was observed when cells were incubated with 

Calcein-AM, indicating that the molecule penetrated the cell membrane 

and was converted into a fluorescent substrate. The use of inhibitors 

promoted much more the intracellular accumulation of calcein. PSC833, 

inhibitor of P-gp transporter increased the fluorescence intensity in a ratio 

of 1.98, meanwhile MK571, inhibitor of MRP, increased the accumulation 

of fluorescence in a ratio of 1.70 compared with the substrate in absence 

of inhibitors. These results showed the presence of MRP and PgP in our 

hPTPC. 

Figure 2.26: Fluorescent substrates accumulate in hPTPC in the presence of efflux 
transport blockers. An increase in fluorescence was observed when cells were 
incubated with the fluorescent substrates without inhibitors or in the presence of 
inhibitors. Inhibitors promoted the intracellular accumulation of the fluorescent 
substrates, as depicted in the bar graphics. Data were expressed as mean ± SD of 
four independent experiments.*-p=5,11E-11 **-p=3.34E-09 
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2.4.8.4 Organic Cation Transporter 2 (OCT2) 

The ability of hPTPC cells to transport nephrotoxics as the cisplatin (it 

will be discussed in chapter 3) was studied by the activity of the basolateral 

transporter OCT2. The fluorescent molecule used to study this transporter 

was ASP+. The concentration dependency of ASP+ uptake by hPTPC cells 

(Figure 2.27) was demonstrated. Thus, the expression of OCT2 in hPTPC 

cells was confirmed. 

Figure 2.27: Organic cation transporter 2 (OCT2) activity in hPTPC. The 
activity of OCT2 analyzed by measuring the fluorescence accumulation of 
transported 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) 
as a concentration gradient. Data were expressed as mean ± SD of two 
independent assays. 
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2.5 DISCUSSION 

Cultured Proximal tubular cells are a valuable in vitro model that can 

be used to study various aspects of physiology and pathology, drug-drug 

interaction, drug metabolism or mechanisms of cytotoxicity. Accordingly, 

most in vitro models of renal function have focused on reproducing PT 

cells function. Here, it has been described the protocol to isolate proximal 

tubular cells from human nephrectomies and its posterior 

characterization. 

The protocol used in this Thesis for the isolation of human proximal 

tubular cells was adapted from preceding reports by John J. Gildea et al. 

[24], Sharpe C.C. at al. [53], David A. Vesey et al. [54], Paul A. Glynne [29] 

and Patrick Salmon [55] with modifications. The principal modifications 

included were the presence of 02 during the protocol isolation, four 

repeats of the digestion process, the washing step and low-speed 

centrifugation to remove the red blood cells present in the sample, and 

finally the determination of the tubulocrite. The reviewed literature of 

protocols for isolation of PT cells did not show a method to determine the 

initial purity of the starting material [25, 26, 33, 54, 56-60].  

Although the amount of starting material was really small, it was not a 

problem to expand the cells and work with them. 

 The following steps were critical to get an effective isolation protocol: 

• The size of the fragmented tissue has to be small in order to 

facilitate the digestion of the tissues in the presence of collagenase. 

• Appropriate collagenase treatment is crucial for proximal tubular 

preparation because this enzyme helps to disrupt basement 

membrane, leading to the isolation proximal tubular cells.  
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• The combination of the enzymatic treatment with collagenase and 

the mechanical process with the continuous agitation favored the 

digestion of the renal tissue  

• It is very important to be cautious 24h after the seeding when it is 

necessary to refresh the growth medium because the hPTPC are 

still relatively fragile and can be easily damaged or disrupted by 

direct contact; pipette only down the side of the well, and never 

directly on top of the cells. 

To evaluate the phenotype of the isolated cells, further 

characterization was performed by analyzing specific markers from PT and 

also markers from others segments of the nephron through morphological 

identification, RT-PCR, immunofluorescence, immunocytochemistry, 

cytochemical staining, FACS, functional assays and transporters assays.  

After this exhaustive analysis, we observed that the hPTPC retained the 

epithelial morphology and a reasonable doubling time till passage 3. Some 

scientific publications have reported the maintenance of primary PT cells 

from human, at least, till passage 7 [33, 52, 61]. The problem of these 

reported work was that they did not show cell morphology pictures along 

passages, so it hindered us the comparison with the morphology of hPTPC 

at passage 4. Similarly, they did not also measure the presence of cells 

from other segments of the nephron, making impossible to evaluate the 

purity of their isolated cell populations.  

Based on cell morphology, we decided to perform the characterization 

of these cells till passage 3, although in the RT-PCR there are data until cell 

passage 4.  The analysis of the results confirmed sustained expression of 

PT putative markers. However, expression of NCC, NKCC2 and CB-28 

confirmed the presence of other segments of the nephron, DT, TAL and 

DT, respectively. The expression of αSMA, indicated the presence of 
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myofibroblasts, although αSMA expression was present in the starting 

material of the isolation protocol. The published literature about αSMA 

expression in PT cells describes that the appearance of myofibroblasts is a 

normal response to kidney injury [62-64]. Here, it is important to 

remember that our hPTPC were isolated from human nephrectomies and 

consequently, the expression of αSMA might be reflected in the cell 

culture described here as a response of hPTPC to organ disruption and 

artificial in vitro conditions [65, 66]. The expression of other specific 

markers for other segments of the nephron indicated that the hPTPC cell 

culture was heterogeneous. When I compared the results of the analyzed 

markers in hPTPC with other publications using human proximal tubular 

primary cells, I detected a problem: The other publications only analyze 

specific markers for PT, and usually, they have expression of the analyzed 

markers [33, 52, 54, 67-70]. This type of analysis can induce to a big 

mistake since researchers affirm they have pure PT cell culture, however, 

they did not analyze other segments from the nephron, as we did it. 

The intensity of the GMNA staining was variable, with areas of intense 

reddish-brown staining by the side of other areas with less intensity, or 

absent staining. The area without staining was probably constituted by 

cells from another segment of the nephron different from the PT. The area 

with different intensities can be explained as a consequence of cell aging. 

Assays based on GGT1 enzymatic activity were performed 7 and 14 days 

after seeding showing very different levels of GGT1 expression. 

Considering this, we concluded that the cells cultured for longer periods 

of time have higher staining intensity. 

In FACS analysis, we used three specific PT epithelial cell surface 

markers CD10, CD13 and CD26. Previous studies demonstrated that the 
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cell populations that express double positive for CD10/CD13 or just CD26 

were a pure population of PT cells [28, 52]. Based on these studies, a cell 

sorting for the triple positive cells were performed. However, the markers 

not specific of PT cells remained positive by RT-PCR. Different explanations 

can be suggested for the obtained results: the gating for the FACS analysis 

was not very well adjusted, and it introduced cells from other segments of 

the nephron; a partial process of transdifferentiation was presented in the 

hPTPC, so even using the specific PT markers, the presence of markers 

from others segment of the nephron were expressed. 

The fluorescent-based assays to study transporter activity were easy to 

handle, and the data obtained with these assays were fast and 

reproducible. We tested the influx of different substrates (ASP+ and 

fluorescein) in hPTPC demonstrating an increase in the fluorescence 

intensity that was concentration-dependent. These data suggested the 

presence of OCT-2 and OAT1 [39, 71]. Also, we tested the efflux of 

different substrates (Calcein-AM and fluorescein) in the presence of 

several known inhibitors (KO143, MK571, and PSC833). Our efflux data 

showed that the substrates were not specific just for one transporter [39] 

because calcein-AM efflux depends on P-gp and MRP and fluorescein 

efflux depends on BCRP and MRP. However, the partial inhibition obtained 

with the use of the inhibitors let us study transporters activity, confirming 

the presence of BCRP, MRP and P-gp in hPTPC.  

Currently, all the knowledge we have about the mentioned 

transporters was obtained by using cellular models with the 

overexpression of transporters or vesicles derived from such cell lines [72-

74]. The study of these transporters should be similar to what we find in 

physiological situations, however, they do not express all the individual 
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transporters [75, 76]. Due to this problem, the search for new cellular 

models keeps going [39, 40, 77], since they constitute an indispensable 

tool to study transport systems of the proximal tubule, including 

absorption, disposition and detoxification of drugs in a more physiological 

way. A very well characterized cell line of human proximal tubular origin is 

ciPTEC. This cell line has been thoroughly described, and they express the 

majority of the described transporter [39, 77]. These characteristics have 

made these cells one of the best in vitro cell line model to study PT 

function. Considering this, our human proximal tubular primary cells, 

hPTPC, constitute an improved model, since they expressed a majority of 

transporters simultaneously. 

The hPTPC isolated and used throughout this Thesis, showed many 

characteristics of PT, including monolayer organization, cell polarization 

with the expression of tight junction and primary cilia, expression of 

specific protein of PT, as Megalin and SGLT-2, among others. They also 

expressed enzymatic activity for DPPIV, as well as, GGT1. hPTPC also 

expressed transporter activity for OCT2, OAT1, P-gp, MRP and BCRP. The 

characterization of our cells confirmed the putative markers of the 

proximal tubule and the expression of multiple endogenous organic ion 

transporters mimicking renal reabsorption and excretion. However, we 

can confirm that hPTPC was not a 100 % pure culture with proximal tubule 

cells. Nevertheless, I believe that we achieved a highly-enriched cell 

culture with proximal tubular cells (>85%). Hence, these results constitute 

a powerful tool for future in vitro transport studies in pharmacology, 

physiology and also kidney bioengineering.
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3.1 INTRODUCTION 

Cisplatin (also known as CDDP)[1] is a chemotherapeutic 

tetracoordinated drug based on platinum, and it is widely used against 

solid tumors [2] including head and neck, lung, testis ovary and breast 

cancers [3]. Regarding its history, cisplatin was described by Michael 

Peyrone in 1845 and 115 years later, in 1960, the group headed by 

Barnett Rosenberg discovered its antitumoral potential [4]. The first 

time that cisplatin was approved for clinical use was in 1978 in the US 

[5] after the studies carried out by Hill's group to demonstrate its clinical 

efficacy [6]. The mechanism of action of cisplatin works through the 

formation of DNA adducts. This formation leads the interference with 

DNA synthesis, and at the same time, it produces the cell death during 

cell division [7]. 

As many other anticancer drugs, cisplatin is highly active and toxic 

for proliferating cells [8]. Side effects associated with the treatment with 

cisplatin include nephrotoxicity, ototoxicity, neurotoxicity, among 

others. However, it is necessary to highlight that the major dose-limiting 

factor is renal toxicity, affecting around 25-35% of patients after a single 

dose treatment [3], as a consequence of an increase in the glomerular 

filtration. Therefore, the treatments must often be stopped [9]. To 

reduce the nephrotoxicity and allow a dose escalation therapeutic level, 

hydration protocols were developed and implemented in the treated 

patients [10]. However, these prevention protocols were not effective. 

This side effect limits cisplatin use in cancer therapy [11], and 

consequently, only 60% of patients complete three of four cisplatin 

cycles. In the kidney, particularly the proximal tubule, accumulates high 

amounts of cisplatin compared to other organs [12]. A study carried out 
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by Kulmann et al. [13], showed that the cisplatin concentration in 

proximal tubular cells is about 5 times the serum concentration. 

Therefore, this accumulation contributes to the nephrotoxicity.  

The mechanisms by which cisplatin kills PT cells have been 

investigated for many years. Although PT cells do not proliferate under 

normal conditions, these cells present properties that make them 

particularly exposed to cisplatin toxicity: PT cells are involved in the 

blood clearance mechanism and reabsorption of essential metabolites. 

This segment of the nephron is where the majority of toxins and drugs 

are processed and here is where acute and chronic renal damage take 

places [14, 15]. It is also remarkable, the pharmacological activation of 

cisplatin in PT cells since it is bioactivated into a more potent metabolite 

[16, 17]. 

So, these two reasons underlie the susceptibility to cisplatin of 

quiescent PT cells. The uptake of cisplatin takes place via organic cation 

transporter 2 (OCT2), and also via copper transporter 1 (CTR1) [1, 18, 

19], both transporters expressed on the basolateral side of PT cells [18, 

20]. Once cisplatin is into the cells, it binds to DNA, or the cisplatin forms 

glutathione-conjugates by GSH-transferase [21, 22]. The dissociation of 

one of the chlorines from the cisplatin molecule results in a positive 

charge on the platinum that will attract the negatively charged sulfur on 

the cysteine moiety of the glutathione molecule. This process form the 

platinum-glutathione (GSH) conjugates [23, 24] reducing the amount of 

platinum available to bind to DNA and protecting dividing cells from 

cisplatin toxicity. The platinum-glutathione (GSH) conjugate is 

transported to the PT lumen via MATE1 and MRP2, respectively [25, 26]) 

and it is here where extracellular biotransformation occurs [17] 
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dependent on these steps: [21-24]The platinum-GSH conjugates are 

cleaved into platinum-cysteinyl-glycine-conjugates by the enzyme GGT1 

[17, 27]. Next, platinum-cysteinyl-glycine-conjugates are metabolized 

into platinum-cysteine-conjugates by DPPIV. So far, the described 

processes take place extracellularly. The platinum-cysteinyl-glycine-

conjugates can be transported back into the cells, although the 

mechanisms for this reabsorption are not well-known. Observations in 

carcinoma cells showed that neutral amino acid transporter complexes 

might mediate the influx [28]. However, additional studies are needed 

to identify carrier involved in PT cells. Once the platinum-cysteinyl-

glycine-congugates is transported into the cells, it is converted into 

reactive platinum-thiols by cysteine-S-conjugate beta-lyase [17]. The 

cisplatin-induced nephrotoxicity includes the activation of multiple 

pathways, including p53-mediated responses and the intrinsic and 

extrinsic apoptosis pathways, the responses to oxidative stress and ER 

stress and lysosomal toxicity [12, 29] (Figure 3.1). 
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Figure 3.1: Role of cisplatin in hPTPC. The image represents the principal 
transporters implied in the uptake of cisplatin, as well as the routes followed to 
get the conversion of cisplatin into a more toxic molecule. In the middle of the 
picture, there is a diagram of activation (adapted from Miller, R.P. et al.[3]) of 
the nephrotoxicity induced by cisplatin and mediated by multiple pathways. 
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3.2 OBJECTIVES 

The Specific Aims worked out in this chapter were: 

1. Development of methods and procedures for the isolation and cell 

culture of human primary proximal tubular cells (hPTPC). 

2. Phenotypic characterization of cells obtained from the primary 

culture at the level of gene expression, protein markers, enzymatic 

activity in living cells and transporters. 

3. Development and validation of a new nephrotoxicity model using 

cisplatin for the study of cell viability and expression of specific 

markers implied in the bioactivation of this molecule.  

4. Screening of molecules potentially repaired of the damage 

produced by the cisplatin. 

5. Development of the protocol for differentiated proximal tubular 

cell cultures in a device that allows us the application of Shear Stress 

(SS).  

6. Determination of the SS effect in the sensibility to cisplatin in 

hPTPC. 
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3.3 MATERIAL AND METHODS 

3.3.1 Cell culture 

The hPTPC were the cells used for all the experiments, derived from 

human nephrectomies and characterized as a cell line enriched with PT 

cells (see chapter 2.). Cells were cultured in MCR medium. hPTPC 

cytotoxicity assays were performed with cells seeded at a density of 

8.000 cells per cm2 in 96 wells plates (TPP, 92096) and cultured during 7 

days until reaching the confluence, at 37 °C in a 5% CO2 atmosphere. 

One row of the 96 wells plate was left empty and used to measure 

controls and standards (Figure 3.2, Row A). 

3.3.2 Experimental design 

7 days after the seeding, the hPTPC were exposed to different 

concentrations of cisplatin (1 concentration per row; Rows C-H, Figure 

3.2) during 8 hours. Cells without cisplatin exposure were used as 

control (Row A, Figure 3.2). After the treatment time, MCR medium 

containing cisplatin was replaced by fresh MCR medium and cells were 

kept in the incubator at 37 °C in a 5% CO2 atmosphere, during 40 h, 

before the effects of cisplatin were evaluated by determining the GGT1 

enzymatic activity, the cell viability and the total amount of proteins.  

3.3.3 Cisplatin exposure  

For this aim, a stock solution of 3.33 mM of cisplatin (Sigma, P4394) 

dissolved in a NaCl solution 140 mM was prepared. The working 

concentrations were 300, 100, 50, 30, 15, and 5 µM. The higher 

concentration of cisplatin, 300 µM, was prepared in MCR culture 

medium from the stock solution, and the other concentrations were 

serially diluted in culture medium from the higher concentration. 
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Each row of the 96 wells plate was exposed to a 100 µL of a different 

cisplatin concentration during 8 hours in the incubator.   

3.3.4 Small molecules treatment. 

The small molecules tested were Cimetidine, Genistein and β-

Lapachone. The organic cation transporter OCT2 contributes to cisplatin 

uptake in renal tubular cells [18]. Cimetidine, a pharmacological 

inhibitor of OCT2, has been reported to reduce cisplatin uptake in 

cultured renal tubular cells [1, 18]. Genistein is a nonsteroidal 

isoflavonoid with estrogen-like activity. Previous studies have shown 

that genistein regulates genes that are related in controlling cell 

proliferation, cell cycle, apoptosis [30] and also, genistein has 

antioxidant effect. This antioxidant effect may counteract the effect of 

ROS generated by cisplatin [31]. β-Lapachone is a quinone that 

modulates (increasing) the NAD metabolism. This was correlated with 

an increased SIRT1 enzymatic activity that ameliorated cisplatin 

nephrotoxicity and nutrient, metabolic and redox state of the cell [32].  

 

For small molecules treatment, the 96 wells plate was divided into 

four parts, once the cells reached the confluence (Figure 2.29). Each part 

was constituted for three columns of the plate and a different 

treatment: cisplatin, cisplatin + cimetidine (Sigma, C-4522), cisplatin + 

genistein (Sigma, G8649) and cisplatin + β-Lapachone (Sigma, L2037). 

The chosen concentrations to test the small molecules were: 10 or 100 

µM for Cimetidine and Genistein and 0.1 or 1 µM for β-Lapachone. Cells 

located in the division of the plate to be treated with the small 

molecules were pretreated with them for 1 hour. After this treatment, 

cells were incubated in the presence of small molecules and cisplatin or 
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just cisplatin for 8 hours. The wells incubated only with cisplatin-

contained the maximum volume of the vehicle used to dissolve the small 

molecules (Figure .3.2).  

Figure 3.2: Experimental design for the treatment with small molecules in 
hPTPC. 

3.3.5 Assays to evaluate the effects of cisplatin in hPTPC 

3.3.5.1 Cell viability assay 

PrestoBlue reagent is a resazurin-based solution that functions as a 

cell viability indicator by using the reducing power of living cells. The 

PrestoBlue reagent contains a cell-permeant compound that is blue in 

color and virtually nonfluorescent. When added to cells, the PrestoBlue 

reagent resazurin is modified to resafurin by the reducing environment 

of the viable cell and turns red in color and becomes highly fluorescent. 

Cells were washed with HBSS buffer (Lonza, BE10-527F) to remove 

the cell culture medium. The assay solution was prepared containing: 
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1/10 PrestoBlue reagent (TermoFisher Scientific, A13262) in 1 mL 

DMEM (Lonza, BE12-917F). Cells were incubated in a plate reader 

(BioTek, Synergy HT) at 37ºC for 1 h, taking measures every 20 minutes. 

The formation of resafurin was monitored (ex.530 nm / emm.590 nm). 

The PrestoBlue working solution was added to three wells without cells 

and incubated under the same conditions to determine and later 

subtract the background   

The kinetics for cisplatin cytotoxicity were analyzed using GraphPad 

(GraphPad Software, San Diego, CA, USA). A non-linear regression 

analysis of dose-dependent inhibition was applied to calculate the IC50 

for each independent experiment. Data were represented as mean ± SD. 

3.3.5.2 GGT1 functional assay. 

GGT1 enzyme activity in cultured hPTPC was analyzed by measuring 

the enzymatic conversion of the substrate gamma glutamyl-p-

nitroanilide (GGpN) in the presence of glycyl glycine, a glutamyl 

acceptor. The liberated reaction product, p-nitroaniline, is a yellow-

colored compound whose rate of formation is determined optically as 

the measure of the gamma-glutamyl transferase (GGT1) [33]. 

To perform this assay, cells were washed with HBSS buffer to remove 

the cell culture medium. The assay solution was prepared containing: 2 

mM y-glutamyl-p-nitroanilide (Sigma, G6133) + 50 mM glycylglycine 

(Sigma, G3915) in 1 mL DMEM. Cells were incubated in a plate reader at 

37ºC during 1 h. The resulting product, p-nitroaniline, is directly 

proportional to the enzyme activity present in the sample. The activity 

was measured at 410 nm using a microplate reader and the measures 

were taken every 20 minutes during an hour. Three wells without cells 

were incubated with the assay solution mentioned before to subtract 
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the background of the assay. The final result was represented as 

intensity absorbance at 410 nm and enzyme activity per culture area 

(see Page 92, Chapter 2 for details).  

3.3.5.3 BCA Protein Assay Kit 

After the determination of GGT1 enzymatic activity and cell viability, 

total protein amount per well was determined by using the BCA method. 

This assay was essential in the evaluation of the effects produced by 

cisplatin because it helped to normalized the previous performed 

assays, letting know in a very precise way, the enzymatic activity and the 

cell viability per well, based on the protein concentration. 

This method of protein quantification is based on bicinchoninic acid 

(BCA) reaction, combining the well-known reduction of Cu+2 to Cu+1 by 

protein in an alkaline medium with the highly sensitive and selective 

colorimetric detection of the cuprous cation. For this goal, cells were 

washed with HBSS, lysed with 25 µL/well with lysis buffer containing 

cOmplete mini 7x (Roche, 04693124001), APS 5x (Sigma, 09913), Triton 

X100 2% (Sigma, X100) and H2O MiliQ and incubated at RT during 20 

minutes with agitation. A BSA protein standard curve was performed to 

determine the protein concentration present in the wells, adding 25 

µL/well of each BSA concentration and using duplicates. 200 µL/well of 

the working reaction were added by mixing 50 parts of BCA (Life 

Technology, 23225) reagent A (sodium carbonate, sodium bicarbonate, 

bicinchoninic acid and sodium tartrate in 0.1M sodium hydroxide) with 

1 part of BCA reagent B (4% cupric sulfate) (50:1, Reagent A: B) and it 

was incubated at 37ºC during 30 minutes. The results were measured in 

a plate reader at 562 nm absorbance. 
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3.3.5.4 Crystal Violet  

The Crystal Violet assay was based on the method of Saotome et al. 

[34] Crystal violet is a dye able to stain the DNA of cells. It is a very useful 

method to observe the number of cells per plate, after cisplatin 

treatment, using a microscope. Then, it can be dissolved in acid to obtain 

a very good estimate of the total number of cells in each well. After the 

cisplatin exposure, cells were washed with PBS buffer, fixed with 4 % 

Paraformaldehyde during 15 minutes at RT and then washed with PBS 

to eliminate the rest of the fixative. After that, cells were stained with 

0.1% crystal violet solution (Sigma, C0775) in PBS buffer for 30 minutes 

at RT. After the incubation, the excess of dye was removed by extensive 

washing with tap water. Pictures were taken using an inverted 

microscope. For quantitative measurements, formed crystals were 

dissolved by using 10% acetic acid, and the crystal violet concentration 

was measured using a plate reader at 590 nm absorbance. 
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Next, Figure 3.3 shows a representation of the used methods 

explained in this section.  

Figure 3.3: Schematic representation of the methods. a) Cells are seeded in a 
96 wells plate b) Once the cells reached the confluence are exposed to different 
cisplatin concentration during 8h. c) 40 h after cisplatin treatment was 
evaluated the effects of this nephrotoxic by using different assays. 

3.3.5.5 Gamma Glutamyl Transpeptidase (GGT1) cytochemical staining 

This assay let us to visualize the GGT activity obtained through the 

reaction between a diazonium salt and the naphthylamine released by 
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hydrolysis of a synthetic GGT substrate, γ-glutamyl-4-methoxy-2-

naphthylamide (GMNA). 

Cells were fixed for 10 minutes with ice-cold methanol (Fisher Sci. 

M/3950/21) and ice-cold acetone (Sigma, 90872) (1:1) and washed with 

0.85% NaCl (Saline solution). Then, cells were incubated with the 

working solution (Table 3.1) for 20 minutes in the dark and again, they 

were washed with saline solution. To stop the reaction, cells were 

incubated with a 0.1 M solution of cupric sulfate (Sigma, C1297) for 2 

minutes and then, washed with a saline solution [35]. The pictures were 

taken using an inverted microscope (Olympus IX81). 

Table 3.1: Working substrate solution for a volume of 5 mL 

Substrate solutions* Working 

concentration 

Volume 

GMNA solution 2.5 mg/mL 

(SC, 215216) 

0,25 mM 0,25 mL 

Tris buffer, pH 7.4 0.1 M 1,25 mL 

NaCl (Saline solution) 0.85% 3,5 mL 

Glycylglycine (Sigma, G3915) 3,78 mM 2,5 mg 

Fast blue salt hemi zinc 

chloride (Sigma, F3378) 

1,20 mM 2,5 mg 

*The substrate solution was filtered through a Whatman Nº. 1 
filter paper just prior to use to remove any insoluble aggregates 
of the substrate. 
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3.4 RESULTS 

3.4.1 96 wells plate nephrotoxicity model 

3.4.1.1 Cisplatin causes dose-dependent cell death in hPTPC  

Confluent monolayers of hPTPC cells were incubated with cisplatin 

(0, 5, 15, 30, 50, 100 and 300 µM) during 8 h. After the incubation, 

cisplatin was removed and fresh MCR medium was added to the cells. 

Cell morphology and survival was checked 40 hours after the cisplatin 

treatment under an inverted microscope (Olympus IX81). All the 

different cisplatin concentrations were compared with the control. 40 

hours after the cisplatin treatment, the cell morphology at 5 and 30 µM 

was not very different compared to the control. However, cell survival 

was relatively lower as concentration increased (Figure 3.4). At 50 µM, 

100 µM and 300 µM, the cell morphology and cell survival changed 

drastically compared to the control: cells showed a rounding shape with 

the cytoplasm full of granules and cells were detached from the cell 

culture plate. These observations increased in a concentration-

dependent way. 
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Figure 3.4: Cell morphology and survival: 40 hours after cisplatin treatment, 
cells exposed to different concentrations of cisplatin were compared to the 
control. Morphological and survival changes were clearly visible from 50 µM of 
cisplatin. 

After the cisplatin treatment, we performed the crystal violet assay. 

The formed crystals were not solubilized, and it allowed us to visualize 

with the microscope the nuclear stain of the cells presents per wells 

treated with a different cisplatin concentration. These images let us 

estimate the cell number per well, showing a high nuclear stain in 

control cells compared to the cells treated with 300 µM cisplatin, where 

the number of cells (identified by its stained nuclei) is really low (Figure 

3.5). 
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Figure 3.5: Crystal Violet assay after cisplatin exposure. Images were taken 
under an inverted microscope. 

3.4.1.2 GGT1 activity and cell viability in hPTPC exposed to cisplatin 

The cytotoxic effects caused by the cisplatin treatment in hPTPC 

were evaluated through the combination of three optical assays: GGT1 

enzymatic activity, PrestoBlue cell viability, and BCA. These assays based 

on optical measurements will let us work with microfluidic devices 

(Chapter 4), where the number of cells is very limited, so the use of 

optical assays is useful to obtain results. 

The GGT1 enzymatic activity was expressed in the graphs as the 

result of the normalized absorbance, and it was also expressed as mmol 

p-nitroaniline/h/cm2. PrestoBlue Cell viability assay was expressed as 

normalized fluorescence, and BCA protein content per well was 
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expressed as normalized mg/mL protein (Figure 3.6). The graphs of 

Figure 3.6 showed that the cytotoxic effects caused by the cisplatin 

treatment in hPTPC are dose-dependent, consistent with the previous 

results observed under the microscope. The GGT1 enzymatic activity 

was maintained without changes compared with control cells until 15 

µM, however, from 30 µM the enzymatic activity suffered a reduction. 

The graphs for the evaluation of cell viability and protein concentration 

showed a similar behavior: a reduction in the normalized fluorescence 

for PB and also, in the normalized absorbance for BCA was observed 

from 5 µM of cisplatin.  

 

Figure 3.6: Evaluation of the cisplatin effects. a) GGT1 enzymatic activity b) 
mmol p-nitroaniline/h/cm2. Both graphs showed a decrease in the dose 
response curve from the concentration 30 µM of cisplatin. c) PrestoBlue assay. 
d) BCA protein assay kit. The dose response curves for PrestoBlue and BCA 
showed a decrease from the concentration 5 µM of cisplatin. The results were 
expressed as mean ±SD of three separate experiments performed with 6 
repetitions. 
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To calculate the drug potency, the EC50 value was calculated. EC50 

let us know determine the concentration of cisplatin inducing 50% of 

the effect observed at the maximum cisplatin concentration. This 

concentration was 64±29 µM (mean ±SD, n=3) 

GGT1 enzymatic activity and PrestoBlue were normalized with total 

protein amount (BCA) using the absolute data once the background was 

subtracted of each assay (Figure 3.7). The normalized assays with the 

total protein amount revealed that GGT1 presented more relative 

enzymatic activity in the biggest cisplatin concentrations: 100 and 300 

µM and PrestoBlue showed a concentration-dependent curve.  

 

Figure 3.7: GGT1 enzymatic activity and Presto blue normalized with total 
protein amount (BCA). a) Normalized GGT1 enzymatic activity. b) Normalized 
PrestoBlue. The results were expressed as mean ±SD of three separate 
experiments performed with 6 repetitions. 
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3.4.2 The heterogeneous increase in GGT1 activity in cisplatin-treated 

hPTPC cells.  

GGT1 cytochemical staining was performed to confirm the 

phenotype of PT cells and also to determine the activity of the enzyme 

after cisplatin exposure. The activity was dependent on the number of 

cells present in each well treated with a different cisplatin concentration 

(Figure 3.8). The intensity of the staining was variable, with areas of 

intense reddish-brown staining by the side of other areas of less 

intensity and it can be explained as a consequence of cell aging. At 300 

µM of cisplatin, the cells still attached to the well plate showed a very 

intense reddish brown staining evenly. This data supported the increase 

in the GGT1 activity normalized with BCA (Figure 3.7). 

Figure 3.8: GGT1 cytochemical staining. The images show the GGT1 expression 
after cisplatin exposure. Auto-Regeneration capacity of the hPTPC after 
cisplatin treatment. 
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3.4.3 The effects of cisplatin in hPTPC are irreversible 

The effects caused by cisplatin were analyzed through the 

experiments discussed so far. Usually these experiments were 

performed 40 hours after cisplatin exposure. However, we did not know 

whether the cisplatin effects to the cell viability over time and if hPTPC 

cells are capable of auto-regeneration after the cisplatin insult. For this 

aim, cells were exposed during 8 hours to different cisplatin 

concentrations once the confluence was reached, and every 72-96 hours 

PrestoBlue assay was performed. The evaluation of cell viability by using 

PrestoBlue reagent was very useful since it was not an end point assay, 

it did not affect the cells, and under sterility, the assay can be repeated 

with the same cells along time. The graph showed the cell viability 18 

days after cisplatin exposure and the results did not show the ability of 

auto regeneration in hPTPC because while in the cell control, the cell 

viability is maintained, in cells treated with cisplatin, the cell death 

increases over time even at the lowest concentration used (Figure 3.9).  
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Figure 3.9: PrestoBlue assay performed every 72-96 h after cisplatin exposure. 
The cisplatin treatment showed a toxicity dose-dependent and time-dependent 
and the cells did not show auto regeneration capacity. The results were 
expressed as mean ±SD. 

3.4.4 Model validation: testing for small molecules with potential anti-

cisplatin effects 

The previous results showed that hPTPC did not possess the auto-

regenerative capacity to avoid the death cell produced by cisplatin 

exposure. With the aim to reduce the effects caused by this molecule, 

cells were incubated with small molecules in the presence of Cisplatin. 

Before starting to work with the small molecules, we thoroughly 

reviewed the literature in which these molecules have been used to 

establish different concentrations to use in our model. We tested 10 and 

100 µM for Cimetidine and Genistein and 0.1, 1 and 10 µM for β-

Lapachone. As we explained before, the small molecules were incubated 
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1 hour before to the cisplatin exposure and then, they were incubated 

with cisplatin during 8 hours. 40 hours after the cisplatin exposure, the 

effects of this nephrotoxic were firstly evaluated through the 

microscopic observation (Figure 3.10). Control and cimetidine cells 

showed the same behavior and the maximum morphological changes in 

this picture were observed at 100 µM of cisplatin. Genistein and β-

Lapachone also showed a similar behavior and the control cells were not 

observed as confluent, so it could indicate the molecules presented 

toxicity for the hPTPC.  When cells were exposed to a high concentration 

of cisplatin, they showed a round shape and were detached from the 

cell culture plate. The treatment with cisplatin in the presence of 

Genistein and β-Lapachone produced the detachment of the cells and 

the loss of the cell monolayer even at small concentrations of cisplatin. 

 

Figure 3.10: Morphological changes after cisplatin exposure and cisplatin 
combined with small molecules exposure. Cells were exposed to cisplatin 
during 8 hours, and the morphological changes showed in the pictures were 
reported 40 hours after cisplatin exposure. 
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After the microscope observation, GGT1 enzymatic activity, cell 

viability, and protein/well content were analyzed (Figure 3.11). The 

PrestoBlue assay showed a dose-response curve for the control and the 

small molecules. Genistein had less cell viability that the rest of the 

tested small molecules, even in the control, so it indicated that the used 

concentration of this molecule was toxic for the cells. GGT1 enzymatic 

activity showed a similar behavior for the control and cimetidine curves 

with an increase of GGT1 enzymatic activity at 300 µM of cisplatin in 

both cases. The dose-response curve for Genistein started with a 

decreased value of GGT1 enzymatic activity for the control (0 µM 

cisplatin) and the different cisplatin concentrations, supporting the data 

obtained for the cell viability assay, but this molecule also presented an 

increase in GGT1 enzymatic activity at 100 and 300 µM of cisplatin. ß -

Lapachone represented a dose response curve without an increase of 

GGT1 at the higher concentration of cisplatin. The tested small 

molecules did not improve cell viability after cisplatin exposure, as 

indicated by EC50 (Table 3.2). 

Table 3.2: EC50 of cisplatin in the presence of the different small 
molecules tested. 

 Cisplatin Cisplatin + 

Cimetidine 

Cisplatin + 

Genistein 

Cisplatin + 

 ß -Lapachone 

Mean 

 ± SD (µM) 

48.14 

± 59.71 

46.60 

± 53.88 

33.60 

± 28.85 

14.80 

± 15.91 

 

The protein content /well analyzed by BCA protein kit assay showed 

negative results in the wells treated with the different concentrations of 
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cisplatin in the presence of Genistein and ß -Lapachone. The negative 

values obtained from BCA suggested us that maybe this is not the best 

method to normalize the other performed assays especially, when cell 

number was reduced, or cells were very damaged, as a consequence of 

cisplatin treatment. 

 

Figure 3.11: Evaluation of cisplatin effects in presence of the small molecules. 
a) GGT1 enzymatic activity. b) PrestoBlue Cell viability assay. c) BCA protein 
assay kit. The use of small molecules did not decrease or improve the effects 
produced by the cisplatin. The results were expressed as mean ±SD of three 
separate experiments performed by triplicated. Blue: cisplatin; Red: cisplatin + 
100 µM cimetidine; Green: cisplatin + 100 µM Genistein; Purple: cisplatin + 1 
µM β-Lapachone. 
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3.5 DISCUSSION 

A model reproducing the physiological environment of PT cells will be 

useful in several contexts, from basic biological research to translational 

approaches. From a clinical standpoint, an unmet need is the ability to 

model the response to potential nephrotoxicants by PT cells. Primary 

cultures will provide the optimal biological material while fluidic devices 

will help to generate more physiologically relevant conditions. However, it 

has already been discussed in the previous chapter the risk that a small 

number of cells growing in the fluidic channel poses for appropriate 

phenotyping, and thus also for evaluating a potential nephrotoxicant. On 

the other hand, it was interesting to be able to use interrogation 

procedures that could be applied repeated times. This would allow for 

long-term assessment that is required for evaluation of regeneration 

mechanisms and/or therapies after an acute PT insult. Here, we have 

focused in the creation and optimization of a consistent and reproducible 

nephrotoxicity model based in the use of cisplatin with the goal to transfer 

this knowledge to fluidic devices that let reproduce a more physiological 

environment for cells. 

Cisplatin was used as a nephrotoxicant model because its effects on PT 

have been extremely well documented and appear to be more consistent 

than other damaging agents (e.g. gentamicin). Moreover, in vitro studies 

to evaluate cisplatin-induced nephrotoxicity using PT primary cell culture 

systems are limited. Usually, the in vitro nephrotoxicity models based into 

study cisplatin effects described in the literature, use continuous cell lines 

[11, 216-220]. Thus, our results can add further knowledge about cisplatin 

mechanisms of action under more representative experimental 

conditions. This work was performed on hPTPC, cells isolated and 
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characterized as explained in Chapter 2. hPTPC cells are a primary culture 

of human renal cells highly enriched in PT cells and extensively 

characterized with the expression of the principal markers of PT and the 

expression of multiple organic ion transporters, mimicking renal 

reabsorption and excretion. The use of these cells constitutes a clear 

advance over the use of continuous cell lines, which should improve our 

ability for predicting a toxic drug effects in human kidney. 

The experimental design was chosen to reproduce the conditions used 

in vivo. Typically, cisplatin treatment consists in the administration of 20-

150 mg cisplatin/m2 given as a bolus injection or as several-hour long 

infusion [223-226]. 50% of the administered dose can appear in urine 

during the 24h following administration. The majority, is excreted during 

the few first hours. Cisplatin clearance is around 50 mL/min/m2, thus 

exceeding that of creatinine, indicating tubular secretion. Although several 

cycles of cisplatin treatment are administered, renal toxicity can be 

observed already in the first cycle. The period of 8 hours used for the 

exposure to cisplatin in this model represents an average in vivo exposure 

[227]. The information on cisplatin concentrations in serum and 

ultrafiltrate is very sparse. Clearance of cisplatin also depends on 

individual characteristic. Thus, the dose-response curve of cisplatin for the 

creation of the nephrotoxicity model comprised a broad interval of 

concentrations, including low, medium and high concentrations of this 

molecule reviewed from the literature, where it was possible to observe 

different effects in the hPTPC depend on the used concentration [221, 

222]. 

hPTPC grown on 96 wells plate exhibited cell death when exposed to 

increasing concentrations of cisplatin. The evaluation of cell morphology 
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through direct observation under the phase microscope showed a cell 

cytoplasm completely full of granules and cells detached from the cell 

culture plate, as the cisplatin concentration increased. The morphology of 

cells exposed to cisplatin was always compared with the control cells. 

Although I did not evaluate the mechanism of death induced by cisplatin 

in these cells, it is well known that concentration up to 30 µM caused a cell 

death with the characteristics of apoptosis, meanwhile concentrations 

equal or higher than 300 µM caused a cell death with the characteristic of 

necrosis and at 100 µM, both apoptotic and necrotic cells coexist [226, 

228]. 

For quantification, two optical assays were chosen for repeated 

evaluation of the cisplatin effects. Cell viability can be easily determined 

by quantifying the reduction of a resazurin salt. Among the available 

alternatives, a commercial solution (PrestoBlue) was chosen because is 

optimized to produce a fast readout, thus reducing the time are exposed 

to the reagents. The other assay consisted in determining GGT1 enzymatic 

activity. This activity is relevant because besides being a marker of PT 

phenotype, is one of the defenses against oxidant and toxic agents. At the 

beginning, PrestoBlue assay and GGT1 functional assay were performed 

separately. We detected a decrease in the number of cells because of the 

wash processes and considering that the last goal of the nephrotoxicity 

model is to transfer it to the fluidic devices, where the number of cells is 

limited, and the aim was to allow for repeated measurements, we decided 

to perform these two assays simultaneously. For this goal, the first thing 

that we checked was the spectrum of both reagents, and we concluded 

that there is not spectral interference between the used reagents. Also, 

we performed the GGT1 and PrestoBlue assays sequentially (each assay 

performed per separated) and simultaneously (both experiments 
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performed at the same time) obtaining similar dose-response curves. The 

combined PB-GGT1 substrate reagent turned out to be an excellent assay 

for determining cell viability and GGT1 activity simultaneously. 

Cells were exposed to cisplatin during 8 hours and 40 hours after 

cisplatin exposure, the effects of cisplatin were analyzed with the cell 

viability-GGT1 assay and protein/well content. GGT1 enzymatic activity, 

cell viability and protein/well content in the primary culture of hPTPCs 

exposed to cisplatin showed a dose-dependent decrease. This confirmed 

the morphological observation that cisplatin produced a response 

dependent on the concentration employed in our cell culture. Under the 

experimental conditions of our model, we calculated the IC50 for cell 

viability in hPTPC, and it was 64±29 µM. This is very similar to a previous 

observation by J.X. Huang et at., who reported that IC50 after cisplatin 

exposure for HK2 cell line was 15±2 µM and for human PT primary cells 

was 48±2 µM [229]. The IC50 comparison between a continuous and a 

primary cell line after cisplatin exposure showed a big difference in the 

obtained results, which may explain the difficulty in translating in vitro 

results to in vivo applications [59-63].  

We could not determine the IC50 for the cisplatin effects on GGT1 

activity. This is because cisplatin exhibited a biphasic effect. While lower 

doses reduced GGT1 in a concentration-dependent manner, GGT1 activity 

in hPTPC cells exposed to doses above 100 µM was higher than the 

expected from the cell viability values. The normalization of GGT1/ BCA 

actually demonstrated a relative increase in the enzymatic activity of the 

GGT1 in those cells. The GGT1 cytochemical staining (GMNA) also showed 

a high activity of the enzyme at the higher concentrations of cisplatin. This 

result was represented with a very intense reddish brown staining in the 
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cells that were still on the plate. Hence, to determine an absolute 

explanation about the increase of GGT1 dependent on the concentration 

observed in this model is not easy, as a consequence of the controversial 

role played by this enzyme [12]: Some studies showed that several 

tumorigenic cell lines possessed an increased GGT activity and a reduced 

sensitivity to cisplatin [230]. However, there are some published studies 

where the GGT addition increased the sensitivity to cisplatin, and its 

inhibition decreased it, suggesting that GGT is the enzyme that activates 

and enhances cisplatin nephrotoxicity [231, 232]. We propose other 

theory to this increase of GGT1: The cells get cysteine provided by GGT1 

through the breakdown of extracellular GSH. This fact favors to the 

reconstitution of the intracellular GSH and also to its homeostasis. Thus, 

the result of an increased GGT1 activity accompanied in a decreased cell 

viability as a consequence of the cisplatin toxicity could also be explained 

as a defense mechanism: GGT1 can offer resistance to the oxidative stress. 

As the cisplatin concentration increases, the oxidative stress does too, and 

it could suppose the increase of the enzymatic activity, but at the same 

time, this increase activates and enhances cisplatin nephrotoxicity 

producing a fall in cellular viability. 

Cisplatin induces moderated renal damage that can be recovered in 

weeks-months. Thus, we studied whether hPTPC were able to recover 

from cisplatin treatment. For this study, we took advantage of the ability 

to repeatedly assess cell viability using the Presto Blue reagent. The hPTPC 

did not show self-regeneration after cisplatin exposure and the graphs 

obtained for this result showed that the cisplatin is dose-and time-

dependent, and even in the smallest concentration, cisplatin caused 

toxicity over time. With the goal to revert or just improve the effects 

caused by cisplatin exposure, we studied different small molecules. 
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Cimetidine, an inhibitor of the OCT2 basolateral transporter, was tested at 

10 and 100 µM in the presence of cisplatin, but we could not see an 

improved response in the effects caused by the nephrotoxic molecule, 

compared with the control (cells only treated with cisplatin). The lack of 

effect cannot be attributed to the absence of OCT2 expression in hPTPC 

cells. ASP+ influx experiments in Chapter 1 demonstrated hPTPCs express 

functional OCT2 transport. On the other hand, our model of one-

compartment (apical) is not the best suited to evaluate the physiological 

transport of Cisplatin, which might be entering through other 

transporters. Also, the conditions used in the experiment might not be the 

more adequate, requiring higher doses of cimetidine [211, 233]. Genistein, 

a nonsteroidal isoflavonoid did not show improved in GGT1, PrestoBlue or 

BCA at 10 µM compared with the cells without the treatment of this 

molecule. However, at 100 µM, the data from cell viability assays showed 

a higher toxicity in all the cisplatin concentrations treated with this 

molecule. At this concentration, genistein presented toxicity even in 

control cells. This data supported the study published by Khoshyomn et al. 

[234] where they proved that genistein can significantly enhance the 

antiproliferative and cytotoxic action of cisplatin. The quinone ß –

Lapachone, was highly toxic at 10 µM causing the cell death of all cells, for 

this reason, we tried the concentrations of 0.1 and 1 µM. We did not 

observe any changes in the assays evaluated with this small molecule. The 

small molecules tested in the presence of cisplatin in hPTPC were not valid, 

at least in the way used in our group, to decrease or prevent the cisplatin 

nephrotoxicity. 

The determination of protein by the BCA assay in the small molecules 

section gave us negative values. These negative values did not let us 

normalize the GGT1 and PrestoBlue results. This fact prompted us to study 
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the reasons for this phenomenon, and one of the explanations found was 

the detection of interferences in the results of the protein quantification 

when Triton was used as a component of the lysis buffer. As an alternative 

assay to normalize the other results, we optimized the crystal violet assay, 

and currently, it is the method used in the nephrotoxicity model.  

The optimization of this nephrotoxicity model based in cisplatin is easily 

reproducible and the obtained results were consistent. It will let the 

transfer of this model to the fluidic devices to study the effects of cisplatin 

under a more physiological environment (discussed in chapter 4). 
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4.1 INTRODUCTION 

Renal tubular cells are continuously exposed to a plasma ultrafiltrate 

flowing along the luminal compartment. Luminal flow generates a shear 

stress (SS) force over the cells apical surface. Cells can sense SS magnitudes 

through mechanical bending of the primary cilium or brush-border 

microvilli in PT cells, so thus, the intracellular signaling triggered by luminal 

SS is a key physiological stimulus for renal tubular cells [1, 2]. 

The conventional 2D culture conditions eliminate the possibility to 

reproduce real tubular function, which consists in concentrating or diluting 

solutes in the luminal fluid. It is thus evident that conventional 2D culture 

techniques fail to reproduce the actual environment of renal tubule cells, 

which may explain the difficulty in translating in vitro results to in vivo 

applications [3-7]. Regarding this loss of reproducibility, there is a current 

surge of intense cooperation between technical engineering and biological 

laboratories interested in developing fluidic devices for their use in studies 

of the renal epithelium. These new technologies mimic in a more reliable 

way, the physiological environment found in vivo. 

The fluidic devices technology applied in the cell culture field is defined 

as a cell culture model in a system with a micrometer scale that 

incorporates important features like dimensional and morphological 

relevance, flow shear stress, mechanical strain, and co-culture capabilities, 

among others [8]. The fluidic technology represents some advantages 

compared to the traditional cell culture models: 1) Saving money in the 

use of expensive reagents due to the small volumes running through the 

micro-scaled chambers, 2) enabling prolonged culture of cells without the 

need for subpassaging or repeated media changes, 3) incorporating 

mechanical stimulation that can be interesting for those cells or tissues 
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that endure such stimulation in vivo and respond to it by acquiring specific 

phenotypes. All these advantages make this new technology very useful 

to be applied in biomedical research, being highly valuable for studying 

renal physiology and pathology. In the particular case of the nephron, the 

size of a microfluidic channel is very well suited to recreate the flow inside 

a renal tubule lumen, which usually ranges in the 20–60 μm diameter. 

The most employed material to generate microchannels for tissue 

culture is polydimethylsiloxane (PDMS) by using soft photolithography 

technique [4, 9-11]. Alternatives to PDMS are thermoplastics such as 

PMNA (polymethylmethacrylate) [12], PS (polystyrene ), PC 

(polycarbonate), COP (cyclic olefin copolymer) [13] and Teflon.  

The simplest microfluidic pattern design includes a single cell culture 

chamber with inlet and outlet fluidic channels connected for culture 

medium delivery and removal, but the goal of this technology is the 

creation of flexible microfluidic patterning for a myriad of complex designs 

aimed to provide useful characteristics such as exposure to solute 

gradients, migration tests [14], hydrogel confinement, and to include 

actuators imitating specialized organ structure and function [15, 16]. 

Probably the most ambitious goal for microfluidic-based cell culture 

devices is to achieve long-term culture under automatized maintenance 

and experimentation interventions.  

These new technologies that mimic the cellular environment in a more 

realistic way are going to approach us to different areas of study, unknown 

so far, providing us relevant results, similar to physiological environments 

found in vivo and it will let us transfer these results to the clinic in a more 

reliable way than the conventional 2D cell models used today. This chapter 

presents the efforts in the integration of cells, fluidic and assays as a new 
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technological model. Such a model will allow a leap forward in 

understanding critical parameters of a renal epithelial function that will 

subsequently provide better drug and nephrotoxicity screening assays. 
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4.2 OBJECTIVES 

The Specific Aims worked out in this chapter were: 

1. Development of methods and procedures for the isolation and cell 

culture of human primary proximal tubular cells (hPTPC). 

2. Phenotypic characterization of cells obtained from the primary culture 

at the level of gene expression, protein markers, enzymatic activity in 

living cells and transporters. 

3. Development and validation of a new nephrotoxicity model using 

cisplatin for the study of cell viability and expression of specific markers 

implied in the bioactivation of this molecule.  

4. Screening of molecules potentially repaired of the damage produced 

by the cisplatin. 

5. Development of the protocol for differentiated proximal tubular 

cell cultures in a device that allows us the application of Shear Stress 

(SS).  

6. Determination of the SS effect in the sensibility to cisplatin in 

hPTPC. 
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4.3 MATERIAL AND METHODS 

4.3.1 Cell culture 

At the beginning of the project, hPTPC cells seeded inside microfluidic 

devices came from cell suspensions obtained after trypsinization. Once the 

freezing of amplified cultures was implemented, most experiments were 

performed with thawed cells, which were directly seeded inside 

microfluidic channels. Seeding was typically performed by pipetting the 

cell solution directly into the channel inlet. Cell concentrations varied 

depending on the particular device. Specific cell densities that allowed for 

adequate attachment and growing were characterized for each device 

employed during the project. hPTPC cells growing inside channels were 

cultured in MCR medium and maintained in an incubator at 37 °C, in a 5% 

CO2 atmosphere.  

hPTPC cultures in fluidic channels were followed by microscopy to 

evaluate cell attachment, survival, and proliferation. 

The continuous cell line NRK-52E, a proximal tubular cell line from rat, 

was used to compare the results obtained with hPTPC in Ibidi fluidic 

devices. NRK-52E was seeded at 7.500 cells/cm2 in DMEM (Lonza, BE12-

604F), + 5% FBS (Sigma, F7524), + 1% penicillin – streptomycin (Sigma, 

P433).  

4.3.2 Coating protocol 

Cell culture fluidic device was coated with Collagen I from calf skin 

(Sigma, C8919), Matrigel (BD, 354234) and GelTrex (Thermo Fis., 

A1413201). 

The stock solution of Collagen I was diluted 10 times in cold MiliQ H20, 

and the resulting solution was pipetted into channel inlet using between 
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10-12 μg/cm2. The coated fluidic devices were kept at RT during 4 hours, 

in order to get a correct polymerization and after that, they were washed 

2 times with MiliQ H2O. 

A working solution of Matrigel (1:4) was prepared using cold culture 

medium without serum and then, the resulting solution was pipetted into 

channel inlet. The coated fluidic devices were kept in an incubator at 37 

°C, in a 5% CO2 atmosphere during one hour. After the incubation, the 

coating was washed twice with culture medium without serum. 

GelTrex was used at 0.4 mg/mL and prepared in serum free medium. 

The coated fluidic devices were kept in an incubator at 37 °C, in a 5% CO2 

atmosphere during one hour. After the incubation, the coating was 

washed twice with PBS buffer. 

4.3.3 Fluidic devices  

This PhD thesis was part of a coordinated research project, carried out 

in collaboration with a bioengineering group, aiming to develop an 

innovative solution for cell culture and assessment in microfluidic devices. 

In such model, cells would be grown inside a longitudinal channel to allow 

for their exposure to physiological shear stress. The system was initially 

conceived as two-part: a flat microfluidic chip that is encapsulated in a 

larger holder to provide fluidic connections. 

Several prototypes (with their iterations) were tested during the 

project: 

• SU-8 gradient chips 

• SU-8 longitudinal channel 

• Polystyrene (PS) longitudinal channel. 
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• Polystyrene (PS) longitudinal channel, which incorporated 

the fluidic connections and makes unnecessary the 

encapsulate. 

Culture protocols were successfully developed in most cases, as 

detailed below. However, limitations came from material 

biocompatibility, perfusion ability, and fabrication. Thus, a commercial 

solution (Ibidi µSlide VI 0.4, (Ibidi, AI-80606)) was eventually used to 

complete the aims of this chapter. 

4.3.4 Fluidic perfusion system 

Culture medium flow was provided by pumping MCR medium from a 

reservoir through the microfluidic devices, by using a peristaltic pump 

(Ismatec Reglo ICC). The reservoir was connected to the microfluidic 

device in a close circuit comprising 0.5 mm ID (Internal diameter) Tygon 

tubing. Flow (mL/min) was set to a value calculated to provide 

physiological shear stress (0.2 dyne/h/cm2) [4] according to the formula: 

t = 6mQ/bh2 

where m is medium viscosity (g cm-1 s-1), Q is the volumetric flow rate (cm3 

s-1), b is channel width (cm), and h is channel height (cm). To set up the 

perfusion with Ibidi µSlides, the tubing of the pump and the bottle of the 

system were primed with the peristaltic pump. Three hours before the 

fluidic connection, I placed the tube adapter sets and the bottle containing 

the MCR medium into the incubator for equilibration. This will prevent the 

liquid inside the tubes or connectors from emerging air bubbles over the 

incubation time. After the equilibration time, the Ibidi device was 

connected to the system. Flow passed continuously through the device 
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during 48 h at a flow of 0.17 mL/min (providing a shear stress of 0.2 

dyne/h/cm2).  

4.3.5 Phenotyping of cells cultured in microfluidic devices by Multiplex 

PCR and GGT1 cytochemical staining 

4.3.5.1 Analysis of phenotypic markers expression by Reverse 

transcriptase-polymerase chain reaction (RT-PCR) 

RNA isolation 

RNA isolation was performed with all the seeded cells in each channel 

of the fluidic devices with the commercial kit Total RNA Purification 

(Norgen Biotek,37500) according to manufacturer’s instructions. A sample 

of human kidney tissue was used as a control. The RNA isolation for the 

control was performed using TriZol reagent (Invitrogen, 15596-026) 

according to manufacturer’s instructions. Isolated RNA was quantified 

using a Nanodrop spectrophotometer (ThermoSci., Nanodrop 2000) and 

its integrity was tested using a 2% agarose gel with TBE buffer (FisherSci. 

15881-044).  The isolated RNA was kept at -80ºC to avoid degradation. 

cDNA synthesis 

The isolated RNA was retrotranscribed into cDNA through the 

commercial kit High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, 4387406) according to manufacturer’s instructions. 

RT-PCR 

Twelve pairs of primers were combined in a multiplex PCR (Table 4.1). 
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Table 4.1: Multiplex primers 

 

Mix Primer Sequence Amplicon Location 

1 

Megalin 
PF:CATCCCAAGCGAATGGATCTG 

PR:CAGTACAATCCACATCGCCATC 
185 bp TP 

KSP 
PR:TCCCATGCCTACCTCACCTT 

PF:TTGCAGCGACACACGATCA 

125 bp 
Kidney-specific 

cadherin 

DPPIV 
PF:TACTACTGGCTGGGTTGGAAG 

PR:TGTCTGTAACCTTCTTCATTGCT 

102 bp TP 

2 

APN 
PF:GAACGATCTCTTCAGCACATCAG 

PR:GAAGAGGGTGTTGTTCAGCG 

232 bp TP 

GADPH 
PF:TTGACGCTGGGGCTGGCATT 

PR:GTGCTCTTGCTGGGGCTGGT 

157 bp 
Endogenous 

control 

GGT1 
PF:TGAGCCCAGAAGTGAGAGCAGT 

PR:ATGTCCACCAGCTCAGAGAGGG 

185 bp TP 

3 

THP 
PF:GAGTGTCACCTGGCGTACTG 

PR:CATGGGTTTCATTCCTCGTCAAC 

358 bp TAL 

αSMA 
PF:CAGGCATGGATGGCATCAATCA 

PR:ACTCTAGCTGTGAAGTCAGTGTC 

172 bp Myofibroblast 

SGLT-2 
PF:ACGCCTGATTCCCGAGTTCT 

PR:AGAACAGCACAATGGCGAAGT 

110 bp TP 
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RT-PCR was set up using the commercial kit DSF-Taq (Bioron, 101005). 

The final volume of the reaction mixture was 20 µL and 1 µL of cDNA was 

added (Table 4.2). 

Table 4.2: Reagents and working concentration for mixes of PCR 

 

 

 

 

 

 

 

 

RT-PCR cycles were as follows (Table 4.3):  

 

 

4 

AQP-2 

PF: ATCACGCCAGCAGACATCC 

PR:AGCACGTAGTTGTAGAGGAGG 
350 bp CD 

NKCC2 

PF:GGGGAGTCATGCTCTTCATTCGC 

PR:CCACGAACAAACCCGTTAGTTG 
149 bp TAL 

NCC 

PF: CACCAAGAGGTTTGAGGACATG 

PR: GACAGTGGCCTCATGCCTTGAA 
70 bp DT 

Reagent (concentration) Working concentration 

H2O  

Buffer incomplete 10x 1x 

Mg2+ 4 mM 0.16 Mm 

dNTP 10 mM 200 µM 

Primers 4 mM 0.5 µM 

Taq polymerase 5*10-4 U 
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Table 4.3: PCR procedure 

 

The PCR products were separated on a 2% agarose gel with TBE buffer 

(FisherSci., 15881-044) and stained with ethidium bromide (Sigma, E7637). 

The gels were visualized using a camera GBOX (Sygene) with an ultraviolet 

light integrated. 

4.3.5.2 Gamma Glutamyl Transpeptidase (GGT1) cytochemical staining 

This assay let us visualize the GGT activity obtained through the 

reaction between a diazonium salt and the naphthylamine releases by 

hydrolysis of a synthetic GGT substrate, γ-glutamyl-4-methoxy-2-

naphthylamide (GMNA). 

Cells were fixed for 10 min with ice-cold methanol (Fisher Sci. 

M/3950/21) and ice-cold acetone (Sigma, 90872) (1:1) and washed with 

0.85% NaCl (Saline solution). Then, cells were incubated with the working 

solution (Table 4.4) for 20 minutes in the dark and again, they were 

washed with saline solution. To stop the reaction, cells were incubated 

with a 0.1 M solution of cupric sulfate (Sigma, C1297) for 2 min and then, 

Cycle repetitions Temperature Time Process 

1x 94ºC 2’ Initialization step 

40x 94ºC 45’’ Denaturation step 

40x 62ºC 30’’ Annealing step 

40x 72ºC 1.30’ Elongation step 

1x 74ºC 5’ Final elongation 

1x 4ºC ∞ Final hold 

https://en.wikipedia.org/wiki/Denaturation_(biochemistry)#Nucleic_acid_denaturation
https://en.wikipedia.org/wiki/Annealing_(biology)
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washed with a saline solution [17]. The pictures were taken using an 

inverted microscope (Olympus IX81). 

Table 4.4: Working substrate solution for a volume of 5 mL 

*The substrate solution was filtered through a Whatman Nº. 1 filter 
paper just prior to use to remove any insoluble aggregates of the 
substrate. 

 

4.3.5.3 Analysis by Immunofluorescence 

Cells were seeded at the adequate concentration of the fluidic device. 

Confluent monolayers were fixed with 4% paraformaldehyde for 10 

minutes and then washed with PBS [18]. The fixed cells were 

permeabilized with 0.2% Triton-X 100 (Sigma, X100), incubated for 10 

minutes and washed with PBS. Afterward, cells were incubated for 10 

minutes in a quenching solution, using 50 mM NH4Cl, and then washed 

again. The blocking solution, PBS, 0.1% Tween 20 (Sigma, P5927), 0.1 % 

BSA and 10 % Goat Serum (Sigma, G6767), was incubated for 30 minutes 

at room temperature (RT) and finally, cells were incubated with primary 

Substrate solutions* Working 

concentration 

Volume 

GMNA solution 2.5 mg/mL 

(SC, 215216) 

0,25 mM 0,25 mL 

Tris buffer, pH 7.4 0.1 M 1,25 mL 

NaCl (Saline solution) 0.85% 3,5 mL 

Glycylglycine (Sigma, G3915) 3,78 mM 2,5 mg 

Fast blue salt hemi zin 

chloride (Sigma, F3378) 

1,20 mM 2,5 mg 
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antibodies in blocking solution overnight at 4°C. The primary antibodies 

used were ZO-1 (1:40; Santa Cruz Biotechnology, SC-10804) and acetylated 

tubulin (1:100, Sigma T6793). Cells were incubated with secondary anti-

mouse Alexa 555 (1:1000; Invitrogen, A31621) and anti-rabbit antibodies, 

Alexa 488 (1:1000; Invitrogen, A-11008)) for 1 hour in blocking solution 

buffer at room temperature. Ibidi were mounted in Vectashield Hard Set 

TM Mounting Medium (VectorLabs, H-1400) with DAPI (1:1000). Ibidi were 

examined under a fluorescence microscope (Olympus IX81).  

4.3.5.4 Analysis of phenotypic markers by Immunocytochemistry 

Cells were seeded at the adequate concentration of the fluidic device. 

Confluent monolayers were fixed with 4% paraformaldehyde for 10 

minutes at RT and permeabilized with 0.1% Triton X100 for 10 minutes 

[19]. After the permeabilization step, cells were washed with PBS and 

incubated with 3% H2O2 (quenching solution for endogenous peroxidase 

activity) for 5 minutes. Non-specific binding sites were blocked by 

incubation with Vectastain Elite ABC kit (VectorLabs, PK-6100) according 

to manufacturer’s instructions and finally, cells were incubated overnight 

at 4°C with α-SMA (1:50, Sigma A5228) primary antibodies. Afterward, 

cells were washed and then exposed to their corresponding biotinylated 

secondary antibodies (1:200) for 1 hour at RT. The protocol continued with 

the incubation of the reagents from Vectastain Elite ABC kit (VectorLabs, 

PK6100) to create the Avidin/Biotinylated Complex, followed by the 

incubation with Sigmafast DAB kit (Sigma, D0246), the precipitated 

substrate system to peroxidase, till the cells changed the color. Cells were 

counterstained with hematoxylin-eosin (Vector, H3404), mounted in 

Vectashield Hard Set TM Mounting Medium and examined in an inverted 

microscopy (Olympus IX81). Unspecific binding and residual background 
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peroxidase activity could be detected in control cells processed without 

the primary antibody. 

 

4.3.6 Modifications of Cisplatin cytotoxicity assay for use in microfluidic 

devices 

The same cytotoxicity assay described in Chapter 3 was used on cells 

growing in microfluidic devices (Ibidi µSlide) with the following 

adaptations. 

 

4.3.6.1 Cisplatin treatment 

The static Ibidi device was maintained 7 days post-seeding under this 

condition, and the fluidic Ibidi device was maintained 5 days post-seeding 

in static and 48 h under flow conditions. Next, cells were exposed to 

cisplatin, 7 days after the seeding for both devices. A stock solution of 3.33 

mM of cisplatin (Sigma, P4394) dissolved in a NaCl solution 140 mM was 

prepared. The working concentrations were 300, 100, 50, 30, and 5 µM. 

The higher concentration of cisplatin, 300 µM, was prepared from the 

stock solution, and the other concentrations were serially diluted from the 

higher concentration. All the working concentrations were prepared with 

MCR medium, to reach the final volume 

Each channel from an Ibidi device was exposed to 150 µL of a different 

cisplatin concentration during 8 hours in the incubator. One channel was 

not exposed to cisplatin, to be used as a control. After the treatment time, 

MCR medium containing cisplatin was replaced by fresh MCR medium and 

the Ibidi were kept in the incubator for 40 h, before to start with the assays 

to evaluate the effects of cisplatin. The cisplatin exposure with the 
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continuous cell line NRK-52E is the same described here, but using the 

growth medium for these cells. 

4.3.6.2 Cell viability and GGT1 functional assay 

After the incubation time and before to determine the cisplatin effects, 

it was performed PrestoBlue cell viability assay and GGT1 enzymatic 

activity at the same time. Cells were washed with HBSS buffer (Lonza, 

BE10-527F) to remove the cell culture medium. The assay solution was 

prepared containing: 1/10 PrestoBlue reagent (TermoFisher Scientific, 

A13262) + 2 mM y-glutamyl-p-nitroanilide (Sigma, G133) + 50 mM 

glycylglycine (Sigma, G3915) in 1 mL DMEM (Lonza, BE12-917F) and 40 µL 

of this solution was added per channel. Cells were incubated at 37ºC for 

21 minutes, taking measures every 7 minutes and after the incubation, 

results were read in a plate reader using fluorescence for PrestoBlue 

quantification (ex.530 nm / em.590 nm) and absorbance for GGT1 

quantification (410 nm). 3 channels of an Ibidi without cells were used as 

blank to subtract the background in each assay. The dose response was 

plotted using the normalized relative absorbance for GGT1 enzymatic 

activity and the normalized relative fluorescence for cell viability vs. drug 

concentration. GGT1 enzymatic activity was also expressed as mmol p-

nitroaniline/hour/cm2.  

4.3.6.3 Quantification of cell number 

The Crystal Violet assay was based on the method of Saotome et al. 

[20] and it determined the total number of cells in each. This quantification 

let to normalize the enzymatic activity and the cell viability per channel in 

a more exactly way. After the determination of cell viability and GGT1 

enzymatic activity, the quantification of cell number with crystal violet was 

performed. Cells were washed with PBS buffer, fixed with 4 % of 
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Paraformaldehyde during 15 minutes, and washed again with PBS buffer 

to eliminate the rest of the fixer. Then cells were stained with 0.1% of 

crystal violet solution (Sigma, C0775) in PBS buffer for 30 minutes. After 

the incubation, the excess of dye was removed by extensive washing with 

tap water. Pictures were taken under the microscope and then, the 

formed crystal were dissolved by using 10% acetic acid. The crystal violet 

was measured using a plate reader at 590 nm absorbance. 

 It is important to mention that all the experiments performed to 

evaluate the cytotoxicity produced by cisplatin were based in colorimetric 

assays. This kind of assays enables the direct quantification of the results 

without the need to work with the limited number out of the device. The 

Figure 4.1 shows the experimental design for the Shear Stress experiments 

carried out with Ibidi µSlides. 
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- 

Figure 4.1: Schematic representation of the methods. a) Cells 
were seeded in Ibidi devices. b) 5 days after the seeding, one 
of the Ibidi was connected to flow during 48 hours. c) 7 days 
after the seeding, both devices were exposed to different 
cisplatin concentration during 8h. d) 48 h after cisplatin 
treatment was evaluated the effects of this nephrotoxic by 
using different assays. 
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4.3.7 Statistic 

Differences between groups were considered to be statistically 

significant when p<0.05 using two-tailed Student’s t-test in Excel. 
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4.4 RESULTS 

4.4.1 Culture of hPTPC cells in custom-made Fluidic devices 

4.4.1.1 Cellular seeding  

Each custom-made fluidic device had defined properties. For example, 

the volume used in each channel limited the supply of oxygen and 

nutrients and maximized accumulation of waste. The different plastic 

materials used in the fabrication of the device had different gas 

permeability. All these properties were different in each custom-made 

fluidic device, and it affected cell survival directly and consequently, the 

success of the experiment. So, cell concentrations, as well as the media 

change were optimized for attachment and proliferation of either device 

used to grow hPTPC (Table 4.5). 

Table 4.5: . Data for cell seeding optimization 

*after seeding (a.s.) 

Custom-made 

fluidic device 

Cells per 

channel 

Volume Height Media change 

Su-8 gradient chip 25.000 10 μL 300 μm 1st day: 3/5/7 h a.s.* 

Then:Twice/day 

SU-8 longitudinal 

channel 

25.000 10 μL 300 μm 1st day: 3 hours a.s. 

Then: Once /day 

PS longitudinal 25.000 10 μL 200 μm 1st day: 4 hours a.s. 

Then: Once /day 

PS longitudinal with 

incorporated fluidic 

connections 

200.000 80 μL 200 μm 1st day: 4 hours a.s. 

Then: Once/day 
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4.4.1.2 Prototypes made of SU-8 

SU-8 is an epoxy resin with eight epoxy groups in a typical molecule. It 

offers high fabrication resolution, transparency for optical inspection, 

enough mechanical stability for easy handling, fabrication of the 

structures in a short time and with a wide range of thickness, 

biocompatibility, and compared with other materials, SU-8 is cheap [21, 

22]. All these properties converted SU-8 in a good material to be used for 

rapid prototyping of the microfluidic device.  

The first prototype was designed to be used as a gradient chip, showing 

a central culture chamber and two lateral microchannels, and it was 

fabricated by photolithography and bonding techniques. So, it was 

designed to seed cells in the central chamber, and in the lateral 

microchannels, one could test different conditions to create a gradient 

chip (Figure 4.2). 

 

Figure 4.2: SU-8 gradient chip used as a prototype. 
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I started to use this first prototype to test SU-8 compatibility and 

establish cell culture conditions and flow protocols. Because of the delay 

in the fabrication process of the fluidic device designed for my project, 

cells in gradient chips used as a prototype were seeded in the central 

channel and also, in lateral microchannels. 

The seeded hPTPC were able to survive only in the central chamber and 

in inlets/outlets of all channels (Figure 4.3), and cell confluency was not 

reached in all the experiments. 

 

Figure 4.3: Cell survival in SU-8 prototype. a) SU-8 design. b) hPTPC growing in the 
central channel. 

We tried to improve cell survival and cell confluency by using Collagen I 

and Matrigel coatings to compare with cell survival obtained when cells 

were seeded on the SU-8 surface (Figure 4.4). Matrigel worsened cell 

survival, and cell confluency and Collagen improved both parameters. 

Coatings were compared with the SU-8 surface. 
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Figure 4.4: Strategy to improve hPTPC cell viability. 5 days after the seeding the 
cell viability was compared between the different conditions: a) SU-8 surface. b) 
Collagen I. c) Matrigel. 

A total number of 34 SU-8 gradient fluidic devices were tested in our 

lab. hPTPC reached cell confluence in a 50% of the seeded devices, but 

only a 15% of these confluent devices survived in culture for 5 days. The 

efficiency of cell confluency and cell survival was significantly limited. 

 The geometry of these devices changed to three longitudinal channels 

with a central chamber to grow cells (Figure 4.5). Each channel could be 

operated independently, and cells were injected and seeded on the 

bottom of the channel. At this point, a prototype version of an encapsulate 

was also tested (see below), that allows for easy manipulation and 

reduced bubble formation once connected to a fluidic system. 

 

Figure 4.5: SU-8 longitudinal fluidic device  
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A total of 16 SU-8 longitudinal fluidic devices were used in the lab. Only 

40% of the seeded cells reached confluence in the central channel of the 

device or in inlets/outlets, even when cells were seeded on coated 

surfaces with Matrigel or Collagen I to improve cell attachment and cell 

viability.  

The longitudinal fluidic devices presented additional problems: the 

different layers of the device were separated easily, and it produced leaks 

and also, the continuous formation of bubbles difficulted the work with 

the devices. These problems hindered the connection of the fluidic devices 

to flow. 

At the beginning, we thought that maybe some toxic waste coming 

from the sterilization process with isopropanol was the responsible of the 

reduced efficiency in cell survival. For this reason, the sterilization process 

was modified, including more washes with H20 to eliminate possible toxic 

wastes and also, leaving the microchips with cell medium in the incubator 

O/N the day before to be used. The modification in the sterilization 

process did not improve cell survival.  

4.4.1.3 Prototypes made of PS  

The next devices tested in the lab were fabricated with culture grade 

polystyrene (PS). PS is the material most cell culture plastics are made of. 

Once fabricated, culture surfaces were treated with O2 plasma to improve 

their hydrophilicity, otherwise, cells were not able to attach on the device 

surface.  

The geometry of prototypes made of PS was the same that was used 

for SU-8 longitudinal fluidic devices: three longitudinal independent 

channels with a central chamber (Figure 4.6).  



Natalia Sánchez-Romero 

202 
 

 

Figure 4.6: Representative image of the prototype made of PS. 

The process of fabrication with this type of material was different: 

channels were laser-cut to generate different layers and then, layers were 

glued. As a consequence of the fabrication process, a large majority of the 

generated layers were not perfectly fixed, losing the geometry from a 

device to other, and obviously from batch to batch. It also implicated the 

appearance of cell/medium leaks. Another problem from these devices 

was the decontrolled generation of bubbles, so the cells only survive for a 

maximum time of 72 h. If bubbles were not generated or leaks did not 

appear, cells were able to reach the confluence, and the survival of the 

cells in this device can be maintained for more than 7 days in culture. A 

total number of 49 PS fluidic devices were used. More than 60% presented 

geometry problems, for example, inlets or outlets were obstructed, 

avoiding the access of cells or media to the central channel (Figure 4.7a). 

Of the 40% of the PS fluidic devices used, 25% was filled with bubbles 

preventing cell growth or culture media (Figure 4.7b). Finally, only 15% of 

the seeded devices with hPTPC survived in the central chamber at 

confluence for 7 days (Figure 4.7c). 
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Figure 4.7: Efficiency in fluidic device fabrication and cell seeding. a) 
Intlets/outlets representation of three different channels in the same fluidic 
device. b) 4 hours after hPTPC seeding, in the central chamber appeared 3 
bubbles, but 24 hours after the seeding, the bubbles occupied all the space in the 
central chamber. c) In the absence of the problems mentioned before, cells were 
able to grow, reach the confluence and survive in the device at least, 7 days. 

4.4.1.4 The problem of fluidic connections: encapsulates 

The fabricated fluidic devices were flat. This characteristic prevented 

the direct connection of the device to a pump, to induce flow. To enable 

the connection to flow system, devices were encapsulated in a holder 

which, in addition, constituted the interface between the micro and the 

macro scales. The encapsulated design removed most of the difficulties 

posed by the tiny size of the fluidic devices for cell culture: The idea for 

the fabrication of the holder was a piece with a channel that had same 

dimensions that fluidic devices and its design allowed direct connection 

between tubes from flow system and fluid devices through the use of 

standard connectors. 
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The first fabricated holder was a prototype, and the fluidic device was 

located between two screwed pieces (Figure 4.8). 

 

Figure 4.8: First holder prototype with two screwed pieces 

The final design of the encapsulated was made up of three different 

pieces, and the material used for the fabrication of the holders was 

methacrylate. The pieces were coupled to the fluidic devices through a 

flange system (Figure 4.9). 

Figure 4.9: Methacrylate encapsulates. On the left is situated the piece where 
the fluidic device was fit. The piece in the middle of the picture closed the 
piece explained before. The encapsulated is completely hermetic when the 
piece on the right closes the other two pieces.  
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A total of 7 PS longitudinal fluidic devices with encapsulated were 

seeded with hPTPC. The seeding protocol is the same used without 

encapsulation: 200.000 cells resuspended in 80 μL MCR medium were 

seeded using the inlets of the encapsulated that directly connected to the 

fluidic device (Figure 4.10). 

 

Figure 4.10: Seeding process in encapsulated 
fluidic devices. 

Once the cells were seeded, the encapsulated was closed with the third 

piece and 4 hours after the seeding, connected to a peristaltic pump to be 

exposed to flow. The efficiency of this process was not successful, basically 

because pieces did not close well, producing medium leaks. The 

experiments were stopped 48-72 hours after the fluidic connection, 

without cells in the devices.  

4.4.1.5 Flow chip of PS with self-connections 

The last design of fluidic device tested in the lab was a fluidic device of 

injected PS. It had three longitudinal and independent channels. Once the 

cast of the fluidic device was fabricated, a layer of PS was glued to the 
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bottom. This device was not flat, and it let the direct connections to the 

tubes and adapters for the fluidic system. The fluidic device was treated 

with 02 plasma to modify the hydrophobicity of the surface and improve 

cell attachment (Figure 4.11). 

 

Figure 4.11: PS fluidic device. a) PS longitudinal 3 channels fluidic device. b) 
Representative image of the PS microfluidic devices with direct connections to 
flow. 

25 devices were seeded in this type of fluidic device: 19 devices were 

discarded around 24-48 hours after seeding because they presented some 

of the problems explained below and only some channels of 6 devices 

were used to characterize cells and also to perfuse luminal flow (Figure 

4.12). 
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Figure 4.12: Characterization of hPTPC growing in PS longitudinal fluidic devices. 
a) GGT1 cytochemical staining in areas of different channels. b) Multiplex PCR. 
The red box showed primer dimers. 

 The problem presented in this type of fluidic device was associated 

with the glued PS layer, because it was not fixed correctly, so cells 

sometimes grew up outside of  the seeding area (Figure 4.13a) and also, 

because the used glue invaded the seeding area, and it limited the cell 

attachment and proliferation (Figure 4.13b). Bubbles formation was 

another important problem (Figure 4.13 c) and also, the material fragility 

when connectors for adapting pump tubes were used (Figure 4.13 d). 

Again, the seeding protocol was not a problem, because when the seeding 
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area did not present any problems, cells were able to grow, reach 

confluence and survive for more than 7 days in culture (Figure 4.13 e). 

 

Figure 4.13: PS device with incorporated fluidic connections. a) Arrows showed 
cells growing outside of the channel. b) Channels were stained with a dye to show 
how the glue invaded the seeding area and also, closed this area c) Bubbles 
formation along the channel. d) One of the direct connections to flow system was 
broken after fixing the connector. e) Confluent cells after 7 days in culture 

Undoubtedly, it was the best fabricated fluidic device, compared with 

the previous one, because we performed some characterization assays, 

not possible so far. 
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4.4.2  Culture of hPTPC cells in Ibidi µ–Slide VI 0.4 

All the problems coming from the custom-made microchips impelled 

us to search another type of devices to achieve the central goal of the 

Thesis. Commercially available solutions are very young in the market and 

have not been widely adopted yet. However, different companies provide 

solutions to perform assays based on microfluidic plates (see Annex). We 

started to work with the devices supplied by IBIDI, specifically with Ibidi µ–

Slide VI 0.4 because of the geometry of the device, the number of channels 

and also for the number of papers published using the devices from this 

company.  

Each Ibidi µ–Slide VI 0.4 device has 6 independent channels made up 

of a plastic with a very high optical quality and the surface of the device is 

treated with biopolymers, which mediate cell adhesion and growth (Fig 

4.14). The dimensions of the channels were: length 17 mm, width 3.8 mm, 

height 0.4 mm.  The growth area of each channel was 0.6 cm2 and the 

volume of each channel was 30 µL. Each channel had 2 reservoirs, and the 

volumen per reservoir was 60 µL. The company provided tube adapter sets 

for the fluidic connection. The tube adapter sets contained tubes and 

adapters for the connection between the Ibidi µ–Slide (female Luer) and 

the tubing of the pump in use.  

 

Figure 4.14: Ibidi µ–Slide VI 0.4 design 
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4.4.2.1 Cell density, refreshing medium, coating 

The seeding process with these devices required the optimization of 

the number of seeded cells. The formation of a homogenous cell 

monolayer around the fifth day after cell seeding and before to connect 

the Ibidi with the flow was the goal. Different cell concentrations were 

tested. The use of GelTrex on the surface of the channels was also tested 

(Figure 4.15). Our results indicated that using the small cell concentration, 

we did not reach a homogenous confluence 5 days after the seeding. The 

largest cell concentration reached the confluence before the established 

5 days after the seeding, but we spent too many primary human proximal 

tubular cells. The use of GelTrex did not improve the cell growth, and 

sometimes the coating blocked the correct seeding in the channels. Based 

on these results, the best cell concentration was 42.000 cells per cm2 

without coating. Cell media was refreshed every 24 hours. 

hPTPC proliferated and reached cell confluence easily. Cell survival in 

this device was not a problem and cells were able to be in culture for more 

than 14 days if the medium was refreshed every day. 
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Figure 4.15: Evolution of the cellular confluence-dependent on cell concentration 
and the used coating. The first row of pictures corresponded to 24 hours after 
seeding, the second to 72 hours after seeding and the last to 5 days after seeding.  

Cells growing on Ibidi surface were analyzed through GMNA 

immunocytochemical staining. This test helped us to be sure that hPTPC 

continued to express the GGT1 enzymatic activity, a specific marker for PT 

cells (Figure 4.16). The intensity of the staining was variable, with areas of 

intense reddish-brown staining by the side of other areas of less intensity 

and it can be explained as a consequence of cell aging. This expression’s 

profile was the same for hPTPC growing in 96 wells/plate. 
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Figure 4.16:  GGT1 enzymatic activity in hPTPC cells growing on Ibidi surface. The 
picture showed two channels of Ibidi where cells are positive for this marker.  

4.4.2.2 Developing a Perfusion protocol 

5 days after the seeding and once the cells reached the confluence, one 

of the seeded Ibidi was connected to a peristaltic pump to be exposed to 

luminal flow. The first experiments performed under flow presented many 

problems related with the optimization of the fluidic system, as well as the 

cellular stress produced by the luminal flow. The different problems that 

we had to overcome were (Figure 4.17): 

• Optimization of the material (tubes, adapters, connectors) used to 

achieve the maintaining of flow in medium/long term in IBIDI 

devices using a peristaltic pump. The principal limitation found was 

related to material sterilization and duration. 

• Bubbles reduction. The presence of bubbles is the principal limiting 

factor in the fluidic area because it can damage cells or stop the 

perfusion. All these problems were improved with the incorporation 

of an intravenous therapy filter of 5 microns. This element improved 

cell survival in the fluidic device significantly. 
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• Flow pulsatility reduction. Peristaltic pumps are the ideal solution to 

achieve the necessary flow rates during the time required for the 

test. In the experiments described in this Thesis, an 8-roller head 

pump with a very small pulse was employed. However, we detected 

that flow pulsatility in the perfused channels was a different channel 

to channel. This problem was tried to be resolved through the use 

of a custom-made pulse dampener. The pulse dampener, like the in-

line filter, would also help to eliminate bubbles coming from 

upstream the Ibidi. However, the benefit obtained was not 

significant, since the generation of bubbles inside the device itself 

remained the most deleterious factor.   

 

Figure 4.17: Perfusion system. a) Peristaltic pump. b) Medium bottle. c) 
Intravenous therapy filter d) Pulse dampener and e) IBIDI µ–Slide VI 0.4 
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4.4.3 Nephrotoxicity model based in cisplatin employed in hPTPC 

growing in Ibidi µSlides 

The nephrotoxicity model to study the SS effect on cisplatin cytotoxicity 

was explained in materials and methods section, and it was represented 

in Figure 4.1. Additionally, all the experiments in this section were also 

performed with the continuous cell line NRK. The work performed with 

hPTPC and NRK allowed us to compared the results between these cells 

and check the robustness of our model for its validation. 

4.4.3.1 Nephrotoxicity assays in Ibidi under static conditions 

hPTPC and NRK cells growing inside fluidic channels were exposed to 

different concentrations of cisplatin during 8 hours and the effects 

produced by cisplatin were analyzed 40 hours later. The first parameter 

evaluated was cell morphology (Figure 4.18) and pictures showed a 

decrease in the number of NRK and hPTPC cells from 100 µM of cisplatin.  
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Figure 4.18: Cisplatin effects on cells growing in IBIDI device. a) NRK continuous 
cell line. b) hPTPC isolated and characterized along this Thesis. 

After morphological evaluation, hPTPC and NRK cells were analyzed by 

optical assays explained in the section of methods and the results obtained 

with static ibidi were compared with the results obtained when cells were 

seeded in 96 wells plate (Fig 4.19).  
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Figure 4.19: Growing on Ibidid µ-slide effects on NRK and hPTPC sensitivity to 
cisplatin (96w vs. Ibidi). a, d) GGT1 activity; b, e) Cell viability; c, f) cell numbers. 
NRK data were expressed as mean ± SD (n=5), and hPTPC data were expressed as 
mean ± SD (n=3). *p< 0.05; **p<0.01; ***p<0.001. 
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EC50 was calculated for NRK and hPTPC growing in 96 wells/plate and 

static Ibidi after cisplatin exposure (Table 4.6). The analyzed data showed 

that hPTPC cells growing in Ibidi devices were more resistant to cisplatin 

exposure than the same cells and under the same concentrations of 

cisplatin in 96 wells plate. 

Table 4.6: EC50 of NRK and hPTPC after cisplatin exposure in 96 
wells/plate and static Ibidi. Data were represented as mean ± SD of three 
independent experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 96 w/p Static Ibidi 

EC 50 ± SD(µM) NRK  103.53±43.92 118.964±48.43 

EC 50 ± SD(µM) hPTPC  65.2±35.07 103.31±53.65 
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We also compared the results obtained with the optical assays 

between NRK and hPTPC (Figure 4.20).  

 

Figure 4.20:  Comparison between NRK and hPTPC in static Ibidi after cisplatin 
exposure. a) GGT1 enzymatic activity; b) Cell viability; c) Cell number. *< 0.05; 
**<0.01; ***<0.001 
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4.4.3.2 Shear stress effects on viability and phenotypical characterization 

Different techniques were performed with the aim to analyze the 

differences between cells growing in Ibidi in static conditions and cells 

growing in Ibidi and exposed to flow for 48 hours. 

 

First, we evaluated cell viability with PrestoBlue reagent, and we did 

not find any difference between both conditions (Figure 4.21). 

 

Figure 4.21:  Cell viability comparing ibidi in static and 
under flow. Data were represented as mean ± SD of two 
independent experiments. 

GGT1 enzymatic activity was also determined and also here, we did not 

observe any significant difference (Figure 4.22). 
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Figure 4.22: GGT1 enzymatic activity comparing Ibidi in static 
and under flow. Data were represented as mean ± SD of two 
independent experiments. 

Then, we analyzed morphological changes, and we detected some 

differences between cells growing in static condition versus cells exposed 

to luminal flow: cells presented an organized monolayer made up of 

epithelial cells under luminal flow. In contrast, cells in the static conditions 

showed a heterogeneous monolayer made up of different cell types. Other 

detected difference was that cells under flow showed granules in the 

cytoplasm, compared with cells in static condition (Figure 4.23). 

Figure 4.23: Morphological differences between both conditions. a) Cells 
exposed to 48 hours of luminal flow. b) Cells grown in static conditions. 
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We also performed immunostainings to determine the expression of 

the epithelial marker ZO1 and acetylated alpha-tubulin for primary cilia 

(Figure 4.24), and αSMA for EMT (Figure 4.25). None of these markers 

presented any difference between both conditions. 

 

Figure 4.24: Proximal tubular epithelial origin of hPTPC in Ibidi fluidic devices. a) 
Cells in static ibidi and b) cells in Ibidi under flow (48 h) were analyzed by IF. 
Expression of epithelial marker ZO-1 confirmed the formation of tight junctions 
(green). The analysis of acetylated tubulin showed the expression of primary cilia 
(brighter dots in red). 
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Figure 4.25: Immunocytochemistry of αSMA in cells growing in Ibidi fluid devices. 
The marker αSMA is a specific marker of Myofibroblast. Its positive expression in 
hPTPC confirmed a possible EMT 

4.4.3.3 Shear stress effects on hPTPC sensitivity to cisplatin 

Cells were exposed to luminal flow for 48 hours, and after that, static 

and fluidic conditions were treated with cisplatin for 8 hours. 40 hours 

after cisplatin exposure, shear stress effects on hPTPC sensitivity to 

cisplatin were evaluated. Firstly, morphological observations were 

performed to detect differences between channels in static condition or 

exposed to luminal flow in the presence of cisplatin (Figure 4.26).  
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Figure 4.26: Shear Stress effects on hPTPC. 

Eventually, the optical assay allowed us to determine numerically the 

experiments tested after cisplatin treatment, under static and fluidic 

conditions in hPTPC (Figure 4.27). When results were compared, hPTPC 

exposed to 0.2 dyne/h/cm2 did not show any difference in cisplatin 

sensitivity compared with cells in static conditions. EC50 for cells under 

flow conditions was 143.48 µM ± 96.61 µM and for cells in static conditions 

was 103.31 µM ± 53.65 µM.  
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Figure 4.27: Cisplatin effects evaluated through optical assays in 
hPTPC in static and under fluidic condition. a) GGT1 enzymatic 
activity; b) Cell viability; c) Crystal violet. The results were 
expressed as mean ±SD of three separate experiments. 
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GGT1 enzymatic activity and PrestoBlue cell viability were normalized 

with the total number of cells using Crystal Violet (Figure 4.28). These 

assays revealed that GGT1 presented greater enzymatic activity at the 

highest cisplatin concentrations: 50, 100 and 300 µM. This increase can be 

explained as a resistance mechanism to the oxidative stress. As the 

cisplatin concentration increases, the oxidative stress does too, and it 

could suppose the increase of the enzymatic activity, but at the same time, 

this increase activates and enhances cisplatin nephrotoxicity producing a 

fall in cellular viability. Normalization for PrestoBlue cell viability showed 

approximately the same number of cells per channel in each condition, 

except in ibidi under flow. Usually the differences in cell viability of these 

ibidis were found mainly due to the appearance of bubbles in the 

channels. 

  
Figure 4.28: GGT1 enzymatic activity and PrestoBlue cell viability normalized 
with the total number of cells (CV). a) Normalized GGT1 enzymatic activity. b) 
Normalized PrestoBlue. The results were expressed as mean ±SD of three 
separate experiments. 
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4.5 DISCUSSION 

The use of fluidic devices promises to bring about significant advances 

in the development of in vitro physiological systems able to reproduce in 

vivo function. Focused on this purpose, we started to work with fluidic 

devices with the goal to establish cultures of human proximal tubule cells 

grown under luminal flow, providing physiological mechanical stimulus 

(shear stress). To validate the utility of such model, we sought to 

determine the effects of shear stress on the hPTPC sensitivity to a well-

known nephrotoxic. 

This project was associated with a bioengineering effort to develop 

microfluidic devices tailored to our specific needs. Several prototypes 

were tested for cell attachment and proliferation. In most cases, a 

successful protocol for hPTPC culture was accomplished, and even a few 

experiments were performed under flow conditions. However, we realized 

that prototypic devices are not the best suited to perform systematic 

biological studies. Materials like SU-8 are ideal for rapid prototyping and 

SU-8 based microfluidic devices have been successfully employed in proof 

of concept reports for several cell culture devices [21, 22]. However, the 

biocompatibility of SU-8 has been recently put into question [23], and our 

results clearly demonstrated it is not a suitable material for long-term 

culture of renal cells. Microfabrication techniques at the prototyping level 

are optimal for the validation of the materials and the designs. Indeed, our 

results demonstrate the feasibility of generating PS based microchannels 

devices, where hPTPC cells could be successfully seeded and grown. 

However, these devices presented too many problems for continuous use, 

and they were not available in high numbers. 
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The experience with the custom-made devices and the shortage of 

time to complete the aims of this Thesis prompted us to use a 

commercially available device. Ibidi µ–Slide VI 0.4 was the selected 

commercial solution because of its design. This standard slide-sized device 

contained 6 channels and allowed us to transfer the nephrotoxicity model 

generated in P96 wells easily. The connection to a fluidic system is 

simplified by the presence of female Luer connectors attached to each 

channel inlet. An optimized perfusion system was designed to provide 

flow-mediated shear stress under physiological range. The generation of 

bubbles inside of the device is a general issue in the microfluidic world that 

we could not completely overcome. This has limited the length of 

exposure to the flow. Also, the geometry of the Ibidi is not ideal, since its 

height (0.4 mm, compared to the 0.1-0.2 mm of the custom-made 

microfluidic devices) makes necessary to pass a higher flow than desired. 

The use of NRK cell line was essential to perform the experiments 

because it allowed a comparison with the results obtained from hPTPC and 

more importantly, it helped to determine the sensibility of a primary cell 

culture versus a continuous cell line.  

The experiments performed with NRK and hPTPC growing in static Ibidi 

and 96 wells plate confirmed that cells growing in static Ibidi were more 

resistant to cisplatin exposure than cells in 96 wells plate. Among the 

possible explanations, there is a dosing factor that was not taken into 

account while designing the experiment. In a well of a 96 wells plate, the 

volume of cisplatin solution was 100 µL/well. Taking into account that 

0.335 cm2 is the area of a well, the total overall dose of cisplatin here was 

298.5 µL/cm2 for any given concentration. In the Ibidi, the volume of 

cisplatin solution was 30 µL/channel. Taking into account that 0.6 cm2 is 
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the area of a channel, the total overall dose of cisplatin here was 50 

µL/cm2. Thus, the overall dose of the drug between 96 wells plate and ibidi 

in static condition presented a ratio of 5.97. Depending on the relative 

amount of cisplatin uptake during the 8 hours of incubation, the reduced 

dose in the Ibidi might have been limiting its toxicity. Other explanations 

would imply phenotypic changes of the hPTPC by the fact of being grown 

in a different environment, resulting in modified sensitivity to cisplatin.  

The nephrotoxicity model was tested in hPTPC growing in Ibidi fluidic 

devices, and all the experiments were performed in static and under flow 

conditions. The generated results showed that hPTPC exposed to flow did 

not present any difference compared with cells in static conditions. Kyung-

Jin Jang et al. [4], worked with human proximal tubular primary cells 

exposed to cisplatin at 100 µM in static and under flow and in their work, 

cells under flow were more resistant to cisplatin than cells kept under 

static conditions. The publication mentioned above was reported by D.E. 

Ingber´s group. Although they used a fluidic device, human primary PT 

cells and a nephrotoxic like cisplatin, the differences with our model were 

quite significant: The design of the chip had two compartments: A top 

channel mimicked the urinary lumen and had fluid flow, whereas the 

bottom chamber mimicked interstitial space and was filled with media. 

Cisplatin was introduced into the bottom space, and cisplatin-induced 

cellular damage was monitored for 24 hours. During the following 72 

hours, shear stress was helpful facilitating recovery of the injured cells and 

associated biomarkers. Since 2013, this is the only report in the literature 

on this subject. This fact makes us think that probably working under 

fluidic conditions is not that easy to adopt as a cell culture model, 

substituting the conventional cell culture plates.  
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The work done during this Thesis adds to previous studies of proof of 

concept demonstrating the approach feasibility, and further supports the 

idea that this technology will provide a stronger model for the study of 

renal function and disease in a short future. Fundamental questions 

applied to significant clinical problems like renal toxicology [4, 24-26], EMT 

and proper cell differentiation [27], albumin handling [28], stone 

formation [29] and metabolomics [30] have already been addressed by 

using such devices. 

.
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4.7 ANNEX 

During the developing of this Thesis several products have been made 

available from different commercial sources that could serve for the aims 

of this study. Table Annex summarizes their main features. 

Table 4.7: Commercial Devices Providing Microfluidic Solutions for Cell 
Culture. 

 

Company Applications    a Impulsion 

solutions 

Geometries Publications 

 

Cellix Ltd 

 

Cell rolling, 

adhesion, 

migration, 

chemotaxis, 

shear stress 

 

8 

 

Syringe 

pump, 

peristaltic 

pump 

 

Parallel 

longitudinal 

channels 

 

Endothelium,

blood cells, 

cancer cells 

 

Cytoo 

 

Renal PT 

model 

(closed 

lumen) 

 

1

0

0

s 

 

N/A 

Micropatterned 

chips and wells 

plate 

Cell biology, 

polarization, 

mechano 

transduction 

 

Ebers 

 

Chemical 

gradients, 

shear stress, 

cell 

polarization 

 

3 

 

Incubators 

integrate 

peristaltic 

pumps 

 

 

Parallel 

channels 

Cell biology, 

epithelial 

biology, 

cancer 

research 
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Fluxion BioSc. 

Aggregation, 

adhesion, cell 

rolling, shear 

stress. 

 

24 

 

Electropneu-

matic pump 

 

Well plates 

 

Microbiology 

Cell biology 

 

Gradien-tech 

 

Migration, 

chemotaxis, 

morphogenesis 

 

1 

 

Syringe 

pump 

2D and 3D 

chemical 

gradients 

Cancer 

biology, 

immunology 

 

IBIDI 

 

Cell migration, 

chemotaxis, 

angiogenesis, 

shear stress 

 

6 

Air pressure 

pump, 

syringe 

pump 

 

Parallel 

channels 

 

[15, 31, 32] 

 

Kirkstall 

 

Organ models 

(skin, cornea, 

respiratory 

epithelium) 

 

1 

 

Peristaltic 

pump 

 

Individual 

chambers 

Cancer, 

stem cell, 

drug 

discovery 

 

Merck 

Millipore 

 

Chemotaxis/mi

gration, Drug 

screening, 

Hypoxia, Shear 

stress 

 

 

4 

 

Pneumatic 

pump 

 

Parallel 

chambers 

Cell 

Biology, 

microbiolo

gy, cancer 

Micronit 

Microfluidics 

 

Organ on a 

chip 

1 Pneumatic 

(on chip) 

Customized Cell Biology 

 

Minucells 

 

Gradient 

culture for a 

single tissue 

carrier 

 

1-6 

 

Peristaltic 

pump 

 

Single 

channel 

 

[33, 34] 
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aHigh throughput screening, number of samples per chip/device. Source:  N. 
Sánchez-Romero, P. Meade and I. Giménez, Microfluidic-Based 3D Models of Renal 
Function for Clinically Oriented Research, 2016 [36]. 

Nortis 

 

Organ on a 

chip/vascular 

biology 

 

12 

Pneumatic 

pump 

3D 

hydrogels 

[35] 
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5 CONCLUSIONS 

 

1. hPTPC showed the main PT markers, although the culture included 

cells expressing markers form other renal segments. 

2. Combined use of GGT1 activity assay and cell viability assay allowed 

us to distinguish different cisplatin effects and were validated as 

useful assays to monitor cell function and viability. 

3. The cisplatin nephrotoxicity model was consistent and amenable 

to use on cells grown in fluidic devices. 

4. In our model, cimetidine, genistein or β-lapachone did not exhibit 

protection against cisplatin-mediated cytotoxicity. 

5. hPTPC were able to adapt to growing conditions inside microfluidic 

channels. 

6. Cells growing in static ibidi were more resistant to cisplatin 

exposure than cells growing in 96 wells plate, as a consequence of 

cisplatin availability.  

7. hPTPC didn’t present any difference in the sensitivity to cisplatin 

under flow compared with cells growing in static Ibidi. 

8. The generation of bubbles, the main technical challenge of these 

type of platforms, was the key limitation in the use of this 

technology. So, optimization efforts are needed and should 

continue. 
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5 CONCLUSIONES 

 

1. Las hPTPC expresaron los principales marcadores típicos de TP, 

aunque el cultivo poseía células que expresaban marcadores 

procedentes de otros segmentos renales. 

2. El uso combinado del ensayo de actividad enzimática GGT1 y del 

ensayo de viabilidad celular, nos permitió distinguir diferentes 

efectos del cisplatino. El uso combinado de ambos ensayos fue 

validado como un ensayo práctico para monitorizar la función y 

viabilidad celular. 

3. El modelo de nefrotoxicidad basado en cisplatino era consistente y 

permitió su uso en células que crecían en dispositivos fluídicos. 

4. En nuestro modelo, ni cimetidina, ni genisteina, ni β-lapachone 

mostraron protección frente a la citotoxicidad medida por el 

cisplatino. 

5. Las hPTPC se adaptaron a las condiciones de crecimiento dentro de 

los canales microfluídicos. 

6. Las células que crecieron en ibidi en estático fueron más 

resistentes a la exposición al cisplatino que las células que 

crecieron en placas de 96 pocillos, como consecuencia de la 

disponibilidad del nefrotóxico.  

7. Las hPTPC no mostraron ninguna diferencia en la sensibilidad al 

cisplatino en presencia de flujo, en comparación con las células que 

crecieron en los ibidi en estático. 

8. La generación de burbujas, el principal desafío técnico de este tipo 

de plataformas, fue la principal limitación en el uso de esta 

tecnología. Los esfuerzos en la optimización para evitar la 
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generación de burbujas en este tipo de tecnología son 

imprescindibles actualmente.
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