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Abstract

We present the design, realization and performance of a three-axis vector nano

Superconducting QUantum Interference Device (nanoSQUID). It consists of three mu-

tually orthogonal SQUID nanoloops that allow distinguishing the three components

of the vector magnetic moment of individual nanoparticles placed at a speci�c posi-

tion. The device is based on Nb/HfTi/Nb Josephson junctions and exhibits linewidths

of ∼ 250 nm and inner loop areas of 600 × 90 nm2 and 500 × 500 nm2. Operation

at temperature T = 4.2K, under external magnetic �elds up to ∼ 50mT is demon-

strated. The experimental �ux noise below ∼ 250 nΦ0/
√

Hz in the white noise limit

and the reduced dimensions lead to a total calculated spin sensitivity of ∼ 630µB/
√

Hz

and ∼ 70µB/
√

Hz for the in-plane and out-of-plane components of the vector mag-

netic moment, respectively. The potential of the device for studying three-dimensional

properties of individual nanomagnets is discussed.
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Introduction

Getting access to the magnetic properties of individual magnetic nanoparticles (MNPs) poses

enormous technological challenges. As a reward, one does not have to cope with troublesome

inter-particle interactions or size-dependent dispersion e�ects, which facilitates enormously

the interpretation of experimental results. Moreover, single particle measurements give direct

access to anisotropy properties of MNPs, which are hidden for measurements on ensembles

of particles with randomly distributed orientation.1,2

So far, di�erent techniques have been developed and successfully applied to the investiga-

tion of individual MNPs. Most of these approaches rely on sensing the local stray magnetic

�eld created by the sample under study, by using e.g., nanoSQUIDs,3�10 micro-Hall mag-

netometers,11,12 magnetic sensors based on NV-centers in diamond13,14 or magnetic force

microscopes.15,16 Other probes, e.g., cantilever and torque magnetometers,17,18 are sensitive

to the Lorentz force exerted by the external magnetic �eld on the whole MNP.

For all magnetometers mentioned above, information on just one vector component of

the magnetic moment µ of a MNP can be extracted. Yet, studies on the static and dynamic

properties of individual MNPs would bene�t enormously from the ability to distinguish

simultaneously the three orthogonal components of µ. This is so since real nanomagnets

are three-dimensional objects, usually well described by an easy axis of the magnetization,

but often exhibiting additional hard/intermediate axes or higher-order anisotropy terms.

Magnetization reversal of real MNPs also occurs in a three-dimensional space, as described

by the classical theories of uniform (Stoner-Wohlfarth)19,20 and non-uniform spin rotation.21

More complex dynamic mechanisms are also observed experimentally including the formation

and evolution of topological magnetic states7 and the nucleation and propagation of reversed

domains.10

To date, few examples can be found in the literature in which three-axial detection of

small magnetic signals has been achieved. This was done by combining planar and vertical

microHall-probes22 or assembling together three single-axis SQUID microloops.23,24 Further
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downsizing of these devices, which can signi�cantly improve their sensitivity, is however still

awaiting. This is mainly due to technical limitations in the fabrication of nanoscopic three-

dimensional architectures. Very recently, an encouraging step towards this direction has been

achieved by fabricating a double-loop nanoSQUID, patterned on the apex of a nanopipette.25

This device allowed to distinguish between the out-of-plane and in-plane components of the

captured magnetic �ux with ∼ 100nm resolution, but only upon applying di�erent external

magnetic �elds.

Here we present an ultra-sensitive three-axis vector nanoSQUID, fabricated on a planar

substrate and operating at temperature T = 4.2K. The device is based on Nb/HfTi/Nb

tri-layer Josephson junctions.26 This technology involves electron beam lithography and

chemical-mechanical polishing, which o�ers a very high degree of �exibility in realizing

complex nanoSQUID layouts. It allows the fabrication of planar gradiometers or stripline

nanoSQUIDs, with sub-100nm resolution, in which the loop lies parallel or perpendicular

to the substrate plane.27,28 Thanks to this �exibility we have succeeded in fabricating three

close-lying orthogonal nanoSQUID loops, allowing the simultaneous detection of the three

vector components of µ = (µx, µy, µz) of a MNP placed at a speci�c position rNP. All three

nanoSQUIDs operate independently and their voltage (V )-to-�ux (Φ) transfer function can

be linearized by means of applying on-chip modulation currents Imod for �ux-locked loop

(FLL) operation.29 Additionally, moderate magnetic �elds up to µ0H ∼ 50mT can be ap-

plied perpendicular to the substrate plane, without degrading SQUID performance. These

nanoSQUIDs exhibit a measured �ux noise below 250 nΦ0/
√

Hz in the white noise regime

(above a few 100Hz). The latter leads to spin sensitivities of ∼ 610, 650 and 70µB/
√

Hz for

the µx, µy and µz components, respectively, of a MNP located at rNP = (0, 0, 0) (Φ0 is the

magnetic �ux quantum and µB is the Bohr magneton). As we demonstrate here, our device

represents a valuable tool in the investigation of single MNPs providing information on, e.g.,

their three-dimensional anisotropy and the occurrence of coherent or non-uniform magnetic

con�gurations.
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Results and discussion

Sample fabrication and layout

A scheme of the three-axis nanoSQUID is shown in Fig. 1(a). Two perpendicular stripline

nanoloops, SQx and SQy, are devoted to measure the x and y components of µ, respec-

tively. The two Nb strips are separated by a SiO2 layer. The z component of the magnetic

moment is sensed by a third planar �rst-order gradiometer, SQz, designed to be insensitive

to uniform magnetic �elds applied along êz but sensitive to the imbalance produced by a

small magnetic signal in one of the two SQUID loops. Strictly speaking, the device reveals

the three components of µ if and only if the magnetic moment is placed at the intersection

between the three nanoloop axes. In practice, this position approaches rNP = (0, 0, 0) as

indicated by a black dot in Fig. 1(a). We note that z = 0 corresponds to the interface of

the SiO2 and upper Nb layer. Later on we will demonstrate that this constraint is actually

�exible enough to realize three-axis magnetic detection of MNPs with �nite volume, even if

these are not positioned with extreme accuracy.

Figure 1(b) shows a false colored scanning electron microscopy (SEM) image of a typ-

ical device. The junction barriers are made of normal metallic HfTi layers with thickness

dHfTi ≈ 22nm. The bottom and top Nb layer are, respectively, 160 and 200nm-thick and

are separated by a 90nm-thick SiO2 layer. Nb wirings are 250nm wide and the Josephson

junctions are square-shaped with area 150× 150 nm2. The inner loop area of SQx and SQy

corresponds to 600× 90 nm2 whereas SQz consist of two parallel-connected loops with inner

area of 500 × 500 nm2. This con�guration allows the application of moderate out-of-plane

magnetic �elds that do not couple any �ux neither to the nanoloops of SQx and SQy nor to

the in-plane junctions of all three nanoSQUIDs.

The bias currents Ib and modulation currents Imod �ow as indicated in Fig. 1(b) by black

solid and dashed arrows, respectively. The latter are used to couple �ux to each nanoSQUID

individually, so to linearize their �ux-to-voltage transfer function in FLL operation.
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Electric transport and noise data

The Nb/HfTi/Nb junctions have typical critical current densities jc ≈ 550− 850 kA/cm2 at

T = 4.2K and resistance times junction area ρn ≈ 9 mΩµm2. As a result, large characteristic

voltages up to Vc = jcρn ≈ 60µV can be obtained. These junctions are intrinsically shunted

providing, therefore, non-hysteretic current-voltage characteristics.27,28

Electric transport data of a typical device are shown in Fig. 2. From the period of the

maximum critical current Ic(Imod) shown in panel (a) we can deduce the mutual inductance

M between each nanoloop and its corresponding modulation line. Asymmetries observed in

these data for positive and negative bias current arise from the asymmetric distribution of Ib

[see black solid arrows in Fig. 1(b)]. Numerically calculated curves based on the resistively

and capacitively shunted junction (RCSJ)-model, including thermal noise, are �tted to these

experimental data in order to estimate βL ≡ 2I0L/Φ0 and Ic ≡ 2I0 [black dashed lines

in Fig. 2(a)]. Here, I0 is the average critical current of the two junctions intersecting the

nanoloop, and L is its inductance. Asymmetric biasing is included in the model through an

inductance asymmetry αL ≡ (L2−L1)/(L1 +L2) where L1 and L2 are the inductances of the

two SQUID arms. On the other hand, the maximum transfer coe�cient VΦ ≡ ∂V/∂Φ|max can

be experimentally determined by coupling Φ via Imod and measuring the resulting V (Φ) for

di�erent Ib as shown in Fig. 2(b). Following this approach, we have characterized a number

of devices obtaining very low dispersion. Few examples are provided in Table 1, which gives

evidence of the high quality and reproducibility of the fabrication process. Finally, cross-

talking between the three nanoSQUIDs forming the sensor has been quanti�ed by measuring

the �ux coupled to each nanoloop when a modulation current �ows through the other two.

The latter yields ∼ 0.5−6 Φ0/A, meaning that just few mΦ0 are coupled to each nanoSQUID

when the device is operated in FLL-mode (Imod ∼ 1mA typically).

The operation of the sensor upon externally applied magnetic �elds H = Hêz was

investigated as well. For this purpose, the output voltage response of all three nanoSQUIDs

operating in FLL-mode was recorded upon sweeping H for a number of devices. Under
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optimum conditions, a negligible �ux is coupled to SQx and SQy whereas, due to imperfect

balancing, SQz couples ∼ 5 mΦ0/mT. This missbalance results mainly from the asymmetric

Nb wiring surrounding SQz and the intrinsic errors associated to the fabrication. All sensors

are fully operative up to ∼ 50mT, where abrupt changes in the response of the device are

observed. This behavior is attributed to the entrance of Abrikosov vortices in the Nb wires

close to the nanoSQUIDs as it has been observed in similar devices.28,30

Fig. 2(c) shows the spectral density of rms �ux noise
√
SΦ obtained with each nanoSQUID

operating in FLL mode after low-temperature ampli�cation using a commercial SQUID series

array ampli�er (SSA). The peak observed at f = 26Hz for SQz is attributed to mechanical

vibrations. Ubiquitous 1/f -noise dominates
√
SΦ for f<∼100Hz in all three spectra. Remark-

ably low values are obtained in the white region, yielding
√
SΦ ≈ 170, 160 and 240 nΦ0/

√
Hz

for SQx, SQy and SQz, respectively.

The �ux noise can be translated into the spin sensitivity
√
Sµ ≡

√
SΦ/φµ, which is the

�gure of merit of nanoSQUID sensors. Here, the coupling factor φµ ≡ Φµ/µ is the magnetic

�ux Φµ per magnetic moment µ = |µ|, which is coupled to the SQUID from a MNP with

magnetic moment µ = µ êµ placed at position r. The coupling factor can be calculated

as φµ(êµ, r) = êµ · b(r), where b(r) ≡ BJ/J is the normalized magnetic �eld created at

position r by a supercurrent J circulating in the nanoloop.31,32 We note that φµ depends on

both the particle position r (relative to the nanoloop) and the orientation êµ of its magnetic

moment. We simulate b(r) by solving the London equations for the speci�c geometry of

each nanoSQUID (see Methods section). For a particle at position rNP = (0, 0, 0) [see Fig.

1(a)] we obtain for SQi spin sensitivities
√
Siµ ∼ 610, 650 and 70µB/

√
Hz for i = x, y, z,

respectively. The spin sensitivity for SQz is much better than for SQx and SQy, because rNP

is much closer to SQz than to SQx and SQy.
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Analysis of vector magnetometer performance

In the following we analyze the capability of this device to distinguish between the three

components of µ. For this purpose we write the normalized �eld bi = (bix, b
i
y, b

i
z) created

by each SQUID SQi as bi = biiêi + bi⊥iê⊥i, i.e., we split this into a component along the i

direction and a component perpendicular to that, with bi⊥i =
√

(bij)
2 + (bik)

2 (i 6= j 6= k).

Ideally, for each of the three SQUIDs SQi, bii = |bi| ≡ bi, i.e., bi⊥i = 0. In that case, each

SQUID SQi is sensitive to the component µi only, and one can reconstruct the magnitude µ

and orientation êµ from the signals detected by the three orthogonal SQUIDs.

To quantify the deviation from that ideal case, we de�ne the relative error �ux ∂Φi
µ ≡

Φi
µ,⊥i/Φ

i
µ,‖i made by nanoSQUID SQi. Here, Φi

µ,‖i ≡ µêi · bi = µbii relates to the ideal case in

which the moment µ is oriented along êi. In contrast, Φi
µ,⊥i ≡ µê⊥i · bi = µbi⊥i corresponds

to the worst case when the moment is oriented along ê⊥i, which yields the maximum error.

Hence, the relative error �ux is given by

∂Φi
µ ≡

Φi
µ,⊥i

Φi
µ,‖i

=

√
(bij)

2 + (bik)
2

bii
(with i 6= j 6= k)

This de�nition assures that ∂Φi
µ does not depend on the orientation êµ of the magnetic

moment of the particle, but only on its position rNP.

The relative error �ux for our device is �rst calculated at rNP = (0, 0, 0) giving ∂Φx
µ =

∂Φy
µ ≈ 7 % and ∂Φz

µ ≈ 4 %. Much better results can be obtained for SQx and SQy at

rNP = (0, 0,−0.035)µm giving ∂Φx
µ = ∂Φy

µ ≈ 0.11 % and ∂Φz
µ ≈ 6 %. We note that this

region becomes accessible after drilling a hole in the SiO2 layer which is feasible by means

of, e.g., focused ion beam milling.

We determine now deviations on the particle position that still lead to a tolerable level of

error. For this purpose ∂Φi
µ is calculated in the x-z-plane (at y=0) as indicated in Fig. 3(a),

(b) and (c). The results obtained for SQx, SQy and SQz are shown in (d), (e) and (f),

respectively. The white line in these color plots corresponds to ∂Φi
µ = 25 %. As it can
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be seen, SQy imposes more severe restrictions on the particle position. More speci�cally,

∂Φy
µ ∼ 10 % is obtained at z = 0 and x ≈ ±55nm, whereas 25 % results at x ≈ ±170 nm.

Due to the symmetry of the problem the behavior of SQx and SQy is interchanged if one

considers the y-z-plane.

We �nish by showing how this device can indeed serve to provide full insight on the

three-dimensional properties of MNPs of �nite size and the mechanisms that lead to the

magnetization reversal. It will be instructive to start this discussion by focusing on the �ux

coupled by a point-like MNP to an ideal three-axis magnetometer, i.e., we assume ∂Φi
µ = 0

for i = x, y, z. We consider for simplicity that the particle exhibits uniaxial anisotropy along

êz, so that magnetic states pointing up or down are separated by an energy barrier. In

that case, the particle will exhibit a typical hysteretic behavior when sweeping the external

magnetic �eld H = Hêz. This behavior will lead, however, to very di�erent signals seen by

each nanoSQUID. This is represented in the top panels of Fig. 4 where the �ux Φi
µ coupled to

SQi is plotted vs. H for i = x (a), y (b), z (c) (dashed black lines). As it can be seen, no �ux

is coupled to SQx and SQy as µ lies always parallel to êz whereas SQz senses the maximum

amount of �ux possible. In the latter case, abrupt steps correspond to the switching of µ

between the ±µêz states which leads to a typical squared-shaped hysteresis curve. As it

can be seen in the bottom panels, the situation changes dramatically when the easy axis

lies in the x-y-plane, e.g., along the êy direction. Under these circumstances, Φx
µ remains

zero during the whole sweep whereas Φy
µ = 0 is obtained only when the particle is saturated

along êz leading to the maximum �ux coupled by SQz. Remarkably, Φy
µ reaches a maximum

(minimum) at H = 0 when µ = +µêy (µ = −µêy) whereas Φz
µ accounts for the progressive

tilting of µ as H is swept. Intermediate situations result when the easy axis points along

di�erent directions in space as it is exempli�ed in the middle panels.

Interestingly, a very similar behavior is observed when simulating a real experiment in

which an extended MNP is measured using the three-axis nanoSQUID described here. To

illustrate this we have computed numerically Φi
µ when semi-spheres with radius R = 50 and
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200 nm centered at position rNP = (0, 0, 0) are considered (see Methods section). As it can be

seen in Fig. 4 (solid lines) �nite ∂Φi
µ 6= 0 and the particle's volume does not a�ect noticeably

the �ux coupled to SQz, whereas it slightly changes the �ux coupled to SQx and SQy. This

behavior can be easily understood, as the spatial extension of relatively large particles still

remains in the region con�ned below the white line in Fig. 3(f), whereas they occupy zones

with larger ∂Φx
µ and ∂Φy

µ in panels (d) and (e). Still, our simulations demonstrate the

operation of the device as a three-axis vector magnetometer even if relatively large MNPs

are investigated. The inspection of the hysteresis curves recorded simultaneously with all

three nanoSQUIDs, together with the knowledge of the particle volume, allow extracting full

information on the particle's anisotropy in a real experiment.

Conclusions

We have succesfully fabricated three close-lying orthogonal nanoSQUIDs leading to the

nanoscopic version of a three-axis vector magnetometer. All three nanoSQUIDs can be

operated simultaneously in open- or �ux-locked loop mode to sense the stray magnetic �eld

produced by an individual MNP located at position rNP. The device operates at T = 4.2 K

and is insensitive to the application of external out-of-plane magnetic �elds up to ∼ 50 mT.

The latter can be used to induce the magnetization reversal of the MNP under study. The

limiting operation �eld can be increased in the future by improving the design. This implies

reducing the linewidths so to increase the critical �eld for vortex entry and improving the

balancing of the gradiometric nanoSQUID.

We have demonstrated the ability of this device to distinguish between the three or-

thogonal components of the vector magnetic moment by calculating the spatial dependence

of the total relative error �ux. The latter yields values below 10% for particles located

at |rNP| ≤ 55 nm. For rNP = (0, 0, 0) we obtain a total spin sensitivity ∼ 610, 650 and

70µB/
√

Hz for the x, y and z components of µ, respectively. Finally, a model case has been

described in which the three-axis vector nanoSQUID can be used to obtain full insight into
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the three-dimensional anisotropy of an extended MNP with diameter ∼ 100− 400 nm. For

this purpose, the signal captured by each nanoSQUID is used to reconstruct the magnitude

and orientation of the magnetic moment during the magnetization reversal.

Methods

Sample Fabrication

The fabrication combines electron-beam lithography (EBL) and chemical-mechanical polish-

ing (CMP).26 A Si wafer with a 300 nm-thick thermally oxidized layer is used as a substrate.

An Al2O3 etch stop layer is �rst deposited by RF sputtering. Then, the SNS tri-layer con-

sisting of Nb/Hf50wt%Ti50wt%/Nb is sputtered in-situ. The next step serves to de�ne the

SNS Josephson junctions by means of an Al etching mask de�ned by EBL and lift-o�. The

pattern is transferred to the Nb/HfTi/Nb tri-layer through reactive ion etching (RIE) in a

SF6 plasma and Ar ion beam acting on the counter Nb and HfTi layers, respectively. The

bottom Nb layer is directly patterned using a negative EBL resist mask and SF6-based RIE.

In the following step, a 600 nm-thick layer of insulating SiO2 is deposited through plasma

enhanced chemical vapour deposition and subsequently polished through CMP. This process

guarantees good wafer smoothing and electric contact to the Nb counter electrodes. In the

last step, the wiring Nb layer is sputtered and patterned using an EBL Al etching mask and

SF6-based RIE.

Measurement of electric transport properties and noise

Current bias is performed by means of battery powered low-noise current sources and the

output voltage is ampli�ed at room temperature. Each single nanoSQUID can be operated

in �ux-locked loop mode simultaneously, by using commercial three-channel SQUID readout

electronics. Additionally, the output signal can be ampli�ed at low temperatures using com-

mercial SQUID series arrays ampli�ers. High-�eld measurements are performed in a cryostat
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hosting a vector magnet, whereas noise measurements are performed in a magnetically and

high-frequency shielded environment. All measurements described here were performed with

the devices immersed in liquid 4He, at T = 4.2K.

Numerical simulations

Fitting of the Ic(Imod) experimental data is based on the RCSJ model.33 The response of the

SQUID is described by two coupled Langevin equations, i/2 + j = βcδ̈1 + δ̇1 + sin δ1 + iN1

and i/2− j = βcδ̈2 + δ̇2 + sin δ2 + iN2. Here, δk(t) is the phase di�erence for the two junctions

(k = 1, 2) and i and j are, respectively, the bias and circulating currents normalized to

I0. Nyquist noise is included through two independent normalized current noise sources

iNk. Additionally, jβL = (δ2 − δ1)/π − 2ϕext + αLβLi/2, where ϕext is the external �ux

normalized to Φ0. Finally, βL ≡ 2I0L/Φ0, βc ≡ 2πI0R
2C/Φ0, αL ≡ (L2−L1)/(L1 +L2), and

R and C are the resistance and capacitance of the SQUID, respectively. In the model, the

total inductance of the loop L = L1 + L2 accounts for both the geometrical and the kinetic

contributions. The total dc voltage across the SQUID V is calculated as the time average

V = 1
2
〈U1 + U2〉, where Uk(t) = Φ0

2π
δ̇k(t).

For the estimation of the spin sensitivity and the relative error �ux one needs to calculate

the spatial distribution of Bi
J created by each SQi. For this purpose we have used the

numerical simulation software 3D- MLSI34 which is based on a �nite element method to

solve the London equations in a superconductor with a given geometry, �lm thickness and

London penetration depth (λL = 90 nm). bx(r) = Bx
J/J and by(r) = By

J/J with J being

the supercurrent in the nanoloop. For SQz one needs to consider two circular currents ±J

�owing around each nanoloop. The resulting normalized magnetic �eld is, in this case,

bz(r) = Bz
J/2J .

For the simulation of the hysteresis curves we consider �rst an ideal point-like MNP with

magnetic moment µ described by the polar coordinates êµ = (1, θ, ϕ) and characterized by

one second-order anisotropy term. If both H and the easy axis lie in the y-z-plane the
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problem is reduced to the minimization of e = sin2 φ − 2h cos(φ + Ψ) in two dimensions

(ϕ = 90◦). Here e = E/U is the total energy normalized to the anisotropy barrier height,

h = H/HK is the �eld normalized to the anisotropy �eld, Ψ is the angle between H and

the easy axis and φ = θ − Ψ is the angle between µ and the easy axis. Solutions of

∂e/∂φ = ∂e2/∂2φ = 0 for Ψ = 0◦, 30◦, 70◦ and 90◦ yield the values of

Φi
µ

Φi
µ(Ms,i)

=
êµb

i(rNP)

êibi(rNP)

plotted in Fig. 4. Notice that, in this case, ∂Φi
µ = 0 so that bi(rNP) = êib

i leading to

Φx
µ/Φ

x
µ(Ms,x) = 0, Φy

µ/Φ
y
µ(Ms,y) = sin θ and Φz

µ/Φ
z
µ(Ms,z) = cos θ.

For the simulation of extended particles we assume that all magnetic moments lie parallel

to each other during the magnetization reversal. In this way, the exchange energy can be

neglected and the expression for e given above is still valid (Stoner-Wohlfarth model). Here,

the second-order anisotropy term might also account for the shape anisotropy introduced by

the magnetostatic energy. In this case one needs to integrate over the volume (VNP) of the

whole MNP leading to
Φi
µ

Φi
µ(Ms,i)

=

∫
VNP

êµb
i(r)dV∫

VNP
êibi(r)dV

.

Assuming, e.g., a semisphere made of hcp cobalt (µ = 1.7 µB/atom and density 8.9 g/cm3)

one obtains Φx
µ(Ms,x) = Φy

µ(Ms,y) ≈ 10 mΦ0 and Φz
µ(Ms,z) ≈ 0.2 Φ0 for R = 50 nm and

Φx
µ(Ms,x) = Φy

µ(Ms,y) ≈ 0.6 Φ0 and Φz
µ(Ms,z) ≈ 10 Φ0 for R = 200 nm.
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Table 1: Parameters extracted from simulations based on the RCSJ-model and experimen-
tally measured 1/M and VΦ for three di�erent devices (A2, D5 and C3).

1/M I0 Vc βL L αL VΦ

(mA/Φ0) (µA) (µV) (pH) (µV/Φ0)

A2

SQx 7.0 187 57 0.20 1.0 0 340

SQy 8.8 176 59 0.14 0.8 0.60 390

SQz 6.5 183 59 0.22 1.1 0.25 330

D5

SQx 7.7 136 67 0.14 1.1 0 250

SQy 9.0 161 62 0.12 0.8 0.75 260

SQz 5.7 145 66 0.16 1.2 0.35 240

C3

SQx 8.0 145 55 0.20 1.7 0 120

SQy 9.1 148 54 0.32 2.6 0.40 110

SQz 5.8 155 57 0.18 1.4 0.28 170
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Figure 1: (a) Schematic representation of the three-axis vector nanoSQUID consisting of
three mutually orthogonal nanoloops. SQx, SQy and SQz are used to detect the µx, µy and
µz components, respectively, of the magnetic moment µ of an MNP. The external magnetic
�eld H is applied along êz. (b) False colored SEM image of a typical device. Yellow dashed
squares indicate the position of the Josephson junctions. Black solid and dashed arrows
indicate the direction of bias currents Ib and modulation currents Imod, respectively.
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Figure 2: Transport and noise characteristics of device A2. (a) Measured (colored solid)
and simulated (black dashed) modulation of the maximum critical current of the three
nanoSQUIDs. (b) V (Φ) measured for SQz with Ib = −466 . . . 471µA (in ∼ 33.5µA steps).
The black dot indicates the optimum working point with VΦ ≈ 330µV/Φ0 obtained for
Ib = 337µA. (c) Spectral density of rms �ux noise measured for all three nanoSQUIDs in
FLL-mode with an SSA. Dashed arrows indicate the white noise values of

√
SΦ in units of

nΦ0/
√

Hz.
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Figure 3: (a)�(c): SEM images of the device with SQx (a), SQy (b) and SQz (c) highlighted
in false colors. The green line indicates the x-z-plane at y=0 (shown schematically on top)
for which the relative error ∂Φi

µ obtained for SQx, SQy and SQz is calculated in (d), (e) and
(f), respectively. The device works as a three-axis vector magnetometer when µ is placed in
regions with small ∂Φi

µ. Dashed lines correspond to z = 0 (interface between SiO2 and top
Nb layer).
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Figure 4: Simulated magnetic hysteresis curves of a nanoparticle with magnetic moment µ
located at rNP = (0, 0, 0) as in Fig. 3. The moment µ couples magnetic �ux Φx

µ, Φy
µ and

Φz
µ to SQx (a), SQy (b) and SQz (c), respectively. H = Hêz with the particle's easy axis

lying at 0◦, 30◦, 70◦ and 90◦ (sketched in the right side of each panel). Φi
µ is normalized to

the maximum possible �ux in (a), (b) and (c) that is coupled when the particle is saturated
along êx [Φx

µ(Ms,x)], êy [Φy
µ(Ms,y)] and êz [Φz

µ(Ms,z)], respectively (Ms is the saturation
magnetization). H is normalized to the anisotropy �eld HK. Black dashed lines correspond
to an "ideal" case in which a point-like particle is coupled to an ideal three-axis magnetometer
(∂Φi

µ = 0) whereas colored solid lines correspond to a "realistic"' situation in which semi-
spheres of radius R = 50 and 200 nm are measured with the device presented here. MNPs are
assumed to follow the Stoner-Wohlfarth model of magnetization reversal. Di�erent values
of R lead to a noticeably di�erent behavior in (a) and (b), whereas all curves collapse into
one in (c). This stems from the fact that larger particles occupy regions with larger ∂Φx

µ and
∂Φy

µ as shown in Fig. 3(d) and (e).
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