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Abstract

In 2007 Cortés and Peña introduced a pivoting strategy for the Neville elim-
ination of nonsingular sign regular matrices and called it two-determinant
pivoting. Neville elimination has been very useful for obtaining theoretical
and practical properties for totally positive (negative) matrices and other
related types of matrices. A real matrix is said to be almost strictly sign reg-
ular if all its nontrivial minors of the same order have the same strict sign.
In this paper, some nice properties related with the application of Neville
elimination with two-determinant pivoting strategy to almost strictly sign
regular matrices are presented.
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1. Introduction

Sign Regular (SR) matrices are matrices whose minors of the same order
have the same sign. These matrices arise naturally in many areas of math-
ematics, statistics, mechanics, computer-aided geometric design, economics,
and others fields (see, for example, [4] and [9]). The interest of nonsingu-
lar SR matrices in many applications comes from their characterizations as
variation-diminishing linear maps: the number of sign changes in the consec-
utive components of the image of a vector is bounded above by the number
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of sign changes in the consecutive components of the vector. If all minors of
a matrix A are nonnegative, then we say that A is Totally Positive (TP).

TP matrices have been deeply studied in the literature (see [4], [9], [10]
and [17]). A subclass of TP matrices with important applications is provided
by Almost Strictly Totally Positive (ASTP) matrices (see [11]and [17]), which
contain Hurwitz matrices and B-spline collocation matrices. Nonsingular
ASTP matrices are TP matrices whose minors are positive if and only if all
their diagonal entries are nonzero.

Almost Strictly Sign Regular (ASSR) matrices are introduced in [15], as
those whose nontrivial minors of the same order have all the same strict
sign. ASSR matrices form a subclass of SR matrices whose intersection with
nonsingular TP matrices is the set of nonsingular ASTP matrices. Besides,
ASSR matrices contain the class of Strictly Sign Regular (SSR) matrices,
which are matrices whose minors of the same order have the same strict sign.

In [2] the authors present an algorithmic characterization of ASSR ma-
trices using Neville Elimination (NE). A real matrix A = (aij)1≤i,j,≤n is said
to be Almost Strictly Totally Negative (ASTN) if it is ASSR with signature
ε = (−1,−1, . . . ,−1). So, in [3] an algorithmic characterization of nonsingu-
lar ASTN matrices is presented. All nontrivial minors of these matrices are
strictly negative, which notably simplifies the characterization proposed in
[2] for ASSR matrices. ASTN matrices contain all strictly totally negative
matrices (which are matrices with all their minors negative) and are con-
tained in the class of totally negative matrices (which are matrices with all
their minors nonpositive). See [3, 5, 8, 9, 16] about these classes of matrices.

In this work we present some results about ASSR matrices when NE with
two-determinant pivoting strategy is applied. NE is a classical method alter-
native to Gaussian elimination, and it plays an important role when dealing
with SR matrices including totally positive and totally negative matrices.
Roughly speaking, NE consists of making zeros in a column of a matrix by
adding to each row an adequate multiple of the previous one, instead of using
just a row with a fixed pivot as in Gaussian elimination. Other advantages
of NE can be seen in [1, 12, 13].

In the case of nonsingular TP matrices it can be applied without row ex-
changes (see [10]). However, this does not hold for nonsingular SR matrices,
and so, the use of a pivoting strategy is necessary.

Taking into account the previous comments, Cortés and Peña introduce
in [6] a pivoting strategy increasing n operations to the cost of the NE of
n× n nonsingular SR matrices. It is called two-determinant pivoting due to
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the special role played by some two by two determinants of some matrices
appearing along the NE procedure.

In this paper we prove that the property of almost strict sign regularity
is preserved under the NE with this pivoting strategy and that it presents
optimal growth factor. Let us recall that the growth factor of a numerical
algorithm is an indicator of its stability.

The paper is organized as follows: Section 2 is dedicated to preliminary
concepts and notations. In Section 3 a short explanation about the Neville
method is presented together with the two-determinant pivoting strategy,
as well as some auxiliary results. Next section is dedicated to analyze the
application of the NE with two-determinant pivoting to ASSR matrices. In
Section 5 we prove that the growth factor is optimal when this pivoting
strategy is applied to this kind of matrices and we analyze its application to
ASTN matrices.

2. Basic concepts and notations

For k, n ∈ N, with 1 ≤ k ≤ n, Qk,n denotes the set of all increasing
sequences of k natural numbers not greater than n. For α = (α1, . . . , αk),
β = (β1, . . . , βk) ∈ Qk,n and A an n × n real matrix, we denote by A[α|β]
the k × k submatrix of A containing rows α1, . . . , αk and columns β1, . . . , βk
of A. If α = β, we denote by A[α] := A[α|α] the corresponding principal
submatrix. In addition, Q0

k,n denotes the set of increasing sequences of k
consecutive natural numbers not greater than n.

ASSR matrices present zero entries in certain positions, and can be clas-
sified in two classes that are defined below, type-I and type-II staircase.

A matrix A = (aij)1≤i,j≤n is called type-I staircase if it satisfies simulta-
neously the following conditions

• a11 6= 0, a22 6= 0, . . . , ann 6= 0;

• aij = 0, i > j ⇒ akl = 0, ∀l ≤ j, i ≤ k;

• aij = 0, i < j ⇒ akl = 0, ∀k ≤ i, j ≤ l.

From now on, we will be frequently using the backward identity matrix
n× n, Pn, whose element (i, j) is defined as{

1, if i+ j = n+ 1,
0, otherwise.
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So, A is a type-II staircase matrix if it satisfies that PnA is a type-I staircase
matrix.

To describe clearly the zero pattern of a nonsingular matrix A type-I
staircase (or type-II staircase, using the n× n backward identity matrix Pn)
we must introduce some notations. For a matrix A = (aij)1≤i,j≤n type-I
staircase, we define

i0 = 1, j0 = 1, (1)

and for k = 1, . . . , l:

ik = max
{
i / aijk−1

6= 0
}

+ 1 (≤ n+ 1), (2)

jk = max {j ≤ ik / aikj = 0}+ 1 (≤ n+ 1), (3)

where l is given in this recurrent definition by jl = n+ 1.
Analogously we define

ĵ0 = 1, î0 = 1, (4)

and for k = 1, . . . , r:

ĵk = max
{
j / aîk−1j

6= 0
}

+ 1 (≤ n+ 1), (5)

îk = max
{
i ≤ ĵk / aiĵk = 0

}
+ 1 (≤ n+ 1), (6)

where îr = n+ 1.
Finally, we denote by I, J , Î and Ĵ the following sets of indices

I = {i0, i1, . . . , il} , J = {j0, j1, . . . , jl} ,
Î =

{̂
i0, î1, . . . , îr

}
, Ĵ =

{
ĵ0, ĵ1, . . . , ĵr

}
,

thereby defining the zero pattern of the matrix A.
Next, we present some definitions and basic results.

Definition 1. For a real matrix A = (aij)1≤i,j≤n type-I (type-II) staircase,
a submatrix A[α|β], with α, β ∈ Qm,n, is nontrivial if all its main diagonal
(secondary diagonal) entries are nonzero.

The minor associated to a nontrivial submatrix (A[α|β]) is called a non-
trivial minor (detA[α|β]).
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Definition 2. A vector ε = (ε1, ε2, . . . , εn) ∈ Rn is a signature sequence, or
simply, a signature, if |εi| = 1, ∀i ∈ N, i ≤ n.

Definition 3. A real n× n matrix A is said to be ASSR with signature ε =
(ε1, ε2, . . . , εn) if it is either type-I or type-II staircase and all its nontrivial
minors detA[α|β] satisfy that

εm detA[α|β] > 0, α, β ∈ Qm,n, m ≤ n. (7)

Taking into account the previous definition, it is possible to show that
any ASSR matrix is nonsingular. In fact, it is enough considering Eq. (7)
with α = (1, . . . , n) and β = (1, . . . , n). The next characterization for ASSR
matrices follows from Theorem 10 of [15].

Theorem 1. Let A be a real matrix n × n and ε = (ε1, ε2, . . . , εn) be a
signature. Then A is ASSR with signature ε if and only if A is a type-I
or type-II staircase matrix and all its nontrivial minors with α, β ∈ Q0

m,n,
m ≤ n, satisfy

εm detA[α|β] > 0. (8)

The next result (proved in [2]) establishes the relationship between the
signatures of A and PnA.

Corollary 1. A matrix A = (aij)1≤i,j≤n is ASSR if and only if PnA is also
ASSR. Furthermore, if the signature of A is ε = (ε1, ε2, . . . , εn), then the

signature of PnA is ε′ = (ε′1, ε
′
2, . . . , ε

′
n), with ε′m = (−1)

m(m−1)
2 εm, for all

m = 1, . . . , n.

3. NE, two-determinant pivoting and auxiliary results

In this section we briefly present the NE and a row pivoting strategy
associated to this method for nonsingular SR matrices. Besides, some results
related to the application of this strategy are presented too.

NE is a very convenient procedure when working with ASSR matrices
and other related types of matrices (see [2] and [10]). If A is a nonsingular
n× n matrix, NE consists of at most n− 1 successive major steps, resulting
in a sequence of matrices as follows:

A = Ã(1) → A(1) → · · · → Ã(n) = A(n) = U (9)

5



where U is an upper triangular matrix.

For each t, 1 ≤ t ≤ n, A(t) =
(
a
(t)
ij

)
1≤i,j≤n

has zeros in the positions a
(t)
ij ,

for 1 ≤ j ≤ t, j ≤ i ≤ n. Besides it holds that

a
(t)
it = 0, i ≥ t⇒ a

(t)
ht = 0, ∀h ≥ i. (10)

The matrix A(t) is obtained from Ã(t) reordering rows t, t + 1, . . . , n
according to a row pivoting strategy that satisfies (10).

To obtain Ã(t+1) from A(t) we produce zeros in the column t below the
main diagonal by subtracting a multiple of the ith row from the (i + 1)th,
for i = n− 1, n− 2, . . . , t, according to the following formula:

ã
(t+1)
ij =


a
(t)
ij , 1 ≤ i ≤ t,

a
(t)
ij −

a
(t)
it

a
(t)
i−1,t

a
(t)
i−1,j, if a

(t)
i−1,t 6= 0, t+ 1 ≤ i ≤ n,

a
(t)
ij , if a

(t)
i−1,t = 0, t+ 1 ≤ i ≤ n,

(11)

for all j = 1, 2, . . . , n.
The element

pij = a
(j)
ij , 1 ≤ j ≤ i ≤ n (12)

is called the (i, j) pivot of NE of A and the number

mij =


a
(j)
ij

a
(j)
i−1,j

(
=

pij
pi−1,j

)
, if a

(j)
i−1,j 6= 0,

0, if a
(j)
i−1,j = 0,

(13)

the (i, j) multiplier. Note that mij = 0 if and only if pij = 0 an, by (10),

mij = 0 =⇒ mhj = 0, ∀h > i. (14)

In [6] a row pivoting strategy associated to NE for nonsingular SR ma-
trices is introduced. It will be called two-determinant pivoting strategy.
The criterion of the two-determinant pivoting strategy to obtain A(t)[t, . . . , n]

from a reordering of the rows of Ã(t)[t, . . . , n] is the following:

• If ã
(t)
tt = 0: then we reverse the ordering of the rows, that is, A(t)[t, . . . , n] :=

PtÃ
(t)[t, . . . , n].
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• If ã
(t)
nt = 0: then we do not perform rows exchanges, that is, A(t) := Ã(t).

• If ã
(t)
tt 6= 0 and ã

(t)
nt 6= 0, then we compute the determinant d1 =

det Ã(t)[t, t+ 1].

– If d1 > 0 then A(t) := Ã(t).

– If d1 < 0 then A(t)[t, . . . , n] := PtÃ
(t)[t, . . . , n].

– If d1 = 0 then compute the determinant d2 = det Ã(t)[n−1, n|t, t+
1].

∗ If d2 > 0 then A(t) := Ã(t).

∗ If d2 < 0 then A(t)[t, . . . , n] := PtÃ
(t)[t, . . . , n].

Applying the two-determinant pivoting strategy at step t of NE requires
the following conditions: at least one of the elements ã

(t)
tt or ã

(t)
nt is different

from zero and, if both are nonzero, then at least one of the minors d1 or d2
is different from zero. This holds for nonsingular SR matrices, as shown in
[6], and so for ASSR matrices. In fact, by Theorem 3.4 of [6], when A is a

nonsingular SR matrix and we use two-determinant pivoting, Ã(t)[t, . . . , n]
is SR, and nonsingular because A is nonsingular. In addition, by Lemma
3.2 of [6], its first (ã

(t)
tt ) and last (ã

(t)
nt ) entries of the first column cannot

be simultaneously zero and the sign ε2(Ã
(t)[t, . . . , n]) determines which of

them cannot be zero. Finally, Lemma 3.3 of [6] implies the aforementioned
property on d1, d2.

Remark 1. The computational cost of the NE without row exchanges for
an n× n matrix coincide with the cost of Gaussian elimination without row
exchanges. So it has a cost of 4n3+3n2−7n

6
' 2n3

3
flops (floating-point oper-

ations). Using the two-determinant pivoting strategy this cost is increased
with at most 2n− 2 subtractions and 4n− 4 multiplications.

The following result proved in [6] will be used.

Lemma 1. Let A = (aij)1≤i,j≤n be a nonsingular matrix. Let us assume
that the first step of NE of A can be applied without rows exchanges. Let
k ∈ {1, . . . , n} be such that ai1 6= 0 for all i ≤ k and ai1 = 0 for i > k. Then

the resulting matrix Ã(2) satisfies, for any α ∈ Q0
r,n with 1 ≤ r ≤ n− 1, and

β ∈ Qr,n with 2 ≤ α1, β1 ≤ n− r + 1,

det Ã(2)[α|β] =
detA[α1 − 1, α|1, β]

aα1−1,1
, if k ≥ α1 − 1, (15)
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and
det Ã(2)[α|β] = detA[α|β], if k ≤ α1 − 1. (16)

Moreover, if α1 − 1 = k, we have

detA[α1 − 1, α|1, β] = aα1−1,1 detA[α|β]. (17)

Notice that if A is an ASSR matrix, then k = i1, where the index i1
represents the row in which appears the first zero in the first column of A.

Remark 2. Let A be an n× n ASSR matrix (and thus, nonsingular),

• If ε2(A) = 1, then the first step of NE is performed without rows

exchanges. In addition, A = Ã(1) = A(1), and A(1) is ASSR with
ε2(A

(1)) = 1.

• If ε2(A) = −1, then A(1) = PnÃ
(1) = PnA, and by Corollary 1 A(1) is

ASSR with ε2(A
(1)) = 1. Besides, the first step of NE of this matrix

can be performed without rows exchanges.

In any case, A(1) is ASSR with ε2
(
A(1)

)
= 1, and by Lemma 7 of [15] it

is type-I staircase.

4. Preservation of ASSR matrices through NE two-determinant
pivoting

In this section we analyze the application of the NE with two-determinant
pivoting strategy to ASSR matrices.

Proposition 1. Let A = (a1≤i,j≤n) be an ASSR type-I staircase matrix, with
zero pattern J = {j0, j1, . . . , jl−1, jl} and l ≥ 2. Then, the NE with two-
determinant pivoting strategy does not involve row exchanges until the step
t = jl−1.

Proof. Index jl−1 of the zero pattern is obtained as

jl−1 = max
{
j ≤ il−1 / ail−1j = 0

}
+ 1.

Then, ail−1,jl−1−1 = 0, and since A is type-I staircase matrix, ∀i ≥ il−1, and
∀j ≤ jl−1 − 1, aij = 0. In particular, if i = n ≥ il−1 we have that the nth row
of A does not change when performing NE with two-determinant pivoting
strategy while the corresponding entry is zero. Thus, we do not perform
row exchanges, that is, A(t) := Ã(t) until the step t = jl−1, and the result
holds.
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The next result shows that almost strict sign regularity is inherited by all
matrices Ã(t)[t, . . . , n] when we apply NE with two-determinant pivoting.

Theorem 2. Let A = (aij)1≤i,j,≤n be an ASSR matrix, and let us apply
NE with two-determinant pivoting strategy. Then, for all t ∈ {1, . . . , n}, all

matrices Ã(t)[t, . . . , n] are ASSR and ε1(A) = ε1(Ã
(t)).

Proof. We will prove the result by induction on n. For n = 1 the result is
satisfied. Let us assume that it holds for n− 1 and let us prove it for n.

ASSR matrices form a subclass of SR matrices, and so we can apply
Theorem 3.4 of [6]. This result allows us to assure that ε1(Ã

(t)) = ε1(A) and

that Ã(t)[t, . . . , n] is an SR matrix for all t = 1, . . . , n. So, the proof would

be completed if we show that Ã(t)[t, . . . , n] is ASSR.

First, and taking into account Theorem 10 of [15], we prove that Ã(2)[2, . . . , n]
is ASSR. For this purpose, we analyze the entries of the matrix for testing
whether it is type-I or type-II staircase. Let us consider the index i1 of the
zero pattern of A(1). This index indicates the row in which appears the first
zero in the first column of A(1). If the first column of A(1) does not contain
zero elements, then i1 = n+ 1.

Next, we are going to analyze the entries of the matrix Ã(2). The entries
of Ã(2) can be expressed, for all j = 1, . . . , n, as

• ã(2)1j = a
(1)
1j ;

• If 1 < i < i1, then

ã
(2)
ij = a

(1)
ij −

a
(1)
i1

a
(1)
i−1,1

a
(1)
i−1,j =

1

a
(1)
i−1,1

det

(
a
(1)
i−1,1 a

(1)
i−1,j

a
(1)
i1 a

(1)
ij

)
; (18)

• If i1 ≤ i ≤ n, then ã
(2)
ij = a

(1)
ij = 0.

By Remark 2, the matrix A(1) is type-I staircase and ASSR. Besides, when
i < i1 we have that a

(1)
i−1,1 6= 0. Now, we prove that the matrix Ã(2)[2, . . . , n]

has zeros in the same positions as A(1)[2, . . . , n], which is type-I staircase.

Let a
(1)
ij be an entry of A(1)[2, . . . , n], with, 2 ≤ i < i1 and 2 ≤ j ≤ n, and

suppose that a
(1)
ij = 0. Two possible cases are considered:

• If i ≥ j then a
(1)
ik = 0, for all k = 1, . . . , i. Thus, a

(1)
i1 = a

(1)
i−1,j = 0 and,

by (18), we have ã
(2)
ij = 0.
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• If i < j, then a
(1)
kj = 0, for all k = 1, . . . , j−1. Thereby, a

(1)
i−1,j = a

(1)
ij = 0

and, by (18), we obtain ã
(2)
ij = 0.

Suppose now that a
(1)
ij 6= 0. Then, as i < i1 we have that a

(1)
i−1,1 6= 0, and

so det

(
a
(1)
i−1,1 a

(1)
i−1,j

a
(1)
i1 a

(1)
ij

)
is a nontrivial minor of A(1). Since this matrix is

ASSR, this minor is nonzero.
Therefore, the matrix Ã(2)[2, . . . , n] has the nonzero elements in the same

positions as A(1). Thus, it is type-I staircase and Theorem 1 can be applied.
Next, we prove that nontrivial minors of same order of Ã(2)[2, . . . , n], with

consecutive rows and columns, have the same sign, and so, by Theorem 1,
Ã(2)[2, . . . , n] is ASSR.

Let det Ã(2)[i, i+1, . . . , i+r−1|j, j+1, . . . , j+r−1] be an nontrivial minor

of Ã(2)[2, . . . , n]. So, ã
(2)
ij · · · ã

(2)
i+r−1,j+r−1 6= 0 with 2 ≤ i, j ≤ n−r+1. Taking

into account that, considering α = (i, . . . , i+r−1), β = (j, . . . , j+r−1) and
k = i1, the first step of NE with two-determinant pivoting strategy can be
performed without row exchanges, the hypotheses of Lemma 1 are satisfied.
So, now we analyze the sign of the nontrivial minor of order r, according to
the value of i.

First, notice that, if A is an ASSR matrix, then A(1) is also an ASSR
matrix. If it is not necessary to perform rows exchanges, then A = A(1), and
otherwise, considering A(1) = PnA, by Corollary 1, also A(1) is ASSR.

• If i1 ≥ i− 1, by (15)

det Ã(2)[α|β] =
detA(1)[α1 − 1, α|1, β]

a
(1)
α1−1,1

, (19)

and the sign of this minor is the same that εr+1

(
A(1)

)
ε1
(
A(1)

)
.

• If i1 ≤ i− 1, by (16)

det Ã(2)[α|β] = detA(1)[α|β] (20)

whose sign is εr
(
A(1)

)
.

Notice that if A(1) is ASSR, then its zero pattern is unique, and so the
value i1 is fixed.
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In the case that i1 = n or i1 = n + 1, the condition i1 > i − 1 is
always satisfied. Besides, if a

(1)
n−1,1 6= 0, then the sign of the minor is always

ε1
(
A(1)

)
εr+1

(
A(1)

)
.

Suppose now that i1 < n. Taking i = i1 + 1, (19) and (20) are satisfied,
and thus εr

(
A(1)

)
= ε1

(
A(1)

)
εr+1

(
A(1)

)
. In any case, when i1 < n all minors

of order r have the same sign.
Thus, for any value of i1, nontrivial minors of the same order have the

same sign, and by Theorem 1 the matrix Ã(2)[2, . . . , n] is ASSR.
It has been proved that, given a n×n ASSR matrix, the (n−1)× (n−1)

matrix obtained after performing a step of NE with two-determinant pivoting
strategy, Ã(2)[2, . . . , n], is ASSR with ε1(Ã

(2)) = ε1(A). By the induction

hypothesis, for all t = 1, . . . , n−1 the matrices Ã(t+1)[t+ 1, . . . , n] are ASSR,
and the result follows.

Remark 3. In the proof of Theorem 2 it has been shown that A(1)[2, . . . , n]

and Ã(2)[2, . . . , n] have the zero entries exactly in the same positions. Since

the first row is unchanged, we can state that Ã(2) has zeros placed in the same
positions as A(1), except those arising from the process of NE.

The following example illustrates the application of NE with two-determinant
pivoting strategy to an ASSR matrix.

Example 1. Let A be an ASSR matrix with signature ε = (−1, 1,−1, 1,−1,−1):

A =


−1 −2 0 0 0 0
−2 −6 −6 −8 0 0
0 −6 −21 −30 −9 0
0 −8 −30 −48 −42 −28
0 0 −9 −42 −172 −176
0 0 0 −28 −176 −259

 . (21)

Applying the NE with two-determinant pivoting strategy the following se-
quence of matrices is obtained:

A = Ã(1) = A(1) → Ã(2) = A(2) → Ã(3) = A(3) →

Ã(4) = A(4) → Ã(5) → A(5) → Ã(6) = A(6) = U

where U is an upper triangular matrix.
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When t = 2, the matrix calculated is

Ã(2)[2, 3, 4, 5, 6] =


−2 −6 −8 0 0
−6 −21 −30 −9 0
−8 −30 −48 −42 −28
0 −9 −42 −172 −176
0 0 −28 −176 −259

 ,

with
ε
(
Ã(2)[2, 3, 4, 5, 6]

)
= (−1, 1,−1, 1, 1).

In the case t = 3, we have

Ã(3)[3, 4, 5, 6] =


−3 −6 −9 0
−2 −8 −30 −28
−9 −42 −172 −176
0 −28 −176 −259

 , ε
(
Ã(3)[3, 4, 5, 6]

)
= (−1, 1,−1,−1),

and when t = 4, then

Ã(4)[4, 5, 6] =

 −4 −24 −28
−6 −37 −50
−28 −176 −259

 , ε
(
Ã(4)[4, 5, 6]

)
= (−1, 1, 1).

The two last steps (t = 5, 6) enable us to obtain

Ã(5)[5, 6] =

(
−1.0000 −8.0000
−3.3333 −25.6667

)
, ε
(
Ã(5)[5, 6]

)
= (−1,−1),

Ã(5)[6] = (−0.3000), ε
(
Ã(6)[6]

)
= (−1).

The previous results allows us to conclude that the matrices Ã(t)[t, . . . , 6]

obtained are ASSR, and besides ε1(A) = ε1(Ã
(t)[t, . . . , 6]) = −1, for all t ∈

{1, . . . , 6}.
Finally, it is also interesting to observe that the sets of indices I and J

associated to A are

I = {i0 = 1, i1 = 3, i2 = 5, i3 = 6, i4 = 7} ,

J = {j0 = 1, j1 = 2, j2 = 3, j3 = 4, j4 = 7} ,
and that the NE with two-determinant pivoting strategy does not involve rows
exchanges until the step t = j3 = 4.
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5. Optimal growth factor and ASTN matrices

The growth factor is an indicator of the numerical stability of a numerical
algorithm (cf. [14]), measuring the size of intermediate and final quantities
relative to initial data. In this section we analyze the growth factor intro-
duced by Wilkinson.

Let A be an n × n matrix. The growth factor associated to NE with
two-determinant pivoting is given by

ρ(A) =
maxi,j,t

∣∣∣ã(t)ij ∣∣∣
maxi,j |aij|

(22)

where Ã(t) =
(
ã
(t)
ij

)
1≤i,j≤n

are the intermediate matrices of the elimination

process as in (9).
In [7] the authors prove that when the matrix is SSR the growth factor

is 1. The following result shows that this property is also satisfied by ASSR
matrices.

Theorem 3. Let A = (aij)1≤i,j≤n be an n×n ASSR matrix. Then the growth
factor (22) corresponding to NE with two-determinant pivoting is optimal:

ρ(A) = 1. (23)

Proof. To prove the result it is sufficient to see that

|a(t+1)
ij | ≤ |a(t)ij |, t+ 1 ≤ i, j ≤ n, 1 ≤ t ≤ n− 1. (24)

By Corollary 1, ε1

(
Ã(t)
)

= ε1
(
A(t)
)
. Besides, Theorem 2 allows us to

ensure that ε1 (A) = ε1

(
Ã(t)
)

. Thus

sign
(
a
(t)
ij

)
= sign

(
a
(t)
it

a
(t)
i−1,t

a
(t)
i−1,j

)
.

Besides, taking into account (11), we have

sign
(
ã
(t+1)
ij

)
= sign

(
a
(t)
ij

)
, (25)

and the result follows.
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Next, an example to show the stability of the NE with two-determinant
pivoting strategy is presented.

Example 2. The systems used in the test are of the form Ax = b, where the
matrix of coefficients A is the matrix of Example 1. The solution vector x
has been chosen as a real random vector from the uniform distribution on the
intervals [0, 1], [−1, 1], [0, 255], [1, 10] and [0, 1000]. Then b was computed in
a straightforward way as b = Ax.

In the numerical experiments we have computed the Wilkinson growth
factor (22), the componentwise backward error (see [14])

ω|A|,|b|(x̂) = max
i

|ri|
(|A||x̂|+ |b|)i

where x̂ denote the computed solution and r = b−Ax̂, and the componentwise
relative error

max
i

|xi − x̂i|
|xi|

.

As for Wilkinson growth factor, the obtained value is equal to 1, as shown in
Theorem 3.

Table 1 permits us to observe, regarding componentwise backward error,
that it is small for all cases (approximately 10−16 or 10−17), while that the
componentwise relative error is of order of 10−11 to 10−13. Taking into ac-
count these results we can conclude that NE provides satisfactory results when
two-determinant pivoting strategy is applied.

Int. Sol. backward error relative error

[0, 1] 1.1405e-16 1.7297e-11
[−1, 1] 7.0239e-17 3.0155e-13
[0, 255] 1.1078e-16 7.5848e-12
[1, 10] 9.9610e-17 5.4432e-11

[0, 1000] 1.1625e-16 5.1201e-12

Table 1: Numerical test: Example 2

The following example shows the performance of growth factor when the
pivoting strategy is not considered.
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Example 3. Let us consider an ASSR matrix with signature (−1,−1, 1):

A =

 −10−4 −1 −1
−1 −3 −1
−1 −1 0

 .

If we carry out NE with two-determinant pivoting strategy, the obtained
growth factor is 1. Nevertheless, if the method is carried out without pivoting,
then ρ(A) = 3333 and in this case the stability of the strategy is not assured.

In the same way as in the previous example, Table 2 allows us to observe
that the componentwise backward error is approximately 10−16 or 10−17, and
the componentwise relative error is of order of 10−17.

Int. Sol. backward error relative error

[0, 1] 3.6601e-16 6.0503e-17
[−1, 1] 3.4479e-17 4.0881e-17
[0, 255] 6.2783e-17 9.6142e-17
[1, 10] 8.6397e-17 9.2830e-17

[0, 1000] 6.8759e-17 6.2100e-17

Table 2: Numerical test: Example 3

In the particular case when we are working with ASTN matrices, the
following result shows that only two row exchanges are necessary along the
process.

Theorem 4. Let A = (aij)1≤i,j≤n be an ASTN matrix. If NE with two-
determinant pivoting strategy is applied to A, then it is only necessary to
perform row exchanges for t = 1 and t = 2.

Proof. An ASTN matrix is an ASSR matrix with signature ε = (−1,−1, . . . ,−1).
Moreover, by Theorem 2.1 of [16], we can state that these matrices can only
have zero entries in positions (1, 1) and (n, n).

When we apply NE with two-determinant pivoting to A and t = 1, then
Ã(1) = A. If ã11 = a11 = 0 then we reverse the ordering of the rows, that
is, A(1) = PnÃ

(1) = PnA. If ã11 = a11 6= 0, and considering that the sign of
d1 = detA[1, 2] is equal that to the sign of ε2 = −1, then also A(1) = PnA.

Since A is an ASTN matrix, and so ASSR, by Corollary 1 the ma-
trix A(1) is also ASSR with signature εm(A(1)) = εm(Ã(1))(−1)m(m−1)/2 =
(−1)(−1)m(m−1)/2, for m = 1, . . . , n.
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At the next step of NE (t = 2), Remark 3 enables us to assure that

ã
(2)
n2 6= 0. Besides, by Theorem 2 the matrix Ã(2)[2, . . . , n] is ASSR and the

sign of d1 = Ã(2)[2, 3] is ε2(Ã
(2)). Using (19) for i = 2 and since i1 ≥ n, we

have that i1 ≥ i − 1, and thus ε2(Ã
(2)) = ε3(A

(1))ε1(A
(1)). Since ε3(A

(1)) =

(−1)(−1)3×2/2 = 1 and ε1(A
(1)) = −1, then ε2(Ã

(2)) = −1, and so d1 < 0.

Thus A(2)[2, . . . , n] = Pn−1Ã
(2)[2, . . . , n].

When t = 3, the matrix A(2)[2, . . . , n] is ASSR and εm(A(2)[2, . . . , n]) =

εm(Ã(2)[2, . . . , n])(−1)m(m−1)/2. Therefore, as in the previous case, and using

(19), ε2(Ã
(3)[3, . . . , n]) = ε3(A

(2))ε1(A
(2)) = 1, and it is not necessary to

perform row exchanges.
In the rest of cases (t > 3), we can prove, considering a similar reasoning

as above, that it is not necessary reversing the ordering of the rows.

Example 4. The matrix

A =


0 −2 −12 −24 −16
−2 −31 −138 −244 −152
−18 −171 −593 −896 −500
−54 −405 −1128 −1379 −622
−54 −351 −801 −717 −173


is ASTN, i.e., ASSR (type-II staircase) with signature ε = (−1,−1,−1,−1,−1).

The sequence of matrices obtained by carrying out NE with two-determinant
pivoting strategy is the following

A = Ã(1) → A(1) → Ã(2) → A(2) → Ã(3) = A(3) → Ã(4) = A(4) → Ã(5) = A(5).

We can observe that row exchanges are only necessary in steps t = 1, 2.
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