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Abstract

A new way of obtaining the algebraic relation between the nodal values in a general

onedimensional transport equation is presented. The equation can contain an arbi-

trary source and both the convective flux and the diffusion coefficient may vary ar-

bitrarily. Contrary to the usual approach of approximating the derivatives involved,

the algebraic relation is based on the exact solution written in integral terms. The

required integrals can be speedily evaluated by approximating the integrand with

Hermite splines or applying Gauss quadrature rules. The startling point about the

whole procedure is that a very high accuracy can be obtained with few nodes, and

more surprisingly, it can be increased almost up to machine accuracy by augmenting

the number of quadrature points or the Hermite spline degree with little extra cost.
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1 Introduction

Transport equations are partial differential equations (PDE) that are ubiq-

uitous in many branches of science, in particular Fluid Mechanics. They gov-

ern the evolution of flow variables whose values, for one reason or another,

are required to be known in a certain domain. Unfortunately, an analytical

solution to these equations is seldom possible, so in order to know the field at

a discrete number of points one has to resort to numerical techniques that pro-

vide an approximate solution. The computational techniques employed for the

fluid mechanics equations gave birth to a branch called Computational Fluid

Dynamics (CFD) that nowadays has almost constituted a separate subject.

There has been a huge effort along the years to improve the algorithms devised

to obtain the flow field solutions with general numerical methods: finite differ-

ences, elements, volumes or spectral. Finite differences and volumes employ a

numerical approximation to the derivatives present in the equation, whereas,

generally speaking, finite elements or spectral techniques use a kind of solu-

tion expansion either in a local or global basis. Usually these approaches are

onedimensional: the discretization along one coordinate is independent of the

others. For a standard discretization it is worth pointing out that none of these

methods use the solution of the ordinary differential equation (ODE) that

can be obtained if the multidimensional partial differential equation (PDE)
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is integrated over an interval along a given coordinate. As a result of this in-

tegration the PDE converts into an nonhomogeneous first-order ODE whose

solution can be written in terms of its homogeneous and particular solutions

via the general theory of first-order ODEs. The method proposed in this work

uses the exact integral solution of the first-order ODE to obtain the algebraic

nodal equations of the second-order PDE, and it is different in that sense from

previous methods. The examples presented in this paper are however limited

to onedimensional convection diffusion problems, that is, second-order ODEs.

There have been several attempts to use the exact solution of a transport

equation in the derivation of the algebraic coefficients. The pioneering paper

is that of Raithby at al. [1] in which they assessed the sources of errors in their

2D discretization by comparing it with the local unidirectional exact solution

in which all cross-stream fluxes were lumped together into a pseudo-source.

This source was constant in the interval between two consecutive nodes and

the coefficients at the interface prevailed over the whole interval length. Based

on this they proposed LOADS (Locally Analytic Differencing Scheme) where

they made the exact equation to match the values at two consecutive nodes,

thereby obtaining the numerical fluxes for each face of the control volume and,

by summing up the fluxes, an algebraic equation for every node. This scheme

basically was a conservative extension of the Allen and Southwell scheme [2]

which was nonconservative. Thiart [3] [4] used a collocated grid to implement

the same idea for the Navier-Stokes equations. In the first paper only the

external source was considered to form part of the exact solution but in the

second he also included the cross-stream terms in the modified source. In these

two papers the source was constant in every subinterval that belonged to a

control volume and discontinuous at the interfaces. Harms et al. [5] and later
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Wang et al [6] extended this scheme to interfaces not located midway between

two consecutive nodes as Thiart’s scheme required.

In the early 90’s two schemes that used the exact solution were LECUSSO

(Locally exact consistent upwind scheme of second order) and LENS (Locally

exact numerical scheme) [8] [7] . The second one can deal with a wider range

of problems because the exact solution for a constant-coefficient, linear ab-

sorption, polynomial-source ODE was employed in its derivation. When the

absorption is zero and the source is constant LENS transforms into LECUSSO.

All algebraic coefficients are obtained by adjusting the exact solution over five

nodes. Later Sakai put forward an optimized version of both [9] [10]. A final

improvement of LENS was to incorporate four different zones of piecewise-

constant diffusion and absorption coefficients within a three-node region [11].

A linearly varying diffusion and absorption coefficients were also considered

by Kriventsev et al. [12].

In order to mimic the exact solution a set of methods used a test function

inside the control volume that contained a sum of three terms: a constant, an

exponential of the Péclet number based on a local coordinate x and a linear

term of the same. The associated constants were determined by requiring the

function to pass through the nodal values. All of them were logical inhomo-

geneous extensions of the exponential scheme which is known to be exact in

1D with constant coefficients and no source. The third term appeared because

the exact solution with a constant source in the control volume contains a

linear term related to the source. Amongst these approaches is the UNIFAES

scheme [13] [14] and the scheme adopted by Sheu et al. [15]. In the latter

a linear absorption term was also included. The UNIFAES was again based

in Allen and Southwell scheme with the constant in the source-related term
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being linearly interpolated at the interface from its values at the nodes, these

latter obtained following Allen and Southwell idea. This interpolation makes

the whole scheme conservative yet it is based in a nonconservative one.

Because they have sparked lines of research of their own it is adequate to com-

ment apart on two general approaches that employ in one way or another the

exact solution: the finite analytic method (FA) [16] [17] and the nodal integral

method (NIM) [19] [20]. The main idea of the FA method is applicable to

any unsteady multidimensional transport equation. A local domain is consid-

ered around a generic node P. For any spatial boundary the method assumes

that the solution contains the same three terms as before as well as a lin-

ear time dependence in the temporal boundaries. These boundary conditions

are written in terms of the boundary nodes (those surrounding P). Applying

separation of variables one is able to obtain the exact solution in the local

domain. With this solution the coefficients that should multiply the boundary

values to obtain the value at P can be obtained. For a detailed description

and many applications of the FA method see [18]. NIM, on the other hand,

uses the exact solution with constant coefficients to derive the solution of the

variable obtained by line-averaging the original equation around P, either spa-

tial or temporal. For instance, in a 1D spatial domain NIM integrates the

variable over the spatial or the temporal coordinate producing two ODEs, one

for the mean spatial value around P and other for the mean temporal value.

All terms with derivatives with respect to the other coordinates are lumped

into a pseudo-source term. The integration of this pseudo-source is performed

by Legendre polynomials truncated at the desired degree. NIM then uses the

exact solution to obtain that of these two first-order ODE, written in terms of

the variable at the nodes. By algebraically manipulating this expressions and

5



applying continuity constraints NIM is able to derive two coupled algebraic

equations for both nodal means with a three-node stencil.

As a resumé, almost all attempts to use the exact solution of a nonhomoge-

neous convection-diffusion equation as a base for discretization schemes have

been with constant coefficients and very simple polynomial sources. In this

short review the only schemes that employ a varying diffusion coefficient are

those of Sakai et al. [11] and Kriventsev et al. [12]. None of them considered

varying convective flux even though in 2D or 3D the mass flux varies along a

coordinate even if the divergence of the mass flux is zero.

In a former paper the first author developed a scheme named ENATE for a

transport equation with constant coefficients that can handle arbitrary sources

as long as they have continuous derivatives of any order in the working inter-

val [22]. In this paper the exact integral solution of the transport equation is

employed to extend this idea to arbitrary coefficients. The idea followed in this

paper is very close to that proposed by ten Thije Boonkamp and Anthonissen

[21] in its FV-CF scheme (Finite volume-complete flux). They look for an in-

tegral representation of the homogeneous and inhomogeneous fluxes at control

volume faces of a general steady conservation law in terms of the nodes that

share the face. It can be checked that the integrals involved in both fluxes are

the same as those that can be derived from the approach presented in this pa-

per, apart from the very different nomenclature employed and the path taken

for its derivation. It could not be otherwise as the solution of an inhomoge-

neous ODE with given boundary conditions is unique. The main differences

with this paper is that they work with fluxes at the faces and we work with the

exact solution between nodes that allows us to present the scheme in terms of

an algebraic equation with three nodes. The coefficients of this algebraic equa-
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tion are clearly defined in terms of integrals between nodes which facilitates

their coding. On top of that, when it comes to computing the several cases

presented, ten Thije Boonkamp and Anthonissen assume linear dependencies

of the integrand, that is, the standard trapezoidal rule for integral evaluation,

which overly reduces their accuracy.

This paper is structured as follows: firstly, the integral solution to a homoge-

neous transport equation will be derived. Then, how to deal with the source

in a nonhomogeneous equation will be described. As the complete solution is

the sum of the homogeneous and the particular solutions, the latter in integral

terms will eventually be obtained in this section. The complete solution will

then be employed to obtain the algebraic connections between nodes and the

extra terms due to the source, with some discussion on the asymptotic regime

of mesh Péclet going to infinity. The accuracy of the discretization is con-

nected to a numerical integration problem and some integration alternatives

employed in this paper will then be described. Finally the approach is applied

to three test cases with spatially varying convective flux, diffusion coefficient

and/or source, showing its excellent behaviour.

2 Integral solution of a 1D homogeneous transport equation

The nonhomogeneous convection-diffusion equation with variable coeffi-

cients can be written as

d

dx

(
ρυϕ− Γ

dϕ

dx

)
= S ; ρυ = ρυ(x) ; Γ = Γ(x) ; S = S(x) (1)
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In this section we will derive the integral solution of the homogeneous equation,

S = 0, and its simplified variants, some of them well known. This integral

solution is later employed as a constituent part of the solution of the general

nonhomogeneous equation with arbitrary source. As will later be seen the

homogeneous solution partly contributes to the coefficients that connect nodal

values in the final algebraic equation.

The domain is split in N intervals, not necessarily of equal length, and N + 1

nodes with locations xi, i = 0, ..., N , with two nodes at the boundaries, x0

and xN . In order to obtain the homogeneous solution in every generic interval

with left boundary (lb) and right boundary (rb), it is more convenient to work

with normalized variables, defined as

ϕ̂ =
ϕ− ϕlb

ϕrb − ϕlb

=
ϕ− ϕlb

∆ϕ
; ρ̂υ =

ρυ

(ρυ)lb
; Γ̂ =

Γ

Γlb

; λ̂ =
ρ̂υ

Γ̂
(2)

where the values at the left boundary of the interval have been used as normal-

izing factors. A normalized coordinate x̂ is chosen as independent variable by

considering a mapping between the working interval of length L = xrb − xlb,

and a unity domain, x = xlb + Lx̂, 0 6 x̂ 6 1, x ∈ [xlb, xrb]. Then, the

convection diffusion equation transforms to

d

dx̂

(
ρ̂υϕ̂− Γ̂

PL0

dϕ̂

dx̂

)
= − ϕlb

∆ϕ

d

dx̂
ρ̂υ ; PL0 =

(ρυ)lbL

Γlb

(3)

All normalized coefficients will now depend on x̂. ϕlb/∆ϕ is an unknown con-

stant for a given interval, different for each one. PL0 is the reference Péclet

number of the interval. Let us integrate between 0 and x̂

ρ̂υϕ̂−
(
ρ̂υϕ̂

)
0
− Γ̂

PL0

dϕ̂

dx̂
+

(
Γ̂

PL0

dϕ̂

dx̂

)
0

= − ϕlb

∆ϕ
(ρ̂υ − 1) (4)
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This expression is just an ordinary differential equation that contains unknown

factors. Some of them can be easily determined with the boundary conditions

for ϕ̂. As ϕ̂(0) = 0, the differential equation to be solved is

dϕ̂

dx̂
− PLϕ̂ = PL0

ϕlb

∆ϕ
λ̂+

1

Γ̂

[(
dϕ̂

dx̂

)
0

− PL0
ϕlb

∆ϕ

]
; PL =

ρυL

Γ
(5)

The RHS contains an a priori unknown source that depends on x̂ through λ̂

and Γ̂. According to the theory of ODE the solution to this equation is

ϕ̂(x̂)

E(x̂)
=

[(
dϕ̂

dx̂

)
0

− PL0
ϕlb

∆ϕ

] x̂∫ dx̂′

Γ̂E
+ PL0

ϕlb

∆ϕ

x̂∫ λ̂

E
dx̂′ + Co (6)

being E(x̂) = exp
∫ x̂ PLdx̂

′ the integrating factor. Co is an integration constant

and x̂′ is a dummy variable. As ϕ̂(0) = 0 we can obtain Co and rewrite the

solution as

ϕ̂(x̂)

E(x̂)
=

[(
dϕ̂

dx̂

)
0

− PL0
ϕlb

∆ϕ

] x̂∫
0

dx̂′

Γ̂E
+ PL0

ϕlb

∆ϕ

x̂∫
0

λ̂

E
dx̂′ (7)

The second boundary condition, ϕ̂(1) = 1, is employed to obtain the final

solution as

ϕ̂(x̂)=E(x̂)

 x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E
+

+PL0
ϕlb

∆ϕ

1∫
0

λ̂

E
dx̂′

 x̂∫
0

λ̂

E
dx̂′

/ 1∫
0

λ̂

E
dx̂′ −

x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E


 (8)

where E is defined as

E(x̂) =
E(x̂)

E(1)
= exp

 x̂∫
PLdx̂

′

 exp

− 1∫
PLdx̂

′

 = exp

− 1∫
x̂

PLdx̂
′

(9)
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Once solved, it is straightforward to recover the values of the dimensional

variable as ϕ = ϕlb + ∆ϕ ϕ̂. This is the most general solution of the homoge-

neous convection-diffusion equation for arbitrary coefficients. It only involves

the modified integrating factor E and two other integrals. If there was only

one interval, i.e., the whole domain, ϕlb and ∆ϕ would be known if Dirich-

let boundary conditions were given. This expression would then be useful for

obtaining a solution if the integrals could be evaluated exactly, but in many

instances this will not be the case. As some kind of polynomial approximation

will be needed for the integrands, it will become necessary to split the domain

in intervals of small size for which the interpolants are more accurate and

where ϕlb and ∆ϕ are unknown. In the process of discretization all interval

solutions will be linked to obtain the system of equations that will provide the

solution over the whole domain.

There are some particular solutions for constant ρυ that are well known. If

ρυ is constant ρ̂υ = 1 and the two factors inside the square brackets are the

same because λ̂= ρ̂υ/Γ̂ = 1/Γ̂. The solution is then

ϕ̂(x̂) = E(x̂)

 x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E

 = E(x̂)

 x̂∫
0

λ̂

E
dx̂′

/ 1∫
0

λ̂

E
dx̂′

 (10)

As λ̂/E = kd(1/E)/dx̂ with k = −1/PL0, the final solution is

ϕ̂(x̂) = E(x̂)
1/E(0)− 1/E(x̂)

1/E(0)− 1/E(1)
=

exp
∫ x̂
0 PLdx̂

′ − 1

exp
∫ 1
0 PLdx̂′ − 1

(11)

Beginning with this expression there is another simplification when the Péclet

number is small. In that case the exponential of the integral can be substituted

by the first two terms of its Taylor series expansion and the solution only

depends on the integral of 1/Γ.

10



ϕ̂(x̂) =

∫ x̂
0 PLdx̂

′∫ 1
0 PLdx̂′

=

∫ x̂
0

dx̂′

Γ∫ 1
0

dx̂′

Γ

(12)

In this latter case the constant (and small) convection term does not affect

the solution which corresponds to that of the diffusion equation with variable

diffusivity. Both simplified expressions above are solutions of the homogeneous

equation with variable Γ and constant ρυ, they are particular cases of the

general solution, Eqn. 8.

3 Exact solution for arbitrary source

We will apply the same normalization to Eqn. 1 in order to obtain the

normalized equation with source

d

dx̂

(
ρ̂υϕ̂− Γ̂

PL0

dϕ̂

dx̂

)
= − ϕlb

∆ϕ

d

dx̂
ρ̂υ +Πs with Πs =

S(x̂)L

(ρυ)lb∆ϕ
(13)

The new factor is Πs which is a nondimensional source. In this section we will

show how to get rid of this source and eventually obtain a source-free equation.

We will closely follow the derivation presented in [22] for constant coefficients.

The approach is named ENATE, Enhanced Numerical Approximation of a

Transport Equation, to which the reader is referred for details. The final idea is

to use the solution derived in the previous section for this source-free equation.

A function Λ(0)
s is sought that satisfies

d

dx̂

(
ρ̂υΛ(0)

s

)
= Πs ⇒ Λ(0)

s =
1

ρ̂υ

x̂∫
0

Πs(x̂
′)dx̂′ (14)

which forms part of a new variable ϕ̃ = ϕ̂ − Λ(0)
s . The transport equation for

this new variable is
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d

dx̂

(
ρ̂υϕ̃− Γ̂

PL0

dϕ̃

dx̂

)
= − ϕlb

∆ϕ

d

dx̃
ρ̂υ +

d

dx̂

(
Γ̂

PL0

dΛ(0)
s

dx̂

)
(15)

We can proceed in the same fashion by looking for another variable such that

its first derivative is the new source

d

dx̂

(
ρ̂υΛ(1)

s

)
=

1

PL0

d

dx̂

(
Γ̂
dΛ(0)

s

dx̂

)
⇒

ρ̂υΛ(1)
s =

1

PL0

(
Γ̂
dΛ(0)

s

dx̂
−
(
dΛ(0)

s

dx̂

)
0

)
(16)

as Γ̂(0) = 1. Without lack of generality Λ(0)
s (0) = Λ(1)

s (0) = 0 is assumed (see

[22] for details). As every new variable is less than the former by a factor given

by the inverse of the Péclet number, the procedure will eventually end up with

a source-free equation for a well-behaved original source if the Péclet number

is high. By appropriately rearranging the Λ definition equations it will later

be shown that a high Péclet is not even necessary to obtain a solution for the

sum of Lambdas.

The final variable is ϕ = ϕ̂ − ∑∞
j=0 Λ

(j)
s whose transport equation no longer

contains Πs. The solution to this equation would be Eqn. 8 if the boundary

conditions were zero and one but these are not those associated to ϕ. In fact, by

construction all Lambdas are zero at x̂ = 0 so ϕ(0) = ϕ̂(0)−∑∞
j=0 Λ

(j)
s (0) = 0

but at x̂ = 1 the value is unknown. However, a new variable may be defined

as

ϕ
N
=

ϕ− ϕ(0)

ϕ(1)− ϕ(0)
=

ϕ̂−∑∞
j=0 Λ

(j)
s (x̂)

1−∑∞
j=0 Λ

(j)
s (1)

=
ϕ̂− F (x̂)

1− F (1)
; F =

∞∑
j=0

Λ(j)
s (17)

for which the boundary conditions are those mentioned. The equation that

governs the transport of ϕ
N

is
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d

dx̂

ρ̂υϕN − Γ̂

PL0

dϕ
N

dx̂

 = − 1

1− F (1)

ϕlb

∆ϕ

d

dx̂
ρ̂υ (18)

whose solution, according to Eqn. 8, is

ϕ
N
(x̂)=E(x̂)

 x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E
+

+PL0Φ

1∫
0

λ̂

E
dx̂′

 x̂∫
0

λ̂

E
dx̂′

/ 1∫
0

λ̂

E
dx̂′ −

x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E




Φ=
1

1− F (1)

ϕlb

∆ϕ
(19)

From Eqn. 17 the complete solution is thus

ϕ̂ = F (x̂) + (1− F (1))ϕ
N
(x̂) (20)

This expression represents the solution to the normalized equation as the sum

of the particular solution F (x̂) and the homogeneous solution ϕ
N
(x̂) affected

by a weighting coefficient that allows the complete solution to satisfy the

boundary conditions.

4 Generalized differential equation for F =
∑

Λ(j)
s

As described in a previous paragraph an important variable that comes up

following the ENATE approach is the sum of the source-dependent Λ’s. There

is a direct way of obtaining this sum by deriving an ODE that contains it as

unknown. Let us look at the definitions of the Λ’s

ρ̂υΛ(0)
s =

x̂∫
0

Πsdx̂
′
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ρ̂υΛ(1)
s =

1

PL0

(
Γ̂
dΛ(0)

s

dx̂
−
(
dΛ(0)

s

dx̂

)
0

)
.

.

.

ρ̂υΛ(j)
s =

1

PL0

(
Γ̂
dΛ(j−1)

s

dx̂
−
(
dΛ(j−1)

s

dx̂

)
0

)
(21)

All equations may be summed up to obtain

ρ̂υF =

x̂∫
0

Πsdx̂
′ +

1

PL0

(
Γ̂
dF

dx̂
−
(
dF

dx̂

)
0

)
(22)

This is again an ordinary differential equation with constants to be determined.

Rearranging,

dF

dx̂
− PLF =−PL0

Γ̂

x̂∫
0

Πsdx̂
′ +

(
dF

dx̂

)
0

1

Γ̂

=−PL0
Π̃s

Γ̂
+

(
dF

dx̂

)
0

1

Γ̂
; Π̃s(x̂) =

x̂∫
0

Πsdx̂
′ (23)

There is a whole family of F functions, each one related to the particular value

of (dF/dx̂)0. The governing differential equation has been derived assuming

that F (0) = 0 but note that the second boundary condition for F , that would

allow us to obtain one specific solution out of the family set, is lacking. Thus,

the general solution is a one-parameter set of F functions that written in terms

of F (1) is

F (x̂) =E(x̂)

F (1)

x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E

−PL0

1∫
0

Π̃s

Γ̂E
dx̂′

 x̂∫
0

Π̃s

Γ̂E
dx̂′

/ 1∫
0

Π̃s

Γ̂E
dx̂′ −

x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E


 (24)
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where Π̃s(x̂
′) =

∫ x̂′

0 Πsdx̂
′′. F (1) will disappear in the final equation for ϕ̂ so

there is no need to speculate which value is appropriate. As observed there is

only one new integral to be evaluated, that associated to the source.

The expression obtained is nothing but the particular solution of the nonhomo-

geneous equation written in integral form. The governing differential equation

for F has been obtained via a previous definition of the Lambda functions

because this was the approach followed in a former paper by the first author

but, alternatively, it could have been obtained directly from the original ODE.

It just highlights the fact that the sum of Lambdas of the previous paper is

the function that is the particular solution to the original ODE. It can easily

be checked that ϕ̂(x̂) of Eqn 20 satisfies the original ODE just by substituting

F (x̂) and ϕ
N
(x̂) expressions.

5 Algebraic relation between nodal values

The solution in an arbitrary interval is

ϕ̂(x̂) = F (x̂) + (1− F (1))ϕ
N
(x̂) (25)

F represents the particular solution to the PDE and ϕ
N
the normalized homo-

geneous solution. In this expression it can be observed that 1−F (1) acts as a

weighting coefficient that allows the complete solution to satisfy the boundary

conditions. For each F function the weighting factor is different but the final

solution for ϕ̂ is the same whatever F is chosen.

The ENATE procedure consists in calculating the diffusive flux at a generic

node P by considering it as the end point of one interval, WP , between the
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W est node and P , or the start point of the next one, PE, between P and the

East node. The diffusive flux is

Γ
dϕ

dx
= Γ

∆ϕ

L

dϕ̂

dx̂
= ρυ∆ϕ

1

PL

dϕ̂

dx̂
= ρυ∆ϕ

 1

PL

dF

dx̂
+ (1− F (1))

1

PL

dϕ
N

dx̂


(26)

We are equalling the two fluxes at P, that calculated at the end of the first

interval and that calculated at the start of the second. For the diffusive flux

to be continuous at P the source cannot be a Dirac delta, so this is the only

restriction. Even if it were, with known intensity, we could establish a similar

equation by including the flux jump equal to the delta amplitude. In the last

case, a node should be located at the delta position because the flux relation

is applied in one node.

(ρυ)P∆ϕWP

 1

PLWP

dF

dx̂
+ (1− F (1))

1

PLWP

dϕ
N

dx̂


x̂=1

=(ρυ)P∆ϕPE

 1

PLPE

dF

dx̂
+ (1− F (1))

1

PLPE

dϕ
N

dx̂


x̂=0

(27)

It is thus obvious that the derivatives of the two functions are required at the

interval edges. The complete derivation is given in the appendix, here we will

present the final expression

[
(ρυ)W k̃WP + (ρυ)P

(
k̃PE +

ILE01

IGE01

∣∣∣∣
PE

)]
ϕP =

(ρυ)W

(
k̃WP +

ILE01

IGE01

∣∣∣∣
WP

)
ϕW + (ρυ)P k̃PE ϕE

+ IS01|WP

+

(
ISGE01

IGE01

∣∣∣∣
PE

− ISGE01

IGE01

∣∣∣∣
WP

)
(28)

The different factors that appear in the formulation are
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ILE01 =

1∫
0

λ̂

E
dx̂′ ; IGE01 =

1∫
0

dx̂′

Γ̂E
; k̃ =

1

PL0IGE01

ISGE01 =

1∫
0

IS0x̂′

Γ̂E
dx̂′ =

1∫
0

L
∫ x̂′

0 S(x̂′′)dx̂′′

Γ̂E
dx̂′

IS01 = L

1∫
0

S(x̂) dx̂ =

xrb∫
xlb

S(x) dx (29)

Note that the two factors related to the source term, ISGE and IS, are

dimensional, the rest are nondimensional. The algebraic equation obtained is

cast in the traditional way. The only difference with standard discretizations is

that the coefficients that link the variables at the nodes have not been obtained

by numerically approximating the derivatives of the original ODE, but by

relying on the integral solution. The expression is exact, that is, were we able to

calculate the integrals exactly we would obtain the exact solution for arbitrary

coefficients and source. Thus, the discretization problem has been transferred

from derivatives to integrals, allowing, as will be shown, higher accuracy. As

all integrals are carried out in intervals between nodes and the integrands are

to be approximated with continuous functions the only restriction is that the

coefficients should be continuous with continuous derivatives up to a degree

depending on the degree of the approximating polynomial. When describing

the interpolating polynomials we will be more specific on this restriction. Note

that a coefficient and/or the source may be discontinuous (or their derivatives)

but in that case a node should be placed in the discontinuity.

It was mentioned previously that this work is a generalization of a previous

one concerning a convection-diffusion equation with arbitrary source. In that

paper both the mass flux and the diffusion coefficient were constant in a given

interval whereas in this one both are arbitrary. Obviously, if the coefficients
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are piecewise-constant in Eqn. 28 we should recover the expressions of the

previous paper. In order to connect both papers a short derivation will be

provided. We do not mean to be exhaustive, we will only detail the equality

of the source integral term of that paper, the others follow suit with the same

procedure.

Let us calculate all factors involved when the coefficients are constant over an

interval. In that case ILE01 = IGE01 and IGE01 = (expPL − 1)/PL, so k̃WP

of this work is k̃1 of the previous one, and 1 + k̃PE is k̃2. From Eqn. (A.9) we

can obtain

ISGE01

IGE01

= (ρυ)lb∆ϕ

(
1

PL0

dF

dx̂

∣∣∣∣∣
0

− k̃F (1)

)
(30)

In the case of constant coefficients ISGE01/IGE01 is given by

ISGE01

IGE01

= ρυ

−∑∞
j=0 Λ

(j)
s (1)

expPL − 1
+

1

PL

∞∑
j=0

dΛ(j)
s

dx̂

∣∣∣∣∣
0

 (31)

The Lambdas in this expression are those in Eqn. 21 multiplied by ∆ϕ as they

were in the previous paper. If we take the first term of the series, that of Λ(0)
s

in WP , we have

− ISGE01

IGE01

∣∣∣∣
WP

+ L

1∫
0

S(x̂)dx̂

∣∣∣∣∣∣
WP

=
ρυΛ(0)

s (1)

expPL − 1
+ ρυΛ(0)

s (1)

= ρυ
expPL

expPL − 1
Λ(0)

s (1)

= k̃1

xP∫
xW

S dx (32)

because by definition

k̃1 =
expPL

expPL − 1
; ρυΛ(0)

s (1) = L

1∫
0

S(x̂)dx̂ =

xP∫
xW

S dx (33)
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This term is the source integral of the final algebraic expression of the previous

paper. Likewise, the first term of ISGE/IGE associated to PE is

ISGE01

IGE01

∣∣∣∣
PE

= − ρυΛ(0)
s (1)

expPL − 1
= −k̃2

xE∫
xP

S dx ; k̃2 =
1

expPL − 1
(34)

The rest of terms concerning the successive source derivatives connected to

Λ(j)
s can be obtained similarly showing that both formulations are identical in

the case of piecewise-constant coefficients.

In the final expression, Eqn 28, there is no explicit contribution of the con-

vective flux at node E, its effect is only felt in the integrals of λ̂ and E. The

integral that contains λ̂ is exact only if the integral of PL is known

1∫
0

λ̂

E
dx̂′ = − 1

PL0

1∫
0

d

dx̂′

(
1

E

)
dx̂′ =

1

PL0

exp 1∫
0

PLdx̂
′ − 1

 (35)

For the other integrals it is worth describing several special cases associated to

high mesh Péclet numbers for which the exponentials can become excessively

large for them to be represented as a double precision number. For instance,

IGE01 can be approximated by

IGE01 =

1∫
0

dx̂′

Γ̂E
=

1∫
0

1

ρ̂υ

λ̂

E
dx̂′ = − 1

PL0

1∫
0

1

ρ̂υ

d

dx̂′

(
1

E

)
dx̂′ ≈

≈− 1

PL0

1∫
0

d

dx̂′

(
1

ρ̂υE

)
dx̂′ =

1

PL0

exp 1∫
0

PLdx̂
′ − 1

ρ̂υ|1

 (36)

The approximation indicated in the integral is acceptable if

∣∣∣∣∣ 1E d

dx̂

(
1

ρ̂υ

)∣∣∣∣∣≪
∣∣∣∣∣ 1ρ̂υ d

dx̂

(
1

E

)∣∣∣∣∣ or

∣∣∣∣∣ ddx
(
1

υ

)∣∣∣∣∣≪ 1

α
; α =

Γ

ρ
(37)

Note that the second inequality relates to dimensional variables. The region

where the inequality will likely be satisfied is that of high mesh Péclet numbers.
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In that region

ILE01

IGE01

=
exp

∫ 1
0 PLdx̂

′ − 1

exp
∫ 1
0 PLdx̂′ − 1/ ρ̂υ|1

≈ 1 (38)

Following the same procedure we can obtain a simplified version of ISGE01

for high mesh Péclet if an inequality for the source, in terms of dimensional

variables, is satisfied. ISGE01 can be written as

ISGE01 =

1∫
0

L
∫ x̂′

0 S(x̂′′)dx̂′′

Γ̂E
dx̂′

=

1∫
0

L
∫ x̂′

S(x̂′′)dx̂′′

Γ̂E
dx̂′ − IGE01L

0∫
S(x̂′)dx̂′

≈− 1

PL0

1∫
0

d

dx̂′

L
∫ x̂′

S(x̂′′)dx̂′′

ρ̂υE

 dx̂′ − IGE01L

0∫
S(x̂′)dx̂′

=− 1

PL0

L

ρ̂υ|1

1∫
0

S(x̂)dx̂ (39)

For the last equality the value of IGE01 in Eqn. 36 has been used. The ap-

proximation is valid if the following is true

∣∣∣∣∣∣ 1E d

dx̂

∫ x̂ S(x̂′)dx̂′

ρ̂υ

∣∣∣∣∣∣≪
∣∣∣∣∣∣
∫ x̂ S(x̂′)dx̂′

ρ̂υ

d

dx̂

(
1

E

)∣∣∣∣∣∣ (40)

or in terms of dimensional variables

∣∣∣∣∣ ddx
(∫ x S(x) dx

υ

)∣∣∣∣∣≪ |
∫ x S(x) dx|

α
(41)

We have already assumed that the inequality in Eqn 37 is true so the additional

constraint is

∣∣∣∣∣S(x)υ

∣∣∣∣∣≪ |
∫ x S(x) dx|

α
⇒ 1

|λ|
≪ lS ; lS =

1

|S(x)|

∣∣∣∣∣∣
x∫
S(x′)dx′

∣∣∣∣∣∣ (42)
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lS is a length scale related to the primitive of the source. To ascertain the

behaviour of ISGE01 when mesh Péclet is very high, let us calculate the ratio

ISGE01/IGE01 in that region

ISGE01

IGE01

=
−L

∫ 1
0 S(x̂)dx̂

ρ̂υ|1 exp
∫ 1
0 PLdx̂′ − 1

It is clear that when mesh Péclet is high, the exponential dominates and the

ratio tends to zero.

Summing up, in the high Péclet regime the ratio ILE01/IGE01 tends to 1,

and both ISGE01/IGE01 and k̃ = 1/(PL0IGE01) become negligible. This

asymptotic regime is important as there are extensive areas of a typical flow

domain where Péclet is very high. In a practical calculation it is convenient to

know the asymptotic values of the coefficients that would otherwise have to

be calculated with exponentials of large numbers. Substituting these values in

Eqn. 28, the algebraic equation for this high Péclet regime is

(ρυ)PϕP − (ρυ)WϕW =

xP∫
xW

S(x)dx (43)

which is consistent with that obtained by integrating the convection equation

with source between W and P .

6 Hermite splines and Gauss quadrature

For the correct evaluation of the discretized coefficients one has to be as

accurate as possible in the numerical calculation of the integrals. In one way

or another the issue of numerical integration hinges on the interpolation of

the function to be integrated by a polynomial of a given degree. Two differ-
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ent approaches have been pursued in this work: Hermite splines and Gauss

quadrature integration.

Hermite splines require the values and the derivatives of the function to be

interpolated at the edges of the interval. In the formulation presented in this

paper these can be evaluated with the exact expressions of the general ϕ̂, thus

any derivative can be made readily available at the edges. The determina-

tion of these derivatives need some factors already calculated in the algebraic

nodal equation, so Hermite interpolation is appealing because there is little

extra computational effort. To calculate the coefficients that appear in the

discretized equations only the integral for a given Hermite spline is required.

The interpolating polynomial is a linear combination of the elements of the

Hermite basis whose integrals can be calculated beforehand in the domain

(0,1) that, due to the mapping, is the same for all intervals.

The simplest Hermite spline is the one that has the same edge values and

first derivatives as the function to be interpolated. Its Hermite basis is a set

of four polynomials where the first two have the value of one at one edge and

zero at the other, with zero first derivative at both. The last two have the

same behaviour substituting value for derivative and viceversa. Having four

values to be adjusted a third-order polynomial is needed for each element of

the basis. The set of four polynomials are referred to as the cubic Hermite

spline basis.

When the second derivative at the edges is included the polynomial degree

increases two units and logically this also happens when including every new

edge derivative. In this work we have employed cubic, quintic and septic Her-

mite splines. To obtain the coefficients of the algebraic equations only the
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integrals in the unity domain are required that can, in turn, be obtained in

terms of the edge values of the function and the derivatives employed. When

using Hermite splines as interpolants of a function f(x̂), its integral, written

in terms of edge values and derivatives, is

Cubic

1∫
0

f(x)dx=
1

2
(f(0) + f(1)) +

1

12
(f ′(0)− f ′(1))

Quintic

1∫
0

f(x)dx=
1

2
(f(0) + f(1)) +

1

10
(f ′(0)− f ′(1))

+
1

120
(f ′′(0) + f ′′(1))

Septic

1∫
0

f(x)dx=
1

2
(f(0) + f(1)) +

3

28
(f ′(0)− f ′(1))

+
1

84
(f ′′(0) + f ′′(1)) +

1

1680
(f ′′′(0)− f ′′′(1))

For instance, if the integral of the mesh Péclet number is evaluated, and the

integrand is approximated with a cubic Hermite spline, its value is

1∫
0

PL(x̂) dx̂=
1

2
(PL0 + PL1) +

1

12
(P ′

L|0 − P ′
L|1) (44)

As the approximation of the integrand has to be as accurate as possible we need

that the integrands and their derivatives be continuous up to the same degree

as the interpolating polynomial. In the case of cubic Hermite the integrand

should be continuous up to the third derivative, fifth for quintic and seventh

for septic. Note that this is a numerical requirement not a mathematical one,

the integrals can still be calculated for a discontinuous integrand. Moreover, if

there are discontinuities in the coefficients and/or source we can always place

a node in the discontinuity and everything will work fine.

In the evaluation of the integrals by Hermite splines another approach that

23



has been considered in this work is to transform first the integrand 1/E in the

following way

1

E
=exp

1∫
x̂

PLdx̂
′ = exp

1∫
x̂

(PL − PL)dx̂
′ · exp

1∫
x̂

PLdx̂
′

=expPL(1− x̂) · exp
1∫

x̂

(PL − PL)dx̂
′

=expPL(1− x̂) · exp
1∫

0

(PL − PL)dx̂
′ · exp−

x̂∫
0

(PL − PL)dx̂
′ (45)

If we choose PL =
∫ 1
0 PLdx̂ the second exponential is one and then

1

E
= expPL(1− x̂) · exp−

x̂∫
0

(PL − PL)dx̂
′ (46)

This strategy continues by approximating the second exponential with Her-

mite splines. This exponential is much more suitable for being approximated

with a polynomial than exp
∫ 1
x̂ PLdx̂

′ in the case of moderate/large mesh Péclet

and in fact this was the rationale behind this transformation. The original ex-

ponential can vary a great deal within an interval, its value is exp
∫ 1
0 PLdx̂

′ at

the left boundary and 1 at the right boundary. The one after the transforma-

tion starts and ends with the same value: 1. With this approach the IGE01

factor for constant Γ is

IGE01 =

1∫
0

1

E
dx̂ =

1∫
0

expPL(1− x̂) · exp−
x̂∫

0

(PL − PL)dx̂
′

 dx̂

=

1∫
0

n∑
j=0

ajx̂
j expPL(1− x̂) dx̂ =

n∑
j=0

aj

1∫
0

x̂j expPL(1− x̂) dx̂ (47)

The integrals in the previous expression can be evaluated exactly because

∫
xnebxdx =

ebx

b

(
xn − nxn−1

b
+

n(n− 1)xn−2

b2
− · · ·+ (−1)nn!

bn

)
(48)
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For a n-ic Hermite spline the final result is

IGE01 =

1∫
0

1

E
dx̂

=
expPL − 1

PL

n∑
j=0

aj
j!

P
j

L

− 1

PL

n∑
j=1

aj

1 + j−1∑
l=1

j!

P
l
L(j − l)!

 (49)

aj being the coefficients of the Hermite spline that interpolates the transformed

exponential. If Γ varies, that is, Γ̂ ̸= 1, aj are the coefficients of the Hermite

spline that interpolates 1/Γ̂ times the transformed exponential.

We found in the cases tested that the interpolation of the original exponen-

tial associated to 1/E is adequate for mesh Péclet below 5. The difficulty to

approximate the original exponential for higher Péclet may result in the in-

terpolating Hermite spline producing negative integrals for IGE01 or ILE01

which is not mathematically correct. The coefficients in Eqn. 28 are positive

because the integrals contained in them are always positive. So the integral

scheme is robust and monotonic as long as the numerical value has the same

positive sign. Our computational experience with this scheme is that for mesh

Péclet higher than five the new integral for 1/E always provided positive re-

sults, in contrast to the original one that did not always do so.

We have also checked the use of a 3- and 4-point Gauss-Legendre quadra-

ture for integral evaluation. As all integrals involved are between 0 and 1

the implementation is independent of the problem or the mesh. A n-point

Gauss-Legendre quadrature manages to integrate exactly a polynomial of

(2n − 1)th degree by calculating the integrand at the Gauss points. As an

example, a 3-point quadrature would calculate the integrand at x̂1 = 1/2,

x̂2 = 1/2(1 +
√
3/5) and x̂3 = 1/2(1 −

√
3/5) which are Gauss points for an
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interval [0,1]. The generic expression is

1∫
0

f(x̂)dx̂ =
1

2

∑
i=1,3

wif(x̂i) (50)

where wi are the weights, namely, 8/9 for the point 1/2 and 5/9 for the re-

maining two. For example, E and IS, that are integrals within integrals, are

evaluated as

E(x̂i)= exp−
1∫

x̂i

PLdx̂
′

=exp−
[
1− x̂i

2

[
8

9
PL(x̂1 + x̂ix̂1) +

5

9
(PL(x̂2 + x̂ix̂3) + PL(x̂3 + x̂ix̂2))

]]

IS(x̂i)=L

x̂i∫
0

S dx̂′

=L
x̂i

2

[
8

9
S(x̂ix̂1) +

5

9
(S(x̂ix̂2) + S(x̂ix̂3))

]
(51)

Similarly, there are additional expressions for 4-point Gauss quadrature. This

way of approximating the integrals can never produce negative values as the

result is the sum of several positive integrand evaluations. Gauss quadrature

provides a robust and monotonic scheme.

Contrary to Hermite splines that only require the value of the function and

its derivatives at the nodes, the Gauss-Legendre quadrature needs the values

of the integrand at some points within the interval. If the source and the

coefficients are prescribed analytically it is straightforward to obtain them,

but in a general case where υ is obtained via its transport equation and/or

the source is not analytical, it may be a bit cumbersome to get the values at

the Gauss points. In this respect Hermite splines are very appealing because

there is no need of information inside the interval.
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6.1 Estimated rate of convergence of Hermite splines

In this section an assessment of the errors involved in the evaluation of the

integrals and the coefficients of the discretized equation is carried out. We will

start by describing the errors in approximating the integrand, finishing with

the spatial discretization error, that is, the difference between the exact and

the numerical solution.

Let H
(k)
N (f ; x̂) be the Hermite polynomial of degree N that approximates a

function f in the interval (0,1). The interpolating polynomial is such that it

has the same values as the function and its derivatives up to order k at 0 and

1 (N = 1 + 2k). Then (see for instance [25]),

f(x̂)−H
(k)
N (f ; x̂) =

fN+1(t)

(N + 1)!
x̂k+1(x̂− 1)k+1 ; 0 < t < 1 (52)

and

1∫
0

∣∣∣f(x̂)−H
(k)
N (f ; x̂)

∣∣∣ dx̂ ≤ max
0<t<1

∣∣∣fN+1(t)
∣∣∣ 1

(N + 1)!

1∫
0

x̂k+1(1− x̂)k+1dx̂

(53)

fN+1 is the (N+1)th derivative w.r.t x̂ of the function to be interpolated. The

integral can even be written in terms of k

1∫
0

x̂k+1(1− x̂)k+1dx̂ =
(k + 1)!

2k+1

1

1 · 3 · 5 · · · (2k + 3)
(54)

and finally

1∫
0

∣∣∣f(x̂)−H
(k)
N (f ; x̂)

∣∣∣ dx̂ ≤ C(N) max
0<t<1

∣∣∣fN+1(t)
∣∣∣ = C(N)lN+1 max

xlb<ξ<xrb

∣∣∣fN+1(ξ)
∣∣∣

(55)
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because dx = l dx̂, l being the interval length. C(N) is a constant that depends

on the polynomial degree. Thus, the error in the coefficients is formally of

order N + 1. Cubic Hermite is fourth-order (k=1, N=3), quintic Hermite is

sixth-order (k=2, N=5) and septic Hermite is eighth-order (k=3, N=7).

Let LN and fN be the numerical matrix of coefficients and the numerical

source respectively and let L and f be the exact ones. In order to estimate

the spatial discretization error ||uN − u|| note that

LN(uN − u) = fN − LNu = fN − f − (LN − L)u (56)

and then

||uN − u|| ≤ ||fN − f ||
||LN ||

+
||L− LN ||
||LN ||

||u|| (57)

We have followed a standard notation, so now L is a linear operator and l

will be the interval size. The first term is the error in the source and the

second is the error in the coefficients, both contribute in the same manner to

the discretization error. As the numerators are formally of order N + 1 the

whole discretization error is of order N +1 if the denominator is independent

of l. The inequality is satisfied by any norm but the easiest one to estimate

is the infinity norm. ||LN ||∞ is of order ρυ for high Péclet and of order Γ/l

for low Péclet. For high Péclet ||LN ||∞ does not depend on l, for low Péclet

||L − LN ||∞ is of order lN but the spatial discretization error is still of order

lN+1.
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7 Results

The ENATE approach was applied to three different test cases, two linear and

one nonlinear. In all cases three norms of the residuals were evaluated L1, L2

and L∞, calculated as

L1=
1

n− 1

n−1∑
i=1

|ϕcalc(xi)− ϕexact(xi)|

L2=

√√√√ 1

n− 1

n−1∑
i=1

(ϕcalc(xi)− ϕexact(xi))2

L∞ =max
i

|ϕcalc(xi)− ϕexact(xi)| (58)

being n− 1 the number of internal nodes. In the second case where the value

at the right end of the domain is also calculated, the number of points used

in the norms is n. In all cases a uniform mesh has been employed.

In order to compare our scheme with more traditional ones employed in the

solution of second-order ODEs, we have also calculated the three cases with

the central-differencing scheme (CDS) and a compact scheme (CS) recently

proposed [23]. As explained by Sen, this compact scheme has a three-point

stencil and is formally fourth-order. It solves for the variable and its first

derivative in a compact way. Due to its three-node stencil we could use the

same algorithm (Tridiagonal Matrix Algorithm, TDMA) to solve the system

of equations. As will be seen the rates of convergence of both behave according

to theory in all cases tested. From our point of view it was more interesting

to assess if for a given number of nodes their residuals were lower or higher

than those produced by our numerical integration.
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7.1 Case with Γ variable

The first test case is one employed by Tian and Dai [24] to assess the accuracy

of finite volume schemes of spectral resolution. In this case the velocity is

constant and the diffusion coefficient varies linearly with the position. The

transport equation is

d

dx

(
ρυϕ− Γ

dϕ

dx

)
= S(x) ; υ(x) = 1 + ϵ ; Γ(x) = ϵ(1 + x) (59)

The source is S(x) = ex (1− ϵ(1 + x)). The factor ϵ controls the value of the

Péclet number of the whole domain, which can vary from a value of order one

to infinity. With boundary conditions ϕ(0) = 1 + 1/21/ϵ and ϕ(1) = e+ 2, the

solution is given by

ϕ(x) = ex + (1 + x)
(
1 + x

2

)1/ϵ

(60)

Although the source is very smooth the solution develops a boundary layer

near x = 1 for small ϵ with thickness of the order of ϵ. For infinite Péclet

number (ϵ = 0) the solution is ex for the whole domain with a discontinuity

of value 2 at x = 1. The solution for ϵ = 10−2 is shown in Fig. 1.

As the problem has an analytical solution and Eqn. 28 provides the exact solu-

tion, all factors in the discretized equation should also be analytical functions

of x. In fact, by performing all integrations it can be found that the discretized

equation following the ENATE procedure is

(
ρυ k̃WP + ρυ (1 + k̃PE)

)
ϕP = ρυ (1 + k̃WP )ϕW + ρυ k̃PE ϕE

+ ρυ (exP − exE) k̃PE

− ρυ (exW − exP )(1 + k̃WP )

30



X
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5Φ

Fig. 1. Solid line: Exact Solution for ϵ = 10−2. Black dots: Computed solution

with 100 nodes

where k̃i i+1 =

[(
1 + xi+1

1 + xi

)(1+ϵ)/ϵ

− 1

]−1

(61)

and that this algebraic equation provides the exact solution. The variable

ϕnew = ϕ− ex is the one governed by the source-free algebraic equation

(
ρυ k̃WP + ρυ (1 + k̃PE)

)
ϕnew
P = ρυ (1 + k̃WP )ϕ

new
W + ρυ k̃PE ϕnew

E

Remember that in the theoretical derivation ϕ
N
represented the variable with

no source, so in every interval there must be a connection between ϕ
N

and

ϕnew, i.e., ϕ
N
= c1ϕ

new+c2, and then F = c1e
x+c3. c1, c2 and c3 are constants

included to satisfy the boundary conditions. This comment on the connections

between these variables is just to convey the idea that for an arbitrary nonho-
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mogeneous convection diffusion equation that possesses an analytic solution

one should be able to spot the variables F and ϕ
N

that conform its solution

just by calculating all integrals exactly and deriving the algebraic equation

above.

For a general problem the integrands do not have a primitive function so it

is important to assess the accuracy of a numerical integration procedure in

all integrals involved. In this case ρ̂υ = 1 so ILE01 = IGE01. IGE01 appears

in many factors of the algebraic equation and was calculated through the

polynomial interpolation of the integrand, that is, it was not calculated with

the exact expression IGE01 = ILE01 = (exp
∫ 1
0 PLdx̂−1)/PL0. In doing so, the

accuracy of the polynomial integration was evaluated. Later, we found that

the difference between the exact expression and the polynomial interpolation

was negligible. For instance, the L∞ norm of the difference between the two

ways of calculating IGE01 with 101 nodes is of the order of 10−10 per unit of

IGE01.

For this case the L2 norms of the residuals are plotted in Fig. 2 for differ-

ent interval sizes of evenly distributed nodes. The interval sizes range from

∆x = 10−1 to ∆x = 10−4. The other norms are not plotted because they

behave in the same way as the L2 norm for all cases. The factor ϵ is 10−2.

As can be seen in the figure septic Hermite interpolation produces a seventh-

order scheme for ∆x around 10−1 that converts to a eight-order scheme for

∆x less than 5.0 10−2. Quintic Hermite has the same behaviour in those inter-

vals: fifth-order and sixth-order convergence. As cubic Hermite is fourth-order

over a wide range of ∆x the rate of convergence of the Hermite splines is in

accordance with the theory described earlier. For septic Hermite the L2 norm

is 10−7 with 9 internal nodes so it can reach machine accuracy already for
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Fig. 2. Energy norm of the residuals for ϵ = 10−2. Dashed lines correspond

to Gauss quadrature, solid lines to Hermite splines and dash-dotted lines to

finite-volume or finite-difference schemes explained in the textI 3-point Gauss

• 4-point Gauss � Cubic Hermite � Quintic Hermite J Septic Hermite N

Central differencing H Compact scheme

101 nodes (99 internal nodes, ∆x = 10−2). All Gauss quadrature evaluations

provide higher errors than those obtained with Hermite splines of the modified

exponential, although the rates of convergence of 3-point and 4-point Gauss

are similar to those of quintic and septic Hermite. This seems logical because

3-point and 4-point Gauss quadrature procedures are able to integrate exactly

a polynomial of fith- and seventh-degree, the same degrees as the quintic and

septic Hermite polynomials. The residuals for CDS and CS are also plotted,

the former is second-order and the latter is fourth-order as shown in the figure.

The difference between the errors of the schemes with integral evaluation and
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those that evaluate the derivatives of the original ODE is notable. As an ex-

treme example, septic Hermite with fifty nodes has almost the same accuracy

as the compact scheme with ten thousand.

10-4 10-3 10-2 10-1
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Fig. 3. Energy norm of the residuals for ϵ = 10−4. Same symbols as Fig. 2

The rates of convergence depend on the Péclet number of the whole domain

through the parameter ϵ. This issue is depicted in Fig. 3 where the same norms

are shown for ϵ = 10−4. Septic Hermite is almost reaching machine accuracy

for 201 nodes. The behaviour of 3- and 4-point Gauss quadrature contains two

regions. In the first region both are almost second-order but from N=1001 until

N=10001 three-point Gauss is fourth-order and four-point Gauss is seventh-

order. This may be related to the accuracy of the exponential approximation.

Gauss quadrature provides the exact integral if the integrand is a polynomial

of a given degree but, as it is an exponential what is being approximated
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the errors may be significant for large ∆x. Although the rate of convergence

is high for ∆x small, the fact that they start with very large residuals with

few nodes, and that across two decades the reduction is only four orders of

magnitude, makes them require many more nodes to reach machine accuracy

than Hermite splines. Apart from the accuracy of the coefficients, Hermite

splines can handle very large Péclet numbers because IGE01 and ISGE01 are

calculated with Eqn. 49, the only difference being the aj coefficients. In the

large Péclet region the first exponential dominates so the ratio ISGE01/IGE01

is

ISGE01

IGE01

=

∑n
j=0 aj

j!

P
j
L

∣∣∣∣
ISGE∑n

j=0 aj
j!

P
j
L

∣∣∣∣
IGE

(62)

expression that does not contain any large exponential.

For this case, septic Hermite behaves like a 4th order scheme. A striking result

is that with 11 nodes the L2 norm of the error is between one and two orders

of magnitude less than that in Fig 2. The reason is that mentioned above, for

large mesh Péclet the exponential term dominates and the errors made in the

aj are only felt in the first factor of Eqn. 49, whereas if the second factor is not

negligible the errors in the aj affect more strongly the solution. The order of

convergence of CDS and CS is that expected although the region where both

CDS and CS are stable is very limited. It can be theoretically shown that the

stable region for CDS is Pe<2 and for CS is Pe<8/3, based on the interval

size.
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7.2 Case with υ variable

The second test case was obtained from ten Thije Boonkamp and Anthonissen

[21]. The solved transport equation is

d

dx

(
ρυϕ− Γ

dϕ

dx

)
= S(x) ; υ(x) = (1 + x)3 ; Γ/ρ = ϵ = const

S(x) =
Smax

1 + Smax(2x− 1)2
(63)

The boundary conditions are ϕ(0) = 0 and ϕ′(1) = 0. The velocity field does

not correspond to a real fluid because ρυ is not constant, but as in several

dimensions the velocity field of a real fluid can vary along one coordinate,

it is interesting to check the behaviour of the ENATE approach when the

convective flux is not constant. If Smax ≫ 1 the source starts and finishes

with a value of order one at the edges of the domain and it goes up to Smax

at x = 1/2. Smax can be changed to adjust the thickness and intensity of a

steep layer in the solution near x = 0.5. This case does not have an analytic

solution but to realize the effect of Smax, a computed solution for ϵ = 10−2

with 100 nodes is shown in Fig. 4 for two values of Smax, 10
2 and 103. The

steeper gradient near x = 0.5 can be appreciated as Smax is increased.

The interest of this case is twofold: first, it contains a variable velocity that

changes an order of magnitude across the unity domain and second, it possesses

a source whose intensity and gradients are adjustable via a parameter Smax.

An additional reason for choosing this example is to show how boundary

conditions of von Newmann type can be handled following this approach. At

the end of the last interval the general expression for the derivative is

1

PL1

dϕ

dx̂

∣∣∣∣∣
x̂=1

=

 1

PL1

dF

dx̂

∣∣∣∣∣
x̂=1

+
1

PL1

(1− F (1))
dϕ

N

dx̂

∣∣∣∣∣∣
x̂=1

 (ϕN − ϕN−1)(64)
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Fig. 4. Computed solution with 101 nodes for two values of Smax, 10
2 and 103.

and this derivative is zero due to the boundary condition. Substituting the

values of the derivatives the expression that links ϕN (boundary) and ϕN−1

(last internal node) is

ϕN

(
1 +

k̃

ρ̂υ(1)

)
=

ϕN−1

ρ̂υ(1)

(
k̃ +

ILE01

IGE01

)
+

1

ρυ|N

[
IS01 −

ISGE01

IGE01

]
(65)

In the expression above all factors are those of the last interval. The first

iteration starts with ϕN = ϕN−1 and in subsequent iterations the value at the

boundary is updated according to Eqn. 65.

In Fig. 5 and 6 results obtained for Smax = 102, 103 with ϵ = 10−2 are plotted.

As there is no analytic solution to compare with, the solution with septic

Hermite and 10001 nodes was assumed as the reference solution. As seen in
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Fig. 5. Residuals for ϵ = 10−2 and Smax = 100. Dashed lines correspond to

Gauss quadrature, solid lines to Hermite splines and dash-dotted lines to

finite-volume or finite-difference schemes explained in the textI 3-point Gauss

• 4-point Gauss � Cubic Hermite � Quintic Hermite J Septic Hermite N

Central differencing H Compact scheme

the figure all schemes have an error of the order of 10−12 or less in the limit

of small ∆x, so the asymptotic solution of all schemes is the same up to the

11th decimal place at least.

For Smax = 102 quintic and septic Hermite perform better than a Gauss

quadrature strategy over the whole range of interval sizes. From ∆x = 10−2

downwards the rate of convergence of all Hermite splines is in accordance

with theory until 10−12 where round-off errors seem to come into play and

the rate of convergence is significantly reduced. The residual associated to
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the asymptotic regime of very high mesh Péclet numbers for any integral

scheme is 2.01 10−2 (not drawn). This was calculated with IGE01 = ILE01

and ISGE01/IGE01 and k̃ zero. For relatively large ∆x (high mesh Péclet)

this solution is better than that with Gauss quadrature and it seems to suggest

that large exponentials are not very well resolved by Gauss quadrature and

that IGE01/ILE01 in the algebraic equation should be closer to one than the

value calculated with the quadrature.

10-4 10-3 10-2 10-1
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

∆X

Fig. 6. Residuals for ϵ = 10−2 and Smax = 1000. Same symbols as Fig. 5

Although the actual residual values are different the whole picture is very

much the same for Smax = 103. There is also a wide region where the integral

schemes behave according to theory, especially cubic Hermite. For Smax = 103

the residual of very high mesh Péclet for any integral scheme is now of order

10−1, again better than Gauss quadrature for ∆x above 5.0 10−2, which gives
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more credit to the claim that Gauss quadrature is not able to handle large

exponentials in the integrands.

The same results are plotted in the next two figures, 7 and 8, for ϵ = 10−4.

As happened in the first test case the residuals for large ∆x are two orders of

magnitude better than for ϵ = 10−2 but the rate of convergence is significantly

lower, yet it is independent of the source intensity. For both Smax septic Her-

mite spline behaves like a scheme of roughly fourth order, cubic is second order

and quintic third order. There are two distinct regions in the convergence of 3-

and 4-point Gauss quadrature. In the first one, until ∆x = 10−3, they behave

like a first-order scheme but from then on their slopes are close to quintic and

septic Hermite. The norms for the asymptotic high Péclet regime are 2.0 10−4

and 10−3, better than Gauss quadrature for a wide range of large ∆x. For

ϵ = 10−4 there is no stable solution with CDS or CS. The one depicted in the

figure corresponds to upwind differencing, a first-order scheme.

7.3 Nonlinear convection-diffusion equation

The nonlinear convection diffusion equation employed as the last test case is

given by

υ
dυ

dx
= µ

d2υ

dx2
⇒ d

dx

(
1

2
υ2 − µ

dυ

dx

)
= 0 (66)

in a unity domain. The prescribed boundary conditions are υ(0) = 1 and

υ(1) = 0. This case has an analytic solution given by

υ(x) = C1 tanh

(
C1

2µ
(1− x)

)
with 1 = C1 tanh

(
C1

2µ

)
(67)

40



10-4 10-3 10-2 10-1
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

∆X

Fig. 7. Residuals for ϵ = 10−4 and Smax = 100. Dashed lines correspond to

Gauss quadrature, solid lines to Hermite splines and dash-dotted lines to

finite-volume or finite-difference schemes explained in the textI 3-point Gauss

• 4-point Gauss � Cubic Hermite � Quintic Hermite J Septic Hermite N Up-

wind differencing

In Fig. 9 the solutions for µ = 0.04 and µ = 0.01 are depicted for the second

half of the domain. In the first half the solution is constant and equal to

one. It is observed the development of the boundary layer near x = 1 as µ is

decreased.

If we used Gauss quadrature to calculate the integrals associated to E we

would require the values of υ at intermediate points within the intervals. In

the other two cases these were easily obtained, but in this nonlinear case υ

is the updated variable of the iterative process. The values of υ could be
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Fig. 8. Residuals for ϵ = 10−4 and Smax = 1000. Same symbols as Fig. 7

obtained based on the exact solution at every iteration but this, in turn,

contains the evaluation of integrals that again need the values at intermediate

points of the subinterval within the interval, and so on. As there is no way

of circumventing this problem we have only employed Hermite splines for the

nonlinear equation.

As with the first test case the integrals associated to the coefficients have an

analytical primitive. For instance, the integrating factor E(x̂) = exp
∫ x̂ PLdx̂

′

is (cosh f(x̂))−1, f(x̂) being C1(1− xlb − lx̂)/(2µ). In this equation it was also

checked that the exact solution could be obtained if the coefficients given in

Eqn 28 were analytically calculated. There is a difference with the first test

because being a nonlinear equation the coefficients in this equation depend on

the solution, whereas those of the first test may be calculated with the spatial
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Fig. 9. Solutions for µ = 0.04 and µ = 0.01

dependence of the convective flux and diffusion coefficients.

In the Appendix the velocity derivatives are derived, which are then used to

obtain the mesh Péclet number derivatives of a generic variable ϕ. These are

required to obtain their values at the edges of the interval. In the case of

this equation where ϕ = υ these derivatives are much simpler as there is no

source and µ = Γ is constant. The superscript υ will be omitted as there is no

distinction between ϕ and υ.

dυ̂

dx̂
= PL

υ

∆υ
+

1− PL0
υlb
∆υ

ILE01

IGE01

dPL

dx̂
= P 2

L +
P

(∆υ)
L − P 2

L0ILE01

IGE01

= P 2
L + C1

d2υ̂

dx̂2
=

1

∆υ

d

dx̂
(PLυ) =

1

P
(∆υ)
L

d

dx̂
P 2
L
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d2PL

dx̂2
=

d

dx̂
P 2
L ⇒ d3PL

dx̂3
= 2

(dPL

dx̂

)2

+ PL
d2PL

dx̂2

 (68)

In the second expression note that C1 is a constant. If Hermite splines are

used for the interpolation, ILE01 and IGE01 require the derivatives and the

values of their integrands. For instance,

ILE01 =

1∫
0

λ̂

E
dx̂′ =

1

PL0

1∫
0

PL

E
dx̂′ (69)

and

d

dx̂

(
PL

E

)
= PL

−PL

E
+

1

E

dPL

dx̂
=

1

E

(
dPL

dx̂
− P 2

L

)
=

C1

E

d2

dx̂2

(
PL

E

)
=

d

dx̂

(
C1

E

)
= −C1

PL

E
⇒ d3

dx̂3

(
PL

E

)
=

−C2
1

E
(70)

The fact that every derivative can be cast in terms of the mesh Péclet number

and E facilitates the evaluation of IGE01 and ILE01. The Péclet number is

available at every node and E(0) = exp−PL is easily calculated if PL is

approximated with Hermite splines of the same degree. Note that E(1) = 1.

As an example, if we use cubic Hermite splines the coefficients in Eqn 28 are

ILE01 =
1

PL0

1

2

PL0 exp

1∫
0

PLdx̂+ PL1

+
C1

12

exp 1∫
0

PLdx̂− 1


IGE01 =

1

2

exp 1∫
0

PLdx̂+ 1

− 1

12

PL0 exp

1∫
0

PLdx̂− PL1


1∫

0

PLdx̂ =
1

2
(PL0 + PL1) +

1

12

(
P 2
L0 − P 2

L1

)

C1 =
P

(∆υ)
L − P 2

L0ILE01

IGE01

(71)

As we are dealing with a nonlinear equation an iterative process is required. At

the beginning of each iteration C1 is first calculated and then ILE01, IGE01
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and k̃ are updated in order to evaluate υ at the nodes with the algebraic

equation. The iterations are repeated till convergence.

10-4 10-3 10-2 10-1
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

∆X

Fig. 10. Residuals for µ = 0.04. Solid lines correspond to Hermite splines

and dash-dotted lines to finite-volume or finite-difference schemes explained

in the text � Cubic Hermite � Quintic Hermite J Septic Hermite N Central

differencing H Compact scheme

Some convergence problems were initially found for some Hermite splines

and/or µ values but they were solved by starting the calculation with an initial

estimation. This was obtained with the assumption that PL was constant over

the interval and equal to PL, the latter calculated via Hermite splines. With

this assumption

IGE01 =
1

PL

(
expPL − 1

)
; ILE01 =

1

PL0

(
expPL − 1

)
(72)
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After this initial estimation the iterative process seemed to work fine.

In Fig. 10 the residuals for the case µ = 0.04 are shown. This particular value

of µ was chosen because the solution contains a relatively broad region of large

first and second derivatives. If, for instance, µ is increased to 0.1 the solution

is very smooth for the whole domain and the case is not as attractive. The

smaller µ the thinner is the boundary layer present near x = 1, so µ was

decreased to 0.01 for the second case tested.

As seen in the figure the computed results are excellent. The L2 norm of the

error with septic Hermite spline is 4.81 10−7 with 10 nodes and reaches machine

accuracy with 100 nodes (1.19 10−14). Cubic Hermite spline is fourth-order.

Quintic is slightly better than sixth-order and septic Hermite is slightly worse

than eighth-order. The second-order scheme CDS and the compact scheme are

shown for comparison.

In Fig. 11 the more stringent case of µ = 0.01 is portrayed. As expected the

residuals for the initial ∆x are higher and the rates of convergence are less

than those of the previous case with µ = 0.04. For some Hermite splines the

program did not converge for large ∆x even after applying the initial estima-

tion mentioned above and consequently there are points missing in the figure.

With 100 intervals none of the schemes have reached machine accuracy but,

for instance, the L2 norm of the error with septic Hermite almost reaches

machine accuracy with 500 intervals, L2 = 2.84 10−13. Cubic Hermite conver-

gence is fourth-order as CS, quintic Hermite is sixth-order and septic Hermite

is eighth-order in a short ∆x interval.
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Fig. 11. Residuals for µ = 0.01 Same symbols as Fig. 10

8 Discussion

This new way of obtaining the algebraic equation that links the nodal values in

a discretized domain seems to provide notable accuracy in all cases presented.

The fact that the coefficients are exact makes the accuracy exclusively depen-

dent on a numerical integration problem, which opens up the discretization

problem to new approaches.

Although the source is relatively complicated, the first case is not very de-

manding as the diffusion coefficient only depends linearly on x, and ρυ is con-

stant. The algebraic coefficients can be accurately calculated because IGE01 =

ILE01 and PL varies as (1 + x)−1, a function that behaves smoothly in the

domain allowing good interpolation. Thus, it seems reasonable to find that
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it is the case where the highest accuracy has been attained. As expected the

rate of convergence decreases as either the Péclet number increases or the or-

der of the spline/quadrature is decreased. Results can always reach machine

accuracy with a reasonable number of mesh points, especially for high spline

orders.

It is worth commenting again that the algebraic coefficients given in Eq. 28

are exact and, hence, the solution may be obtained by analytically calculating

the integrals and then solving the tridiagonal system of equations. This is a

general characteristic, if the problem has an exact solution the integrals can be

calculated analytically and viceversa, if the integrals allow an analytical prim-

itive the PDE has an exact solution using Eq. 28, for arbitrary coefficients and

source. In this test case the exact solution was in fact obtained following this

route, although the results presented in this paper were always computed via

numerical integration of the algebraic coefficients. When using the traditional

discretization of the derivatives we can never end up with an exact expression

for a three point stencil.

The second test case does not have an analytical solution. In order to calculate

the error norms a reference solution that had been numerically obtained with a

rather fine grid was employed. There is some uncertainty as to which numerical

solution should be chosen to compare with. The septic Hermite spline solution

was picked up based on previous experience in other test cases but there is no

fundamental reason why the best approach should be the same in all cases.

This issue warrants further work.

This approach seems to work well even when the boundary conditions are of

von Newmann type. The exact algebraic solution allows the boundary value
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to be calculated in terms of the last internal node without having to adopt

the usual strategy of assigning the same value. The handling of derivative

boundary conditions is easy and not limited to zero gradient.

In the nonlinear equation the transformed exponential is adequate for moder-

ate/high mesh Péclet. The expression that provides the values of ILE01/IGE01

for an n-ic Hermite spline is

ILE01

IGE01

=

∑n
j=0 aj

j!

P
j
L

∣∣∣∣
ILE∑n

j=0 aj
j!

P
j
L

∣∣∣∣
IGE

(73)

as the factor containing expPL dominates. When using the transformed expo-

nential the aj coefficients are of the order of (PL0−PL)
j/j! so all terms in the

sum are roughly of the same order, obviously depending on the actual values

of Péclet. This is not true if the velocity field is prescribed as the importance

of each j term will depend on the particular υ field. In the case of the nonlin-

ear equation, for which the velocity derivatives are calculated according to the

appendix, it just happens that all terms are of the same importance, especially

in the region near x = 1 where PL0/PL − 1 is most significant. We think that

this is one of the reasons why the accuracy of this approach is so high for this

nonlinear equation even for large ∆x (L2 = 8.09 10−5 for µ = 0.04 and four!

internal nodes with septic Hermite). In the integrals all solution derivatives

affect the coefficients and the solution affects all derivatives.

Although this route has not been pursued in this work one obvious improve-

ment is to work with adaptive meshes, with the location of nodes being related

to an equidistribution of a predefined monitor function. The algebraic expres-

sion given in Eq. 28 is exact independently of the nodal distribution which can
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be modified arbitrarily by the numerical procedure according to the monitor

function. As we have to calculate integrals in the intervals the global accu-

racy will hinge on how well these are calculated which in turn will depend on

how well the integrand is interpolated. Thus, the monitor function should be

related to a measure of the interpolation accuracy.

For two and three dimensions the transport equation along one coordinate

contains the derivatives with respect to the other coordinates as source terms

even if the whole equation is homogeneous. For instance, the 2D homogeneous

transport equation

∂

∂x

(
ρuϕ− Γ

∂ϕ

∂x

)
+

∂

∂y

(
ρυϕ− Γ

∂ϕ

∂y

)
= 0 (74)

may be split in two

∂

∂x

(
ρuϕ− Γ

∂ϕ

∂x

)
= − ∂

∂y

(
ρυϕ− Γ

∂ϕ

∂y

)
∂

∂y

(
ρυϕ− Γ

∂ϕ

∂y

)
= − ∂

∂x

(
ρuϕ− Γ

∂ϕ

∂x

)
(75)

Both equations can be discretized separately and then added up. The final

discretized equation will be

[
(ρu)W k̃WP + (ρu)P

(
k̃PE +

ILE01

IGE01

∣∣∣∣
PE

)

+ (ρυ)S k̃SP + (ρυ)P

(
k̃PN +

ILE01

IGE01

∣∣∣∣
PN

)]
ϕP =

(ρu)W

(
k̃WP +

ILE01

IGE01

∣∣∣∣
WP

)
ϕW + (ρu)P k̃PE ϕE

+(ρυ)S

(
k̃SP +

ILE01

IGE01

∣∣∣∣
SP

)
ϕS + (ρυ)P k̃PN ϕN

+ IS01|WP + IS01|SP

+

(
ISGE01

IGE01

∣∣∣∣
PE

− ISGE01

IGE01

∣∣∣∣
WP

)
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+

(
ISGE01

IGE01

∣∣∣∣
PN

− ISGE01

IGE01

∣∣∣∣
SP

)
(76)

The source integrals are

IS01|WP = L

1∫
0

S(x̂) dx̂ =

P∫
W

− ∂

∂y

(
ρυϕ− Γ

∂ϕ

∂y

)
dx

IS01|SP = L

1∫
0

S(x̂) dx̂ =

P∫
S

− ∂

∂x

(
ρuϕ− Γ

∂ϕ

∂x

)
dy (77)

The source integral in the ISGE terms can be obtained likewise. As seen in

the last expression the calculation of a multidimensional transport equation

involves the interpolation of some derivatives of the solution in order to evalu-

ate the associated integrals. Work is underway to extend the ENATE approach

to multidimensional problems.

9 Conclusion

A new way of obtaining the algebraic equation that links the nodal values

of a transport variable has been proposed in this work. The coefficients are

calculated based on the exact solution of the first-order ODE derived from

the original second-order ODE and they involve the evaluation of integrals

whose integrand is some function of the transport coefficients variation across

the intervals. The algebraic equation also contains some source integrals that

are exact if analytical primitives exist. This will not be the case in a general

transport equation but the accuracy of source evaluation is similar to that of

the coefficients if appropriate interpolating functions are employed. There is

no limitation in the size ratio between two consecutive intervals which allows

the use of arbitrary adaptive meshes. The accuracy of this approach for a
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three-point stencil is much higher than other traditional schemes, reaching

eight order with septic Hermite spline.

AAppendices

A.1 Derivation of the algebraic relation between nodes

For completeness the normalized homogeneous solution is rewritten

ϕ
N
(x̂)=E(x̂)

 x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E
+

+PL0Φ

1∫
0

λ̂

E
dx̂′

 x̂∫
0

λ̂

E
dx̂′

/ 1∫
0

λ̂

E
dx̂′ −

x̂∫
0

dx̂′

Γ̂E

/ 1∫
0

dx̂′

Γ̂E




Φ=
1

1− F (1)

ϕlb

∆ϕ
(A.1)

From now on a simplified notation will be used by defining ILE0x̂ and IGE0x̂.

ILE0x̂ =

x̂∫
0

λ̂

E
dx̂′ ; IGE0x̂ =

x̂∫
0

dx̂′

Γ̂E
(A.2)

ILE0x̂ stands for ’Integral of Lambda E between 0 and x̂’ and IGE0x̂ for ’In-

tegral of Gamma E between 0 and x̂’. With this notation the solution is

ϕ
N
(x̂) = E(x̂)

[
IGE0x̂

IGE01

+ PL0 Φ ILE01

[
ILE0x̂

ILE01

− IGE0x̂

IGE01

]]
(A.3)

and its derivative is calculated as

dϕ
N

dx̂
= PL(x̂)ϕ

N
(x̂) +

1

Γ̂(x̂)IGE01

+ PL(x̂) Φ

[
1− 1

ρ̂υ(x̂)

ILE01

IGE01

]
(A.4)
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where use has been made of dE/dx̂ = PLE. The factor that appears in the

expression for the diffusive flux continuity at P is

1

PL

dϕ
N

dx̂
= ϕN(x̂) +

1

PL0ρ̂υ(x̂)IGE01

+ Φ

[
1− 1

ρ̂υ(x̂)

ILE01

IGE01

]
(A.5)

Note that PL Γ̂ = PL0 ρ̂υ. Finally,

1

PL

dϕ
N

dx̂

∣∣∣∣∣∣
x̂=0

= k̃ + Φ
(
1− ILE01

IGE01

)
; k̃ =

1

PL0 IGE01

1

PL

dϕ
N

dx̂

∣∣∣∣∣∣
x̂=1

= 1 +
k̃

ρ̂υ(1)
+ Φ

(
1− ILE01

ρ̂υ(1) IGE01

)
(A.6)

With the new notation the particular solution is

F (x̂) = E(x̂)

F (1)
IGE0x̂

IGE01

− PL0 ĨSGE01

 ĨSGE0x̂

ĨSGE01

− IGE0x̂

IGE01


where ĨSGE, ’Integral of Source Gamma E’, is

ĨSGE0x̂ =

x̂∫
0

ĨS0x̂′

Γ̂E
dx̂′ =

x̂∫
0

∫ x̂′

0 Πs(x̂
′′)dx̂′′

Γ̂E
dx̂′ (A.7)

The factor that has to be calculated at the edges of the interval is

1

PL

dF

dx̂
=F (x̂) +

1

Pl0

F (1)

ρ̂υ(x̂) IGE01

− 1

ρ̂υ(x̂)

ĨS0x̂ −
ĨSGE01

IGE01

 (A.8)

and finally

1

PL

dF

dx̂

∣∣∣∣∣
x̂=0

= F (1)k̃ +
ĨSGE01

IGE01

1

PL

dF

dx̂

∣∣∣∣∣
x̂=1

= F (1) +
F (1)

ρ̂υ(1)
k̃ − 1

ρ̂υ(1)

ĨS01 −
ĨSGE01

IGE01

 (A.9)

where
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ĨS01 =

1∫
0

Πs(x̂) dx̂ (A.10)

Inserting these values in the diffusive flux continuity expression at P gives

[
(ρυ)W k̃WP + (ρυ)P

(
k̃PE +

ILE01

IGE01

∣∣∣∣
PE

)]
ϕP =

(ρυ)W

(
k̃WP +

ILE01

IGE01

∣∣∣∣
WP

)
ϕW + (ρυ)P k̃PEϕE

+ IS01|WP

+

(
ISGE01

IGE01

∣∣∣∣
PE

− ISGE01

IGE01

∣∣∣∣
WP

)
(A.11)

Note that the source-dependent terms are dimensional and they are related

to those in previous expressions by

ISGE01 = (ρυ)lb ∆ϕ ĨSGE01 =

1∫
0

IS0x̂′

Γ̂E
dx̂′ =

1∫
0

L
∫ x̂′

0 S(x̂′′)dx̂′′

Γ̂E
dx̂′

IS01 = (ρυ)lb ∆ϕ ĨS01 = L

1∫
0

S(x̂)dx̂ =

xrb∫
xlb

S(x) dx (A.12)

A.2 Velocity derivatives

To determine the integral
∫ 1
0 P

(ϕ)
L dx̂′ it is necessary to provide P

(ϕ)
L and its

derivatives at 0 and 1. These values are also used in the calculation of the

other integrals involved. If υ is calculated with its transport (Navier-Stokes)

equation, the solution in a generic interval is that developed in this paper and

its derivative is

dυ̂

dx̂
=

dF

dx̂
+ (1− F (1))

dυN

dx̂
(A.13)

With a bit of algebra its first and second derivatives can be obtained at x̂ as
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dυ̂

dx̂
=P

(υ)
L

υ

∆υ
+

1

µ̂

1 + P
(υ)
L0 (ĨSGE01 − υlb

∆υ
ILE01)

IGE01

− P
(υ)
L0

µ̂

x̂∫
0

Πsdx̂
′

d2υ̂

dx̂2
=

1

∆υ

d

dx̂
(P

(υ)
L υ) +

d

dx̂

(
1

µ̂

)
1 + P

(υ)
L0 (ĨSGE01 − υlb

∆υ
ILE01)

IGE01

−P
(υ)
L0

d

dx̂

 1

µ̂

x̂∫
0

Πsdx̂
′


P

(υ)
L0 =

(ρυ)lbL

µlb

; P
(υ)
L =

ρυL

µ
; ∆υ = υrb − υlb

ĨSGE01 =

1∫
0

∫ x̂
0 Πsdx̂

′

Γ̂E
dx̂ (A.14)

the third derivative being obvious. Using these derivatives we can deduce those

of P
(ϕ)
L . For instance, for a constant density case, the derivative of the mesh

Péclet number associated to a generic variable ϕ with diffusion coefficient Γ

can be obtained as

dP
(ϕ)
L

dx̂
=

µ

Γ
P

(∆υ)
L

dυ̂

dx̂
+ P

(υ)
L µ

d

dx̂

(
1

Γ

)
; P

(∆υ)
L =

ρ∆υL

µ
(A.15)

in terms of velocity derivatives. Similarly for the second and third derivatives.

The second term is negligible if the variation of Γ in the domain is much less

than that of υ.
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