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Abstract

Cauchy-Vandermonde matrices play a fundamental role in rational interpo-
lation theory and in other fields. When all their corresponding nodes are
different and positive and all poles are different and negative and follow ade-
quate orderings, these matrices are totally positive. In this paper we provide
fast algorithms for computing bidiagonal factorizations of these matrices and
their inverses with high relative accuracy. These algorithms can be used to
solve with high relative accuracy other algebraic problems, such as the com-
putation of all singular values, all eigenvalues or the solution of certain linear
systems. The error analysis of the algorithm for computing the bidiagonal
factorization and the corresponding perturbation theory are also performed.
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ccee2011/r34) of Universidad de Alcalá. J. M. Peña is also supported by the Gobierno
de Aragón.

Preprint submitted to Linear Algebra and its Applications July 6, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289987993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Matrices with a special structure arise in many fields and frequently
present computational advantages, although they are usually ill-conditioned.
Cauchy-Vandermonde matrices are n × n matrices in which the columns
1, . . . , l form a rectangular Cauchy matrix and the columns l+ 1, . . . , n form
a rectangular Vandermonde matrix. They naturally arise when computing
rational interpolates with prescribed poles [28]. This type of interpolation
has applications in control systems [30]. Cauchy-Vandermonde matrices also
appear in connection with the numerical solution of singular integral equa-
tions [9, 18], as well as in numerical quadrature [31] and rational models of
regression and E-optimal design [14, 17].

Recall that a matrix is totally positive (resp., strictly totally positive)
if all its minors are nonnegative (resp., positive), and they are also called
in the literature as totally nonnegative (resp., totally positive) [8, 29]. In
[25], starting from a natural extension to the rational case of the well-known
Newton basis of the polynomial case (see [2] and Section 4.6 of [13]), it was
proved that a Cauchy-Vandermonde matrix is strictly totally positive if all its
corresponding nodes are different and positive and all poles are different and
negative (with precise orderings that we detail at the beginning of Section
3). When multiple poles are permitted, the total positivity property can fail,
as shown in [27]. Interestingly, in [17] it is shown that some of its theoretical
results cannot be extended to the case of several multiple poles. On the other
hand, the theoretical interest of total positivity in regression is shown in [14].

A fast algorithm for solving Vandermonde linear systems was presented by
Björck and Pereyra in [2]. For Cauchy linear systems, a fast Björck-Pereyra
type algorithm was given in [3], and for the case of Cauchy-Vandermonde
linear systems, an algorithm based on the use a Newton-type basis appears in
[25]. Other fast algorithms for the inverses of Cauchy-Vandermonde matrices
and confluent Cauchy-Vandermonde matrices are considered in [9] and [32],
respectively.

A nonsingular totally positive matrix A also possesses a unique bidiagonal
decomposition denoted by BD(A). If we have BD(A) to high relative accu-
racy, then we can apply the algorithms of [20, 21] to solve many algebraic
problems with A to high relative accuracy. In [26] a bidiagonal factoriza-
tion of the inverse of a Cauchy-Vandermonde matrix A was given, and this
factorization is closely related to its bidiagonal decomposition BD(A) as it
will be seen in Section 3. In the present paper, starting from the work done
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in[26], a fast and accurate algorithm for computing the BD(A) of a strictly
totally positive Cauchy-Vandermonde matrix is given. Analogously to the
approach of [7, 20, 23, 24], the error analysis of the algorithm and the study
of the corresponding perturbation theory are performed. This study leads to
finding an appropriate structured condition number.

The rest of the paper is organized as follows. Section 2 introduces Neville
elimination, a key theoretical tool for our approach. Section 3 presents the
bidiagonal factorization of totally positive Cauchy-Vandermonde matrices
and their inverses. In Section 4 we provide a fast and accurate algorithm for
computing the bidiagonal decomposition BD(A) of a totally positive Cauchy-
Vandermonde matrix A. In fact, with the terminology of [5], our algorithm
is a NIC (no inaccurate cancellation) algorithm. A NIC algorithm permits
“true subtractions” (i.e., subtraction of numbers with different sign) only for
initial data, and it can be performed to high relative accuracy.

In Section 5, the algorithms for computing to high relative accuracy the
eigenvalues and singular values of totally positive Cauchy-Vandermonde ma-
trices are presented. The accurate solution of linear systems is also consid-
ered, and if the right hand side of the linear system has alternating signs
then the high relative accuracy is also guaranteed. In particular, the com-
putation of the inverses of totally positive Cauchy-Vandermonde matrices to
high relative accuracy is ensured. This computation is very important, for
instance, in the problem of rational regression and optimal design [17]. Sec-
tion 6 introduces the error analysis of the bidiagonal factorization algorithm
of Section 4, and Section 7 presents the perturbation analysis. Structured
condition numbers can be much smaller than the usual condition numbers
(see [5]). This explains that we can perform accurate computations even with
very ill-conditioned matrices. Finally, numerical examples are presented in
Section 8.

2. Neville elimination and total positivity

To make this paper as self-contained as possible, we will briefly recall
in this section some basic results on Neville elimination and total positivity
which will be essential for obtaining the results presented in Section 3. Our
notation follows the notation used in [10] and [11]. Given k, n ∈ N (1 ≤ k ≤
n), Qk,n will denote the set of all increasing sequences of k positive integers
less than or equal to n.
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Let A be a square real matrix of order n. For k ≤ n, m ≤ n, and for any
α ∈ Qk,n and β ∈ Qm,n, we will denote by A[α|β] the k ×m submatrix of A
containing the rows numbered by α and the columns numbered by β.

The fundamental theoretical tool for obtaining the results presented in
this paper is the Neville elimination [10, 11, 12], a procedure that makes zeros
in a matrix adding to a given row an appropriate multiple of the previous
one.

Let A = (ai,j)1≤i,j≤n be a square matrix of order n. The Neville elim-
ination of A consists of n − 1 steps resulting in a sequence of matrices
A1 := A → A2 → . . . → An, where At = (a

(t)
i,j )1≤i,j≤n has zeros below its

main diagonal in the t− 1 first columns. The matrix At+1 is obtained from
At (t = 1, . . . , n− 1) by using the following formula:

a
(t+1)
i,j :=


a
(t)
i,j , if i ≤ t

a
(t)
i,j − (a

(t)
i,t /a

(t)
i−1,t)a

(t)
i−1,j , if i ≥ t+ 1 and j ≥ t+ 1

0 , otherwise.

(2.1)

In this process the element

pi,j := a
(j)
i,j 1 ≤ j ≤ n, j ≤ i ≤ n

is called (i, j) pivot of the Neville elimination of A. The process would break
down if any of the pivots pi,j (j ≤ i < n) is zero. In that case we can move
the corresponding rows to the bottom and proceed with the new matrix, as
described in [10]. The Neville elimination can be done without row exchanges
if all the pivots are nonzero, as it will happen in our situation. The pivots pi,i
are called diagonal pivots. If all the pivots pi,j are nonzero, then pi,1 = ai,1 ∀i
and, by Lemma 2.6 of [10]

pi,j =
detA[i− j + 1, . . . , i|1, . . . , j]

detA[i− j + 1, . . . , i− 1|1, . . . , j − 1]
1 < j ≤ i ≤ n. (2.2)

The element

mi,j =
pi,j
pi−1,j

1 ≤ j ≤ n− 1, j < i ≤ n, (2.3)

is called multiplier of the Neville elimination of A. The matrix U := An is
upper triangular and has the diagonal pivots on its main diagonal.

The complete Neville elimination of a matrix A consists of performing the
Neville elimination of A for obtaining U and then continue with the Neville
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elimination of UT . The (i, j) pivot (respectively, multiplier) of the complete
Neville elimination of A is the (j, i) pivot (respectively, multiplier) of the
Neville elimination of UT , if j ≥ i. When no row exchanges are needed
in the Neville elimination of A and UT , we say that the complete Neville
elimination of A can be done without row and column exchanges, and in
this case the multipliers of the complete Neville elimination of A are the
multipliers of the Neville elimination of A if i ≥ j and the multipliers of the
Neville elimination of AT if j ≥ i (see p. 116 of [12]).

A detailled error analysis of Neville elimination has been carried out in
[1]. However, our approach uses results related to Neville elimination as a
theoretical tool but it does not apply the Neville elimination algorithm for
obtaining the bidiagonal factorization of Cauchy-Vandermonde matrices.

The Neville elimination characterizes the strictly totally positive matrices
as follows [10]:

Theorem 2.1. A matrix is strictly totally positive if and only if its
complete Neville elimination can be performed without row and column ex-
changes, the multipliers of the Neville elimination of A and AT are positive,
and the diagonal pivots of the Neville elimination of A are positive.

3. Bidiagonal factorization of Cauchy-Vandermonde matrices

A matrix

A =


1

x1−d1 . . . 1
x1−dl

1 x1 . . . xn−l−11
1

x2−d1 . . . 1
x2−dl

1 x2 . . . xn−l−12
...

. . .
...

...
...

. . .
...

1
xn−d1 . . . 1

xn−dl
1 xn . . . xn−l−1n


is called a Cauchy-Vandermonde matrix for the nodes {xi}1≤i≤n and the poles
{dj}1≤j≤l because if l = 0 it is a classical Vandermonde matrix and if l = n
it is a classical Cauchy matrix.

Let us observe that the Cauchy-Vandermonde matrix A is the coefficient
matrix of the linear system associated with the following interpolation prob-
lem in the basis

B = {vi(x)}1≤i≤n =
{ 1

x− d1
,

1

x− d2
, . . . ,

1

x− dl
, 1, x, x2, . . . , xn−l−1

}
.
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Given the interpolation nodes {xi : i = 1, . . . , n} and the interpolation
data {bi : i = 1, . . . , n}, find the function

f(x) =
n∑
k=1

ckvk(x)

(a rational function with prescribed poles) such that f(xi) = bi for i =
1, . . . , n.

As it can be found in [25], the Cauchy-Vandermonde matrices are strictly
totally positive when the nodes {xi}1≤i≤n and the poles {dj}1≤j≤l satisfy
0 < x1 < x2 < . . . < xn and 0 < −d1 < −d2 < . . . < −dl. This result can
also be seen as a consequence of our Theorem 3.2.

In the situation we are considering the following two theorems hold:

Theorem 3.1.Let A = (ai,j)1≤i,j≤n be a Cauchy-Vandermonde matrix
for the basis B whose nodes satisfy 0 < x1 < x2 < . . . < xn and whose poles
satisfy 0 < −d1 < −d2 < . . . < −dl. Then A−1 admits a factorization in the
form

A−1 = G1G2 · · ·Gn−1D
−1Fn−1Fn−2 · · ·F1,

where Fi, Gi (i = 1, . . . , n− 1) are n× n bidiagonal matrices of the form

Fi =


1
0 1

... ...
0 1
−mi+1,i 1

−mi+2,i 1

... ...
−mn,i 1

 , GT
i =


1
0 1

... ...
0 1
−m̃i+1,i 1

−m̃i+2,i 1

... ...
−m̃n,i 1


and D is a diagonal matrix of order n

D = diag{p1,1, p2,2, . . . , pn,n}.

The quantities mi,j are the multipliers of the Neville elimination of the
Cauchy-Vandermonde matrix A, and have the expression

mij =
pi,j
pi−1,j

=
a
(j)
i,j

a
(j)
i−1,j

, (3.1)

where j = 1, . . . , n− 1, i = j + 1, . . . , n and
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a
(j)
ij =


∏i−1

k=i−j+1(xi−xk)
∏j−1

r=1(−dj+dr)∏j−1
r=1(xi−dr)

∏i
k=i−j+1(xk−dj)

, j ≤ l,

∏i−1
k=i−j+1(xi−xk)∏l

r=1(xi−dr)
, j > l.

(3.2)

The quantities m̃i,j are the multipliers of the Neville elimination of AT

and their expression is

m̃i,j =
(AT )

(j)
i,j

(AT )
(j)
i−1,j

, (3.3)

where j = 1, . . . , n− 1,i = j + 1, . . . , n and

(AT )
(j)
ij =



∏j−1
k=1(xj−xk)

∏i−1
r=i−j+1(−di+dr)∏i−1

r=i−j+1(xj−dr)
∏j

k=1(xk−di)
, i ≤ l,

∏j−1
k=1(xj−xk)∏l

r=i−j+1(xj−dr)
, i− j + 1 ≤ l < i,

∏j−1
k=1(xj − xk), i− j = l,

xi−j−lj

∏j−1
k=1(xj − xk), l < i− j.

(3.4)

Finally, the ith diagonal element of D (i = 1, . . . , n) is the diagonal pivot

pii = a
(i)
ii of the Neville elimination of A.

Proof. It can be found in [26]. �

Theorem 3.2. Let A = (ai,j)1≤i,j≤n be a Cauchy-Vandermonde matrix
for the basis B whose nodes satisfy 0 < x1 < x2 < . . . < xn and whose poles
satisfy 0 < −d1 < −d2 < . . . < −dl. Then A admits a factorization in the
form

A = Fn−1Fn−2 · · ·F1DG1 · · ·Gn−2Gn−1,

where Fi, G
T
i (i = 1, . . . , n− 1) are n× n bidiagonal matrices of the form

Fi =


1
0 1

... ...
0 1

mi+1,1 1
mi+2,2 1

... ...
mn,n−i 1

 , GT
i =


1
0 1

... ...
0 1

m̃i+1,1 1
m̃i+2,2 1

... ...
m̃n,n−i 1
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and D is the n× n diagonal matrix

D = (di,j)1≤i,j≤n = diag{p1,1, p2,2, . . . , pn,n}.

The expressions of the multipliers mi,j (j = 1, . . . , n− 1; i = j + 1, . . . , n)
of the Neville elimination of A, the multipliers m̃i,j (j = 1, . . . , n − 1; i =
j + 1, . . . , n) of the Neville elimination of AT , and the diagonal pivots pi,i
(i = 1, . . . , n) of the Neville elimination of A are also in this case given by
Eq.(3.1) and Eq.(3.2), Eq.(3.3) and Eq.(3.4), and Eq.(3.2), respectively.

Proof. Since the matrix A is strictly totally positive, by Theorem 2.1, the
complete Neville elimination of A can be performed without row and column
exchanges providing the bidiagonal factorization of A in the statement of this
theorem (see [12]). �

It must be observed that the matrices Fi (i = 1, . . . , n − 1) and the
matrices Gj (j = 1, . . . , n − 1) that appear in the bidiagonal factorization
of A are not the same bidiagonal matrices that appear in the bidiagonal
factorization of A−1 , nor their inverses (see Theorem 3.1 and Theorem 3.2).
The multipliers of the Neville elimination of A and AT give us the bidiagonal
factorization of A and A−1, but obtaining the bidiagonal factorization of A
from the bidiagonal factorization of A−1 (or vice versa) is not straightforward.
See [12] for a more detailed explanation.

4. The algorithm

In this section we present a fast and accurate algorithm for computing
BD(A) for a totally positive Cauchy-Vandermonde matrix A. Let us point
out here that, given A, the matrix BD(A) represents both the bidiagonal de-
composition of A, and that of its inverse A−1 (see Theorem 3.1 and Theorem
3.2).

Given the nodes {xi}1≤i≤n and the poles {dj}1≤j≤l, the algorithm returns
a matrix M = BD(A) such that

Mi,i = pi,i i = 1, . . . , n,
Mi,j = mi,j j = 1, . . . , n− 1; i = j + 1, . . . , n,
Mi,j = m̃j,i i = 1, . . . , n− 1; j = i+ 1, . . . , n,

where mi,j are the multipliers of the Neville elimination of A, m̃i,j are the
multipliers of the Neville elimination of AT and pi,i are the diagonal pivots
of the Neville elimination of A.
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The computations of the mi,j and the pi,i are developed by using the

algorithm for constructing the a
(j)
i,j presented in [26].

The computation of the m̃ij are developed by using the following propo-
sition and an appropriate recursion process.

Proposition 4.1. Let A = (ai,j)1≤i,j≤n be a Cauchy-Vandermonde ma-
trix for the basis B whose nodes satisfy 0 < x1 < x2 < . . . < xn and whose
poles satisfy 0 < −d1 < −d2 < . . . < −dl. The multipliers m̃i,j of the Neville
elimination of AT are:

m̃i,j =



∏i−1
r=i−j+1(−di+dr)

∏j
k=1(xk−di−1)∏i−2

r=i−j(−di−1+dr)
∏j

k=1(xk−di)
· xj−di−j

xj−di−1
, 1 < i ≤ l, 1 ≤ j ≤ i− 1,

∏j
k=1(xk−dl)∏l−1

r=l−j+1(−dl+dr)
· xj−dl−j+1

xj−dl
, i = l + 1, 2 ≤ j ≤ l,

xj, l + 2 ≤ i ≤ n, 1 ≤ j ≤ i− l − 1,

xj − dl+k−j, l + 1 ≤ i ≤ n, i− l ≤ j ≤ i− 1.

Proof. Using Eq.(3.3) and Eq.(3.4) the expresions for the m̃ij are easily
obtained. �

In order to facilitate the understanding of the error analysis presented in
Section 6 we include here the pseudocode of the algorithm.

Computation of the mi,j and pi,i given by Eq.(3.1) and Eq.(3.2) (See [26]):

- Gj computation:

G1 = 1

for j = 2 : l

Gj = d1 − dj

for k = 2 : j − 1

Gj = Gj(dk − dj)

end

end

9



- Bi,j computation:

B1,1 = x1 − d1

for j = 2 : l

Bj,j = x1 − dj

for k = 2 : j

Bj,j = Bj,j(xk − dj)

end

end

for j = 1 : l

for i = j + 1 : n

Bi,j = Bi−1,j
xi−dj

xi−j−dj

end

end

- a
(j)
ij computation:

for i = 1 : n

a
(1)
i,1 = 1

xi−d1

end

for j = 1 : l − 1

for i = j + 1 : n

a
(j+1)
i,j+1 = a

(j)
i,j ·

Gj+1

Gj
· Bi,j

Bi,j+1
· xi−xi−j

xi−dj

end

end

for i = l + 1 : n

a
(l+1)
i,l+1 = a

(l)
i,l ·

Bi,l

Gl
· xi−xi−l

xi−dl

end

for j = l + 1 : n− 1

for i = j + 1 : n

a
(j+1)
i,j+1 = a

(j)
i,j · (xi − xi−j)

end

end
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- mi,j computation:

for j = 1 : n

for i = j + 1 : n

mi,j =
a
(j)
i,j

a
(j)
i−1,j

end

end

- pi,i computation:

for i = 1 : n

pi,i = a
(i)
i,i

end

Computation of the m̃i,j given by the expression in Proposition 4.1:

for j = 2 : l
m̃j,1 =

x1−dj−1

x1−dj

end

m̃l+1,1 = x1 − d1

for j = l + 2 : n
m̃j,1 = x1

end

for j = 2 : l
for i = 1 : j − 2

m̃j,i+1 = m̃j,i · (dj−i−dj)(xi−dj−1)(xi+1−dj−i−1)
(dj−i−1−dj−1)(xi−dj−i)(xi+1−dj)

end

end

if l > 1
m̃l+1,2 = m̃l+1,1 · x2−dl−1

dl−1−dl

end

for i = 2 : l − 1
m̃l+1,i+1 = m̃l+1,i · (xi−dl)(xi+1−dl−i)

(dl−i−dl)(xi−dl−i+1)
end

for j = l + 2 : n
for i = 2 : j − l − 1
m̃j,i = xi

end
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for i = j − l : j − 1
m̃j,i = xi − dj−i

end

end

5. Accurate computations with Cauchy-Vandermonde matrices

Three important problems in numerical linear algebra (linear system solv-
ing, eigenvalue computation and singular value computation) are considered
in this section for the case of a strictly totally positive Cauchy-Vandermonde
matrix. The bidiagonal factorization of the Cauchy-Vandermonde matrix (or
its inverse) allows us to develop accurate and efficient algorithms for solving
each one of these problems.

Let us observe here that one could try to solve these problems by using
standard algorithms. However the solution provided by them will generally
be less accurate since Cauchy-Vandermonde matrices are ill conditioned [5]
and these algorithms can suffer from inaccurate cancellation, since they do
not take into account the structure of the matrix, which is crucial in our
approach.

5.1. Linear system solving

The fast and accurate solution of structured linear systems is a prob-
lem that has been studied in the field of numerical linear algebra for differ-
ent types of structured matrices (see, for example, [2, 3, 4, 6, 22, 23, 25]).
Now we will consider this problem for the case of totally positive Cauchy-
Vandermonde matrices.

Let Ax = b be a linear system whose coefficient matrix A is the square
Cauchy-Vandermonde matrix of order n for the nodes {xi}1≤i≤n and the poles
{dj}1≤j≤l , where 0 < x1 < x2 < . . . < xn and 0 < −d1 < −d2 < . . . < −dl.
The following algorithm solves Ax = b with a computational cost of O(n2)
arithmetic operations [26].

INPUT: The nodes {xi}1≤i≤n, the poles {dj}1≤j≤l and the data vector
b ∈ Rn.

OUTPUT: The solution vector x ∈ Rn.

- Step 1: Computation of the bidiagonal decomposition of A−1.
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- Step 2: Computation of

x = A−1b = G1G2 · · ·Gn−1D
−1Fn−1Fn−2 · · ·F1b

Step 1 is performed by using the implementation in Matlab of the algo-
rithm presented in Section 4. Step 2 can be carried out by using the algorithm
TNSolve of P. Koev [19]. Given the bidiagonal factorization of the matrix A,
TNSolve solves Ax = b by using backward substitution.

The accuracy of the whole algorithm is guaranteed provided that b has
alternating sign pattern (see Subsection 3.2 of [21]).

5.2. Eigenvalue computation

Let A be a square Cauchy-Vandermonde matrix of order n for the nodes
{xi}1≤i≤n and the poles {dj}1≤j≤l , where 0 < x1 < x2 < . . . < xn and
0 < −d1 < −d2 < . . . < −dl. The following algorithm computes accurately
the eigenvalues of A.

INPUT: The nodes {xi}1≤i≤n and the poles {dj}1≤j≤l.
OUTPUT: A vector x ∈ Rn containing the eigenvalues of A.

- Step 1: Computation of the bidiagonal decomposition of A by using
the algorithm included in Section 4.

- Step 2: Given the result of Step 1, computation of the eigenvalues of
A by using the algorithm TNEigenvalues.

TNEigenvalues is an algorithm of P. Koev [20] which computes accurate
eigenvalues of a totally positive matrix starting from its bidiagonal factor-
ization. The computational cost of TNEigenvalues is of O(n3) arithmetic
operations (see [20]) and its implementation in Matlab can be taken from
[19]. In this way, as the computational cost of Step 1 is of O(n2) arithmetic
operations, the cost of the whole algorithm is of O(n3) arithmetic operations.

5.3. Singular values and condition number

Let A be a square Cauchy-Vandermonde matrix of order n for the nodes
{xi}1≤i≤n and the poles {dj}1≤j≤l , where 0 < x1 < x2 < . . . < xn and
0 < −d1 < −d2 < . . . < −dl. The following algorithm computes accurately
the singular values of A.

INPUT: The nodes {xi}1≤i≤n and the poles {dj}1≤j≤l.
OUTPUT: A vector x ∈ Rn containing the singular values of A.
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- Step 1: Computation of the bidiagonal decomposition of A by using
the implementation in Matlab of the algorithm included in Section 4.

- Step 2: Given the result of Step 1, computation of the singular values
by using TNSingularValues.

TNSingularValues is an algorithm of P. Koev that computes accurate
singular values of a totally positive matrix starting from its bidiagonal fac-
torization [20]. Its computational cost is of O(n3) and its implementation in
Matlab can be found in [19]. Taking this complexity into account, the com-
putational cost of our algorithm for computing the singular values of a totally
positive Cauchy-Vandermonde matrix is of O(n3) arithmetic operations.

Let us observe that the accurate computation of the singular values of A
allows us to compute the 2-norm condition number of A accurately, just di-
viding the largest by the smallest singular value of A. An example illustrating
this fact is included in Section 8.

6. Error Analysis

In this section the error analysis of the algorithm included in Section 4
for computing the bidiagonal factorization of a square strictly totally positive
Cauchy-Vandermonde matrix is carried out.

For our error analysis we use the standard model of floating point arith-
metic (see section 2.2 of [16]):

Let x, y be floating point numbers and ε be the machine precision,

fl(x� y) = (x� y)(1 + δ)±1, where |δ| ≤ ε, � ∈ {+,−,×, /}.

The following theorem shows that our algorithm computes the bidiagonal
decomposition of a Cauchy-Vandermonde matrix accurately in floating point
arithmetic. The result given in the theorem does not include the case in
which l = 0, that is, the case in which the given matrix is a Vandermonde
matrix.

Theorem 6.1. Let A be a square Cauchy-Vandermonde matrix for the
nodes {xi}1≤i≤n and the poles {dj}1≤j≤l , where 0 < x1 < x2 < . . . < xn
and 0 < −d1 < −d2 < . . . < −dl, l > 0. Let BD(A) = (bi,j)1≤i,j≤n be the

matrix representing the exact bidiagonal decomposition of A and (̂bi,j)1≤i≤n
be the matrix representing the computed bidiagonal decomposition of A by
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means of the algorithm presented in Section 4 in floating point arithmetic
with machine precision ε. Then

|̂bi,j − bi,j| ≤
(16ln− 4n− 12l + 7)ε

1− (16ln− 4n− 12l + 7)ε
bi,j, i, j = 1, . . . , n.

Proof. Accumulating the relative errors in the style of Higham (see
Chapter 3 of [16], [7], [20] and [23]) in the computation of the mi,j by means
of the algorithm included in Section 4 we obtain

|m̂i,j −mi,j| ≤
(16ln− 4n− 12l + 7)ε

1− (16ln− 4n− 12l + 7)ε
mi,j, (6.1)

for j = 1, . . . , n− 1 and i = j + 1, . . . , n, where m̂i,j are the multipliers mi,j

computed in floating point arithmetic. Proceeding in the same way for the
computation of the m̃i,j we derive

| ̂̃mi,j − m̃i,j| ≤



(12l−21)ε
1−(12l−21)εm̃i,j, l ≥ 3,

5ε
1−5εm̃i,j, l = 2,

ε
1−εm̃i,j, l = 1,

(6.2)

for j = 1, . . . , n− 1 and i = j + 1, . . . , n, where ̂̃mi,j are the multipliers m̃i,j

computed in floating point arithmetic. Analogously

|p̂i,i − pi,i| ≤
(8ln− 2n− 2l + 3)ε

1− (8ln− 2n− 2l + 3)ε
pi,i, i = 1, . . . , n, (6.3)

where p̂i,i are the diagonal pivots pi,i computed in floating point arithmetic.
Therefore, looking at the inequalities given by Eq.(6.1), Eq.(6.2) and Eq.(6.3)

and taking into account that m̂i,j, ̂̃mi,j and p̂i,i are the entries of (̂bi,j)1≤i,j≤n,
we conclude that

|̂bi,j − bi,j| ≤
(16ln− 4n− 12l + 7)ε

1− (16ln− 4n− 12l + 7)ε
bi,j, i, j = 1, . . . , n. �

7. Perturbation theory

In Section 7 of [20] it is proved that if a totally positive matrix A is rep-
resented as a product of nonnegative bidiagonal matrices, then small relative
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perturbations in the entries of the bidiagonal factors cause only small relative
perturbations in the eigenvalues and singular values of A. More precisely (see
Corollary 7.3 in [20]), BD(A) determines the eigenvalues and the singular val-
ues of A accurately, and the appropriate structured condition number of each
eigenvalue and/or singular value with respect to perturbations in BD(A) is
at most 2n2.

These results make clear the importance, in the context of our work, of
the study of the sensitivity of the BD(A) of a Cauchy-Vandermonde matrix
with respect to perturbations in the nodes xi. In this section we prove that
small relative perturbations in the nodes of a Cauchy-Vandermonde matrix
A produce only small relative perturbations in its bidiagonal factorization
BD(A) provided that the relative gaps are not too small.

We begin by defining the quantities which lead to the finding of an ap-
propriate condition number, in a similar way to the work carried out in
[7, 20, 23, 24].

Definition 7.1. Let A be a square strictly totally positive Cauchy-
Vandermonde matrix for the nodes {xi}1≤i≤n and the poles {dj}1≤j≤l, and
let x′i = xi(1 + δi) be the perturbed nodes for 1 ≤ i ≤ n, where |δi| � 1. We
define:

rel gapx ≡ min
i 6=j

|xi − xj|
|xi|+ |xj|

,

rel gapxd ≡ min
i,j

|xi − dj|
|xi|

,

θ ≡ max
i

|xi − x′i|
|xi|

= max
i
|δi|,

α ≡ min{rel gapx, rel gapxd},

κCV ≡
1

α
,

where θ � rel gapx, rel gapxd.

The following proposition will be useful in proving Theorem 7.3.

Proposition 7.2. Let A = (ai,j)1≤i,j≤n be a Cauchy-Vandermonde ma-
trix for the basis B whose nodes satisfy 0 < x1 < x2 < . . . < xn and whose
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poles satisfy 0 < −d1 < −d2 < . . . < −dl. The multipliers mi,j of the Neville
elimination of A are

mi,j =



∏i−1
k=i−j+1(xi−xk)

∏j−1
r=1(xi−1−dr)∏i−2

k=i−j(xi−1−xk)
∏j−1

r=1(xi−dr)
· xi−j−dj

xi−dj , j = 1, . . . , l; i = j + 1, . . . , n,

∏i−1
k=i−l(xi−xk)

∏l
r=1(xi−1−dr)∏i−2

k=i−l−1(xi−1−xk)
∏l

r=1(xi−dr)
, j = l + 1; i = l + 2, . . . , n,

∏i−1
k=i−j+1(xi−xk)

∏l
r=1(xi−1−dr)∏i−2

k=i−j(xi−1−xk)
∏l

r=1(xi−dr)
, j = l + 2, . . . , n; i = j + 1, . . . , n,

and the pivots pi,i of the Neville elimination of A are:

pi,i =


∏i−1

k=1(xi−xk)
∏i−1

r=1(−di+dr)∏i−1
r=1(xi−dr)

∏i
k=1(xk−di)

, i = 1, . . . , l,

∏i−1
k=1(xi−xk)∏l
r=1(xi−dr)

, i = l + 1, . . . , n.

Proof. The expressions for the mij are easily obtained by using Eq.(3.1)
and Eq.(3.2). The expressions for the pi,i follow from Eq.(3.2). �

The next theorem is the main result of this section. It shows that,
when 1 ≤ l < n, small relative perturbations in the nodes of a Cauchy-
Vandermonde matrix A produce only small relative perturbations in its bidi-
agonal factorization BD(A) provided that the relative gaps are not too small.
The case l = 0 is the Vandermonde case (see [2, 15]). The case l = n is the
Cauchy case (see [3]).

Theorem 7.3. Let A and A′ be strictly totally positive Cauchy-
Vandermonde matrices for the poles {dj}1≤j≤l (1 ≤ l < n) and the nodes
{xi}1≤i≤n and x′i = xi(1 + δi) for i = 1, . . . , n, where |δi| ≤ θ � 1. Let
BD(A) and BD(A′) be the matrices representing the bidiagonal decomposi-
tion of A and the bidiagonal decomposition of A′, respectively. Then

|(BD(A′))i,j − (BD(A))i,j| ≤


(2l+2n−2)κCV θ

1−(2l+2n−2)κCV θ
(BD(A))i,j, l ≤ 2n+1

3
,

(5l−3)κCV θ
1−(5l−3)κCV θ

(BD(A))i,j, l > 2n+1
3
.

Proof. Taking into account that |δi| ≤ θ, it can easily be shown that

x′i − dj = (xi − dj)(1 + δ′i,j), |δ′i,j| ≤
θ

rel gapxd
(7.1)
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and

x′i − x′j = (xi − xj)(1 + δi,j), |δi,j| ≤
θ

rel gapx
. (7.2)

Accumulating the perturbations in the style of Higham (see Chapter 3 of
[16], [7], [20] and [23]) using the formula for the mi,j in Proposition 7.2, and
Eq.(7.1) and Eq.(7.2) we obtain

m′i,j = mi,j(1 + δ̄), |δ̄| ≤ (2l + 2n− 2)κCV θ

1− (2l + 2n− 2)κCV θ
,

where m′i,j are the entries of BD(A′) below the main diagonal. Proceeding
in the same way by using the formula in Proposition 4.1 for the m̃i,j we get

m̃′i,j = m̃i,j(1 + δ̄), |δ̄| ≤
2l θ
rel gapxd

1− 2l θ
rel gapxd

,

where m̃′i,j are the entries of BD(A′) above the main diagonal. Analogously,
and using in this case the formula for the pi,i in Proposition 7.2, we get

p′i,i = pi,i(1 + δ̄), |δ̄| ≤


(5l−3)κCV θ

1−(5l−3)κCV θ
, i = 1, . . . , l,

(n+l−1)κCV θ
1−(n+l−1)κCV θ

, i = l + 1, . . . , n.

,

where p′i,i are the diagonal elements of BD(A′). Finally, considering the last
three inequalities we conclude that

|(BD(A′))i,j − (BD(A))i,j| ≤


(2l+2n−2)κCV θ

1−(2l+2n−2)κCV θ
(BD(A))i,j, l ≤ 2n+1

3
,

(5l−3)κCV θ
1−(5l−3)κCV θ

(BD(A))i,j, l > 2n+1
3
.

�
So, we see that the quantity (2l+2n−2)κCV in the case in which l ≤ 2n+1

3
,

and the quantity (5l−3)κCV in the case in which l > 2n+1
3

, is an appropriate
structured condition number of A with respect to the perturbations in the
data xi. This result is analogous to the results of [7, 20] in the sense that the
relevant quantities for the determination of a structured condition number are
the relative separations between the nodes. In this case important quantities
for the determination of a structured condition number are also the relative
distances between the nodes and the poles.
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Combining this theorem with Corollary 7.3 in [20], which states that small
componentwise relative perturbations of BD(A) cause only small relative
perturbation in the eigenvalues λi and singular values σi of A, we obtain
that

|λ′i − λi| ≤ O(n3κCV θ)λi and |σ′i − σi| ≤ O(n3κCV θ)σi,

where λ′i and σ′i are the eigenvalues and the singular values of A′. That is
to say, small relative perturbation in the nodes of a Cauchy-Vandermonde
matrix A produce only small relative perturbations in its eigenvalues and in
its singular values.

A formula for the perturbation of the solution of linear systems Ax = b
associated to generalized Vandermonde matrices starting from its BD(A),
can be seen in Proposition 7.2 of [6].

8. Numerical experiments

Several numerical experiments showing the good performance of our al-
gorithms are included in this section. The first example illustrates how the
problems of linear system solving (in the case in which the data vector has
alternating sign pattern), eigenvalue computation and condition number es-
timation of a given strictly totally positive Cauchy-Vandermonde matrix are
all solved with high relative accuracy. In the second example we apply our
algorithm for solving Cauchy-Vandermonde linear systems to the computa-
tion of a definite integral of a rational function by means of the method of
partial fraction expansion. Finally, the third example is devoted to the com-
putation of a definite integral by using a interpolatory quadrature formula.
In this numerical experiment the solution of a linear system whose coefficient
matrix is the transpose of a Cauchy-Vandermonde matrix is involved.

Example 8.1. Let A be the square Cauchy-Vandermonde matrix of
order 12 for the nodes

1 < 2 <
5

2
< 4 <

17

4
< 5 <

11

2
< 6 <

27

4
< 7 < 8 < 9

and the poles

d1 = −1, d2 = −2, d3 = −3, d4 = −4, d5 = −5.

We start by estimating the condition number with respect to the 2-norm of
A, which is

κ2(A) =
σmax
σmin

,
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where σmax and σmin are respectively the largest and the smallest singular
value of A.

In Table 1 we present the condition number κ2(A) obtained in Maple by
dividing the largest by the smallest singular value of A (computed by using
50-digit arithmetic) and the relative errors obtained when computing it by
means of:

1. The ratio of the largest by the smallest singular value of A obtained
by means of the algorithm presented in Section 5.3 (column labeled by
MMP).

2. The command cond(A,2) from Matlab.

κ2(A) MMP cond(A,2)

5.8038e+ 17 2.0e− 15 7.1e− 02

Table 1: Condition number of the Cauchy-Vandermonde matrix of Example 8.1.

The relative error is obtained by using the value κ2(A) in the first column
of Table 8.1.

As the results of the experiment shows, our algorithm is adequate for esti-
mating the condition number of a strictly totally positive Cauchy-Vandermonde
matrix with respect to the 2-norm .

We have also checked a similar example with a Cauchy-Vandermonde
matrix of order 25. We must observe that even for this moderate value of
n the condition number of the matrix increases to κ2(A) = 4.3e + 39, and
nevertheless the relative errors are similar to those obtained for the matrix
of order 12.

Let us consider now the vector with alternating sign pattern

bT = (10,−4, 2,−1, 3,−5, 4,−7, 5,−2, 6,−3).

Our aim is solving the Cauchy-Vandermonde linear system Ax = b.
In Table 2 we show the results obtained when solving this linear system

by using

1. The algorithm presented in Section 5.1 (column labeled by MMP).

2. The command A\b from Matlab.
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We compute the relative error of a solution x of the linear system Ax = b
by means of the formula

err =
‖ x− xe ‖2
‖ xe ‖2

,

where xe is the exact solution of the linear system computed in Maple.

MMP A\b
5.2e− 16 3.1e− 06

Table 2: Solution of A\b in Example 8.1.

Finally, we include in Table 3 the eigenvalues λi of A and the relative
errors obtained when computing them by means of

• The algorithm presented in Section 5.2 (column labeled by MMP).

• The command eig from Matlab.

The relative error of each eigenvalue is computed by using the eigenvalues
calculated in Maple with 50-digit arithmetic.

The results appearing in Table 3 show that, while the command eig from
Matlab only computes the largest eigenvalues with high relative accuracy,
our algorithm computes all the eigenvalues with high relative accuracy. In
particular, the smallest eigenvalue is computed by eig from Matlab with
a relative error of 9.4e− 02, while using our approach it is computed with a
relative error of 2.6e− 16.

We have also checked a similar example with the same Cauchy-Vandermonde
matrix of order 25 and condition number κ2(A) = 4.3e + 39. The relative
errors in the computation of eigenvalues are similar to those obtained for the
matrix of order 12.

Example 8.2. In this example we will compute a definite integral of
a rational function f(x) by the standard method of computing the partial
fraction expansion of f(x). The coefficients of the partial fraction expansion
will be calculated by solving a rational interpolation problem whose corre-
sponding linear system is a Cauchy-Vandermonde linear system.
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λi MMP eig

5.6e+ 05 2.1e− 16 2.1e− 16
4.5e+ 03 1.4e− 15 2.6e− 15
8.8e+ 01 3.2e− 16 5.8e− 14
2.5e+ 00 3.5e− 16 2.4e− 13
6.5e− 01 1.7e− 16 5.0e− 12
5.5e− 02 7.6e− 16 2.0e− 10
6.7e− 03 3.9e− 16 3.2e− 09
2.8e− 04 1.9e− 16 4.1e− 08
1.2e− 05 0 1.2e− 06
2.6e− 07 1.0e− 15 7.2e− 05
2.9e− 09 5.7e− 16 2.5e− 03
6.1e− 12 2.6e− 16 9.4e− 02

Table 3: Eigenvalues of the Cauchy-Vandermonde matrix of Example 8.1.

Let us consider

f(x) =
p(x)

(x+ 1
2
)(x+ 3

4
)(x+ 1)(x+ 2)

,

where p(x) is the monic Legendre orthogonal polynomial of degree 12 on [0, 4].
This rational function f(x) has the simple poles d1 = −1

2
, d2 = −3

4
, d3 = −1

and d4 = −2. We are interested in computing the integral∫ 1

0

f(x)dx.

Taking into account the degree of p(x), the basis of the interpolation
space will be{ 1

x+ 1
2

,
1

x+ 3
4

,
1

x+ 1
,

1

x+ 2
, 1, x, x2, x3, x4, x5, x6, x7, x8

}
.

If {ci}1≤i≤13 are the coefficients of the interpolating function (i.e. the partial
fraction expansion of f(x)), then the integral has the value

c1 log 3 + c2 log
7

3
+ c3 log 2 + c4 log

3

2
+

13∑
i=5

ci
1

i− 4
.
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Since we can freely choose the interpolation nodes {xi} for obtaining
the interpolation data f(xi), we choose those nodes positive, and therefore
(taking into account that the poles are d1 = −1

2
, d2 = −3

4
, d3 = −1 and

d4 = −2) the corresponding Cauchy-Vandermonde matrix will be strictly
totally positive.

In addition, if the vector containing the interpolation data has an al-
ternating sign pattern, we will have high relative accuracy in the solution
vector. We get this sign pattern by using the twelve roots of the orthogonal
polynomial p(x) and selecting {xi} adequately. For instance, we have chosen
the nodes {xi}:

1

50
,

4

25
,

6

25
,
16

25
, 1,

8

5
, 2,

12

5
, 3,

16

5
,
18

5
,
98

25
,
199

50
.

In this situation the condition number of the Cauchy-Vandermode matrix A
of the linear system corresponding to the interpolation problem is κ2(A) =
1.2e+ 13.

The solution of this linear system by using our algorithm is the vector
c containing the computed coefficients of the partial fraction expansion of
f(x). If ce is the vector containing the exact rational coefficients of the
partial fraction expansion of f(x), the relative error using the 2-norm is

‖ c− ce ‖2
‖ ce ‖2

= 2.4e− 16,

while solving the linear system by means of the command A\b of Matlab
(considering the exact matrix A computed by Maple) the relative error is
6.1e− 09.

It must be observed that when the vector b has alternating sign pattern,
the second stage of our algorithm for solving Cauchy-Vandermonde linear
systems, that is, the computation of the product

G2 · · ·Gn−1D
−1Fn−1Fn−2 · · ·F1b,

can be done with high relative accuracy. This is a consequence of the checker-
board sign pattern of A−1, which derives from the fact that A is a strictly
totally positive matrix. This important property was already observed in an
analogous situation in the paper [15], devoted to the error analysis of the
Björck-Pereyra algorithm for Vandermonde systems.
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By using these computed coefficients c we obtain the following value for
the integral:

v = −3.121549073642774e− 03.

The relative error when comparing with the value ve computed in Maple with
50-digit arithmetic is

|v − ve|
|ve|

= 5.2e− 08,

while using the coefficients computed by solving the system with the com-
mand A\b of Matlab the relative error is 1.9e− 07.

Let us point out that even using the exact partial fraction expansion there
is a problem of cancellation in the computation of this definite integral, a
problem so important that even using the exact coefficients of the partial
fraction expansion the relative error in this computation is 5.5e− 08.

Example 8.3. In this example we present an application of the solu-
tion of the dual linear system ATx = b, where A is a Cauchy-Vandermonde
matrix and b does not present the alternating sign pattern of the previous
examples. This will imply less accuracy than in the previous examples in the
computation of the solution of the linear system (see Eq.(8.1)). However,
the relative error in the application of the formula for computing the integral
happens to be smaller.

A key fact is the following result (see [20]):

BD(AT ) = (BD(A))T .

Our aim is to approximate the definite integral∫ 1

0

et

t+ 1
dx

by using an interpolatory quadrature formula that extends the Fejér’s first
rule to the rational case [31]. Fejér’s first rule uses the zeros of the Chebyshev
polynomial Tn(x) = cos(n arccosx) of the first kind in in (−1, 1), which are

yi = cos θk, θi =
(2i− 1)π

2n
, i = 1, . . . , n.

In this case we consider n = 13, and the nodes {xi}1≤i≤13 are {yi}1≤i≤13
shifted to the interval (0, 1) by using

xi =
yi + 1

2
∈ (0, 1).
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Requiring, in the rational case, exactness for the functions

1

x+ 1
, 1, x, x2, . . . , x11,

the weights {wi}1≤i≤13 of the quadrature formula are computed by solving
a linear system whose coefficient matrix is the transpose of the Cauchy-
Vandermonde matrix A for the nodes {xi}1≤i≤13 and the pole d1 = −1. The
condition number of A is κ2 = 7.8e+ 09.

If we is the vector containing the exact weights {wi} computed in Maple
and w is the vector containing the weights computed by solving the system
ATx = b by using our approach, the relative error obtained in the computa-
tion of w is:

‖ w − we ‖2
‖ we ‖2

= 8.5e− 08. (8.1)

The relative error obtained in the evaluation of the integral when using the
weights in w is 2.0e − 16. In its computation we have used the exact value
of the definite integral computed in Maple.

Let us observe that, if we proceed in the same way by using the Fejér’s
first rule in the polynomial case instead of the rational case, that is, requiring
the exactness of the quadrature formula for the functions

1, x, x2, . . . , x12,

the relative error obtained in the approximation of the definite integral is
1.1e− 13.
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[28] G. Mühlbach, Interpolation by Cauchy-Vandermonde systems and ap-
plications, Numerical Analysis 2000, Vol. II: Interpolation and extrapo-
lation. J. Comput. Appl. Math. 122 (2000), no. 1-2, 203–222.

[29] A. Pinkus, Totally Positive Matrices, Cambridge University Press, Cam-
bridge, UK, 2010.

27



[30] A. Ribalta, State space realizations of rational interpolants with pre-
scribed poles, Systems Control Lett. 43 (2001) 379–386.

[31] J. A. C. Weideman, D. P. Laurie, Quadrature rules based on partial
fraction expansions, Numer. Algor. 24 (2000) 159–178.

[32] W. Xiang, L. Linzhang, Factorizations of confluent Cauchy-
Vandermonde matrices, Appl. Math. Comput. 182 (2006), no. 2, 1667-
1672.

28


