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Abstract. 

Despite the rising cancer prevalence worldwide, and particularly in developed 

countries, the development of new anti-cancer drugs is plummeting in efficiency. To 

revert this worrying tendency, new tools to reproduce and characterize the tumor 

microenvironment are required. One of them is the development of new and more 

precise in vitro models. 

In this context, microfluidics appears as a powerful alternative which can help to 

establish more reliable pre-clinical drug testing and therefore, to enable a more 

comprehensive and rational drug research and development. In the present Thesis, 

two microfluidic models of the microenvironment of solid tumors are developed 

together with the tools required for their characterization. 

In chapter 1, state-of-the-art in vitro tools and technologies related to tumor 

microenvironment mimicry are revisited. In chapter 2, a new microfluidic co-culture 

model to study tumor-endothelium crosstalk is presented and discussed, as well as the 

penetration and anti-tumor capacity of two formulations of an apoptosis-inducing 

drug. In chapter 3, a new tool to measure oxygen tension at any point of a 3D culture 

system is developed. Chapter 4 details a new tumor model centered in the generation 

and characterization of biological gradients. Furthermore, we demonstrate that 

coupling microfluidic technology in 3D cell cultures with traditional molecular biology 

benchtop techniques enables to genetically profile tumor evolution overtime. Finally, 

chapter 5 states the conclusions of the present Thesis and yields possible future work 

lines. 
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Resumen. 

A pesar de que la incidencia del cáncer está en aumento, sobre todo en los países 

desarrollados, el desarrollo de nuevos fármacos contra esta enfermedad es cada vez 

menos efectivo. Para revertir esta tendencia, aparece la necesidad de desarrollar 

mejores herramientas para reproducir y caracterizar el microentorno tumoral. Una de 

ellas son modelos in vitro más precisos. 

En este contexto, la microfluídica se presenta como una potente alternativa para el 

desarrollo de estos nuevos modelos in vitro más precisos, que puedan emplearse para 

un desarrollo y selección de fármacos más racional y efectivo. Así, en la presente tesis 

se desarrollan dos modelos microfluídicos del microentorno tumoral para tumores 

sólidos, junto a las herramientas necesarias para su caracterización. 

En el capítulo 1 se realiza una revisión del estado de la cuestión en lo referente a 

modelos de cáncer in vitro y su caracterización. En el capítulo 2 se desarrolla un 

modelo microfluídico de co-cultivo que permite estudiar las interacciones endotelio-

tumor, así como la capacidad de penetración y erradicación de células tumorales de 

nuevos fármacos. En el capítulo 3 se presenta una herramienta para caracterizar los 

niveles de oxígeno molecular en cualquier punto de un cultivo in vitro 3D. En el 

capítulo 4 se presenta un modelo de tumor centrado en la generación y 

caracterización de gradientes biológicos, así como su adaptación a las técnicas 

tradicionales de biología molecular para el análisis del perfil genético del microentorno 

tumoral a lo largo del tiempo. Finalmente, en el capítulo 5 se detallan las conclusiones 

de la presente tesis y se esbozan futuras líneas de trabajo. 
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Outline. 

The following thesis is devided into 5 chapters and an appendix. Although each part 

can be independently read, all of them should be considered within the overall picture. 

The content of each chapter is summarized in this section. 

• Chapter 1: It provides a general framework for the following chapters of the 

Thesis. It describes state of the art techniques and motivation of the Thesis, 

leading to the objectives and chapter structure. 

 

• Chapter 2: This chapter describes the development and characterization of a 

simple, high-throughput compatible microfluidic model. This model comprises 

breast cancer tumor cells and an endothelium, and is focused on endothelium 

visualization. Framework, methods, results and partial conclusions are detailed 

for a set of experiments. 

 

• Chapter 3: It describes the development and characterization of an oxygen-

sensitive hydrogel for cell culture applications. The hydrogel was thoroughly 

characterized and used for oxygen mapping of colon cancer cells in cell culture. 

 

• Chapter 4: This chapter summarizes the development of a model of the tumor 

microenvironment centered on tumor cell metabolism and self-generated 

gradients within the sample. This model was developed in our group and has 

already been published. Furthermore, the model was coupled with long 

established molecular biology methods of analysis: Real Time Polymerase Chain 

reaction (RT-PCR) and flow cytometry.  

 

• Chapter 5: In this chapter, the main conclusions of the previous chapters are 

outlined, both in English and Spanish. Also, some suggestions regarding future 

work are described. Yielded publications and other output items of the Thesis 

are also listed here. 
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• Appendix A: This section comprises a side project which was carried out within 

the general framework of the Thesis: the importance of the microenvironment. 

However, the techniques implied are microencapsulation and Atomic Force 

Microscopy (AFM). Although related to the previous topics, the methodology 

was somewhat different. Therefore, the appendix has a brief section on the 

fundamentals of AFM, followed by a structure analogous to that presented in 

chapters 2-4. 
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Chapter 1: Background. 

1.1 Dissecting anti-cancer drug development decay. 

Since 1950, the number of new US Food and Drug Administration (FDA)-approved 

drugs per billion of US dollars spent in research and development in the drug industry 

has halved approximately every 9 years.  

This tendency has been persistent for the past decade despite all efforts. Particularly, if 

we look at drug productivity for the period 2005-2010 for the large pharmaceutical 

companies it can be appreciated that FDA-approved new molecular entities (NMEs) 

plummeted to an alarming number of 7 in 2010, whereas the annual expenditure in 

research and development has not but increased to a staggering $60 billion (Figure 

1.1) [1]. 

 

Figure 1.1: Large pharma productivity from 2005–2010. Combined FDA-approved NMEs versus research 

and development spending for nine large pharmaceutical companies (AstraZeneca, Bristol-Myers 

Squibb, Eli Lilly, GlaxoSmithKline, Merck, Novartis, Pfizer, Roche and Sanofi-Aventis). Figures shown are 

in millions of US dollars. Source: FDA CDER; Bernstein [1].  NME includes biologicals and vaccines. 

One of the suggested reasons for this downward tendency in drug research is a poor 

selection of targets. This selection is often performed by means of brute force, taking 

advantage of high-throughput screening methods, which consists of trying many 
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compounds to assess their possible anti-tumor activity [2]. Thereby, these methods do 

not seem to be accurate enough in selecting new potentially effective drugs. 

Furthermore, the approval of new therapies is dependent on their exceedance of the 

current treatment’s efficiency. In other words, new therapies need to be significantly 

better or have less secondary effects than the current standard of care [3]. 

Moreover, there is accumulated evidence that preclinical studies with conventional 

cell lines in 2D Petri Dishes and animal models have usually proven unable to predict 

drug efficacy in human trials [4,5]. The over-reliance on these imprecise models, 

results in the current poor levels of success for promising drugs in latest stages of the 

drug approval [6]. 

Overall, there is an urging need to replace existing models with a new generation of 

validated models whose response is more reliable with respect to that observed in vivo 

[7-9].  

Many solutions have been proposed to overcome this tendency. On the one side, it has 

been proposed to increase our understanding of the molecular bases of cancer (among 

other illnesses) and to identify more effective targets susceptible of pharmacological 

modulation ameliorating key disease phenotypes [6]. On the other side, it has been 

proposed to improve the preclinical phase of drug approval through the development 

of new in vitro models, which would also help improving our understanding of the 

molecular bases of cancer [10-12]. 

This latter proposition should include the development, characterization and validation 

of new comprehensive in vitro models to replace existing ones. It has been proposed 

that newly-developed models should include more physical and biological features of 

the TME [2].These optimized models would ideally reproduce in vivo results accurately 

in vitro, thus definitely changing the current drug research and development tendency. 

However, to create these models, we first need a deeper understanding of cancer 

etiology and its underlying mechanisms. 
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1.2 Cancer prevalence and mortality. 

Cancer is a leading cause of death worldwide in countries of any income level. To add 

to the existing burden, the number of cancer diagnoses and deaths is expected to grow 

rapidly as populations and life expectancy grow, and maintain lifestyles that increase 

cancer risk [13]. The following figure reflects an estimation for new cancer cases and 

estimated cancer deaths in 2016 (Figure 1.2). 

 

Figure 1.2: Ten Leading Cancer Types for the Estimated New Cancer Cases and Deaths by Sex, United 

States, 2016. Estimates are rounded to the nearest 10 and cases exclude basal cell and squamous cell 

skin cancers and in situ carcinoma except urinary bladder. Reproduced with permission from Siegel et al 

[13]. 

 

Particularly, in 2012, worldwide, there were 14.1 million new cancer diagnoses. Out of 

these, there were 8.2 million cancer deaths, and 32.6 million people living with cancer 

within 5 years of diagnosis [14]. The incidence rate was almost 25% higher in men than 
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in women, with rates of 205 and 165 cases per 100 000 people per year, respectively 

[15]. Furthermore, the GLOBOCAN 2012 database (International Agency for Research 

on Cancer of the World Health Organization) estimates a 27% overall increase in 

cancer incidence by 2035, whereas the death count will rise a 78% by that year. This 

means that 15-20 million people will approximately die of cancer every year in the 

upcoming two decades [16].  

1.3 Cancer development (tumorigenesis). 

Cancer is long known to originate from accumulation of damage into the information 

encoded in cellular DNA. In other words, cancer is a genetic disease which onsets when 

DNA information in cells becomes corrupted through errors called DNA mutations. 

Once enough damage has occurred, it can lead to abnormal patterns of gene 

expression that may derive in an anomalous functioning of normal cell functions, such 

as uncontrolled cell growth and survival [17,18]. 

Aside from this classical conception of cancer initiation, which remains valid, we 

nowadays have a more in-depth view of cancer initiation (also called tumorigenesis), 

development and final evolution. Nowadays, we know that tumorigenesis is a multi-

step process, where tumor cells (also known as neoplastic cells) progressively acquire 

alterations which eventually affect different processes (Figure 1.3). 

Their main trait is their uncontrolled growth. Whereas normal cells require specific 

growth signal to proliferate, tumor cells can divide independently of those growth 

signals and ignore anti-growth signals.  Besides, they acquire a limitless replicative 

potential, which is a feature that normal cells do not possess. Furthermore, tumor cells 

are capable of evading apoptosis signals and of modifying their metabolism for a 

higher proliferation efficiency [19]. In this situation, exacerbated consumption of 

oxygen and nutrients lead to hypoxia and nutrient depletion, thus subjecting them to 

an extreme evolutionary pressure. This pressure favors the survival of those cells 

which can resist harsher environmental conditions within the TME. Hence, the 

genomic instability present in those cells, in turn, facilitates their adaptability to this 

new environment, helping them to survive in harsher conditions [20]. In this context, 
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cells can induce a supporting vasculature to enhance their supply of oxygen and 

nutrients. Thereafter, they obtain a new source of nourishment to continue their 

growth, as well as colonizing new tissues to continue expanding, and, possibly colonize 

other tissues through a process called metastasis (Figure 1.3) [19,21]. 

 

Figure 1.3: The hallmarks of cancer. During the neoplastic process, cells progressively suffer different 

cumulative alterations that lead to the acquisition of the shown characteristics. To generate cancer, all 

different alterations are proposed to may occur.  Reproduced with permission from Hanahan et al [21]. 

 

To sum up, tumor development is a highly dynamic process originating from a genomic 

instability. These aberrant tumor cells proliferate in and help to generate a very harsh 

tumor microenvironment (TME), that promotes death or recruitment of surrounding 

cell types. Furthermore, tumor cells may evolve differently within the same tumor, 

while different steps and different evolution paths can occur in different tissues, thus 

explaining the high heterogeneity of tumor types, subtypes and cell types within the 

same tumor.  

All in all, the interplay between cancer cells and their TME is critical for the 

development of the tumor; e.g. recruited blood vessels provide extra nutrients and 

oxygen for the tumor, and macrophages may facilitate tumor development. Finally, it 

is known that the TME enhances the tumor survival and promotes its functions, thus 
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having a significant impact on tumor evolution, resistance to therapy and on the 

patient survival. Thereby, this Thesis is subsequently focused on the tumor 

microenvironment. 

1.4 Features of the tumor microenvironment (TME). 

As it has been already established, cancers are more complex than just one rogue 

clonally expanded cell. Cancers are not a solo performance, but rather an ensemble 

production: the tumor microenvironment (TME) is constituted by surrounding blood 

vessels, the extracellular matrix (ECM), other non-malignant cells and signaling 

molecules [22]. Overall, the TME is the context in which a tumor develops, interacting 

with the tumor cells, and thus influencing deeply its evolution through a bidirectional 

and dynamic communication between tumor cells and microenvironment [23,24]. In 

this section, the main aspects of the TME are described, distinguishing between 

cellular and non-cellular components of the TME. 

1.4.1 Cellular components of the TME. 

As anticipated, in previous section, cells from the normal tissue (stromal cells) and cells 

from the immune system are subverted and recruited by the tumor cells to generate 

tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and 

sustained to varying degrees through contributions of these subverted cells that, 

therefore, play a key role in the processes of stromal cell recruitment, activation, 

programming, and persistence which are increasingly better understood (Figure 1.4) 

[25]. 
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Figure 1.4: Tumor microenvironment.  Multiple stromal cell types converge to support a tumorigenic 

primary niche. After circumventing cell-intrinsic mechanisms of apoptosis, tumor cells are subject to 

elimination pressures by the immune system. Tumor cell–specific antigens have a role during this 

process. They are recognized by cytotoxic immune cells, leading to their destruction. Fibroblasts and 

macrophages within the tumor microenvironment also contribute to a growth-suppressive state; 

however, these cells may later become “educated” by the tumor to acquire pro-tumorigenic functions. 

For instance, tumor-associated macrophages (TAMs) support diverse phenotypes within the primary 

tumor, including growth, angiogenesis and invasion, by secreting a plethora of pro-tumorigenic 

proteases, cytokines and growth factors (for example, EGF, which participates in a paracrine signaling 

loop through tumor-secreted CSF-1). As tumor grows, immune-suppressor cells, including myeloid-

derived suppressor cells (MDSCs) and T regulatory cells (T reg) are mobilized into the circulation in 

response to activated cytokine axes that are induced by tumorigenesis (for example, TGF- and CXCL5-

CXCR2). MDSCs and T reg cells infiltrate the growing tumor to disrupt immune surveillance through 

multiple mechanisms, including, but not limited to, disruption of antigen presentation by dendritic cells 

(DCs), inhibition of T and B cell proliferation and activation or inhibition of natural killer (NK) cell 

cytotoxicity. Cancer-associated fibroblasts (CAFs), which become activated by tumor-derived factors (for 

example, TGF-β, FGF or PDGF, among others), secrete ECM proteins and basement membrane 

components, regulate differentiation, modulate immune responses and contribute to deregulated 

homeostasis. CAFs are also a key source of VEGF, which supports angiogenesis during tumor growth. In 

addition to cellular contributions, several extracellular properties contribute to tumor progression, 

including low oxygen tension, high interstitial fluid pressure and changes in specific components of the 

ECM like EndMT, endothelial-to-mesenchymal transition or Ag, antigen. Reproduced with permission 

from Quail et al [24]. 

Some of the main cell types interacting with tumor cells are endothelial cells, 

fibroblasts, pericytes and immune infiltrating cells. 

Endothelial cells are prominent among stromal cells. Over the years, the biology of 

blood vessels has increasingly been studied. Of particular relevance is the “angiogenic 

switch”, which is the process through which an endothelial cell stops being quiescent 

and starts forming a new vessel. Those located in the proximity of a developing tumor 

are subverted and generate an angiogenic process to nourish the forming tumor. It has 
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been found that recruited endothelial cells present a distinctive marker profile from 

naïve or quiescent endothelial cells. Endothelial cells facilitate four out of eight of the 

described tumor hallmarks: 1) sustaining proliferative signaling; 2) resisting cell death; 

3) avoiding immune destruction, and 4) activating invasion and metastasis (see figure 

1.5). Since metastasis is considered the turning point for most tumors, and is 

responsible for 90% of cancer deaths, [26] endothelial cell recruitment is of the 

outmost importance in tumor development.  

Fibroblasts are also key players in TME. Fibroblasts are a predominant, multifunctional 

cell type in connective tissue. They are responsible for depositing extracellular matrix 

(ECM) and basement membrane components, regulating differentiation events in 

associated epithelial cells, modulating immune response and mediating 

homeostasis [27]. They are the cell type implied in most tumor hallmarks (all but 

enabling replicative immortality, see figure 1.5), which is why they are drawing 

increasing attention in the cancer research community. Notably, they are implied in 

wound healing, a behavior that is disrupted when they become associated to a tumor, 

promoting the growth and invasion of the tumor rather than “curing the wound”. 

Pericytes have long been known to play a role in TME. Normal pericytes provide 

paracrine support signals to developing blood vessels. Once recruited, they destabilize 

the vascular integrity and function through a mechanism regulated by hypoxia [28,29]. 

This destabilization, along with the aberrant structure presented by the supporting 

blood vessels created for tumors, is the basis for an effect known as “enhanced 

permeability and retention effect”, which is discussed in chapter 2 due to its potential 

use as a therapeutic target [30,31]. 

Finally, immune cells are also in the spotlight, due to the dual role as immune agents 

and factor producers. It is a common belief that immune responses prevent and inhibit 

tumor development; however, recent evidence has also suggested that immune cells 

in the TME interact intimately with the transformed cells to promote oncogenesis [32]. 

Immune inflammatory cells have been described to participate in 6 out of 8 hallmarks 

of cancer, being only absent of the deregulation of cell energetics and of enabling 

replicative immortality (Figure 1.5) [25]. 
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Figure 1.5: Multifactorial contributions of activated/recruited stromal calls to the hallmarks of cancer of 

the eight acquired hallmark capabilities—six core and two emerging [21], seven demonstrably involved 

contributions by stromal cells of the tumor microenvironment. The stromal cells can be divided into 

three general classes, depicted here by their involvement hallmarks, illustrating the diversity of their 

functional contributions. Notably, the importance of each of these stromal cell classes varies with tumor 

type and organ, governed by parameters of the distinctive tumor microenvironments and underlying 

oncogenetic alterations in cancer cells and cancer stem cells that arise in primary tumors, and their 

invasive and metastatic colonization. Moreover, distinctive cell types and sub cell types within these 

classes can exert variable roles in enabling these capabilities, and in some cases by opposing them. 

Reproduced with permission from Hanahan et al. [25]. 

After examining the important influence of stromal cells in the TME and hence, on 

tumor development, it is not surprising that many recent therapies aim to use stromal 

cells as a therapeutic target.  

Altogether, we have provided enough evidence of the necessity to incorporate stromal 

cells in newly-developed tumor models, both to understand the TME better and to 

perform drug-testing in a more relevant environment. Nonetheless, many other non-
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cellular components constitute the TME, and therefore in the following chapters they 

are described and discussed in depth. 

1.4.2 Non-cellular components of the TME: Extracellular matrix. 

The extracellular matrix (ECM) constitutes the non-cellular component present within 

all tissues and organs. It is mainly composed of proteins, polysaccharides and water 

and is crucial for cell function. The ECM not only provides essential physical scaffolding 

for cells to constitute tissues but also offers crucial biochemical and biomechanical 

stimuli required for tissue morphogenesis, differentiation and homeostasis [33]. 

Each tissue has an ECM with a unique composition and architecture, generated during 

tissue development through a dynamic and reciprocal dialogue between the various 

cellular components (e.g. epithelial, fibroblast, adipocyte, endothelial cells). This 

dialogue is both of biochemical and biophysical nature, and results in a continuously 

evolving cellular and protein microenvironment. Moreover, the ECM is a highly 

dynamic structure that is constantly being remodeled by cells within [33,34]. 

Recent evidence indicates that the ECM has a capacity to limit cancer initiation at early 

stages and drives disease progression toward malignancy at later stages. Actually, ECM 

composition can be used as a diagnostic tool, to indicate cancer prognosis in the 

clinic [35]. 

On the other hand, mounting evidence suggests that in cancer, and altered function of 

MMPs results in ECM-anchored factor release, thereby leading to unregulated tumor 

growth, tissue remodeling, inflammation, tissue invasion, and metastasis [36]. 

A number of well-known  studies also provide compelling evidence that different 

tissues present different stiffness (Figure 1.6) [37]. In fact, mechanical properties have 

been described to drive cell shape, cell proliferation and homeostasis, among other 

cellular processes, through several transduction mechanisms [38,39]. 
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Figure 1.6: Distinct elastic modulus of human tissues suggesting tissue-specific stiffness. Different tissues 

with their specific elastic modulus in the body are correlated with their functions. Reproduced with 

permission of Handorf et al. [38]. 

Aside from stiffness, ECM composition, topography and architecture are also 

important to cell function [40,41]. Given the importance of the ECM and its influence 

on cells, newly developed in vitro models should carefully consider the integration of 

the ECM for relevant results. 

After discussing the integration of the ECM in in vitro systems, biological gradients and 

their importance in biological systems is examined. 

1.4.3 Non-cellular components of the TME: soluble molecules and 

biological gradients. 

1.4.3.1 Physics involved in biological gradients. 

To successfully understand the importance of the gradients in a biological context, a 

brief introduction on the basics of gradients and diffusion is necessary. Thus, diffusion 

is explained in a basic manner, and subsequently the focus is set on the importance of 

diffusion in live tissues. 

Physics work differently for fluids at the micro-scale. Particularly, diffusion becomes a 

key process at this scale. 
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Diffusion can be explained as follows: molecules in a static solution characterized by a 

low Reynolds number (extra documentation on this matter can be found in the 

literature [42]) where no convection occurs, tend to spread throughout the whole 

volume of liquid until the concentration has been equilibrated. 

 

Figure 1.7: Diffusion mechanism for molecules in static liquids. Molecules tend to spread out from the 

source until the concentration has been balanced throughout the liquid volume. Image purchased from 

online image repository Dreamstime.com [43]. 

 

If the system does not have an active consumption of the molecule of interest, the 

process finishes after the concentration has been equilibrated. Conversely, if an active 

consumption of the molecule occurs, a gradient of this molecule is established. 

Once exploring the basics of diffusion, we can discuss the importance of gradients and 

biological systems, and consider the necessity of integrating biological gradients in in 

vitro models. 

1.4.3.2 The importance of gradients in biological systems. 

As anticipated in the previous section, in biological systems, oxygen and nutrients are 

continuously consumed by tissues and supplied by blood vessels. Thus, biomolecular 

gradients (i.e. a lower concentration the further from the molecule source) are key 

players in tissues as a supply-demand mechanism for nutrients and oxygen.  



Development of microfluidic tools to reproduce and characterize the tumor 
microenvironment. 
 

13 
 

Furthermore, biomolecular gradients are an important, evolutionarily conserved 

signaling mechanism for guiding growth, migration, and differentiation of cells within 

the dynamic, three-dimensional environment of living tissue. Gradients play essential 

roles in many phenomena including development, inflammation, wound healing, and 

cancer [44,45]. Among biomolecular gradients, the roles of oxygen and nutrients are of 

relevance for this Thesis, and as such, are consequently explored in-depth. 

Particularly for cancer, diffusion is the main mode of molecule transport. In the case of 

oxygen, low oxygen tension in tumors promotes many different biological responses.  

The main response is the expression of HIF-1α, which, in turn, leads to other effects. 

Hypoxia-inducible factor (HIF) is a sequence-specific DNA-binding protein that can 

promote or repress the transcription of a broad range of genes that are involved in 

maintaining biological homeostasis. HIF is mostly non-functional in oxygenated cells 

but becomes active under specific conditions, including low oxygen (hypoxic) stress 

[46]. 

A well-known consequence of hypoxia is angiogenesis. Angiogenesis is driven by the 

activity of HIF-1α (hypoxia-inducible factor 1α), a hypoxia-regulated transcription 

factor, whose overexpression is associated with poor patient prognosis [47,48]. 

Hypoxia also enhances tumor cell invasion by various mechanisms [49,50]. Finally, 

hypoxia has been described to enhance drug resistance [48,51-53]. 

As for nutrient gradients, they have been less explored in the literature since they 

comprise many different molecules, such as glucose, aminoacids, fatty acids, 

biochemical cues and factors. Therefore, the characterization of the diffusion dynamics 

of each of these numerous components becomes a daunting task. This is due to the 

difficulty of visualization of a sole component and the necessity to find or generate 

fluorescent surrogates for every cited molecule. Moreover, diffusion dynamics from 

the blood vessels is modified by the presence of a tumor nearby. 

Tumor blood vessels are often farther apart than in normal tissues, and have variable 

blood flow, leading to poor delivery of nutrients and impaired clearance of metabolic 

breakdown products from the tumor [51,54]. 
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All in all, gradients play a key role in many cell functions, including drug delivery. 

Thereafter, gradients should be integrated in newly-developed in vitro models for a 

response closer to that observed in vivo.  

In vitro models should recreate spatial and structural complexity (different cell types, 

ECM, gradients…) of tissues. Thus, 3D culture systems have proven to be very useful in 

reproducing tissue features in vitro. In the next section, 3D in vitro cell culture is 

described. 

 

1.5 Three-dimensional cell culture as a crucial improve-

ment to current in vitro models. 

1.5.1 The importance of 3D in vitro cell culture. 

Among the suggested improvements for the development of new in vitro models, 

there is compelling evidence that three-dimensionality plays a central role in 

modulating cell behavior and drives some physiological key processes, as it has already 

been discussed in previous sections. For example, 3D cellular phenomena in 

development, tissue homeostasis and disease are conducted by adhesive, mechanical 

and chemical cues originating from other cells and the extracellular environment 

[55,56]. 

Three-dimensional microenvironment affects cell behavior in many ways. Differences 

between a two-dimensional and a three-dimensional microenvironment for cell 

culture are summarized below (Figure 1.8). 
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Figure 1.8: Adhesive, topographical, mechanical, and soluble cues in 2D and 3D. The cues encountered 

by a cell are strikingly different between an ECM-coated glass or plastic surface (2D) and a typical 3D 

ECM, such as collagen. Reproduced with permission from Baker et al. [55]. 

 

Nowadays there is a vast amount of literature reporting differences in cell behavior 

between cells cultured in 2D compared to cells in 3D. The following table (Table 1.1) 

presents some of the aspects of cell behavior which have been described to be 

modified between 2D and 3D. 
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Cellular characteristics and observed change References 

Cell morphology  

Cells are more stretched in flat substrates than in 3D. [55,57-59] 

Cell-cell and cell-matrix interactions  

Less frequent and constricted in a 2D environment than in 3D. [60,61] 

Gene expression  

In 3D, overall gene expression becomes more similar to that observed in 

tumors. 
[62-64] 

Cell cycle  

Most common cell cycle phase is modified between 2D and 3D. [59,65] 

Cell proliferation  

Duration of the cell cycle phases is modified. [66,67] 

Media/drug reach  

Drugs and nutrients may not be able to penetrate and reach cells tightly 

connected to each other. 
[59,63] 

Cell migration  

Cell migration mechanisms vary dramatically from 2D to 3D. [68,69] 

Cell differentiation  

Cells are more undifferentiated in 2D than in 3D. [57,70] 

General cell function  

Many authors report strong changes in general function when cells are cultured 

in 3D compared with those in 2D (drug resistance, number and specificity of 

focal adhesions…). 

[71-77] 

 
Table 1.1: Key differences in cellular characteristics and processes in two-dimensional and three-

dimensional culture system. Adapted from Edmondson et al. [66]. 

 

Once established that a 3D microenvironment dramatically affects cell behavior in 

many aspects, the following section focuses on the most common 3D models in vitro. 
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1.5.2 Most common 3D in vitro tumor models. 

Nath and Devi [78] presented in 2016 the following figure (Figure 1.9), which 

summarized the most common 3D in vitro models. 

 

Figure 1.9: Schematic representing the various 3D models of cancer. A. Excised tumor biopsy is 

processed to remove the excess fat and necrotic cells, and cut into small pieces. After washing the 

tumor in PBS, it is placed on a tissue culture plate that has been coated with a matrix, such as Matrigel 

of methylcellulose, to which the tumor sits atop firmly or is embedded. Media is added and the tumor is 

cultured for the duration of the experiment. B. “Tumor on a chip” represents a vasculature mimicking 

microfluidic device consisting of PDMS chambers with highly organized microchannels and pneumatic 

chamber (dark grey) on either side. The microchannels (pink) contain media, in which immune cells and 

circulating tumor cells navigate. The top chamber contains matrix coated (yellow) porous membrane 

(green), with a monolayer of endothelial cells on top. The tumor cells are loaded through an inlet into 

the top chamber. Cells that have been genetically modified to express fluorescent protein can be 

observed in real time to monitor their functional changes, such as invasion, and migration. C. Schematic 

depicting tumor spheroid formation where tumor spheroids have been generated by culturing tumor 

cells alone or in combination with fibroblasts. 

 

In this section, the features of multicellular tumor spheroids (MCTS) and tumor tissue 

explants are discussed. 

MCTS are tightly bounded cellular spheres with size range from 20 µm to several mm. 

They have been used as models for solid tumors for the past few decades, both of a 
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single cell type and featuring different cell types in a sole spheroid [79]. Their 

advantages for cell culture have been thoroughly described in the literature [79-82]. 

Firstly, MCTS generation is cost-effective and can be coupled to high-throughput 

assays. Secondly, they are representative of human tissues regarding cell structure, 

intercellular adhesion, drug response, diffusion rates and biological gradients for 

oxygen, nutrients and catabolites. Thirdly, when MCTS diameter is 400-500 µm, these 

gradients generate a necrotic core similar to that found in tumors in vivo, as well as a 

quiescent region and a proliferating outer region.  These features are illustrated in 

Figure 1.10. 

 

Figure 1.10. Spheroid characteristics. Spheroids show increased biological function and increased cell 

density. Hepatic spheroids form from cell aggregates, and accumulate and express E-cadherin. 

Pathophysiological gradients of oxygen, lactate, glucose, ATP and drug penetration are subsequently 

established in spheroids. However, this leads to a lack of oxygen and nutrition in the core, resulting in 

necrosis. In co-culture of hepatocytes and endothelial cells, endothelial cells move into spheroids and 

form endothelial networks. Adapted from Ota and Miki [83]. 
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MCTS also present some limitations which are relevant to the purpose of this Thesis. 

Firstly, while MCTS generation in large numbers is not problematic, size and shape 

reproducibility within generated spheroids is often challenging due to the small 

numbers of cells implied. Secondly, vascularized and controlled cell patterning within 

spheroids cannot be achieved, which does not account for natural tissue structure. 

Finally, monitorization and result interpretation can be a difficult task. Particularly, for 

those spheroids over 400-500 µm in diameter, light cannot penetrate through the 

structure, thus making monitorization of the spheroid through microscopy very 

difficult. Furthermore, spheroid manipulation is somewhat strenuous for embedding 

purposes or sectioning. Even though histology assessments have indeed been 

performed on MCTS [84], this approach is not viable for large sample numbers. All in 

all, MCTS represent a valid model for solid tumors, but incur in technical difficulties of 

use. 

The second model explained on in this section is tumor explants, and involves culturing 

excised human tumors in tissue culture plates. Since they are pieces of native tumors, 

they naturally present the architecture, cell types and spatial complexity of actual 

tumors [85]. Likewise, diffusion processes and nutrient gradients are present and 

accounted for, which eventually makes drug response most relevant for drug 

development assays. Nonetheless, sampling of tumors results in inhomogeneous 

samples, hence inter and intra-tumor variability is very high and results in an elevated 

dispersion of results [78]. Moreover, blood vessels are isolated from a circulatory 

system and so, the viability of the explants varies with the type of tumor [86]. Finally, 

monitorization issues present in MCTS are also encountered in tumor explants [78]. 

All in all, these two models present important cons, which cannot easily be overcome. 

In this context, microfluidic presents itself as a comprehensive alternative, and is 

discussed in detail in forthcoming sections. 
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1.6 Classical 3D cell culture strategies for reproducing and 

characterizing different aspects of the TME. 

1.6.1 ECM: Natural scaffolds and hydrogels. 

1.6.1.1 Reproduction of biological scaffolding in vitro. 

A vast number of biocompatible materials, both synthetic and of natural origin have 

been developed over the years. For the purposes of this Thesis, solely scaffolding 

materials for in vitro cell culture has been considered, thus omitting those intended for 

structural medical implants or Tissue Enginerering. 

Regardless of their origin, biomaterials intended for cell culture should ideally have 

some key features to be used for cell culture (Figure 1.11).  

 

Figure 1.11: Summary of features a biomaterial should comply with, organized in terms of importance, 

according to the author’s opinion. Background image purchased from online image repository 

Dreamstime.com [43]. 

 

At the bottom of the pyramid stands the logistical feasibility of the 3D culture. In other 

words, to embed cells within the biomaterial for 3D culture, the biomaterial should 
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allow phase transition from liquid to gel or solid, while maintaining a degree of 

humidity and cytocompatibility [55]. This is a common feature for hydrogels, therefore 

hydrogels are the most usual choice for 3D cell culture [87]. An additional feature is 

the presence of cell-adhesive domains, which is crucial to provide basic anchorage and 

hence, maintain cell viability. In case of synthetic polymers, cell-adhesive ligands must 

be incorporated in the polymer, whereas they are naturally available in natural 

polymers. This issue has often been solved by integrating RGD (Arginine-Glycine-

Aspartic Acid tripeptides) in the synthetic polymer [88,89]. A porous structure is also 

required, since nutrient diffusion and cell migration need to occur in in vitro 3D 

systems.  

Mechanical properties are an issue which has been extensively explored in the 

literature for biomaterials intended for cell culture. Up to date, there is no ideal 

biomaterial in terms of mechanical properties. While low Young’s Moduli can easily be 

mimicked through the use ECMs of natural origin (0.1-2 kPa), higher stiffness have 

mostly been limited to synthetic polymers, which need modifications to reach 

biocompatibility and adhesion. A noteworthy example of the latter is PEG (poly-

ethylene glycol)-based hydrogels [90,91]. 

Moreover, it has already been established that the ECM is modified by cells through 

proteolytic degradation with membrane-type metalloproteinase enzymes (MT-MMP). 

MT-MMPs are a family of nine or more highly homologous Zn(++)-endopeptidases that 

collectively cleave most if not all of the constituents of the extracellular matrix [92]. 

Commonly, tumor cells degrade the matrix during migration processes, therefore, 

matrix remodeling should be accessible to embedded cells [65]. In the case of ECMs of 

natural origin, as already mentioned, these materials inherently possess adhesive 

ligands and other biological activity, and can readily be remodeled by cells [55]. 

Among natural ECMs, Matrigel® has been described as a plentiful ECM option given 

that it comprises different collagens, laminin and entactin; thereby accounting for the 

complexity of in vivo matrices. A list of common cell culture matrices is detailed below 

(Table 1.2). 
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ECM type (Source) Reference  

Natural  

Gelatin [93,94] 

Collagen [95,96] 

Fibrin [97,98] 

Hyaluronic acid [99,100] 

Alginate [101,102] 

Matrigel [103,104] 

Synthetic  

PEG derivatives [105,106] 

 
Table 1.2: Common extra-cellular matrices for use in 3D in vitro cultures in the literature. Mixed 

matrices composed by two or more ECM components are not detailed. 

 

For several decades, ECM from natural sources has served as an important tool for 

biologists. These materials include purified collagen type I, fibrin gels formed by 

thrombin cleavage of fibrinogen, reconstituted basement membrane (e.g. Matrigel) 

and hyaluronic acid. Because of their cellular origin, these materials inherently present 

adhesive ligands and other biological activity, and can rapidly be remodeled by cells. 

For this same reason, these systems present limitations in isolating certain cell 

responses. For example, Matrigel comprises collagens, laminin and entactin, but also 

possesses an uncharacterized population of growth factors that varies substantially 

between batches [64,103], hence decreasing reproducibility among different assays. 

Collagen is the major insoluble fibrous protein in the extracellular matrix and in 

connective tissue. In fact, it is the single most abundant protein in the animal kingdom. 

There are at least 16 types of collagen, but 80 – 90% of the collagen in the body 

consists of types I, II, and III. These collagen molecules pack together to form long thin 

fibrils of similar structure, whose fundamental structural unit is a long (300-nm), thin 

(1.5-nm-diameter) protein that consists of three coiled subunits: two α1(I) chains and 

one α2(I). Each chain contains precisely 1050 amino acids wound around one another 

in a characteristic right-handed triple helix. All collagens were eventually shown to 

contain three-stranded helical segments of similar structure. The unique properties of 
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each type of collagen are due mainly to segments that interrupt the triple helix and 

that fold into other kinds of three-dimensional structures [107]. Since collagen is so 

abundant and collagen subtypes are similar to each other, the use of collagen type I as 

culture matrix accounts for many features of live tissues, while keeping sample 

preparation simple [108-110]. 

With respect to synthetic materials, the most commonly used are PEG (poly-

ethileneglycol) -based hydrogels. These materials typically present a structural 

backbone, cell-binding ligands, and a ‘cell-friendly’ crosslinking mechanism. These gels 

are highly tunable and often modular in their inclusion of additional functionalities, 

such as MMP cleavable domains. The advantages of synthetic materials are best 

evidenced by the ever-expanding flexibility and diversity that is achievable in these 

systems. For example, gels in which dynamic changes in stiffness can be induced in 

response to light have been developed [111-113]. 

From all hydrogels described above present certain pros and cons. In this Thesis, type I 

collagen was chosen as ECM. As it has previously been commented, type I collagen is 

the most abundant component of the ECM [33], is highly reproducible and produces 

porous structured hydrogels quickly, as has been thoroughly established in the 

literature [114-117]. Hence, it is one of the matrices which covers most of the features 

described in this section and it was found adequate as a simple ECM for recreating 

tumor microenvironment. This matrix is used and discussed in depth in Chapters 2, 3.  

1.6.1.2 Characterization of scaffolds. 

Characterization of scaffolds in terms of composition is not a standard procedure in 

most laboratories. This is a common practice only for studies regarding matrix 

remodeling carried out by cells and is be explored in the context of this Thesis. A few 

examples of protein analysis studies in this context are provided for further reference 

[118,119]. 

Scaffold architecture is typically inspected by means of Scanning Electron Microscopy 

(SEM). This technique has large field depth and uses electrons instead of light to form 

images. Hence, it provides topographical high-resolution rich information of the 
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samples. This technique requires drying the hydrogels, and thus modifying them 

significantly. Nonetheless, several procedures have been developed for removing the 

water from the hydrogel while preserving the structure [98].  

The possibilities of using fluorescently labelled collagen or detecting the collagen fibers 

through immunofluorescence detection have also been described [120]. Other options 

to elucidate the inner structure of the hydrogels are confocal reflection microscopy 

[98] or Second Harmonic Generation microscopy [121], which do not require hydrogel 

modification. Even though they do not provide the detailed view of SEM, they can 

provide great insight into hydrogel architecture, particularly in the case of collagen 

hydrogels. Both techniques are further explained and explored in Chapter 3.  

1.6.2 Substrate topography. 

1.6.2.1 Reproduction of scaffold topography in vitro. 

Topography has also been described to influence cell behavior, although it is rarely 

mentioned as an important feature for 3D cell cultures, because inner architecture is 

difficult to control for hydrogels, particularly for those of natural origin. 

On this regard, micropatterned substrates have been established for cell culture, which 

provide control over geometry and cell adhesive cues without altering the physical or 

chemical attributes of the microenvironment (Figure 1.12) [55,122,123]. 

These substrates are typically stiff due to the fact that photolithography materials are 

usually stiff, which currently makes controlling topography mutually exclusive with 

controlling substrate rigidity [55]. 

Characterization of scaffold topography is not a standard practice in most laboratories, 

and remains limited to those laboratories studying the effects of certain topographies 

on cell behavior. Nonetheless, this factor becomes very important for gels intended for 

implantation and is discussed in Appendix 1.  
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Figure 1.12: Effect of cell adhesion patterns on cell shape, architecture and contractility. A cell 

preferentially assembles branched actin networks when confined to a small micropattern (first shape, 

far left). As the cell spreads, it forms circumferential actin bundles that move inwards, as well as stress 

fibers within the cell center (second shape). Straight edges promote the assembly of stress fibers (third 

shape), which become more pronounced above non-adhesive (or concave) edges (fourth shape, far 

right), e.g. along the edge that connects the two extremities of the V shape where the cell is highly 

contracted (micrograph). Reproduced with permission from Théry, M [123]. 

 

After highlighting the importance of the cell culture substrate and its intrinsic 

properties, hypoxia, which is an important cue for biomimetic cell culture, will be 

discussed. 

1.6.3 Hypoxia.  

1.6.3.1 Hypoxia reproduction in vitro. 

In vitro hypoxic conditions have been classically achieved through three different 

methods: spheroid cell culture, chemical preconditioning and incubation in hypoxic 

chambers. The first option for achieving hypoxia in cell culture is high-density cell 

culture, which is most commonly carried out through MCTS, as was described in 

previous sections.  

On the other hand, chemical induction of hypoxia has been reported in the literature 

as an inexpensive and effective method. Preconditioning with cobalt chloride (CoCl2) 

blocks the HIF degradation pathway in normoxia, resulting in HIF accumulation which 

resembles hypoxic conditions. Conversely, Deferoxamine mesylate (DFA) has been 
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found to induce HIF-1α/3α expression via hypoxia responsive element (HRE) gene 

transcription modulation when supplemented in the µM range [124,125]. The precise 

mechanism through which hypoxia is induced is not well-known, but it is known that 

they both induce apoptosis [125]. 

DFA is an iron chelator, a fact that has made this compound less popular as 

preconditioning agent for hypoxia. Particularly, it is known that it has side-effects due 

to its chelating properties. There is evidence pointing to a different effect of 

conventional hypoxia and DFA preconditioning. DFA requires a significantly longer time 

course than hypoxia and its mechanism is not dependent on the early generation of 

ROS  [126]. 

On the other hand, the influence of CoCl2 has recently been revisited, and found it has 

an influence on the metabolism of reactive oxygen species and second lipid 

mobilization and its metabolism [127]. 

Finally, in case of incubation of cells in hypoxic chambers, in which the percentage of 

oxygen is controlled, several different options are nowadays available (Figure 1.13). 

 

 

Figure 1.13: Main types of hypoxic chambers. Left- Binder® hypoxia-hyperoxia incubator. Center- Mini-

hypoxia chamber from Hypoxia Chamber®. Right- In vivo® Baker-Ruskinn workstation. 

 

As mentioned above, all cited approaches have the constraint of having only one fixed 

oxygen concentration to work with. In Table 1.3, other pros and cons of each of these 

approaches are analyzed. Once the methods for generating hypoxia have been 

described, the characterization of hypoxia in cell culture systems is explained. 
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Hypoxia- incubator 

Provides incubation temp. Yes 

Price High 

Difficulty of operation vs precision Low / High 

Manipulation interrupts hypoxia Yes 

Hypoxia chamber 

Provides incubation temp. No 

Price Low 

Difficulty of operation vs precision Medium /Medium 

Manipulation interrupts hypoxia Yes 

Hypoxia workstation 

Provides incubation temp. Yes 

Price Very high 

Difficulty of operation vs precision High / High 

Manipulation interrupts hypoxia Yes 

 
Table 1.3: Analysis of the advantages and disadvantages of the main incubation chambers available in 

the market in terms of operation and result. 

 

1.6.3.2 Hypoxia characterization. 

There is extensive literature about hypoxia characterization in vitro. Two main 

methods are described in the literature for hypoxia characterization: HIF-1α 

quantification and quantification of oxygen levels. 

In molecular biology laboratories, HIF-1α detection is mostly performed through three 

methodologies based in proteomics: Western Blotting, Immunofluorescence and 

Luciferase assays. They all quantify the amount of protein HIF-1α, which usually 

requires terminating the cell assay and presents great experimental difficulty due to 

the low stability of HIF1-α [128]. 

The characterization of oxygen levels is presented as an interesting, real-time non-

terminal alternative. Since characterization of oxygen levels in vitro is a central topic in 

this Thesis, this topic is covered in depth in Chapter 3. 
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After discussing the reproduction and characterization of hypoxia in vitro, other 

soluble factors commonly found in vivo are discussed. 

1.6.4 Other soluble factors. 

1.6.4.1 Biomolecule gradient generation. 

As established in previous sections, biological gradients have a key role in many 

biological processes and behaviors. Cancer is a particularly important example, which 

justifies a recurring interest in the biomedical community. Therefore, several different 

setups have been developed in the past for recreating biomolecule gradients in vitro. 

The first and simplest example of gradient is described in this section. This method 

consists of a droplet of a hydrogel of natural origin, which acts as source for the 

molecule of interest. This droplet is placed on a Petri dish where cells are seeded later. 

Diffusion of the biomolecule of interest occurs over time through the culture medium, 

creating a gradient around cells seeded in a Petri Dish (Figure 1.14). While this method 

is very simple, it presents certain limitations concerning gradient persistence over 

time, control over the gradient and reproducibility [129-131].  

 

Figure 1.14: Scheme showing how hydrogels can be used to expose cells to biomolecule gradients. The 

hydrogel is used as a source for the biomolecule of interest, which diffuses through culture media and 

creates a gradient which is sensed by cells cultured in the dish. 

 

The second method is the Boyden chamber, more commonly known as Transwell 

assay. It consists of a culture well in which an insert is placed. This insert has a porous 

membrane at the bottom, thus connecting both chambers through added media. To 

operate this device, cells are seeded on the membrane of the insert. The biomolecule 
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of interest is then placed in a solution below. Cells are therefore subjected to a 

gradient established by diffusion of the molecule of interest (Figure 1.15). Among 

other applications, this method has been extensively used for chemotaxis, where it has 

provided tremendous insight in the past decades [132].  

 

Figure 1.16: Transwell assay scheme. This assay is based on the Boyden Chamber method. Cells seeded 

on a porous membrane are placed in a well containing a chemoattractant solution. The chemoattractant 

in the lower compartment diffuses into the upper compartment forming a gradient across the 

membrane. Cells respond by migrating through the membrane to the bottom surface where they can be 

subsequently fixed, stained, and counted. Reproduced with permission from Keenan and Folch [44]. 

 

 

 

Figure 1.17:  Zigmond Chamber. (a) The device consists of two etched channels separated by a glass 

ridge. The metal tines are used to clamp an inverted glass coverslip seeded with cells to the device. (b) A 

cross section schematic of the device shows cells on the inverted coverslip migrating in response to the 

gradient established between the coverslip and the glass ridge. Reproduced with permission from 

Keenan and Folch [44]. 

The geometry and precise dimensions of the Zigmond Chamber (Figure 1.16b) 

produces a gradient that is reproducible, mathematically predictable, and can be 
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indirectly estimated using fluorimetric dyes. Nevertheless, the life-span of the 

produced gradient is 1-2h and they cannot be modified after equilibration [133,134]. 

As established before, MCTS are also a method to create biomolecule gradients within 

the 3D culture, although it is not achieved through a particular setup. This method 

presents the advantage over the previous methods since the gradient is self-induced, 

so it can be sustained for as long as the cell assay lasts. 

Overall, classical methods present interesting alternatives for creating biomolecular 

gradients in vitro, but do not often provide a high degree of control over the gradient 

and, except for MCTS, do not provide a gradient that persists for over a few hours. 

Thus, characterization of soluble gradients becomes an important tool to assess the 

dynamics and biological importance of newly established gradients in vitro. 

1.6.4.2 Characterization of the diffusion/consumption dynamics of soluble 

factors. 

As established in previous sections, biological gradients are of great importance. Thus, 

much work has previously focused on characterizing diffusion dynamics in biological 

systems. 

An approach to gradient characterization is computational modelling. The physics of 

diffusion has been thoroughly explored in the literature. Fick’s Law is a well-known and 

established approach to estimate the diffusion rate [135]. However, it requires a 

diffusion coefficient for the substance of interest, which should be empirically 

determined first. There are also methods to estimate such coefficient, such as the 

Stokes-Einstein Equation and the Ogstron approximation [136,137]. While these 

methods provide much insight on the diffusion dynamics, they do not always account 

for all factors implied in diffusion, making it necessary to ultimately determine 

diffusion rates experimentally. Furthermore, active consumption by cells embedded in 

the system is a parameter which must be calculated empirically. Although complex 

computational models exist to estimate these parameters, only in vitro methods to 

study diffusion of molecules of interest are described. 



Development of microfluidic tools to reproduce and characterize the tumor 
microenvironment. 
 

31 
 

In biological sciences, diffusion has usually been quantified by means of fluorescent 

compounds. In case the molecule of interest does not present intrinsic fluorescence, 

labelled substitutes or analogues of similar molecular weight are available on the 

market. A couple of examples are detailed here, although many more are present in 

the literature. 

2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2 Deoxyglucose (NBDG) is a fluorescent 

nonhydrolyzable glucose analog that has been used to monitor glucose uptake and 

transport in live cells. Although sensitive to its environment NBD fluorescence typically 

displays excitation/emission maxima of ca. 465/540 nm  [138,139]. 

Dextrans are hydrophilic polysaccharides characterized by their moderate to high 

molecular weight (usually in the range of kDa-MDa), good water solubility and low 

toxicity. They are widely used as both anterograde and retrograde tracers in neurons 

among many other applications [140]. Dextrans are biologically inert due to their 

uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage 

by most endogenous cellular glycosidases. They have also low immunogenicity. Several 

different molecular weight dextrans are commercially available as diffusion models 

[141,142]. 

Finally, diffusion of newly developed drugs, particularly in the case of nanoparticles or 

liposomes, must be characterized in vitro in a suitable system as part of the pre-clinic 

validation. This aspect is discussed in depth in Chapter 2. 

1.6.5 Co-culture.  

1.6.5.1 Co-culture establishment in vitro. 

As has been established in previous sections, the TME is composed of many different 

cell types, interacting with each other to create a highly dynamic system.  The most 

common classical co-culture 2D assays are illustrated in the following figure (Figure 

1.17), although similar concepts can be extrapolated to 3D hydrogels. Traditional co-

culture assays usually consist of the combination of the different cell types in an 

unpatterned manner or the indirect co-culture of two cell types (adding media in 
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which Cell Type 1 was cultured to Cell Type 2). Transwell assays and co-culture 

spheroids have also been thoroughly explored in the literature [143-146]. 

While these methods have provided much insight to unravel the nature of the 

interaction of many different cell types, cell structure in these assays is not similar to 

that present in a tumor or healthy tissue in vivo. Furthermore, paracrine interactions 

are highly dependent on cell proximity, which makes structure and physiological 

distances highly relevant. Moreover, the inclusion of the endothelium has proven to be 

very difficult for most in vitro methods [147,148].  

 

Figure 1.18: Schematics of different co-culture methods. (a) Conditioned medium culture. Culture 

medium from population (2) is used to culture population (1), originating an indirect, monodirectional 

co-culture system (3); (b) left: Transwell co-culture: population 1 is seeded on the bottom of a culture 

dish and population 2 is cultured on a porous insert, allowing the exchange of soluble factors, migration 

of cells through the membrane but without contact between the two populations; right: Transwell can 

also be used to measure invasion, by coating the porous membrane with a layer of a protein matrix; (c) 

2D direct co-culture system, in which the two populations are mixed and seeded on the bottom of a 

culture plate, with a shared medium; (d) Co-culture spheroid. Adapted from [149,150]. 
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1.6.5.2 Co-culture characterization. 

Once the co-cultures are established, the interaction between cell types should be 

assessed. The most common way to do this is to label different cell types with 

distinctive fluorophores, or perform immunofluorescence assays by choosing 

distinctive markers. The latter proves a challenging task in 3D system, since antibody 

diffusion and detection of specific markers is hindered by the presence of the ECM. 

Hence, transfection with fluorescent proteins or using live cell stainings are usually 

more convenient. This allows distinction of different cell types and their organization.  

Furthermore, cell shape and movement are often of interest, particularly in the case of 

metastasis. Thus, cell tracking and image processing should be performed, either for a 

few sample cells within the cell population or by using cell distribution as a movement 

parameter.  

The characterization of soluble factors can be performed by means of proteomic 

analysis. This includes immune detection of proteins (via Western Blot or Enzyme-

linked ImmunoSorbent Assays) or newer approaches such as MagPix®, a multiplex 

bead-based detection method similar to flow cytometry or immune detection of 

specific proteins [151-153]. 

Finally, the exosome technology is currently gathering attention in the scientific 

community. Exosomes are extracellular vesicles ranging from 30 to 100 nm in size. 

They are generated through the endolysosomal pathway and released by exocytosis. 

Their contents include miRNAs, mRNAs, lipids, DNA membrane proteins and lipids and 

cytokine receptors. Therefore, they have emerged as important “nanoshuttles” of 

information between cells [154]. Exosomes can be isolated by means of 

ultracentrifugation and analyzed by light microscopy, electronic microscopy, flow 

cytometry or specific commercial solutions. Furthermore, the content of the exosomes 

can be analyzed to characterize the nature of inter-cellular communication [155]. 

Although complicated, this technology is cutting edge and of extreme interest. 

Coupling molecular biology techniques with 3D cell culture, although unexplored so 

far, could prove to be extremely useful to further develop in vitro models and 



34 
 

thoroughly characterize them for in vitro drug testing. This issue is explored further in 

Chapter 4.  

 

1.7 Microfluidics and microtechnologies as an alternative to 

reproduce and characterize the TME. 

Microfluidics principally studies fluid behavior and liquid manipulation at the 

microscale. As it was already mentioned in previous sections, liquids behave very 

differently at the microscale, in comparison to their conduct in macro systems. The 

absence of mixing motions within and the prevalence of capillarity over gravity are 

some of the hallmarks defining microscale physics. More detailed information on this 

subject can be found in the reviews from Bhatia et al, Portillo-Lara et al and Young et 

al, among others [156-161]. These features have been exploited for a fine control of 

the physical properties of the microenvironment, to mimic and monitor tumor 

microenvironment. Combined with the reduction in reagent volumes and costs, 

microfluidics is ideally suited to develop new platforms for cell culture and in vitro 

models. 

There have been some excellent proposals in the literature to reproduce and 

characterize the tumor microenvironment for drug testing applications. Some of the 

most well-known examples of microfluidic systems applied to the study of TME are 

described below. 

The Beebe group presented in 2012 a method for patterning lumen structures through 

ECM hydrogels confined within a passive pumping microfluidic platform [162]. In a 

posterior piece of work, they presented a simpler and more reproducible method to 

fabricate lumens in natural and synthetic gels in absence of specialized equipment 

[163]. These lumens could be subjected to biological gradients and exhibited the 

expected response (Figure 1.19).  
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Figure 1.19: Endothelial cell-lined lumens and possible morphologies. (a) Image of endothelial cell-lined 

lumen and (b) 3D volume reconstruction of the biomimetic blood vessel using F-actin staining 

(phalloidin). (c) Bright field image of bi-branched lumen and (d) multi-branched (tertiary branches) with 

phalloidin staining. (e) Angiogenesis via vascular endothelial growth factor (VEGF) gradient from source 

(dashed blue lines). (f) Cross-section of circular lumen lined with endothelial cells (phalloidin staining). 

(g) Bifurcated lumen lined with endothelial cells. Bar=150μm. Reproduced with permission from 

Jiménez-Torres et al [163]. 

The Kamm group developed 3D functional, perfusable microvascular networks 

composed of human ECs and BM-hMSCs phenotypically transitioning toward mural 

cells by vasculogenesis-like approach. Furthermore, they investigated the role of 

biochemical factors in the transition toward a mural cell lineage. This approach can be 

used to develop advanced in vitro models where the interactions between a functional 

vasculature tissue parenchyma is critical to mimic pathophysiological processes (intra- 

and extravasation processes involving leukocytes and cancer cells) and test diffusion 

and drug effects in complex microenvironments (Figure 1.20) [97,164,165]. 
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Figure 1.20:  Generation of microvascular networks in the presence of BM-hMSC and different 

biomolecules. Initially uniformly dispersed HUVECs form perfusable networks by vasculogenesis-like 

process in VEGF supplemented standard endothelial growth medium with and without BM-hMSCs or 

with VEGF + Ang-1 and BM-hMSCs (A–D). Microvascular networks under various conditions are 

quantified (E–I). Functionality of microvessels are confirmed by staining with VE-cadherin (J, green) for 

adherens junctions, laminin (K, green) for matrix secretion, and ZO-1 (L, green) for tight junctions. Cell 

nuclei were stained with DAPI (blue). Scale bars = 200 μm, unless noted. Reproduced with permission 

from Jeon et al [97]. 

Another approach from the Kamm group is the development of microfluidic-based 

approach to investigate tumor cell intravasation by means of high-resolution live 

imaging with endothelial barrier function measurement in the presence of 

macrophages. They also characterized the timescales of tumor-endothelial cell 

interactions during intravasation and demonstrate the interplay of endothelial 

permeability and tumor-endothelial signaling (Figure 1.21). While this model presents 

a low-throughput, it certainly shows potential for drug testing and personalized 

medicine [166,167]. 
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Figure 1.21: Microfluidic tumor-vascular interface model. (A) Endothelial channel (green), tumor channel 

(red), and 3D ECM (dark gray) between the two channels. Channels are 500 μm wide, 20 mm in length, 

and 120 μm in height. Black arrow shows the y-junction. (Scale bar: 2 mm.) (B) Phase contrast image 

showing the fibrosarcoma cells (HT1080, red) invading through the ECM (gray) toward the endothelium 

(MVEC, green). A single 3D ECM hydrogel matrix region is outlined with the white dashed square. (Scale 

bar: 300 μm.) (C) VE-cadherin and DAPI staining to show the confluency of the endothelial monolayer on 

the 3D ECM (outlined with white square in B). (D) Three-dimensional rendering of a confocal z-stack of a 

single region showing the tumor cells invading in 3D and adhering to the endothelium. (Scale bar: 30 

μm.) (E) HT1080 cell (white arrow) invading in 3D toward the endothelium. (Scale bar: 30 μm.) (F) 

HT1080 cells in contact with the endothelial monolayer. In C–F all scale bars are 30 μm. Green, VE-

cadherin; blue, DAPI; red, HT1080-mCherry. x-, y-, z- coordinate indication is appropriately adjusted in A, 

C, and D. Reproduced with permission from Zervantonakis et al [167]. 
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Later, they extended this approach to study metastasis and epithelial-mesenchymal 

transition [143,164,165]. 

The group of S. George developed a 3D vascularized micro-organ platform for in vitro 

studies [168]. Vascularization was developed spontaneously within the 3D tumor in the 

microdevice. They validated their platform for drug testing and coupled fluorescence 

lifetime imaging microscopy for metabolism investigation (Figure 1.22) [168,169].  

 

Figure 1.22:  Establishment of Vascularized Micro-Tumors (VMTs). (a) Time course of HCT116 growth in 

the VMT. Lentivirally-transduced HCT116 (green) and EC (red) were visualized by confocal microscopy. 

Stromal/perivascular cells were unlabeled. (Scale bar 100 μm). (b) The VMT platform supports growth of 

multiple tumor cell types, including additional CRC (SW620, SW480), breast cancer (MCF-7) and 

melanoma (MNT-1). Images were taken between days 10 and 12. (c, d) Time course of HCT116 (green) 

response to FOLFOX (10 μM Folinic acid (leucovorin), 100 μM 5-FU, and 5 μM Oxaliplatin) in the VMT. 

Data are shown relative to t = 0, which is time of first exposure to drug (usually 6–8 days after initiation 

of culture). Cells were also monitored for 96 h after drug removal. Error bars show mean ± S.D. of 3 

replicates (n = 2) (p < 0.05 control vs treated FOLFOX). (Scale bar 50 μm). (e) Dose-response of 

Oxaliplatin on HCT116 cells. VMTs or cells growing in 2D were exposed to drug for 48 h, and tumor cell 

number and viability were assessed by fluorescence intensity measurement or XTT assay. Data are 

normalized to time zero of drug exposure and shown as percentage of control. Error bars show mean ± 

S.D. (n = 3) (p < 0.05, 2D vs VMT). (f, g) Time course of MDA-MB-231 cells exposed to Taxol (100 nM). 

Data are normalized to first day of drug exposure. Error bars show mean ± S.D. of 3 replicates (p < 0.05 

control vs treated Taxol). (h) Differential effects of anti-tumor drugs on the breast cancer cell lines MCF-

7 (ERα+) and MDA-MB-231 (triple-negative). VMTs were first exposed to E2/drugs between days 6 and 8 

and cultured for an additional 96 h. Drugs were removed from the media at 48 h. Data are normalized to 

first day of drug exposure and are shown as percentage of control. Error bars show mean ± S.D. (n = 2–4) 

(*p < 0.05 vs control; §p < 0.05 MCF-7 vs MDA-MB-231). Reproduced with permission of Sobrino et 

al.[168]. 
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Later, they adapted their approach for high-throughput drug testing, in an effort to 

develop approaches which can be adopted by the pharmaceutical industry for drug 

research and development [169]. 

Although these models present many of the features discussed in previous sections, 

they all have in common the material of fabrication: PDMS. This material is not 

industrially scalable and requires especial equipment [3]. Moreover, PDMS is oxygen-

permeable, thus making it difficult to generate a hypoxia gradient within [170]. Finally, 

it has been previously reported that PDMS sequesters certain hydrophobic drugs, 

thereafter it is not a good choice for drug screening [171]. Thus, a simple, industrially 

scalable, high-throughput, user-friendly model integrating all these features remains to 

be developed. 

As for TME characterization, real-time imaging remains the main technique and 

provides great insight on the series of biological events taking place in the TME, as well 

as their time scales. However, the methods to characterize the different aspects of the 

TME must be applied individually. Furthermore, molecular biology techniques should 

integrate better with microfluidic tools to attract the biological community for a more 

relevant and efficient drug research and development process. 

Therefore, the main focus of this Thesis is to develop new platforms to recreate and 

study the TME which can be scalable for mass production. 

In the following chapter, a simple platform is developed to re-create the TME by 

combining two cell types in patterned co-culture: endothelial cells in 2D and tumor 

cells in 3D. Furthermore, the effect of biological gradients within the model was 

assessed, as well as interactions between both cell types. Finally, this model was 

validated for drug testing. 
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1.8 Aims and objectives. 

This Thesis focuses on finding new strategies based on microfluidics to reproduce and 

characterize the tumor microenvironment. Thus, as anticipated in the previous section, 

we intended to develop microfluidic platforms for cell co-culture which would focus on 

reproducing the TME for more relevant new drug assessment. 

Keeping this goal in mind, we developed the following partial objectives: 

1. Development of an open microfluidic platform compatible with high-

throughput which allows for the confinement of liquids. Thereafter, the 

microfluidic model of the TME could be established in this microdevice. 

 

2. Assessment of the biocompatibility of such platform for in vitro studies. Since 

the microdevice is intended for cell culture, the microdevice should not 

significantly diminish the viability of cells cultures. 

 

3. Establishment, characterization and validation of a microfluidic co-culture 

model of the TME for drug testing purposes. 

 

4. Development of a technology which enables cell recovery from the 

microdevice for subsequent analysis through traditional molecular biology 

techniques. 
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Chapter 2: Development of microfluidic systems for 2D-

3D cell co-cultures.  

2.1 Introduction. 

Our understanding of cancer has undergone significant changes in the last years. We 

used to think of cancer as a clonally expanded cell population originated from a single 

cell [172], whereas it is now evident that tumors consist of highly complex systems, 

where the tumor microenvironment plays a fundamental role [21].  Spatial and 

temporal complexities (such as biochemical signals and gradients thereof), together 

with a variety of cell types and phenotype differences within the same cell type add up 

to concoct this orchestrated environment in tumor tissues, which is known as the 

tumor microenvironment (TME) [21,24,173,174]. It has been previously reported that 

this high complexity and heterogeneity plays a significant role in drug resistance [175]. 

Moreover, tumor cells also interact with the stroma, conditioning their initiation, 

development and resistance to therapy [176]. 

Furthermore, the endothelium plays an important role in cancer development and 

drug delivery. The endothelium regulates nutrient diffusion and responds to hypoxic 

signals produced by tumor cells, to promote new blood vessel formation via 

angiogenesis. Additionally, blood vessel permeability is essential for the delivery of 

drugs to cancer cells, which, in turn, conditions the overall effect of the drug on the 

patient [30,177]. Of particular interest is the Enhanced Permeability and Retention 

(EPR) effect, which is caused by the generation of a porous architecture in the blood 

vessels surrounding the solid tumors, leading to an increased vascular permeability. 

The EPR effect results in more efficient oxygen and nutrient supply to the tumor sites 

than that from regular vessels [30]. Likewise, nanomedicine-based treatments take 

advantage of this EPR effect for the local accumulation of nano-vehicled agents which 

are meant for diagnostic or therapeutic purposes [30]. Currently, the delivery and 

efficiency of treatments against cancer disease are still mostly tested in classical in 

vitro 2D models [161,178,179],  which usually lack an extracellular matrix, do not 
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include different cell types arranged in a structured manner and lack biological 

gradients (e.g., of oxygen and nutrients). Consequently, 2D models are unable to 

faithfully reproduce the tumor-endothelium interactions, where crosstalk depends on 

the 3D environment, as well as on 3D direct cell-cell interactions. Of particular interest 

for the generation of sophisticated models are the so-called organ-on-a-chip 

platforms, which combine different cell types and microfabricated structures and allow 

mimicking the architecture of a complete organ and/or tissues [156].  As such, 

microfluidic technology shows great potential in the field of cancer research to mimic 

faithfully the TME [180]. Up to date, significant efforts in the field of microfluidics have 

focused in reproducing the tumor microenvironment, and, in particular, studying the 

interactions of cancer cells and the endothelium [164,165,181,182]. For instance, 

Kamm’s group has established co-culture of breast cancer cells and endothelial cells to 

study cellular extravasation and vascular permeability [183], as well as tissue-specific 

metastasis [184-186]. Additionally, they successfully characterized molecular 

mechanisms of metastasis in breast cancer and macrophage extravasation [187-189]. 

Also worth mentioning are the efforts in establishing distinctively patterned co-

cultures made by the Beebe’s group for drug screening and biosensing applications 

[162,190]. Interested readers in microfluidic cell culture approaches in cancer are 

referred to excellent reviews by Sung et al, Portillo-Lara et al and Regier et al. 

[148,160,191]. 

From these examples, we can infer that despite all these efforts, microfluidic 

technology remains restricted to engineering laboratories and has mainly focused on 

proof-of-concept applications. The fact that microfluidics is rarely used in traditional 

cell biology laboratories can be explained by the high difficulty of operation and low- 

or medium-throughput of most microdevices [158,192]. Therefore, to bridge the gap 

between microfluidics and basic and translational research laboratories, a new 

generation of microdevices is needed, which balances simplicity of operation, 

reproducibility, biological relevance and usefulness in the described contexts.  

Additionally, integration of endothelial layers in microfluidic models has also been 

proven difficult. This integration requires a continuous interface to provide support 

and allow endothelial cells to attach correctly. Furthermore, a common method to 
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assess endothelium integrity in vitro relies on TEER (TransEpithelial Electrical 

Resistance) measurements [193,194]. Nonetheless, this approach presents a few 

drawbacks, which limits its applicability: it requires the integration of an electrical 

setup within the biological setup; it requires specific electrodes to be built-in or added 

externally to the microfluidic system; and, more importantly, the lack of stability for 

these measurements is a well-known problem, which yet, remains to be overcome 

[195]. Optimized optical inspection and easy access to the endothelium would provide 

not only an advantageous alternative but also additional information on cell 

morphology and tight junctions in the endothelium by means of immunofluorescent 

staining. 

In this context, we present here a simple and self-filling SU-8-based microdevice, which 

exploits capillary forces, to study endothelium-tumor interactions. The proposed 

microdevice consists of several linear arrays of microwells (Figure 2.1), in which 3D 

tumor models are created by embedding tumor cells in a 3D collagen matrix and, on 

top of which confluent HUVEC monolayers are prepared as 2D mimics of the 

endothelial barrier. Although similar approaches have already been reported [196], 

our device allows filling an array of microwells in only one single pipetting step and a 

few seconds, fulfilling thereby the key-requirements of simplicity of operation and 

user-friendliness.  

 

Figure 2.1: Experimental configuration and microdevice fabrication. The image shows a scheme of the 

co-culture cancer model recreated in the present study within the device. 

Additionally, the design of the microdevice has been optimized for optical examination 

of the endothelium to evaluate its integrity. This approach can replace TEER 

measurements for an easier and more comprehensive approach on endothelium 
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integrity. Here, we first demonstrate co-culture of breast tumor cells (MDA-MB-231) 

seeded in 3D with an endothelium (HUVEC) and thoroughly characterized these 

models (Figure 2.1).  

Next, we applied our model to study the cytotoxic effects of drugs and their 

penetration in the 3D tumor environment. To that end, the anti-tumor agent TNF-

related apoptosis inducing ligand (TRAIL) was evaluated. TRAIL is a protein secreted by 

immune cells which is able to induce apoptosis in malfunctioning cells [197]. In vivo, 

TRAIL is secreted as anchored to liposomes, and this clustered form has been found to 

have a higher potential for inducing apoptosis [198]. Here, two different drug 

formulations were tested; a soluble version (sTRAIL) and an “improved” formulation 

based on liposomes decorated with TRAIL (LUV-TRAIL). Altogether, we have developed 

a simple and highly versatile microfluidic device with a physiologically relevant tumor-

endothelium co-culture model, which allows testing the penetration and efficiency of 

drugs on tumor tissues.  

 

2.2 Materials and Methods. 

2.2.1 Microdevice fabrication and setup. 

The device consists of three independent arrays composed of five different wells each, 

which are connected within an array by a microchannel (Figure 2.2). As the device was 

conceived to use capillarity as a driving force to spontaneously fill the whole 

microdevice, special care was taken to avoid sudden transition in the microchannel 

dimensions. Additionally, capillary valves were integrated to constrain the liquid within 

the microdevice and prevent it from flowing outward the microwells. 

The fabrication was carried out as follows: A thin Kapton film (125 µm thickness) was 

temporarily bonded on top of a Pyrex substrate (Figure 2.3.a). Kapton was used 

because of its low adhesion to SU-8, allowing easy release of the devices from the 

substrate after their fabrication. Once the Kapton film was fixed to the substrate, a 

first SU-8-50 layer was deposited on it, followed by a soft-bake treatment, which 

consists of heating the wafer up to 65 0C for 30 min and cooling it down to room 
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temperature. Next, another SU-8 layer was spin-coated followed by a second soft-bake 

step. Next, a 140 mJ/cm2 exposure dose was applied to cure the first layer of the 

device using a 365-nm wavelength UV lamp, followed by a post-bake step (Figure 

2.3.b). The post-bake step consisted of heating the wafer up to 650C for 15 min and 

cooling it down to room temperature. Following this, the same procedure was 

repeated to prepare another 80-µm thick layer of SU-8 on top of the first one (spin-

coating of 60 µm and 20 µm layers, followed by corresponding soft-bakes). A second 

step exposure of 140 mJ/cm2 through a mask allowed defining the microchannels and 

microwells (Figure 2.3.c). Then, a post-bake was performed followed by a development 

step to remove the unexposed SU-8 material. Specifically, the wafer was immersed 

into a SU-8 developer for 5 min, followed by a rinse step in isopropanol, distilled water 

and a drying step using nitrogen (Figure 2.3.d). Thus, an open microchannel with 

microwell structures was fabricated. 

 

Figure 2.2: Schematic representation of the device, showing capillary forces exerted by the geometry, 

and capillary valves integrated into the design (dotted line). The scheme includes the hydrogel droplet 

that was placed on the top of the main inlet, to avoid evaporation of the solution in the hydrogel and to 

ensure the formation of a flat hydrogel-air interface. 

To close the microchannel and define the microwells, another wafer was processed as 

before: a 90-µm thick SU-8 layer was processed (spun and soft-baked) on top of 

another Kapton film temporary bonded to a Pyrex wafer (Figures 2.3.e and 2.3.f). 

Inlets, outlets and microwells were defined by photolithography using the same 



46 
 

exposure and baking parameters as before. The second wafer was finally developed 

(Figure 2.3.g). Next, both wafers (bottom and cover) were aligned and bonded to each 

other by applying a pressure of 1 bar and heating up to 900C for 15 min (Figure 2.3.h). 

Finally, the bonded SU-8 devices were manually released from the Kapton (Figure 

2.3.i). The final thickness of the device was sufficient to ensure mechanical rigidity and 

easy handling in absence of a supporting substrate.  

 

Figure 2.3: Microdevice fabrication process flow: (a) Kapton film bonding to a pyrex wafer, (b) 

deposition of a 90-µm thick SU-8 layer, UV-exposure and polymerization of the microchannel and 

microwell structures, (c) spinning of a NN- µm thick SU-8 layer and patterning of the microchannel and 

microwell structures, (d) development of the two SU-8 layers, (e) Kapton film bonding to a pyrex wafer 

(f) spinning of a 90-µm thick SU-8 layer and patterning by photolithography, (g) cover development, (h) 

SU-8 to SU-8 thermal bonding, (i) SU-8 device release. 

For easy introduction of the  hydrogel and hydrogel confinement, the SU-8 was 

rendered hydrophilic through an oxygen plasma treatment analogous to that 

described in Jokinen et al [199], consisting in an 80 s treatment at 300 W, using a 

pressure of 0.4 mBar and 50% O2 to flood the chamber. 

2.2.2 Air-hydrogel interface generation and optimization in the 

microdevice. 

100 μl of hydrogel mixture was prepared as follows to yield a final collagen 

concentration of 1.2 mg/ml: 36.60 µl of a 3.37 mg/ml stock solution of Type I rat tail 
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Collagen (Corning, 354236) was neutralized by adding 0.9 µl NaOH at 1 M (Sigma 

221465). Ionic strength was adjusted by adding 20 µl of DMEM 5x (Sigma, D5030). 

Finally, the volume was adjusted to 100 μl by adding sterile distilled water. Using a 

chilled tip, 5 μl droplets of the resulting collagen preparation were placed on top of 

each inlet to allow spontaneous loading. Afterward, the microfluidic device was placed 

in an incubator (370C and 5% CO2) upside down for 12 min to allow collagen 

polymerization.  

To assess the effect of evaporation at the hydrogel interface we supplemented a 1.2 

mg/ml collagen gel with 0.2 µm FluoSpheres® (Thermo-Fisher, ref. F-8811) diluted to a 

final concentration of 1:100 from the stock solution. The resulting collagen mixture 

was sonicated for 5 min at 4oC before use to ensure proper dispersion of the 

Fluospheres®.  

2.2.3 Microdevice biocompatibility and 3D cell culture microenvironment 

characterization. 

2.2.3.1 Cell isolation and culture. 

MDA-MB-231 cells, derived from breast adenocarcinoma, were kindly provided by Dr. 

Joan Massagué (Memorial Sloan-Kettering Cancer Centre). MDA-MB-231 cells were 

routinely grown in high glucose-DMEM culture medium (Lonza BE12-614F) 

supplemented with 10% FBS (Sigma F7524) and 2 mM L-glutamine (Lonza17-605C) and 

1% penicillin (1000 U/mL), 1% streptomycin (1000 µg/mL) (Penicillin/Streptomycin, 

Lonza DE 17-602E) within a humidified TEB-1000 incubator set at 5% CO2, 20% O2 and 

37 oC (EBERS Medical Technology). Media was refreshed every other day and cells 

were passaged every 4 days using a Trypsin/EDTA solution (Lonza, CC-5012).  

Human Umbilical Vein Endothelial Cells (HUVECs) were extracted at the Miguel Servet 

Hospital (Zaragoza, Spain) from healthy donors after informed consent according to 

current ethical regulations. Isolation was performed according to Crampton et al.  

[200] from umbilical cords 1-3 hours after delivery. A fraction of the isolated cells was 

tested using a FACSAria (BD) flow cytometer to confirm cell positiveness for the 

endothelial markers CD31, CD105, CD146 and negative for CD45.  
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Figure 2.4: Phenotypical characterization of the extracted HUVEC cells to confirm their endothelial 

lineage. Flow cytometry was performed for the markers CD31 (a), CD45 (b), CD105 (c) and CD156 (d). 

After testing, HUVEC cells were cultured in EGM-2 culture medium (Lonza CC-3176) 

prepared according to the manufacturer’s instructions. Only passages 2-4 cells were 

used for experiments. The angiogenic potential of HUVEC cells was confirmed as 

previously reported by DeCicco-Skinner [201] by seeding the extracted HUVECs on top 

of a Matrigel® (Corning, 354248) -filled microdevice at a final density of 

20,000 cells/cm2 (Figure 2.5).   
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Figure 2.5: Phenotypical characterization of the extracted HUVEC cells to confirm their endothelial 

lineage. Cells were cultured in Matrigel to check their angiogenic potential through the tube formation 

assay. Results confirm cells are HUVECs. 

 

2.2.3.2 Cell culture in microdevices. 

For 3D cell culture, a 100 μl of hydrogel mixture with a final collagen concentration of 

1.2 mg/ml was prepared as before; however, in the last step, the volume was first 

adjusted to 50 μl by adding sterile distilled water before adding 50 µl of a MDA-MB-

231 cell suspension. The resulting cell suspension in hydrogel was carefully 

homogenized by pipetting up and down several times. Next, the device was filled with 

the mixture and the hydrogel was polymerized as described above. 

To prepare a HUVEC monolayer on top of the collagen in the microwells, HUVEC cells 

were trypsinized, counted and resuspended in EGM-2. Cells were seeded on top of the 

microdevice at a final density of 250,000 cells/cm2 (saturating concentration). Media 

was refreshed every other day in the microdevice. 

2.2.3.3 Cell viability staining.  

Microdevices were incubated for 15 min in Calcein AM (Invitrogen ref. C3100MP) and 

propidium iodide (PI) (Sigma-Aldrich, P4170) in Phosphate Buffered Saline (PBS) (Lonza 

17-516F) at final concentrations of 1 μg/ml and 4 μg/ml, respectively, to assess cell 

viability. Confocal Z-stacks were acquired for each microwell and throughout the entire 

height of the microwell at 100x magnification. 
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2.2.3.4 Immunofluorescence staining. 

HUVEC cells in the microdevices were washed with PBS and fixed with 3.7% 

paraformaldehyde overnight at 4oC. The following steps were performed at room 

temperature, unless specified otherwise. Cells were permeabilized using 0.1% Triton X-

100 (Sigma, T8787) for 5 min and blocked with 1% BSA (Sigma, A1933) for 30 min. 

Samples were washed twice with 0.05% Tween-20 (Sigma P2287) in PBS between 

every step. 

To quantify endothelium integrity (i.e. the percentage of the microwell surface area 

covered by HUVEC cells seeded on top of the microdevices), HUVEC cells were stained 

for VE-cadherin, Actin, and Nuclei. Microdevices were incubated with VE-Cadherin 

D87F2 XP Rabbit mAb (Cell Signaling 2500S) in 1% BSA, 0.1% Triton X-100 PBS 

overnight at 4ºC and washed thrice with 0.05% Tween-20 PBS (Sigma-Aldrich ref. 

P2287).  Next, microdevices were incubated with Alexa Fluor 488 Donkey anti-rabbit 

IgGs (ThermoFischer A-21206), Phalloidin-TRITC for actin staining and Nucblue® Fixed 

Cell Stain ReadyProbes® for nuclei staining (Life Technologies R37606) for an hour. 

Finally, microdevices were washed thrice with 0.05% Tween-20 PBS. 

2.2.3.5 Hypoxia staining. 

The existence of a hypoxic microenvironment within the microdevice was assessed 

using the hypoxia-sensing dye Image-iT® Hypoxia Reagent (Life Technologies, H10498) 

and confocal microscopy. This reagent exhibits increased fluorescence upon decrease 

of the oxygen tension inside the cell. Image-iT® was dissolved in DMSO at a 

concentration of 1 mM and used according to manufacturer’s instructions. Cells were 

embedded in 1.2 mg/ml collagen hydrogel at three different densities (0.4x106, 2x106 

and 107 cells/ml) taking advantage of the independent microwell arrays included in the 

design. 24 hours after seeding, the hypoxia-sensing dye was added and cell-induced 

hypoxia gradients within the microwells were imaged for concentrations of 0.4x106 

and 107 cells/ml. 
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2.2.3.6 Proliferation staining. 

Cell proliferation was characterized in live cells using the Premo Fucci® Cell Cycle 

Sensor (ThermoFischer P36237), similarly as in our previous work [202]. Briefly, cells 

were seeded in 3D as previously described, at three different cell densities (0.4x106, 

2x106 and 107 cell/ml) in the three independent microwell arrays included in the 

design. Cells were transfected in situ 4 h after seeding, using ca. 50 virus particles per 

cell during 24 h. This cell cycle sensor was transduced into the cells by using two 

different reporters coupled to TagRFP (red) or emGFP (green), which are expressed 

alternatively during the G1 phase or the S/G2/M phases, respectively. 

2.2.3.7 Live cell membrane staining. 

With the aim of distinguishing HUVEC cells from MDA-MB-231 cells when combined in 

the same microdevice, Vybrant® DiI and DiO were, respectively, used according to the 

manufacturer’s instructions. Briefly, cells were trypsinized from the culture dish and 

resuspended in relevant media to inactivate Trypsin. Cells were then pelleted and 

resuspended in serum-free medium to a concentration of 1 million cells/ml. A solution 

containing 5 µl of Vybrant® stock per ml of media was added to each cell suspension 

and cells were left to stain for 15 min at 370C in the dark. Finally, cells were thoroughly 

washed with PBS and resuspended in EGM-2 medium for further use. 

2.2.4 Preparation of soluble recombinant TRAIL and anchoring to lipid 

vesicles. 

Once the co-culture model was established, we used it to test the two TRAIL-based 

formulations: human soluble recombinant TRAIL (sTRAIL) and Large Unilamellar 

Vesicles (LUV) with sTRAIL anchored to their surface (LUV-TRAIL). LUV-type liposomes 

coated with sTRAIL were prepared as previously described [198,203,204]. The lipid 

composition consisted in a mixture of phosphatidylcholine, sphingomyelin, cholesterol, 

and 1,2-dioleoyl-sn-glycero-3-[[N-(5-amino-1-carboxypentyl)-iminodiacetic acid] 

succinyl](nickel salt) (Avanti Polar Lipids) in a 55:30:10:5 weight ratio to mimic the 

human exosome lipid composition. sTRAIL corresponding to amino acids 95–281 

cloned into the pET-28c plasmid (Novagen - kindly provided by Dr. M. 
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MacFarlane)[183] with a 6 histidine tag was attached to the liposome surface as 

previously described [205]. Generated LUV-TRAIL was characterized as described 

elsewhere [203] and stored at 40C until use. 

 

2.2.5 Drug diffusion assays. 

To assess the penetration rate across the endothelium and through the hydrogel for 

the different compounds, the microdevices were prepared as described in previous 

sections and filled with collagen as described in sections 2.1 and 2.2. Microdevices 

were covered with a 4 mg/ml TRITC-LUVs or 30 μM TRITC 70 kDa Dextran solution, and 

Z-stack confocal images were taken for at least 2 h throughout the entire microwell 

height. 

2.2.6 Imaging.  

Phase contrast and fluorescence microscopy images were taken using a Nikon Eclipse 

Ti® inverted fluorescence microscope equipped with a C1 modular confocal 

microscope system. To acquire whole microwell images, 250-μm thick confocal stacks 

were performed, by taking images every 10 μm. Finally, a thermostated chamber 

within the microscope was equilibrated to 37 0C and 5% CO2 whenever live cell imaging 

was performed. 

2.2.7 Image analysis and processing. 

Image analysis was performed using Fiji® (http://fiji.sc/Fiji). To analyze cell viability, 

viable and dead cells were counted manually, whereas cell distribution and marker 

expression were quantified as the percentage of the microwell area where the marker 

is being expressed. Finally, cell circularity was assessed manually for at least 20 cells in 

each sample. 

2.2.8 Statistical analysis. 

Results are presented as the mean ± standard error. The normal distribution was 

tested by the Kolmogorov-Smirnov test. ANOVA tests were performed for multiple 

comparisons, followed by post-hoc Bonferroni tests. Data were analyzed using 

statistical significance set at p < 0.05. 

 

http://fiji.sc/Fiji
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2.3 Results and discussion. 

2.3.1 Hydrophilic features and liquid handling within the microdevice. 

SU-8 was selected as building material due to its previously reported biocompatibility 

in cell culture applications [175,206], as well as some additional intrinsic advantages 

over native PDMS (Polydimethylsiloxane) for the fabrication of cell culture systems, 

including broader chamber design possibilities [207], convenient mechanical 

properties [208], monolithic integration with a variety of sensors and, importantly in 

our case, low gas permeability [209], which facilitates the creation of an oxygen 

gradient without any need for external systems. SU-8 therefore provides a high degree 

of control over the fabricated structures and capillary valves as included here. Once 

the microdevices were fabricated (Figure 2.6), they were treated with O2 plasma to 

promote spontaneous filling of the devices.  

 

Figure 2.6: Fabricated SU-8 microdevice. a- Schematic representation of an open device, showing the 

different SU-8 layers: the bottom layer (blue) the channel layer (red), including the channels and 

microwells and a top layer (grey) with microwell structures to yield open microwells and closed 

microchannels; b – Photography of a final microdevice. 

 

Because of this treatment, the contact angle was reduced from 82.6 ± 1.6o to 21.1 ± 

2.3o (N=10, Figure 2.7), and spontaneous hydrogel introduction was observed in the 

microwell arrays (Figure 2.8, left panels).  
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Figure 2.7: Contact angle measurements for the SU-8 material without (a) and after (b) O2 plasma 

treatment. Measurements were performed at least 6 independent times for each condition. P-value was 

0.0007. Graph shows average ± SEM. 

 

This behavior was also expected according to the microdevice design. Besides, 

spontaneous microdevice filling occurred in a few seconds (Figure 2.8, right panels), 

ensuring thereby the hydrogel filled completely the microdevice before collagen 

polymerization would occur. Interestingly, in absence of plasma treatment, capillary 

forces were not strong enough to fill the microdevice completely, and hydrogel 

injection was extremely slow. Consequently, the hydrogel remained pinned in the 

microchannels connecting the microwells without filling the entire microdevice (Figure 

2.8, right panels). 
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Figure 2.8: Effect of the plasma treatment on the microdevice spontaneous filling. Left- Bright field 20x 

images showing the filling dynamics of a microdevice after plasma treatment at 0, 100, 200 and 300 ms, 

respectively; Right- Bright field 20x images showing the filling dynamics of a microdevice without any 

plasma treatment at 0, 100, 1200 and 2500 ms, respectively. 

 

2.3.2 Air-hydrogel interface analysis and optimization in the microdevice.  

Next, we characterized the air-hydrogel interface in the microdevice after collagen 

polymerization to ensure a flat interface was created, which is essential for cell 

imaging. To that end, the microdevice was filled with collagen supplemented with 

FluoSpheres® and the interface was characterized both immediately after filling the 

microdevice and after collagen polymerization.  

The interface was flat immediately after collagen perfusion (Figure 2.9.a), showing 

homogeneous distribution of the FluoSpheres® in the hydrogel. However, after 

polymerization a 200 μm-deep meniscus appeared, causing the Fluosphere® 

microbeads to cluster in the center at the interface (Figure 2.9.b). We assumed this 

meniscus was created due to water evaporation during the polymerization process at 

37oC within the incubator. Therefore, to avoid the formation of such meniscus, we 

placed a hydrogel droplet at the device inlet (Figure 2.9.c) to counteract evaporation. 

As presented in Figure 2.2, the pressure exerted by the droplet was enough to 

maintain a flat air-liquid interface during the whole hydrogel polymerization process, 

by preventing any evaporation of the solution. 
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Figure 2.9: Characterization of the hydrogel-air interface in the microdevice using confocal microscopy.  

100x images flanked by z-stack orthogonal views of the gel interface at 0 minutes after hydrogel 

introduction (a) and 12 minutes after the introduction of the hydrogel, with (b) or without addition of a 

droplet of water added (c). Water evaporation caused a dramatic contraction of the hydrogel (c) and 

FluoSpheres® accumulation at the interface, which forms a deep meniscus in the well.  c- Hydrogel 

polymerized with an additional hydrogel droplet placed on the main inlet during 12 min. No meniscus 

was observed and the hydrogel-air interface was flat as desired. d – Quantification of the hydrogel 

height in the microwells just after introduction of the hydrogel (t = 0 min) and 12 minutes later, after gel 

polymerization, when no droplet was added on the inlet (t=12 min. No droplet) and when a droplet was 

added on the inlet (t=12 min with droplet). Graph shows Average ± SEM. (p-value < 0.001). 
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2.3.3 Microdevice biocompatibility and characterization of the 3D cell 

culture microenvironment.  

As a next step, cell viability was examined in 3D culture in the collagen to confirm the 

device biocompatibility. Therefore, we seeded MDA-MB-231 breast tumor cells at a 

final density of 5x106 cells/ml in a 1.2 mg/ml collagen hydrogel. After three days in 

culture, cell viability was assessed with calcein AM (green) and propidium iodide (red). 

Through this method, live cells were stained in green, whereas dead cells were stained 

in red.  Cell viability inside the microdevice was similar to that observed for control 

hydrogels also loaded with the same number of cells but cultured on a Petri dish 

(Figures 2.10 a-c), and in both cases a cell viability higher than 98% was observed. 

Additionally, we evaluated the three-dimensional cell distribution along the microwell 

height. Typically, cells would occupy between 15 and 30% of the surface area of the 

microwell in each 10 µm-thick layer imaged by confocal microscopy, and no significant 

difference was observed throughout the whole well height (Figure 2.10.d). Altogether, 

there was no significant accumulation of cells at a specific height in the collagen in the 

microwells, and no sedimentation of the cells at the bottom of the microwells. 
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Figure 2.10: Viability of the MDA-MB231 cells grown in the microdevice in a 3D hydrogel matrix. Viable 

cells were stained with Calcein AM (green), whereas dead ones were labelled with propidium iodide 

(red). a- 100x confocal image showing the cell viability in one microwell in the device. b- 100x confocal 

image of the same cells grown in 2D on a Petri dish (control). c- Quantification of the MDA-MB-231 cell 

viability within the microdevice and in Petri dishes. d- Quantification of the cell occupied area as a 

function of the hydrogel depth.  0 µm refers to the top of the microwell. 

Furthermore, we characterized the tumor cell behavior and function within the 

microwells. Firstly, we investigated cell proliferation for different cell seeding densities 

(0.4x106, 2x106 and 107 cells/ml) using Premo® FUCCI Cell Cycle Indicator, which stains 

G0/G1 phase cells in red and S, G2 and M phase cells in green. MDA-MB-231 tumor 

cells embedded in the collagen gel were transfected with this proliferation marker 

within each independent array of microwells in a sole microdevice (Figure 2.11 a-c), 

and the proliferation index of cells was determined as the number of cells in G2/M/S 

divided by the total number of seeded cells. Results revealed that the proliferation 

index significantly diminished for higher cell concentrations (Figure 2.11 c). Specifically, 

a 5-fold cell concentration increase (from 0.4x106 to 2x106 cells/ml) was accompanied 

by a reduction in proliferation to 53.3%, and a 4-fold increase in concentration by a 

28.7% decrease in proliferation. 
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Figure 2.11: Whole microwell images of cell proliferation through Premo FUCCI® transfection for 

different cell densities 0.4·106 (a), 2·106 (b) and 107 cells/ml (c). Green cells are in the G2/S/M phases, 

whereas red cells are arrested in the G1 phase (non-proliferating cells). (d) Proliferation index of cells 

cultured in the hydrogel in the microdevice, calculated by normalizing the number of cells in G2/S/M (as 

characterized by Premo FUCCI transfection in situ) with the total number of seeded cells. Graph shows 

average ± SEM (p-value < 0.0001). 

 

Proliferation differences can be accounted for variations in nutrient and oxygen 

availability. To test this hypothesis –i.e., if there was a significant change in oxygen 

concentration depending on the cell concentration, we checked for the presence of 

hypoxia within the microwells. For this experiment, we compared microwells prepared 

with either high or low cell concentrations in collagen hydrogels. The graph presenting 

these results in Figure 2.12 indicates significantly different hypoxia profiles for the two 

cell densities tested here (0.4x106 and 2x107 cells/ml).  
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Figure 2.12: Characterization of the hypoxia level in the device for different cell densities (0.4·106, and 

2x107 cells/ml) using Hypoxia-IT®. Graph shows average ± SEM. 

For a low cell concentration (0.4x106 cells/ml), a low and constant fluorescence level 

was found throughout the entire height of the microwell after 24 h, indicating a low 

hypoxia level. In contrast, a gradient in oxygen concentration was observed for the 

high cell concentration (107 cells/ml) with marked hypoxia at the bottom of the well 

after 24 h of culture under the same conditions (Figure 2.12). Altogether, culture of 

cells in the hydrogel in the microwells beyond a certain cell concentration threshold 

resulted in the appearance of deprived oxygen conditions, which could explain the 

marked decrease we recorded in terms of cell proliferation, as initially hypothesized. 

Furthermore, with our model we are able to mimic the typical architecture found in 

tumor tissues in vivo, which typically contain a hypoxic non-proliferating core and a 

proliferative periphery with direct access to oxygen [80]. This structure is particularly 

relevant to assess the efficiency of drugs, since some drugs are more effective on 

proliferating cells and not active under hypoxic conditions, while others are specifically 

activated in an oxygen-poor environment [82]. 

 

2.3.4 Characterization of the endothelial barrier model. 

The second main component of the co-culture is the endothelium layer on top of the 

3D culture in each microwell. The endothelium was created by seeding HUVEC cells at 

a density of 250,000 cells/cm2 on microwells in a microdevice previously filled with 1.2 

mg/ml type I collagen, and letting them attach for 24 h, to create a confluent 

monolayer to mimic an endothelium. The endothelium integrity was characterized by 
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immunostaining for F-Actin, VE-cadherin and Nuclei. These markers allowed us not 

only to assess the percentage of the microwell surface area that was covered with cells 

(F-actin), but also to demonstrate the existence of cell-cell adhesions (VE-cadherin), 

confirming the endothelium is not leaky. 

 

Figure 2.13: Characterization of the endothelium generated on the top of the hydrogel matric in the 

microdevice. Endothelial cells (HUVECs) were labelled with Phalloidin-TRITC (yellow) for actin staining 

and VE-Cadherin (green) for endothelial cell junction staining. a and d- Control endothelium; b and e – 

Endothelium treated with 50 ng/ml TNF-α for 24 hours c- Quantification of the endothelium integrity in 

terms of Phalloidin signal area for all samples (not treated, and treated with 25 and 50 ng/ml TNF-α). 

Samples were compared with the control. P-value: 0.02. f- Quantification of endothelium integrity in 

terms of VE-cadherin signal area for all samples (not treated, and treated with 25 and 50 ng/ml TNF-α). 

Samples were compared with the control. P-value for 50ng/ml TNF-α = 0.005. Graphs show average ± 

SEM and magnification is 200x for all images. 

As presented in Figure 2.13, the hydrogel surface in the microwells was totally covered 

by the HUVEC cells, which had established cell-cell contacts across the complete area 

of the microwell (Figure 2.14). Besides, no apparent gap was visible between the cells, 

indicating the formation of a tight endothelium after 24 h of culture.  

The endothelium integrity was further quantified by comparing the surface area 

occupied by cells (derived from the F-actin or VE-cadherin fluorescence signal) with the 
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total surface area of a microwell (Figures 2.13.c and 2.13.f, respectively). These 

measurements indicate that a tight endothelium was successfully created with this 

procedure. 

 

Figure 2.14: Whole microwell immunofluorescence images to verify the endothelium integrity. Images 

show F-actin, VE-cadherin and Merge (F-actin, VE-cadherin and DAPI) for Control conditions (a, b and c, 

respectively); cells supplemented with 25 ng/ml of TNF-α (d, e and f, respectively) and cells 

supplemented with 50 ng/ml of TNF-α (g, h and i, respectively). 

We next evaluated the functionality of the endothelium model by treating it with pro-

inflammatory factors such as TNF-α. TNF-α has been reported to increase endothelium 

permeability at concentrations of 25 and 50 ng/ml [210]. As expected, after 24 h 
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exposure to TNF-α, we observed the creation of gaps in the HUVEC monolayer (Figures 

2.14.b & 2.14.e), and a quantitative decrease in the area occupied by cells (Figures 

2.14.c & 2.14.f), as assessed for both VE-cadherin and F-actin staining, and this 

decrease was found statistically significant for a TNF-α concentration of 50 ng/ml. This 

assay confirms that the 2D endothelium model is entirely functional and responsive to 

inflammation, as previously described in the literature. 

2.3.5 Co-culture model with a 2D endothelium and MDA-MB-231 breast 

tumor cells cultured in 3D in a collagen matrix.  

After establishment and characterization of both the 3D tumor cell culture and 2D 

endothelium, both elements were combined in the same microdevice.  

First, the respective HUVEC and MDA-MB-231 cell distributions were investigated by 

imaging after cell membrane staining with two different Vybrant® cell trackers: MDA-

MB-231 cells were labelled in green, and HUVEC cells in red (Figure 2.15.a).  

As observed in separate mono-culture conditions, a flat endothelium was created on 

the top of each microwell, with a homogeneous three-dimensional distribution of the 

tumor cancer cells in the collagen matrix under the endothelium layer. Up to 24 h after 

cell seeding, the endothelium was found to be integer and tight (Figure 2.15 b-c), but 

as time passed, changes in the endothelium appearance and integrity were detected.  

Specifically, after 48 h of co-culture, the shape of the endothelial cells evolved 

compared to control conditions in the absence of tumor cells in the collagen, moving 

from a polyhedral shape towards a spindled one (Figures 2.15 e & 2.17 a). The HUVEC 

cell circularity was further quantified in control conditions (mono-culture, 48 h) and 

after 24 h and 48 h of co-culture with the 3D tumor model (Figure 2.17 a), revealing a 

4% decrease in cell circularity between the control and co-culture after 24 hours (from 

0.78 to 0.76). Moreover, the cell circularity decreased by 15% at 48 hours of co-culture 

compared to the control (from 0.78 to 0.68). Next to this, the cell-cell connections in 

the endothelium disappeared, as indicated by a loss in the characteristic VE-cadherin 

distribution for blood vessels. The integrity of the endothelium was quantified as 

before, revealing a significant decrease by 52% compared to control conditions. (Figure 

2.17 b). 
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Figure 2.15: Co-culture of MDA-MB231 tumor cells with HUVECs cells. a- 3D reconstruction of the 2D-3D 

co-culture model within the microdevice after 24 hours of seeding, tumor cells being grown in the 3D 

hydrogel matrix and HUVECs as a monolayer on top of the hydrogel in the microwells. b-g- Assessment 

of the integrity of the endothelium monolayer in the co-culture system, compared to control conditions 

(endothelium mono-culture). b- Actin staining of a control HUVEC endothelium (mono-culture). c- Detail 

of a control HUVEC endothelium (mono-culture) stained with VE-Cadherin and NucBlue®. d-Actin 

staining of a HUVEC endothelium in co-culture with MDA-MB-231 tumor cells, 48 hours after cell 

seeding. e-Detail of a HUVEC endothelium in co-culture with MDA-MB-231 tumor cells, 48 hours after 

seeding, stained with VE-Cadherin and NucBlue®. Magnification is 200x for all images. 
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Figure 2.16: Whole microwell immunofluorescence images to assess endothelium integrity. Images 

show F-actin, VE-cadherin and Merge (F-actin, VE-cadherin and DAPI) for Control conditions (a, b and c, 

respectively); cells in co-culture with MDA-MB-231 cells for 24 hours (d, e and f, respectively) and cells 

in co-culture for 48 hours (g, h and i, respectively).  

Importantly, this decrease in F-actin signal is very similar to that observed for a 

monoculture endothelium treated with 50 ng/ml of TNF-α for 24 h (Figure 2.13 c). 

These results altogether demonstrate that co-culture of an endothelium with MDA-

MB-231 breast tumor cells resulted in the creation of a leaky vasculature, as observed 

in vivo in tumor-associated vessels, which should also present an EPR effect 

[30,177,211]. 
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Figure 2.17: Quantification of the effect of co-culture of MDA-MB231 tumor cells with HUVECs cells. a- 

Assessment of the HUVEC cell circularity for control (mono-culture) and co-culture conditions after 24 

and 48 hours (p-value < 0.0001). b-Assessment of the integrity of the HUVEC endothelium for the co-

culture after 24 and 48 hours compared to control conditions (mono-culture of a HUVEC monolayer) 

quantified as F-actin signal area (p-value = 0.0016). Graphs show average ± SEM. 

 

2.3.6 Drug screening in the tumor-endothelium model. 

Since the proposed co-culture tumor cells-endothelium model exhibited this key-

characteristic of leaky endothelium, we decided to apply it for drug penetration assays 

and evaluating the EPR effect, which is particularly interesting for nanoparticle-based 

medicines. For this drug assay, we chose the death ligand TRAIL (TNF-related apoptosis 

inducing ligand), which was tested in its soluble form (60 kDa) and as a conjugate with 

a large unilamellar vesicle (LUV) [212]. Both forms were tested at a concentration of 

0.33 ng/ml for 24 h in our co-culture model to evaluate their efficiency.  

As a first step, the toxicity of both drug formulations was assessed on the endothelium 

alone. The drug effect on the endothelium was quantified as previously described in 

terms of changes in the endothelium integrity.  
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Figure 2.18: Drug testing assay using TRAIL in both its soluble form (sTRAIL, 0.33 ng/ml) and anchored to 

a LUV (LUV-TRAIL, 0.33 ng/ml) in the co-culture established models. Endothelium immunofluorescence 

after exposure to sTRAIL (a, b) and LUV-TRAIL (c, d) for Phalloidin-TRITC (yellow) and VE-Cadherin 

(green), respectively. 

No significant decrease in the cell occupied area was observed after treatment with 

both sTRAIL and LUV-TRAIL (Figures 2.18 a-d) using F-actin and VE-cadherin staining, 

compared to control monolayers (Figure 2.19). Nonetheless, a noticeable change in the 

fluorescence signal pattern was found, particularly in the case of F-actin expression 

(Figures 2.18 a & c). 
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Figure 2.19: Quantification of the endothelium integrity using the Phalloidin (red) and the VE-cadherin 

(green) signal area for control conditions (no TRAIL exposure) and samples treated with both sTRAIL and 

LUV-TRAIL. No significant differentes were found. Graph shows average ± SEM. 

Particularly, F-Actin and VE-cadherin local accumulation and alignment in certain areas 

of the microwell was observed, which is significantly different from the patterns 

obtained in control microwells. This is consistent with angiogenic and mitogenic 

events, as previously described in endothelial cells after TRAIL treatment [213]. 
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Figure 2.20: Whole microwell immunofluorescence images to verify the endothelium integrity after 

exposure to the TRAIL drug. Images show F-actin, VE-cadherin and Merge (F-actin, VE-cadherin and 

DAPI) for sTRAIL (a, b and c, respectively) and LUV-TRAIL (d, e and f, respectively). Images were taken 

after 24 hours of treatment. Concentration for both drugs was 0.33 ng/ml. 

 

Before testing both drug formulations on the co-culture models, we assessed their 

penetration in the microwells using fluorescent surrogates such as a dextran with a 

comparable size to sTRAIL (70 kDa) and a rhodamine-conjugated LUV as a model for 

LUV-TRAIL. As expected, the penetration rate was much lower in the case of the LUV, 

after both 15 min and 2 h, which is to be accounted for by the larger size of this LUV-

based formulation. Nonetheless, both formulations can entirely penetrate across a 

healthy endothelium after 2 hours (Figure 2.21), despite their size difference.  
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Figure 2.21: Diffusion/penetration assays using TRITC-labelled LUV (0.33 ng/ml) and TRITC-Dextran (70 

kDa, 30 µM) used as models for the LUV-TRAIL and s-TRAIL, respectively, across an endothelium seeded 

on a collagen gel. 

 

No accumulation of the model drugs at a specific height in the microwell height was 

observed after two hours, which suggests the formulations should be able to 

penetrate up to the bottom of the microwell with sufficient duration of the assay. 

Finally, the two drugs were tested on the established co-culture model combining a 

HUVEC endothelium and a 3D tumor cell culture. Cell viability was evaluated as before 

in the collagen matrix using Calcein AM and PI. After treatment of the co-culture with 

TRAIL for 24 hours at 0.33 ng/ml, viability staining revealed that both drugs induced 

cell death throughout the entire microwell, with an expected decay in cytotoxicity 

when going deeper in the microwell (Figure 2.22).  
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Figure 2.22: Quantification of MDA-MB-231 tumor cell death in 3D along the device microwell depth in 

control conditions, and with sTRAIL and LUV-TRAIL treatment in the established microfluidic co-culture 

model. Here, 5 million MDA-MB-231 cells/ml were seeded in the hydrogel matrix. Graphs show average 

± SEM.  

 

Specifically, despite having a lower penetration rate, LUV-TRAIL induced death in a 

higher number of cells relative to the total cell number (65% higher for the whole 

microwell), which confirms LUV-TRAIL is more active than TRAIL. 

Interestingly, the lower part of the 3D tumor cell culture, where hypoxia was found to 

be more pronounced, also correlated well with lower drug efficiency. This could be due 

to either a lower penetration rate of LUV-TRAIL in this area or to a lower efficiency of 

the drug in hypoxic areas. Higher resistance to TRAIL in hypoxic microenvironments 

has indeed been previously described [52].  

Overall, we have demonstrated that the simple and user-friendly configuration of this 

microdevice allows reproducing key features of tumors, which should be accounted for 

in drug tests.  

2.3.7 Adaptation of the design for mass-production of the microdevice. 

Despite SU-8 being an ideally suited option for the development of prototypes, the 

implementation of the described design requires mass-production above the 

possibilities of this material. Therefore, SU-8 was replaced as building material by cyclic 

olefin polymers (COP), a sort of polymers that is highly used for cell culture platforms. 
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COP has been described in the literature as highly biocompatible [214], has excellent 

optical properties and maintains a low oxygen permeability necessary to develop the 

model described in this chapter. Therefore, the adapted microdevice was fabricated by 

means of mold-injection with COP. 

Next, the presented microdevice has been adapted to include fluid flow by means of 

an additional piece, while maintaining the basic features and proportions of the 

design. Hence, the adapted microdevice is now composed of two different pieces. The 

first one is a direct adaptation of the SU-8 prototype (Figure 2.23 left) including 

micropipette adapted ports for an easy liquid handling. These ports also act as 

reservoirs to ensure correct microdevice filling and meniscus reduction. This piece can 

be used independently or in combination with a second piece.  

The second piece (Figure 2.23 middle) is mounted on top of the first one, and acts as 

an upper channel for the described structure. This channel is intended for fluid flow 

integration, but also allows reagent reduction in a substantial manner. 

The top piece can be inserted in the bottom one to obtain a new version of the 

microdevice integrating fluid flow (Figure 2.23 right). The resulting microdevice has 

been patented and is now commercialized.  

 

Figure 2.23: Image prototypes for the COP microdevice developed from the SU-8 prototype. Left- The 

bottom piece entails three arrays of microwells connected by a microchannel. Fluidic ports are placed in 

both ends of the microdevice for an easier liquid handling. Middle- The top piece comprises three 

microchannels intended for coupling fluid flow on top of the bottom piece microwells, but it can also be 

used to diminish reagent volumes substantially. Right- The microdevice resulting from integrating both 

pieces is shown.  
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2.4 Chapter summary. 

In chis chapter, we reported an SU-8 multi-well microfluidic platform to study the 

interactions between tumor cells grown in 3D in a collagen matrix in microwells and a 

tumor-associated endothelium grown on top of the collagen matrix, and for drug 

testing assays. A key-advantage of our device is that it provides easy and precise fluidic 

control and instantaneous self-filling of the arrays of microwells with viscous hydrogel 

solutions in one single pipetting step, thanks to the specific geometry of the device 

with presence of capillary valves and proper surface hydrophilicity. Therefore, our 

device fulfills the requirements of being easy to operate and accessible to the 

biomedical community, while still allowing recreating complex microenvironments. So 

far, our device comprises 3 independent arrays of microwells, but its design and mode 

of operation lend themselves well to parallelization for medium to high-throughput 

assays, which makes our platform particularly interesting for drug testing. 

Furthermore, the platform is fabricated from SU-8, which presents a low permeability 

to oxygen, which is advantageous for creating hypoxic environments, as found for 

instance in tumor tissues. Finally, the device is prepared using 90-µm thick substrates, 

so that it is fully compatible with in situ confocal microscopy examination of the cells in 

the 3D environment, as well as on the top of the microwells.  

In this chapter, we developed and thoroughly characterized 3D tumor as well as 2D 

endothelium models, before their combination within one single device. The 3D tumor 

model faithfully reproduced key-features found in tumor tissues in vivo such as 

preferential proliferation for cells with access to more oxygen and nutrients, and 

creation of an oxygen gradient and a hypoxic core with no cellular proliferation, 

providing a dense tissue initially formed. Both healthy and functional endothelium as 

well as a leaky endothelium were successfully prepared in our device, and their 

integrity evaluated using immunofluorescence and confocal microscopy. As such, our 

device can easily mimic vascular integrity in different physiopathological conditions. 

Interestingly, our study particularly revealed that co-culture of a 3D tumor model with 

HUVEC cells grown in 2D resulted in the creation of a leaky endothelium, as found in 

tumor tissues. Next, the established co-culture was used for drug penetration assay 
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across the endothelium and in the tumor tissue and testing of an apoptosis-inducing 

drug, TRAIL, evaluated here as a soluble formulation (sTRAIL) and a liposome-

conjugated formulation (LUV-TRAIL). In this chapter, we confirmed that LUV-TRAIL is 

more efficient in killing cancer cells than its soluble counterpart, despite its lower 

diffusion rate. In the future, it would be interesting to test other drugs, such as 

compounds activated in a hypoxic environment, and to combine tumor cells with other 

cell types such as stromal and immune cells, which are known to influence the 

behavior of tumor cells and to modulate their response to drug treatment.  

Altogether, the 3D tumor-2D endothelium co-culture model proposed in this chapter 

entails a great potential not only for drug screening and testing of precision medicine, 

given that only 5-μl samples are required for each assay, but also for more 

fundamental in vitro studies on cellular interactions in complex tumor models. As such, 

this chapter is entirely in line with the development and use of enhanced and clinically 

relevant in vitro models, which would allow diminishing the number of experiments 

conducted on animals and accelerate drug development and approval, hence 

improving patients’ prognosis and life quality at a faster pace. 
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Chapter 3: Oxygen-sensitive three-dimensional matrix 

for in situ hypoxia detection in cell culture. 

3.1 Introduction. 

Oxygen is a key molecule in cell biology. Its relevance in many cellular pr-ocesses like 

cell death (e.g. apoptosis and necrosis), cell migration, cell metabolism or even cell 

differentiation has thoroughly been described [215-219]. Oxygen has a cascade 

delivery process which results in a decrease of oxygen tension, from the 21% in the 

atmosphere to 1-14% in tissues [220]. Hence, low oxygen tensions are physiological 

and should be recapitulated and monitored in vitro to properly mimic in vivo behavior 

and unravel the biological impact of oxygenation in tissues.  

The oxygen tension in vitro is typically characterized in vitro using two main 

approaches: (1) using an electrochemical sensor and (2) using optical means. 

Electrochemical detection of oxygen proceeds via oxygen reduction, and the measured 

signal directly relates to the dissolved oxygen concentration in solution. The most 

common electrochemical oxygen sensor consists of a Clark electrode  [221]. Such Clark 

electrodes have been miniaturized [222,223], and applied for industrial purposes such 

as water quality management, [222] or for clinical monitoring [224] and biological 

research [225]. Despite their good sensitivity and short response time [226], 

electrochemical sensors suffer from certain limitations such as the fact that they 

consume oxygen during the measurements and may be bio-incompatible with some 

sensitive cells [227]. Particularly, oxygen consumption in the electrode can be a 

disadvantage for precise measurements, since it is not innocuous for the system [228]. 

Furthermore, biocompatibility is to be carefully considered when integrating new 

materials and compounds within a cell culture system [229]. Alternatively, optical 

oxygen sensors have been reported; they take advantage of transition metal salts, e.g. 

Ruthenium, Platinum or Iridium which are complexed to a phenanthroline-derived 

moiety, whose luminescence is quenched in presence of oxygen, proportionally to the 

oxygen tension  [230,231]. These probes can be directly incorporated in culture media, 
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provided they are soluble in aqueous solutions [232-235], or encapsulated in a 

substrate. Some examples for this last approach are conjugation of the probe molecule 

to films, to the microdevice material where the experiments are performed [236-243], 

or to microparticles added in a liquid suspension [244-249]. The optical oxygen sensing 

method is simple, reversible and does not consume any oxygen in the measuring 

process. Furthermore, an additional system or support material is needed to include 

the fluorescent probe in the sample (e.g. nanoparticles or sensing films), to avoid 

probe diffusion in the system [228] and cells, which could result in cytotoxicity in the 

long term. 

Some other interesting alternatives have been described in the literature, where an 

oxygen probe was conjugated to a scaffold and cells were subsequently seeded [250]. 

Excellent reviews on this regard have been published by Quaranta et al [251], 

Papkovsky and Dmitriev [231] and Grist et al [252].  However, the need for a support 

material hinders experimental setups and makes measurements only possible near the 

support material where the probe is conjugated. Specifically, in case of oxygen sensing 

films, biocompatibility is to be carefully considered, and sensing is limited to film 

extension within the cell culture setup. In case of nanoparticle-conjugated probes, 

measurements can be difficult to obtain at every location of the system. 

Finally, scaffold-conjugated probes overcome previously mentioned limitations. 

Nonetheless, confinement of the scaffolds experimental setups could be challenging, 

as well as achieving homogeneous cell distribution within the scaffold. Therefore, 

despite the multiple existing approaches, monitoring of oxygen in three-dimensional 

cell cultures within a biomimetic extracellular matrix remains a challenging task. 

In this work, we report a novel 3D oxygen sensitive matrix based con collagen for 

oxygen mapping in 3D cell culture systems. We achieved this matrix by conjugating a 

bis-phenanthroline, COOH-terminated ruthenium oxygen-sensitive molecule to the 

NH2 groups of ungelated collagen type I via NHS/EDC chemistry. Afterwords, we 

verified the conjugation reaction was successful and determined the final 

concentration of the probe immobilized in the collagen matrix. Next, the properties of 

the conjugated matrix were assessed and compared to those of the native matrix to 
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study the possible influence of the Ru-based complex on the hydrogel architecture. 

Particularly mechanical properties (e.g. Young’s Modulus) and microfiber orientation 

were investigated for various concentrations in the Ruthenium-based oxygen-sensitive 

probe. Moreover, biocompatibility was assessed, and cytotoxicity effects of the 

modified matrix on the proliferation rate of a colon cancer cell line, which has been 

reported to generate a high hypoxia rate [253,254], were dismissed. 

Overall, we have developed an innovative and versatile tool to quantitatively map 

oxygen variations in three-dimensional biomimetic systems. This tool inflicts no 

apparent long-term harm on cultured cells and can be applied to any system, 

regardless of the setup.  We anticipate this tool will facilitate the generation of 

accurate in vitro models under well-defined oxygen tensions and will contribute to 

elucidating the influence of oxygen variations thereof in various biological processes. 

 

 3.2 Materials and methods. 

3.2.1 Chemical synthesis of the oxygen sensitive compound.  

Ru(PhPhen)2Cl2 (Sigma-Aldrich GmbH, Buchs, Switzerland) (Molecule 1, 100 mg, 0.084 

mmol) and Phe-CO2H (Molecule 2, 26 mg, 0.084 mmol) were dissolved in a mixture of 

EtOH: H2O (1:2, 15 mL) and heated overnight at 110°C. The EtOH was removed under 

reduced pressure and the resulting suspension was added to a saturated NaCl solution 

(20 mL) and extracted three times with CHCl3 (20 mL). The organic phases were 

collected, washed with a saturated NaCl solution (20 mL) and dried over Na2SO4. The 

solvent was removed and the resulting solid dissolved in CHCl3 (10 mL) and 

precipitated with diethyl ether (50 mL). After filtration, the solid was washed with 

toluene and dried under vacuum giving a (50 mg, 0.044 mmol, 52%) product (bis(4,7-

diphenyl-1,10-phenantroline) (5-((1,10-phenantrolin-5-yl) amino)-5-oxopentanoic acid) 

ruthenium (2+)) (Molecule 3) which was further purified by HPLC (data not shown). 

Reactions are detailed below (Figure 3.1): 
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Figure 3.1: Synthesis of the carboxylic acid terminated [Ru(BPhen)2]2+ (BPhen=batophenanthroline) 
probe.  

 

3.2.2 Oxygen-sensitive probe covalent coupling to ungelated collagen.  

N-Hydroxysulfosuccinimide sodium salt (Sulfo-NHS) (Sigma-Aldrich 56485, Madrid, 

Spain) and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) 

(Sigma-Aldrich E7750) were both individually dissolved at 10 mg/ml in a 10 mM 2-(N-

Morpholino) ethanesulfonic acid (MES) (Sigma-Aldrich M8250) aqueous solution, 

adjusted to pH = 4.5 for optimal reaction conditions. 1 mg of the COOH-terminated 

oxygen-sensitive probe (Molecule 3) was dissolved in DMSO (50 µl), and this solution 

was mixed with the NHS/EDC mixture (200 µL) to yield a final concentration of 
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1 mg/mL in MES buffer, pH 4.5, to activate the -COOH moieties of the oxygen sensitive 

probe (Molecule 4) with NHS/EDC.  The resulting solution was let to react at room 

temperature for two hours while avoiding direct exposure to light. Thereafter, a 

3 mg/ml stock solution of rat tail collagen type I (GIBCO, A1048301) was thoroughly 

mixed with the solution of activated oxygen-sensitive probe in ice (approx. 4 0C) the 

latter being introduced for coupling with concentrations of 5, 15, 50, 100 and 200 µM. 

Reagents were kept in ice during the whole process and reaction mixtures were let to 

react at 4C for at least 12 hours before use. The reaction carried out is detailed below 

(Figure 3.2). 

 

Figure 3.2: Coupling of the dye to rat tail collagen via EDC/NHS activation.  

 

3.2.3 Preparation of the conjugated hydrogel and characterization of 

covalent binding.  

100 μl of the collagen hydrogel mixture to yield a final collagen concentration of 1.2 

mg/ml was prepared as follows: First, the collagen was neutralized by adding a 

solution of 1 M NaOH (Sigma 221465) at a 6% (v/v) proportion of the stock collagen 

solution. Next, the ionic strength was adjusted by adding Phosphate buffered saline 

(10 µL) 10x (PBS, Lonza17-517Q), and the volume was completed adjusted (to 100 μl) 

with sterile distilled water. Collagen hydrogel droplets (3 µL) were formed on the 

bottom of glass Petri dishes and allowed to polymerize at 37oC for 15 min.  Excess PBS 

was added to wash uncoupled probe for 24 h at 370C and PBS was refreshed once 

before the measurements. 
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3.2.4 Probe-collagen Conjugation efficiency.  

Absorbance measurements at 430 nm were conducted at room temperature using a 

Biotek® SynergyTM HT multi reader (BioTek Instruments, Inc. VT, USA). First, the 

absorbance spectra: Ru-based complex before conjugation and after conjugation (to a 

collagen hydrogel) were recorded to check that the absorbance properties were not 

affected by the covalent anchoring to collagen matrix. To do so, blocks of 1.2 mg/ml 

collagen hydrogel (50 µL) were prepared for all initial concentrations in the 

Ruthenium-based probe (i.e. 0, 5, 15, 50 and 100 µM). Furthermore, native collagen 

hydrogels were placed in solutions of activated Ruthenium-based probe at a 

concentration of 5, 50 and 100 µM where they rested for one week, so that their 

reactivity was lost overtime. Full absorbance spectra were also recorded for these 

collagen samples to check for spectral changes derived from conjugation. 

Next, a calibration curve was drawn for the activated Ruthenium-based probe in PBS in 

a 96-well plate by measuring the absorbance of solutions prepared with known 

quantities of the probe. Next, 50 µl pieces of hydrogel at 1.2 mg/ml were prepared for 

every initial Ru-based probe concentration (0, 5, 15, 50, 100 and 200 µM). As before, 

absorbance measurements were conducted in the hydrogel samples. The effective 

probe concentration in the hydrogels was extracted from the calibration curve 

obtained with the soluble probe and the measured absorbance values for the hydrogel 

samples. From that, the conjugation efficiency was determined. In all cases, recorded 

values were corrected by subtracting the absorbance values for the 0 µM samples. 

3.2.5 Analysis of the hydrogel architecture and anisotropy by confocal 

reflection microscopy.  

Confocal reflection images were acquired using a Nikon Eclipse Ti® microscope 

equipped with a C1 modular confocal microscope system (Nikon) after collagen 

polymerization using droplets of hydrogels prepared in glass-bottom Petri dishes. To 

enable reflection mode, the barrier filter of a 450/35 nm filter cube was removed, and 

the sample was visualized using a 488-nm laser. In this configuration, the laser light 

reflected by the hydrogel was captured by the photomultiplier tube, allowing the 

visualization of the collagen fibers.  Fibriltool® software [255] was used for data 
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analysis and to calculate the average orientation and anisotropy of the fiber arrays in a 

region of interest in the confocal reflection microscopy images.[16]  A constantly sized 

region of interest was analyzed from each image and an anisotropy index ranging from 

0 (purely isotropic, i.e. random organization) to 1 (perfect fiber orientation) was 

extracted. 

3.2.6 Detailed hydrogel architecture characterization by SEM imaging.  

Scanning electron microscopy (SEM) imaging was performed as previously described 

[256,257]. To facilitate hydrogel handling and contrast, hydrogels were prepared in a 

non-adhesive PDMS setup, fabricated as follows: PDMS (Sylgard 184, Dow Corning, 

GMBH) was prepared with a 10:1 pre-polymer: curing agent ratio according to the 

manufacturer’s instructions. A 4 mm-high PDMS block was prepared in a mold, cured 

for 2 h at 600C and subsequently punched to create 3 mm diameter cylinder 

microwells. The PDMS block was autoclaved and, in sterile conditions, placed on top of 

a 35-mm diameter Petri Dish (734-2317 VWR, Spain). This setup was incubated with a 

sterile 7.5% BSA solution in PBS (Gibco 05260-037) at 370 C for 2 h. Thereafter, the 

setup was washed twice with PBS and allowed to dry. Control collagen samples and 

collagen samples prepared with an 8 µM oxygen-sensitive compound concentration 

were prepared as described in previous sections. Due to BSA passivation, hydrogels 

could be extracted from the PDMS setup and transferred to Eppendorf tubes.  

SEM images were acquired using an SEM Inspect™ F50 (FEI Company, Eindhoven, The 

Netherlands) in a fixed energy range (0–30 keV). Samples were first frozen separately 

in liquid nitrogen. Subsequently, the Eppendorf tubes containing the samples were 

subjected to lyophilizing (Telstar cryodos Freeze Dryer) for at least 24 h. Finally, the 

hydrogel samples were coated with a carbon film before being examined with SEM. 

3.2.7 Mechanical characterization.  

The mechanical characterization of hydrogels was performed using AFM and a JPK 

CellHesion® system (JPK Instruments, Berlin, Germany) coupled with an inverted 

microscope (NIKON Ti®, Nikon Instruments). The procedure was analogous to that 

described in previous work [258]. Briefly, droplet samples (20 µL) were prepared for 

each initial oxygen-sensitive probe concentration (0, 2.3, 3.2, 3.8, 8 µM) as described 
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before in a Petri Dish (TPP Techno Plastic Products AG, 93040) and measured in 

Dulbecco’s Modified Eagle’s Medium (Lonza, BE12-707F) and 20 mM in HEPES buffer 

(Sigma–Aldrich). The samples were maintained at a constant temperature of 37˚C 

during the measurements. PNP- TR cantilevers (NanoAndMore, GMBH) tip B were 

selected for force spectroscopy measurements. The spring constant was precisely 

characterized by the thermal noise method before each measurement. An 8x8 grid of 

force spectroscopy measurement was programmed for each sample. Three samples 

were characterized for each condition. Measurements were performed using a fixed Z-

length distance for indentation and retraction (50 µm) to prevent the tip from sticking 

to the hydrogel. Data were processed with JPK DP® Software (JPK, AG) by applying the 

Hertz model (variant for square pyramidal tips) to each curve in the Force Map. Mode 

values were extracted from data histograms for every hydrogel condition. 

3.2.8 Coupled oxygen-sensitive probe photostability.  

Photobleaching assays were performed as described in previous work [259] using a 

Nikon Eclipse Ti® microscope equipped with a C1 modular confocal microscope system. 

Briefly, we compared the photobleaching rate for collagen hydrogels prepared as 

described previously using an initial concentration in oxygen-sensitive probe of 3.8 µM 

probe- and other samples supplemented with 0.1 μM fluorescein (free acid) (Sigma-

Aldrich, F2456) as a reference. Samples were continuously exposed to an ultrahigh 

pressure 130 Mercury lamp (Intensilight C-HGFIE, Nikon, Tokyo, Japan) at full intensity 

through a GFP filter (excitation peak at 485 nm, bandwidth 20 nm; emission peak at 

530 nm, bandwidth 30 nm) using a 20x objective. After 15, 30, 60, 180 and 420 s, 100x 

magnified confocal images were acquired using a 488-nm laser and a 650-nm long pass 

filter. Thereby, a graph could be plotted showing the variations in the fluorescence 

intensity as a function of the laser irradiation time. To assess photobleaching dynamics 

and fluorescence intensity variations in the conjugated gels, intensity histograms were 

extracted for the different images via ImageJ® software. Intensity values were plotted 

for every condition and compared. 

To assess fluorescence recovery after photobleaching (FRAP), we allowed recovery 

times of 10 minutes in the probe-conjugated hydrogel samples and fluorescein 
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supplemented hydrogel samples used for the photostability assay. Thus, regions of 

interest covering both bleached and unbleached areas were analyzed with ImageJ®.  

3.2.9 Cell culture.  

HCT-116 cells, human epithelial colon cancer cell line (kindly donated by Dr. Martinez 

Lostao, University of Zaragoza), were grown in high-glucose Dulbecco´s modified Eagle 

medium (DMEM) (LonzaBE12-614F, Basel, Switzerland) supplemented with 10% v/v 

fetal calf serum (Sigma F7524, St. Louis, US), L-glutamine (Lonza17-605F) and 

penicillin/streptomycin (DE 17-602E) within a humidified TEB-1000 incubator set at 5% 

CO2 and 37oC (EBERS Medical Technology, Zaragoza, Spain). Medium was refreshed 

every other day and cells were passaged every 4 days using Trypsin/EDTA solution 

(Lonza, CC-5012). To do so, culture medium was aspirated by means of a plastic 

pipette and cell culture flask was rinsed with 0.1 ml of PBS/cm2. Next, Trypsin/EDTA 

solution (0.02 mL/cm2) was added to the flask and left to incubate for 5 min at 37C. 

Furthermore, cells were harvested with Supplemented High Glucose DMEM (0.1 

mL/cm2) and pelleted (300 g for 5 min). Cells were subsequently resuspended in the 

desired volume of supplemented High Glucose DMEM for reseeding. 

3.2.10 Cell viability within the 3D oxygen sensitive hydrogel.  

Cells were trypsinized and resuspended at a concentration of 106 cell/mL in 

supplemented high-glucose DMEM as described in the previous section. Using a chilled 

tip, cells were pipetted in a 1.2 mg/mL collagen solution, using both native collagen 

and conjugated collagen. Following this, droplet gels (3 μl) were pipetted in a 96 multi-

well plate (Sarstedt, 82.1581.001, Nümbrecht, Germany), which was placed into an 

incubator (37C and 5% CO2) for 15 min to allow collagen polymerization. After 

polymerization, supplemented high-glucose DMEM was added to the wells. To assess 

the viability of the cells embedded in the gel, NucBlue® Live and NucGreen® Dead 

reagents (Molecular ProbesTM, Eugene, US) were added for 30 min incubation 

according to the manufacturers’ instructions. Microscopy z-stack images were taken 

every 50 µm using a Nikon Eclipse Ti® microscope equipped with a C1 modular 

confocal microscope system. Next, images were opened with Fiji® software 

(http://fiji.sc/Fiji) and z-projected to obtain a single picture combining all seeded cells 

http://fiji.sc/Fiji
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in the gel. Both blue-stained cells (stained with NucBlue®) and green-positive cells 

(stained with NucGreen®) were counted manually. Due to the high cell concentration, 

long-term cell discrimination was not always possible. Therefore, the cell-occupied 

area was quantified and compared for native collagen and collagen conjugated to the 

oxygen-sensitive probe. Specifically, the different plane images composing the z-stack 

were z-projected using ImageJ® to compose a sole image to avoid double counting of 

cells present in various images. Once projected, NucBlue® images were binarized and 

blue pixels were automatically counted and normalized to the total number of pixels in 

the image. 

3.2.11 Oxygen probe calibration and in situ oxygen measurements.  

Conjugated-collagen (3.8 µM in oxygen-sensitive probe) blocks were prepared as 

described in previous sections. Hydrogels were washed twice during 48 h with PBS and 

incubated for 24 h under 1, 2.5, 5, 10, 12.5, 17.5 and 20% of oxygen in an incubator, 

which allowed precise oxygen tension setting (TEB-1000, Ebers Medical). Next, stacked 

confocal images were acquired (every 50 μm) within a few minutes and the 

fluorescence intensity was quantified for each oxygen concentration, at the same 

height of the hydrogel.  In situ oxygen measurements were performed by means of 

confocal microscopy as described in previous sections, keeping the imaging 

parameters consistent. Fluorescence intensity measurements were extracted using 

ImageJ® from the confocal images and converted to oxygen concentrations using the 

calculated calibration curve. Finally, oxygen concentrations were rendered as an 

oxygen map by using ImageJ®. 

 

3.3 Results and discussion. 

3.3.1   Preparation of the 3D oxygen-sensitive hydrogel-based matrix. 

In this work, we chose to create a novel oxygen-sensitive matrix for cell culture, which 

would provide 3D information on local oxygen concentrations in a biomimetic in vitro 

system.  

To achieve this goal, we firstly selected a hydrogel to support 3D cell culture as 

supporting material for our approach. Hence, we chose to use collagen because it is 
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one of the main components of the extra-cellular matrix, and it is widely used for cell 

culture [104,109,157]. The use of distributed matrix, rather than a localized supporting 

material, provides the opportunity to map oxygen concentrations at any location, with 

the only aid of a fluorescence microscope. 

Next, we synthetized a Ruthenium oxygen-sensitive compound with three 

phenanthroline-derived moieties, as described above (2 bisphenylphenantroline and a 

phenantroline group terminated by an acid moiety), although not combined in the 

same molecule [230,252]. Particularly, we chose Ru over other transition metals 

because it yields compounds with a more straightforward synthesis, longer lifetimes 

and remarkable photophysical properties, therefore providing more opportunities as 

biological sensors [225]. This molecule offers the possibility of modification of one of 

its ends to a carbonyl group, so that it can be subsequently conjugated to a substrate 

containing terminal amine moieties via NHS-EDC reaction (Figure 3.3).  

 

Figure 3.3: Oxygen-sensitive molecule synthesis. To monitor the oxygen concentration, an oxygen-

sensitive Ru(II)-based dye is synthesized, from a [Ru(bpp)2]2+ (bpp = bisphenylphenanthroline) moiety 

functionalized with a 1,10-phenanthroline unit equipped with a 0.5 nm spacer and a terminal carboxylic 

acid. This image was kindly provided by Dr. Albert Ruggi. 
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The conjugation of the probe to the hydrogel avoids diffusion of the probe and probe 

loss due to culture media refreshing, as well as prevents probe internalization by the 

cells in culture, thus compromising the biocompatibility of the system. Moreover, the 

oxygen-sensitive probe is ubiquitously distributed through the matrix, therefore 

providing 3D data at any location of the system. After the coupling reaction, we 

verified conjugation by characterizing the amount of probe which was chemically 

conjugated to the matrix. Firstly, we observed a change of color in the conjugated 

hydrogels compared to native ones (Figure 3.4). 

 

Figure 3.4: Images of a probe-conjugated hydrogel (left, yellow) and a native hydrogel (right, 

transparent) after polymerization in Petri Dishes and addition of phosphate-buffered saline. The probe-

conjugated hydrogel stays yellow after washing. 

 

To this end, we compared recorded spectra (350-700 nm) of a collagen hydrogel 

supplemented with unconjugated probe and a collagen hydrogel subjected to 

conjugation with the oxygen-sensitive probe. The spectrum of a plain hydrogel was 

subtracted as baseline to discard collagen intrinsic absorbance. Results can be seen in 

Fig. 3.5a. Thus, a distinctive absorbance peak could be observed in the spectrum of the 

conjugated gel compared to the plain hydrogel. Results are shown in Fig. 3.5b.  
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Figure 3.5: Full spectra of the oxygen-sensitive probe, both conjugated and in solution.  a) Spectra of the 

oxygen-sensitive probe both in suspension in a hydrogel (100 µM in blue and 50 µM in green), 

conjugated to a hydrogel (100 µM of initial concentration, thoroughly washed to eliminate 

unconjugated traces) and the native hydrogel (in black). B) Corrected spectra by subtracting the native 

hydrogel absorbance from the spectra shown in (a). No significant peak displacement was observed 

between both species. 

 

Spectra showed no significant displacement of the absorbance peak for the conjugated 

and unconjugated probe, therefore, and considering that a hydrogel is mostly 

composed of water, we assumed that a calibration curve in liquid would be a valid 

method to interpolate absorbance data and retrieve the effective concentration of 

probe conjugated to the hydrogel. 

Since no influence of 3D hydrogel environment was observed in the probe absorbance 

properties, we decided to use absorbance values in a liquid environment as a 

reference to determine the coupling efficiency of Ru-based stuff to collagen matrix.  

Hence, we obtained a calibration curve by preparing solutions with the probe in 

suspension dissolved in MES buffer and added to phosphate buffered saline (PBS), 

pH=7.4 and quantified the absorbance for each of them at 430 nm (Figure 3.6).  

Absorbance for the control sample was subtracted to correct for unspecific 
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absorbance. Then, the Lambert-Beer coefficient was extracted from these data getting 

ε = 33186 M-1cm-1.  

 

Figure 3.6: Absorbance intensity of the Ru-based oxygen-sensitive probe in PBS solution (phosphate 

buffered saline) as a function of the probe concentration. Plot shows average ± SEM, fitted through a 

regression model.  

 

Thereafter, we prepared hydrogels for initial concentrations of 0, 5, 15, 50 and 100 µM 

in probe. Gels were washed with PBS to eliminate the excess of unconjugated probe 

and absorbance was evaluated again for 430 nm and interpolated in the previous 

calibration curve. Data showed effective concentrations of probe ranging from 2-8 µM, 

as initial concentrations of probe increased (Figure 3.7). This is consistent with 

saturating sites of union within the hydrogel. Subsequently, the final concentration of 

the probe specified is covalently attached to the collagen structure.  
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Figure 3.7: Determination of the Ru-based compound conjugation efficiency to the collagen hydrogel. 

Effective Ru-based compound concentration in the collagen hydrogel derived from the absorbance 

curve in 3.4 as a function of the initial concentration in Ru-based probe used for the conjugation. Plot 

shows average ± SEM. 

 

3.3.2   Properties of the 3D oxygen-sensitive matrix. 

After the conjugation procedure was assessed, we investigated whether the addition 

of the probe structure could disturb the natural collagen structure. Possible 

disturbances could alter matrix architecture and subsequently introduce changes in 

mechanical properties, eventually altering 3D cell culture in the modified matrix. 

Therefore, we subsequently examined these aspects to validate the modified matrix 

for in vitro cell assays. 

As a first step, we imaged the structure of conjugated and unconjugated collagen 

hydrogel using SEM. For this characterization, we firstly tested the conjugated collagen 

hydrogel with the highest amount of immobilized oxygen-sensitive probe (final 

concentration of 8 µM). The resulting SEM pictures are presented in figures 3.6a and b:  

the fiber size was found to be similar, and the ramifications in the mesh to be 

analogous, which would entail a comparable pore size for the 3D collagen matrix. 

Altogether, no obvious structural changes were detected for the conjugated collagen 

with the highest (8 µM) concentration in oxygen-sensitive probe, from which we 

assume that the collagen architecture was unaffected for the different Ru-based 

compound concentrations tested here (Figure 3.8). 
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Figure 3.8: Physical characterization of the 3D oxygen-sensitive matrix by SEM. SEM images for a control 

hydrogel (0 µM oxygen-sensitive probe) a) and a hydrogel with 8 μM oxygen-sensitive probe b). 

 

Next, the mesh structure of the collagen hydrogel was studied in more detail to assess 

differences in organization of the hydrogel at molecular level (Figure 3.7a&b). 

Therefore, filament anisotropy was characterized via Fibriltool® analysis on confocal 

reflection microscopy images (Figure 3.9c). The filament density in both images, 

obtained with native collagen and collagen with 8 µM immobilized O2-sensitive probe, 

appears to be comparable (Figure 3.9a & b). The anisotropy was quantified by 

determining the anisotropy index for collagen hydrogels. This is a parameter which 

quantifies the orientation of fibrils (or lack thereof) constituting a compound of fibrils. 

The analysis of this parameter was performed with various final probe concentrations 

as well as native collagen (control): for all samples an anisotropy index of 0.012 ± 

0.0008 was found, and no significant variation between conjugated and native collagen 

for any concentration in oxygen-sensitive probe was found (Figure 3.9c). 
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Figure 3.9: Physical characterization of the 3D oxygen-sensitive matrix. Confocal reflection microscopy 

images for the control hydrogel c) and a hydrogel with a final concentration of 8 μM in oxygen-sensitive 

probe d). e) Anisotropy index. Plot shows average ± SEM. No statistically significant differences were 

found. 

 

Last, we also examined the mechanical properties of the collagen material, before and 

after conjugation of the oxygen-sensitive probe; the hydrogel mechanical properties 

are particularly important for cell migration and cell differentiation. The hydrogel 

Young’s Modulus was determined using AFM and derived from cantilever indentation 

curves. Non-significant variations are observed for hydrogels up to 3.8 µM of probe 

concentration, whereas a significant Young Modulus decrease of 12.5 Pa was observed 

for the highest probe concentration (8 µM, p-value < 0.0001) (Figure 3.10). This 

indicates a slight disruption of the mesh by the presence of the compound at this 

concentration. 

 

Figure 3.10: Young’s Moduli determined for 3D hydrogel matrices prepared with different 

concentrations in oxygen-sensitive probes (p-value < 0.0001). Plot shows average ± SEM. 
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Overall, these data collectively suggest that the presence of the oxygen-sensitive Ru-

based complex in the collagen matrix for concentrations of 3.8 µM and below had no 

significant influence on the collagen fiber organization, at a molecular level or on its 

mechanical properties. This suggests that the modified matrix could be safely used for 

3D cell culture with very similar results to native collagen matrices.  

3.3.3   Photostability of the 3D oxygen-sensitive matrix. 

Given the potential use of this matrix as a fluorescent oxygen probe, we investigated 

the photostability for the conjugated hydrogel to validate its use as a fluorescent 

probe for time-lapse oxygen measurements. Consequently, we assessed the 

photostability properties of the probe molecule in a 5 µl-hydrogel droplet format.  

A circular ROI was bleached on the droplets with a fluorescent lamp at full power 

(Figure 3.11 a-b). After bleaching the conjugated hydrogel droplet, we observed no 

fluorescence recovery in the following 10 minutes (Figure 3.11 c). In contrast, when 

soluble fluorescein was added to the solution, fluorescence was recovered after 10 

minutes (Fig. 3.11 e-f).  
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Figure 3.11: Photostability of the 3D oxygen-sensitive matrix. Photobleaching performed on collagen 

hydrogel droplets with either 3.8 µM covalently attached Ru-based compound or 0.1 µM soluble 

Fluorescein. a) and e) Fluorescence microscopy images of the collagen droplets before exposure to the 

laser light, with the conjugated probe a) and soluble fluorescein e). In both cases the bleached region of 

interest is indicated as a dashed circle. (b) and (f) Fluorescence microscopy images of the collagen 

droplets after photobleaching both fluorophores for 420 s using a 488-nm fluorescent light, full 

intensity. c) and g) Fluorescence microscopy images of the collagen droplets after recovery (420 s of 

bleaching + 600 s of recovery) for the Ru-based compound and fluorescein, respectively. The analyzed 

region of interest is indicated as a dashed rectangle; and the intensity was evaluated for this entire 

surface. Bleaching was carried out with a 488-fluorescent light (Intensilight C-HGFIE, Nikon, Tokyo, 

Japan) for the Ru-based oxygen-sensitive probe (a) and soluble fluorescein (e). 
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ROIs were quantified to extract quantitative data for posterior analysis, hence 

confirming the visual observations. In case of the oxygen-sensitive probe, we 

confirmed no fluorescence intensity recovery after 10 minutes, whereas in case of 

fluorescein, recovery is clearly detected due to fluorophore diffusion through the 

hydrogel (Figure 3.12). 

 

Figure 3.12: Quantification of bleaching and recovery dynamics for the analyzed ROIs. a) and b) 

Variations in the fluorescence intensity in the rectangular ROI defined in images a-c) and e-g), 

respectively, for the Ru-based oxygen-sensitive probe and soluble fluorescein. Plots show average 

fluorescence profiles for the analyzed droplets. 

 

Furthermore, we found that the fluorescence of the probe was reduced to 50% after 2 

minutes of continuous fluorescent light exposure and to 30% after 7 minutes (Figure 

3.13a), which is comparable to what is observed with fluorescein (Figure 3.13b). 

Importantly, these experiments confirm that the oxygen-sensitive probe is covalently 

conjugated to the collagen matrix.  
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Figure 3.13: Variations in the fluorescence intensity (in the bleached circular ROI) as a function of the 

continuous irradiation time for the hydrogel conjugated oxygen-sensitive probe (a) and fluorescein free 

acid (b). Bleaching was carried out with a 488-fluorescent light (Intensilight C-HGFIE, Nikon, Tokyo, 

Japan) for the Ru-based oxygen-sensitive probe (e) and soluble fluorescein (k). Plots show average ± 

SEM. 

 

3.3.4   Biocompatibility of the 3D oxygen-sensitive matrix. 

As a next step, we tried to determine the highest probe concentration which could be 

safely used for cell culture. To this end, we examined cell viability after short-term and 

long-term culture in the oxygen-sensitive matrix for different Ru oxygen-sensitive 

probe concentrations.  

HCT-116 cells were embedded in 1.2 mg/ml conjugated collagen hydrogels at a 

concentration of 106 cells/ml, and cultured in the gelated matrix for 24 h. Collagen 

with effective probe concentrations of 0, 2.4, 3.2, 3.8 and 8 µM were tested in this 

experiment. 

Cell viability was quantified after 24 hours using NucBlue® and NucGreen® probes that 

respectively stain all cells and only dead cells. As shown in Figure 3.14, for 

concentrations lower than 3.8 µM, cell viability was unaffected by Ru-probe 

concentrations of 3.8 µM or lower (higher than 92%), but became significantly lower 

for collagen matrices with 8 µM oxygen-sensitive probes (82.85 ± 4.04, p=0.004). 

Based on these results, concentrations up to 3.8 µM in oxygen-sensitive probe can be 

used without posing a risk for cultured cells. Images for control and 3.8 µM of oxygen 

conjugated probe are shown in Figure 3.14b and c. 
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Figure 3.14: Biocompatibility of the oxygen-sensitive matrix. a) Biocompatibility was assessed after 24 

hours with ReadyProbes® Nucblue® Live Cell Stain and Nucgreen® Dead (Dead cell probe) for HCT-116 

colon cancer cells at a concentration of 106 cells/ml in the 3D oxygen-sensitive collagen matrices 

functionalized with different oxygen-probe concentrations (2.4, 3.2, 3.8 and 8 µM) as well as in control 

collagen matrices with no probe (p value < 0.008). b) Viability image for a control hydrogel after 24 

hours. c) The image shows a hydrogel conjugated with 3.8 µM of the oxygen-sensitive probe. Graph 

shows average ± SEM. 

 

To discard possible long-term effects on cell viability and proliferation, cell viability was 

also checked once a day for one week with the same fluorescent dyes as before, using 

a collagen matrix with a final oxygen-sensitive dye concentration of 3.8 µM and 

unconjugated collagen as a control. No significantly different results were observed 

between the 3.8 µM conjugated hydrogel and the unconjugated control hydrogel 

(Figure 3.15a). An image after 7 days can be found in Figure 3.15b.  

 

Figure 3.15: Cell viability assessed over a period of culture of 7 days after seeding 106 cell/ml in 3D (a). 

Cell viability was assessed with ReadyProbes® Nucblue™ Live Cell Stain and Nucgreen™ Dead (Dead cell 

probe). (b) Z-projection of cultured HCT-116 cells in 3D, stained with NucBlue® (total live cell indicator) 

and NucGreen® (dead cell indicator) after 7 days in a 3.8 µM oxygen-sensitive probe hydrogel. Graph 

shows average ± SEM. 
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Next to this, the cell-occupied area was quantified on each day by counting the 

number of blue pixels and normalizing this number to the total number of pixels in the 

image. The variations in the cell occupied area over a culture time of 7 days reveal a 

similar trend in cell proliferation for the control and the oxygen-sensitive collagen 

matrix containing, respectively, 0 and 3.8 µM oxygen-sensitive probe (Figure 3.16). 

Altogether, over a culture duration of 7 days, no statistically significant difference was 

found between both collagen matrices, without and with 3.8 µM oxygen-sensitive 

probe. 

 

Figure 3.16: Cell proliferation assay in both control collagen and collagen conjugated with 3.8 µM 

oxygen-probe over a period of culture of 7 days; cell proliferation was quantified by measuring the 

NucBlue® positive surface area percentage in the image for the 3.8 µM probe-conjugated hydrogel. 

 

Toxicity could however be caused not by the oxygen-sensitive probe itself but through 

the production of reactive oxygen species (ROS) upon excitation of the Ru-based 

complex by light. Therefore, in a second series of experiments, we examined the 

possible generation of ROS upon exposure to light as well as cell viability. The 

generation of ROS was studied using CellROX® Orange Reagent, which is a fluorescent 

real-time indicator of ROS concentration. As before, we compared control collagen 

matrices and collagen functionalized with 3.8 µM oxygen probe, with and without 

exposure to fluorescent light (488 nm), and in all four cases ROS production was 

quantified. In presence of oxygen-sensitive probe the ROS level was found significantly 

higher even without any exposure to light (2.7-fold increase), and increased even 

further when excited with 488-nm light (5.2-fold increase) (Figure 3.17). 
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Figure 3.17: Quantification of the ROS levels in control and oxygen-probe-coupled collagen using 

CellROX® Orange Reagent before and after exposure to fluorescent light (λ = 488 nm; exposure for 1 s 

every 2.5 min for 1 h). Graph shows fluorescence increase ratio as average ± SEM. 

 

Next, we checked if the increase in ROS in the cell environment would have an impact 

on cell viability. For all 4 series of samples (control collagen and collagen conjugated to 

3.8 µM oxygen-sensitive probe, with and without exposure to light), cell viability was 

examined using NucGreen® and NucBlue®, both after 3 and 72 hours from exposure. In 

all cases, cell viability was 94-96%, showing no statistically significant differences 

between control hydrogels and oxygen-sensitive probe conjugated hydrogels (Figure 

3.18). Thus, we found that despite the increased ROS concentration, no negative effect 

was found on cell viabilities at the examined time points. 

 

Figure 3.18: Cell viability (HCT-116) determined at 3 h and 72 h for control collagen and collagen 

conjugated with 3.8 µM oxygen-sensitive probe, after light exposure or without any exposure to light as 

described before.  Graph shows average ± SEM. 
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3.3.5 Calibration of the 3D oxygen-sensitive matrix. 

Finally, we performed a calibration for the 3D oxygen-sensitive matrix by correlating 

oxygen tension and fluorescence signal to be able in the future to derive a local oxygen 

concentration from the measured fluorescence signal during cell culture experiments. 

To that end, we pre-conditioned conjugated collagen hydrogels with 3.8 µM oxygen-

sensitive probe under different oxygen tension conditions in a dedicated incubator 

with a tunable oxygen amount. Furthermore, we designed our measurement setup so 

that re-equilibration to atmospheric oxygen conditions (ca. 21%) after sample removal 

from the incubator would take a longer time compared to that required for the optical 

measurements. We ensured that equilibration would take at least 40 minutes (based 

on Fick’s law, using diffusion coefficient of oxygen in water and calculated using 

Diffusion Time Calculator by Physiology Web) [260], whereas measurements would 

take a few minutes. Hence, we ensured that the concentration of oxygen in the 

hydrogel would remain the same as during the pre-conditioning step. Fluorescence 

values were extracted from confocal images for every oxygen concentration and line-

fitted (Figure 3.19). The R2 for the fitting was 0.9685. This calibration was used to 

convert fluorescence values to quantitative oxygen values in 3D hydrogels. 

 

 

Figure 3.19: Calibration of the fluorescent response of the oxygen-sensitive matrix to hypoxia. Hydrogels 

were incubated for 24 hours at different oxygen concentrations (1, 2.5, 5, 10, 12.5, 15, 17.5 and 20%) 

and data were extracted from fluorescence images. Graph shows average ± SEM. 
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3.3.6 Application of the 3D oxygen-sensitive matrix for oxygen mapping of 

3D cell culture. 

After performing a fluorescent calibration on the oxygen-sensitive matrix, we used it as 

a tool for oxygen mapping in 3D cell culture. Firstly, we used it in to determine 

quantitative increases in 3D cell culture because of cell density and oxygen 

consumption by the cultured cells. To this end, we seeded three densities of HCT-116 

colon cancer cells in hydrogels conjugated with 3.8 µM in oxygen-sensitive probe. After 

24 hours, we imaged the hydrogel fluorescence and compared the resulting 

fluorescence intensity and found a significant fluorescence increase between the 

control (no seeded cells) and the lowest cell density (0.25·106 cells/ml of 7.8% (p = 

0.0152) (Figure 3.20). When comparing the fluorescence intensity of the 0.25·106 

cells/ml to 5·106 cells/ml, the increase was of 27.5% arbitrary units, and was 

significantly higher (p<0.0001). Finally, when comparing 5·106 cells/ml to 40·106 

cells/ml, the increase was found to be of 3.5-fold (p<0.0001). It can be observed that 

the higher the increase in fluorescence the higher the cell density difference. 

Furthermore, the oxygen-sensitive dye can sense both subtle and significant increases 

in cell concentration and, hence, of oxygen consumption in 3D. 

 

 

Figure 3.20: Response of the oxygen-sensitive matrix to oxygen consumption by different cell densities 

in a 3D cell culture. Cells were seeded at 0.25, 5 and 40 million cells/ml in oxygen-sensitive matrices 

conjugated with 3.8 µM of the oxygen-sensitive probe. Confocal images were taken after 24 hours and 

fluorescence values were extracted for each condition. Graph shows average ± SEM. 
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Following this, we chose the highest cell density from the previous experiment (40·106 

cells/ml) and observed its evolution overtime (1, 4 and 24 hours), to determine 

whether the hydrogel could be used to track oxygen changes produced by cell 

consumption overtime (Figure 3.21). Thereafter, we compared the fluorescence 

intensity observed after 1 hour and after 4 hours we observed a 10% increase in 

fluorescence in the system (p < 0.0001). Then, we compared the fluorescence increase 

from 4 to 24 hours and found a 29% increase in the oxygen-sensitive matrix 

fluorescence (p < 0.0001). All in all, these data confirm that the oxygen-sensitive matrix 

can detect subtle changes in oxygen concentration for a same system overtime. 

 

Figure 3.21: Response of the oxygen-sensitive matrix to oxygen consumption by a 3D cell culture at 1, 4 

and 24 hours after seeding. 40·106 HCT-116 cells were seeded in a hydrogel conjugated with 3.8 µM 

oxygen-sensitive probe. Cell-induced oxygen depletion was assessed at the different time-points by 

means of confocal microscopy and the fluorescence values were extracted from the images. Graph 

shows average ± SEM. 

 

Finally, we validated the use of the oxygen-sensitive matrix for oxygen mapping in a 3D 

microenvironment. To do so, we seeded 5·106 HCT-116 cells/ml in a 3.8 µM oxygen-

sensitive matrix and performed confocal imaging as previously described. Confocal 

imaging raw data was transformed into oxygen values by means of the calibration 

described in previous sections. As can be seen in Figure 3.22, variations in oxygen are 
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more evident locally, around cultured cells and quickly decay with distance. Hence, 

they would not be detectable in a less distributed system. 

 

Figure 3.22: Oxygen map performed for a 5·106 HCT-116 cell/ml cell culture in a hydrogel conjugated 

with 3.8 µM of the oxygen-sensitive probe. Color scale can be observed on the slide for a more detailed 

view of oxygen variations. 

 

3.4 Chapter summary. 

Here, we have reported a novel oxygen-sensitive matrix based on collagen type I and 

including an oxygen-sensitive molecule (Ru((bpp)2(PHEN-PENT-COOH)2+) for local 

mapping of oxygen in 3D cell culture. To prepare the 3D oxygen-sensitive matrix, a 

ruthenium oxygen-sensing molecule with phenantroline-derived moieties was 

covalently attached to free amino groups of collagen before gelation, using EDC/NHS 

chemistry, with a typical coupling yield of 2-8 µM. The structure and mechanical 

properties of the collagen matrix remained unaffected after conjugation of the Ru-
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based oxygen-sensitive probe, at least for final concentrations in the collagen of up to 

8 μM. The conjugated collagen matrix supported growth and proliferation of HCT116 

cells seeded in 3D in the material, with no significant difference compared to native 

collagen, demonstrating thereby its suitability for 3D cell culture experiments. As a 

next step, we calibrated the fluorescent signal of the conjugated collagen as a function 

of the oxygen concentration. Finally, we validated its use for locally mapping oxygen 

concentrations in vitro. 

Altogether, the proposed approach and conjugated collagen matrix allows oxygen 

determination in a biocompatible way, at any point of the setup. The fact that the 

oxygen-sensitive probe is conjugated to a matrix of natural source has not been 

reported in the literature, to the author’s knowledge, and presents many advantages 

over soluble probes. Firstly, collagen is a thoroughly characterized and widely used 

matrix for cell culture, which ensures cells are cultured in a biomimetic 

microenvironment. Secondly, the use of an ungelled matrix provides the user with the 

opportunity to choose a setup, rather than being constrained to a particular one. This 

fact permits coupling of different types of cellular assays with real-time on-the-spot 

oxygen monitorization in vitro.  

Furthermore, probe loss and consequent variation on the signal are not an issue. 

Likewise, soluble probe diffusion inside cultured cells is prevented, thus avoiding 

unknown effects on oxygen consumption, cell metabolism and viability. 

Finally, we believe such a material will be key to optimize culture conditions and 

perfusion protocols in 3D cell culture. Furthermore, the ability to correlate local 

variations in the oxygen tension and cell behavior renders this tool very powerful to 

assess cancer-related processes both in vitro and ex vivo, e.g., metastasis or drug 

resistance. These processes have been found to act as a prognosis marker, and 

therefore this newly developed tool becomes an asset for personalized medicine. 
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Chapter 4: Enabling cell recovery from 3D cell culture 

microfluidic devices for tumor microenvironment genetic 

signature evaluation. 

4.1 Introduction. 

The tumor microenvironment (TME) is currently recognized as a central player in 

tumor development and progression [261]. TME comprises the niche in which a tumor 

develops and comprises different cell types and distinctive cues of diverse sort [23]. 

Among the lasts, gradients of oxygen tension, nutrients and waste products are 

established in the malignant tissue, varying as a function of distance from the nearest 

supporting blood vessels [262]. This very specific TME is known to strongly influence 

tumor evolution, having also a deep impact on drug resistance and, as a consequence, 

on patient outcome [261,263]. 

Although TME is clearly organized in a 3D manner, most of the traditional in vitro 

cancer research is still performed using the classic 2D models based on the Petri dish. 

2D models have historically provided researchers with invaluable insight on tumor 

biology, even though they reproduce many of the mentioned features of the TME with 

utter difficulty, which is critical in the context of targeted therapies. The development 

of molecular analysis techniques (e.g. genomics or proteomics) has allowed an 

unprecedented and highly precise molecular profiling of the tumors cells to find new 

molecular targets (e.g. VEGF or EGF); hence, they are the mainstream techniques in 

cancer research nowadays. Unfortunately, most of these molecular profiles obtained 

in 2D models can dramatically change when cancer cells grow in a more physiologic 

TME.  Hence, many results obtained with traditional models do not match those 

observed in vivo [264].  

As we have previously highlighted in the introduction, there is an urging need for new 

generation in vitro models, which progressively incorporate more features of the TME. 

By incorporating these enhanced models to traditional labs, more insight in tumor 
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development would be provided, hence improving and accelerating drug research and 

development [3,265,266]. 

In this context, microfluidics can reproduce complex biological three-dimensional 

microenvironments. Thanks to the small volumes manipulated through microfluidics 

and the fluid physical properties at the microscale, spatial control can be achieved, and 

gradients can be utilized to create a biomimimetic three-dimensional environment 

[267]. Thus, new complex problems inaccessible to traditional technologies can be 

investigated through microfluidics.  

Keeping this in mind, we have reported the development and characterization of a 

microfluidic model of the tumor microenvironment, which overcomes many of the 

inspection drawbacks presented by three-dimensional multicellular spheroids and 

integrates the benefits of microfluidics and real-time monitoring in a user-friendly 

microfluidic device [268]. 

Despite the  advantages of microfluidics, the adoption of these techniques in 

mainstream molecular biology and cancer research has not yet met the expectations 

surrounding the field [3,269]. Most of the microfluidic assays only offer a low number 

of read-outs, normally based on microscopy observations (e.g. migration of cells 

towards chemoattractants). Conversely, retrieving the cells in 3D culture within the 

microdevice for an in depth genomic or proteomic analysis constitutes an approach 

that remains challenging.   

Therefore, the conjugation of microfluidics with genomics would result in an extremely 

powerful tool on the field of cancer research, combining the TME recreation by 

microfluidic devices with the massive screening of genomics/proteomics. Such an 

approach yet remains to be explored in the literature and it would provide a new 

robust set of comprehensive data for a new perspective on cancer research. Ideally, a 

protocol to retrieve these cells should be cost-effective, harmless to the cultured cells 

and rapid, if maintaining the effects of the TME on individual cell programming is 

intended. Arguably, the main obstacle to conjugating both these techniques is to 

maintain the benefits of the dimensionality achieved through microfluidics in 
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downstream techniques. Thus, coupling techniques should be aware of this fact and 

present alternatives to overcome this obstacle. 

In this chapter, we summarize the development of a microfluidic tumor slice model 

inspired in spheroids performed previously in our group [268]. Moreover, we utilized it 

to further investigate some processes related with tumor development by means of 

RT-PCR. To achieve the latter objective, we have optimized a protocol to extract cells 

from three-dimensional protein ECM scaffolds confined within microfluidic devices by 

means of a quick enzymatic degradation process which does not affect cell viability. To 

demonstrate the capabilities of this methodology, we have cultured two different cell 

types in a harsh and starving environment and recovered them at different time points 

for RNA extraction. Subsequently, we used the extracted RNA to quantify the 

expression of genes related to processes taking place in both tumor 

microenvironments, such as hypoxia, cell death mechanisms and autophagy. 

Finally, we have developed a method based on hydrogel patterning, intended to 

maintain the spatial organization encountered in the model. This patterning method, 

followed by cell sorting can be used to analyze different regions separately. 

Overall, we have developed a method for coupling microfluidics with traditional 

molecular biology techniques without losing the cell organization achieved thanks to 

microfluidic devices. 

 

4.2 Materials and methods. 

4.2.1 Microdevice fabrication.  

Cyclic olefin polymer-based microdevices were designed to allow user-friendly 

operation, avoiding the need for specialized clean-room processing equipment. The 

microdevice comprised a 2000 μm wide central chamber, flanked by two 700 μm wide, 

250 μm deep lateral microchambers. The central microchamber was delimited from 

the lateral microchannels by parallelogram-shaped pillars that allowed liquid and cell 

confinement within hydrogels as described elsewhere [270]. Hence, lateral 
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microchannels remained hydrogel-free and were filled with media or collagenase 

solution when needed. Hydrogel injection was performed through dedicated inlets and 

outlets by manual pipetting. The configuration of the microdevice is shown in 

Figure 4.1.  

Microdevices were fabricated by injection molding and attached to Petri dishes using 

biocompatible adhesive. Prior to their use in cell culture, microdevices were sterilized 

with 70% ethanol. After air-drying and 2 hours UV exposure, microdevices were ready 

for use.  

A 3D cell culture system with injected hydrogel was confined to the central chamber. 

The lateral microchannels remained hydrogel-free and effectively served as ‘surrogate 

blood vessels’, as well as an entry point for cell staining and collagenase solutions.  

4.2.2 Hydrogel preparation and setup handling. 

1.2 mg/ml Type I rat tail collagen hydrogels were prepared as described in Chapter 2. 

Cells were trypsinized and resuspended to the desired cell concentration to 

incorporate in the pre-gelated collagen mixture. For assays performed in a hydrogel 

droplet format, a chilled tip was used to pipette one 3 µl droplet of cell suspension in 

collagen mixture described in the previous chapter per well in a 96 well plate. At least 

4 droplets were prepared for each condition and assay.  

Conversely, for 3D cell culture in the microdevices, the hydrogel mixture was injected 

into the microfluidic device by means of a micropipette. Additionally, a 10 μl hydrogel 

mixture droplet was placed on top of the inlet to prevent hydrogel evaporation. The 

filled microfluidic device was subsequently placed into an incubator for polymerization 

as described for droplets. 5 ml of culture medium were added to cover all the 

microdevices attached to the Petri dish. Culture medium was perfused through the 

lateral microchannels to allow oxygen and nutrient diffusion. In all experiments, the 

culture medium in the lateral microchannels was refreshed once a day by pipetting 10 

µl through each lateral microchannel. When a different culture medium or solution 

(e.g. viability staining or collagenase solution) was desired, the culture medium was 

removed from the Petri dish by aspiration, 5 ml of the new medium was added and 10 

µl were manually pipetted through the lateral microchannels.                 
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4.2.3    Cell culture. 

Human cell lines HCT-116 (colon carcinoma) were kindly donated by Dr. Luis Martinez 

Lostao. U-251 MG (glioblastoma) were purchased from the American Type Culture 

Collection (ATCC). Both cell types were routinely cultured in high glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Lonza, BE12-614F) supplemented with 10% Fetal 

bovine serum (FBS, Sigma-Aldrich F7524, non-USA origin), 2 mM L-glutamine (Lonza, 

17-605C) and penicillin/streptomycin (Lonza, DE 17-602E) within a TEB-1000 

humidified 5% CO2 incubator (EBERS Medical Technology) at 37 0C. 

4.2.4    Cell staining. 

4.2.4.1 Cell viability. 

To assess cell viability of the degradation procedure, individual cells needed to be 

distinguished. Thus, we used bisBenzimide H 33342 trihydrochloride (Hoechst33342, 

Sigma-Aldrich B2261) and propidium iodide (PI, Sigma-Aldrich P4170) for cell staining. 

Hoechst33342 stock solution was prepared by dissolving in DMSO to a concentration 

of 10 mg/ml, whereas PI was dissolved in distilled water to a final concentration of 2 

mg/ml. Stock solutions were diluted 1:10000 and 1:1000 respectively in phosphate-

buffered saline (PBS, Lonza BE17-516F) and gels were incubated with the solution for 

at least 15 minutes in the dark before imaging. Cells were visualized by confocal 

microscopy (Nikon Ti-E coupled to a C1 modular confocal microscope), being all cells 

stained blue (Hoechst33342) and dead cells (PI-positive) stained red. 

For tumor development tracking, individual cell counting was not necessary. Hence, 

Hoescht33342 was substituted by Calcein AM solution. Stock solutions of 5mg/ml 

Calcein (CAM) (Life Technologies, C1430) and 2mg/ml propidium iodide (PI) (Sigma 

P4170) were dissolved in DMSO and distilled water respectively. To test cell viability 

within microfluidic devices and in Petri dishes, stock solutions of CAM and PI were 

diluted to 5 and 4 µg/ml, respectively, in phosphate-buffered saline (PBS) (Lonza BE17-

516F). CAM/PI solution was perfused through the lateral microchannels. Cells were 

then visualized by confocal microscopy (Nikon Ti-E coupled to a C1 modular confocal 

microscope), with viable cells (CAM-positive) stained in green and dead cells (PI-
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positive) stained in red. Cell viability profiles were evaluated by analyzing the 

fluorescence intensity of the viable/dead cells across the central microchamber.  All 

confocal images were taken at different focal planes with subsequent image analysis 

performed using ImageJ software.  

4.2.4.2 Proliferation assay with Premo Fucci. 

Cell proliferation was observed in live cells using the Premo™ FUCCI Cell Cycle Sensor 

(ThermoFischer, P36237). Briefly, cells were transduced using a 50-virus particle/cell 

ratio for 48 hours. Transduced cells were trypsinized and cultured in 3D within the 

microdevice as described above. This cell cycle sensor was transduced into the cells 

using two different reporters coupled to TagRFP or emGFP that are expressed 

alternatively during the G1 phase or the S/G2/M phases respectively. 

4.2.4.3 Hypoxia tracking. 

For hypoxia tracking, Image-IT® stain was used as previously described in chapter 2. 

Stain was added to the gel at the concentration indicated in supplier’s instructions. 

4.2.4.4 Apoptosis labelling. 

The CellEvent™ Caspase-3/7 Green Detection Reagent (ThermoFischer, R37111) was 

used to detect apoptosis. Reagent was diluted following supplier’s instructions and 

added to the gel. 

 

4.2.5 Validation of the model for drug testing. 

Doxorubicin (DOX) (Selleckchem, S1208), was dissolved in DMSO at 50 mM and diluted 

to a final concentration of 30 µM in relevant media. The drug was perfused through 

the lateral microchannels as previously described and refreshed every 24 hours. DOX 

and PI naturally fluoresces red; thereby an alternative cell viability staining solution 

was used during DOX experiments: 50 µl of NucGreen® Dead 488 ReadyProbes® 

Reagent (Life technologies, R37109) and 50 µl of NucBlue® Live ReadyProbes® Reagent 

(Life technologies, R37605) were used as described in previous chapters. This solution 
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was perfused through the lateral channels, labelling all cells in blue and dead cells in 

green. 

 

4.2.6 Hydrogel degradation procedure. 

Collagenase P (Roche,11213857001, 2.3 IU/mg) was dissolved in PBS to a final 

concentration of 8 mg/ml (18 IU). Collagenase solutions were subsequently sterile-

filtered and added to the hydrogels. For degradation of hydrogels in well plates, 100 μl 

were added per well. For degradation of hydrogels within microdevices, 50 μl of the 

collagenase solution were pipetted through each lateral channel of the microdevice as 

described in section 4.2.2. Collagenase incubation was performed at room 

temperature for 5-10 minutes. Afterward, the collagenase solution was aspirated 

through the inlet with a micropipette. This procedure was repeated once with PBS to 

maximize cell recovery. The recovered cell suspension was transferred to a fresh 

Eppendorf tube kept at 40C and washed with PBS before subsequent steps. 

4.2.7 Hydrogel degradation tracking. 

5 µl collagen hydrogels at 1.2 mg/ml were prepared in a glass-bottom Petri Dish (Ibidi, 

81158) as described in section 3.2.5, and let stabilize overnight in an incubator.  

Confocal reflection images were taken using a Nikon Eclipse Ti® microscope equipped 

with a C1 modular confocal microscope system.  To visualize the collagen fibers, the 

barrier filter of a 450/35 nm filter cube was removed, and the sample was visualized 

using a 488-nm laser. In this configuration, hydrogel reflected laser light was captured 

by the photomultiplier tube, hence allowing the visualization of the collagen fibers. 

Collagenase P (Roche, 11213857001, 2.3 IU) was dissolved in PBS to final 

concentrations of 0.5, 2, and 8 mg/ml. Collagenase was added to the gels and 

incubated at room temperature for 5-25 minutes. The degradation process was 

tracked during this time, acquiring images as fast as possible in the system. 

Image analysis was performed with Fiji® (http://fiji.sc/Fiji). Time lapse images were 

binarized and fibril occupied area was quantified overtime and plotted for each 

collagenase concentration. 

 

http://fiji.sc/Fiji
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4.2.8 Gene expression assays. 

4.2.8.1 RNA extraction. 

Embedded cells were extracted from collagen hydrogels confined in 2 microdevices, as 

described in section 4.2.6. Furthermore, RNA was extracted by using Total RNA 

Purification Plus Kit (Norgen Biotek Corp, 48400). When necessary, Lysis Step could be 

performed to harvested cells according to manufacturer’s instructions and the 

resulting suspension could be stored at -800 C for posterior RNA extraction. Once 

extracted, RNA concentration and purity were assessed by means of absorbance 

measurements using a Biotek® Synergy™ HT multi reader (BioTek Instruments, Inc. VT, 

USA). 

4.2.8.2 cDNA. 

cDNA was synthesized by using PrimeScript™ RT-PCR Kit according to manufacturer’s 

instructions. Briefly, 1 µg of RNA were taken from each sample and diluted to a final 

volume of 16 µl in an Eppendorf tube. 4 µl of 5x Master mix were added to a final 

volume of 20 µl. The mixture was incubated in a CFX96 Real-Time System (Bio-Rad, 

Spain) for 15 minutes at 37 0C, for 5 seconds at 85 0C and finally the mix was cooled 

down to 4 0C. The reaction was controlled with GAPDH as housekeeping gene. 

4.2.8.3 qPCR.  

PrimeTime® qPCR assay probes were purchased from IDT for the genes presented in 

table 4.1, where primers are also detailed: 
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Target genes  

Autophagy   

P62 5’-CCGATGTCATAGTTCTTGGTCTG-3’ 

5’-CTGCCTTGTACCCACATCTC-3’ 

 

Bclin 5’-GAATCTGCGAGAGACACCATC-3’ 

5’-ACAGCTCCATTACTTACCACAG-3’ 

 

LC3 5’- CTTCATCTGCAAAACTGAGACAG-3’ 

5’- CAGGTGCAAGGAGAAAGGAT-3’ 

 

Proliferation   

Ki67 5’- GAAGCTGGATACGGATGTCA-3’ 

5’- CGCCTGGTTACTATCAAAAGGA-3’ 

 

Cell Death   

Casp3 5’-GTTTGCTGCATCGACATCTG-3’ 

5’-CTCTGGAATATCCCTGGACAAC-3’ 

 

Casp8 5’-GAGAGTCCGAGATTGTCATTACC-3’ 

5’-CAAATCAACAAGAGCCTGCTG-3’ 

 

Casp9 5’-GTCCTCAACCTTCCTGGAAC-3’ 

5’-GCCCAAGCTCTTTTCATCC-3’ 

 

TNF-α 5’- TCAGCTTGAGGGTTTGCTAC-3’ 

5’-TGCACTTTGGAGTGATCGG-3’ 

 

RIP1 5’-GCACTGGTTCATGTTGATGG-3’ 

5’-GACGGTTCTTCATCCTTTACGA-3’ 

 

Hypoxia   

HIF1A 5’- CAACCCAGACATATCCACCTC-3’ 

5’- CTCTGATCATCTGACCAAAACTCA-3’ 

 

 
Table 4.1: RT-PCR primers for the chosen targets in gene profiling of the tumor microenvironment 

evolution. Sequences are detailed for both primers. 
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Probes were resuspended at a 20x concentration following manufacturer’s instructions 

and stored at -20 0C until use. PrimeScript RT-PCR Kit was used to perform the RT-PCR 

reactions in a CFX96 Real-Time System. The conditions for the RT-PCR were the 

following:  

950𝐶 15 𝑠 + {

 
950𝐶 15 𝑠
600𝐶 30 𝑠

 

}

40 𝑐𝑦𝑐𝑙𝑒𝑠

+ 40𝐶 ∞ 

 

4.2.9 Patterning method. 

In this chapter, the spatial heterogeneity is studied within the microdevices. To 

maintain this heterogeneity after extracting the cells, differential staining of the center 

of the microdevice compared to the edges is achieved through hydrogel patterning. To 

that end, two hydrogel mixtures of different viscosity were prepared. Hydrogel 

patterning within the microdevice central chamber was performed as described in 

previous literature [271]. To improve control and reproducibility over the width 

patterned regions, the outer hydrogel was supplemented with methylcellulose 

solution to increase the viscosity of the solution.  

Methylcellulose solution was prepared as follows: 6gr of high viscosity (4000 cP, Sigma 

m-0512) methylcellulose were dissolved to any 500 ml of basal DMEM media by mixing 

with a magnetic stirrer for 2-3 hours. Once all the powder was dissolved, the volume 

was centrifuged at 5000g during 2 hours. Upper clear phase was carefully separated to 

avoid the presence of debris.  

For the patterning procedure, the central microchamber was filled with a 50% 

methocel supplemented hydrogel, to which Fluospheres® were added (as detailed in 

previous chapters). Subsequently, a 3 µl droplet of non-supplemented hydrogel was 

placed on top of the inlet. Passive pumping produces an inner region of hydrogel with 

labelled cells, flanked with regions of non-labelled cells. 
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4.2.10 Image analysis. 

Laser confocal and fluorescence images were acquired with a Nikon Eclipse Ti-E C1 

confocal microscope. Images were analyzed using Fiji® software (http://fiji.sc/Fiji). 

Fluorescence intensity across the central microchamber of the microdevice was 

quantified in the different experiments by selecting a rectangular region across the 

central microchamber. The fluorescence intensity across that section was then 

determined using the Fiji® software in accordance with the software instructions. In 

cell viability experiments, viable and dead cells were manually counted, and cell 

viability was calculated as the percentage of viable cells relative to the total number of 

cells. For hydrogel degradation, tracking was performed by quantifying hydrogel fibril 

positive pixels relative to overall pixels in the picture overtime. 

 

4.2.11 Statistical analysis. 

All the experiments were repeated at least three times as independent biological 

repeats. All results are presented as the mean ± standard error. The normal 

distribution was tested by the Kolmogorov-Smirnov test. Statistical significance was set 

at p < 0.05. For nonparametric comparisons, a Kruskal-Wallis test was performed 

followed by the Mann-Whitney U-test. 

 

4.3 Results and discussion. 

4.3.1 Microdevice fabrication and setup. 

In this chapter, a “tumor slice” microfluidic model of the tumor microenvironment 

described previously in our group was utilized. The first 8 figures presented in the 

chapter belong to previously published work from our group [268] and will be included 

and summarized to facilitate the understanding of the model and motivation for 

posterior experiments. 

As a first approach, this model includes a high density of tumor cells, flanked by two 

surrogate blood vessels. The combination of these elements creates a spatially 

heterogeneous hypoxic and nutrient-depleted microenvironment (Figure 4.1a). To 

recreate this, cyclic olefin polymer-based microdevices were fabricated by injection 
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molding, and attached to Petri dishes using biocompatible adhesive (Figure 4.1 b, c) 

The final microdevice setup can be observed in the following figure (Figure 4.1d). 

 

 

Figure 4.1: Schematic representation of the tumor microenvironment model reproduced in this chapter 

and microdevices utilized to that end. a) Schematic representation of the tumor microenvironment, 

including tumor cells, and stromal cells (fibroblasts, endothelium and immune cells). b) Schematic 

representation of the device and the configuration in which it was used. Cells (depicted here as green 

spheres) are embedded in a collagen matrix (pink in the figure) within the central microchamber of the 

microdevice. Media is subsequently perfused through both lateral microchannels. Nutrients and oxygen 

present in the media are consumed by cells located closer to the microchannels. Hence, gradients for 

oxygen and nutrients are created accordingly and their direction is represented by the blue triangle. c) 

Detailed image of a microdevice. In this case, a hydrogel was confined in the central microchamber, and 

water dyed with food coloring was perfused through both lateral microchannels, hence creating a color 

gradient along the central microchamber. d) Schematic representation of the setup utilized to handle 

the microdevices. Three microdevices were attached to a petri dish bottom by means of a 

biocompatible adhesive layer. Image adapted from Ayuso et al [268]. 
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4.3.2 Necrotic core generation in the microdevice. 

Firstly, we assessed the effects of different cell densities on cell viability within the 

microdevice. This was to demonstrate the generation of a necrotic core, which could 

develop due to oxygen and nutrient gradients within the microdevice. Hence, after 

assessing different cell densities of glioblastoma U-251 MG cells (4, 10 and 40 million 

cells) (Figure 4.2) we found that only at 40 million cells/ml did the necrotic core 

appear. Thereafter, we chose to work with this last concentration and further analyzed 

the evolution of this 3D culture system. 

 

 

Figure 4.2: Necrotic core generation. U-251 MG cells embedded within the collagen hydrogel were 

cultured at different cell densities (4, 10 and 40 million cells/ml in A, B and C respectively) for 3 days. 

Cell viability was evaluated using the CAM/PI staining. Only at 40 million cells/ml a necrotic region 

appeared. Scale bar is 400µm. Image adapted from Ayuso et al [202]. 

 

In this previous work, we determined that both U-251 MG and HCT-116 cells 

generated a necrotic core in the microfluidic model. This necrotic core increased its 

width overtime, and presented different dynamics for the described cell types, 

probably relying in their different metabolism.  In both cases, this 3D culture system 

can be used as a tumor-slice model, which we characterized and exploited in the rest 

of the chapter. 
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Figure 4.3: Necrotic core generation within the microdevice. U-251 MG and HCT-116 cells were 

embedded within the collagen hydrogel in the central microchamber. Above, 40 million HCT-116 

cells/ml were confined in the central microchamber and cell viability was evaluated at different times 

using the PI/CAM staining, turning viable cells green, whereas dead ones appear in red. Below, the same 

experiment was repeated for U-251 MG cells. Scale bar is 400µm. Image adapted from Ayuso et al [202] 

 

4.3.3 Cell proliferation in the model. 

The previous results suggested the existence of gradients of nutrients and oxygen 

across the central microchamber.  To check their effect on cell proliferation, we then 

used the Premo Fucci reporter system. In this system, cells are transfected with a dual 

reporter, which provides green fluorescence as cells are in proliferation, whereas it 

provides red fluorescence for cells arrested in the cell cycle. We then observed that, 

after 24 hours of seeding, green cells appeared to be more abundant in the edges, 

whereas red cells were homogenously distributed (Figure 4.4 A-D). To quantify these 

observations, we divided the central microchamber in 10 different regions (200 µm 

steps) parallel to the lateral microchannels, and quantified the number of red and 

green cells per region (Figure 4.4 E). All in all, these previous results indicate that 

proliferative cells were more abundant closest to the lateral microchannels (regions 

R1, R2, R9 and R10) (Figure 4.4 F). 
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Figure 4.4: HCT-116 cell proliferation. 40 million HCT116 cells/ml were confined in the central 

microchamber; 5% of these cells were transduced with the cell cycle sensor Premo FUCCI®, showing 

non-proliferative cells in G1 phase in red, whereas actively dividing cells (S, G2 and M phases) appear 

green. a-b) After collagen polymerization, non-proliferative cells (in red) were randomly distributed 

along the central microchamber, whereas only a small fraction of the transduced cells were proliferating 

(in green). c-d) After 24 hours in cell culture, cell proliferation was clearly observed in those cells located 

nearby the lateral microchannels. e-f) Central microchamber was vertically divided in ten regions (200 

µm steps) and proliferation was quantified as the number of green cells observed in each region. Scale 

bar is 400µm. Image adapted from Ayuso et al   [268] 

 



Development of microfluidic tools to reproduce and characterize the tumor 
microenvironment. 
 

119 
 

Interestingly, when this experiment was repeated for U-251 MG cells, proliferating 

cells appeared scarce and homogeneously distributed (Figure 4.5) [272]. This fact could 

be investigated more in-depth by means of genetic analysis. 

 

 

Figure 4.5: Cell proliferation for U-251 MG and HCT-116 cells. 40 million of U-251 MG (a) or HCT-116 (b) 

cells/ml were confined in the central microchamber; 5% of these cells were transduced with the cell 

cycle sensor Premo FUCCI®. After 24 hours, fluorescence images were taken, showing non-proliferative 

cells in G1 phase in red, whereas actively dividing cells (in S, G2 and M phases) appear green. Scale bar is 

400 µm. Image reproduced from Ayuso et al [202]. 

 

4.3.4 Oxygen gradient in the microdevice. 

The existence of an oxygen gradient was assessed using confocal microscopy and the 

hypoxia-sensitive dye Image-iT®. This dye increases its fluorescence as the oxygen 

tension sensed by the cell decreases (Figure 4.6 a-b). A steep gradient of hypoxia was 

observed in the first 200 µm through the “tumor slice” before reaching a plateau, 

where oxygen tensions were presumably minimal. Media refreshment through the 

lateral microchannels resulted in a sudden decrease in hypoxia levels after 1 minute. 

Hypoxia levels were restored after 4 h post-media refreshing. These results 

demonstrated that hypoxia was generated within the microdevice. 
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Figure 4.6: Oxygen profile analysis. HCT-116 and U-251 MG cells were embedded within the collagen 

hydrogel and cultured in the central microchamber. a) A hypoxia-sensing dye was added to the 

hydrogel/cell mixture prior to injection within the microdevice to characterize the hypoxia profile along 

the experiment. After collagen polymerization, culture medium containing the dye was added to the 

lateral channels to keep the dye concentration constant along the experiment. The left panels show that 

hypoxia-induced fluorescence intensity in the central microchamber increased during the experiment. 

The graph shows the hypoxia-induced fluorescence profile along the central microchamber. Hypoxia 

profile rapidly increased in the first 300 µm and reached a plateau in the center of the microchamber. 

1ml of fresh media was injected through one lateral microchannel, reducing the hypoxia-induced 

fluorescence to initial values. 4 h post-refresh, the hypoxia-induced fluorescence reached again the 

values observed before refreshing. b) The same experiment was repeated for U-251 MG cells, showing a 

similar behavior. Scale bar is 200µm. Image adapted from Ayuso et al [202] 

 

4.3.5 Apoptosis quantification. 

Next, the mechanisms of cell death were investigated in the model. To this end, we 

used CellEvent® Apoptosis Reagent, which renders apoptotic cells fluorescent. 

Thereafter, apoptosis was found to occur in a moderate, yet constant manner 

throughout the central chamber of the microdevice. Hence, apoptosis was not 

confined to the necrotic area of the tumor slice model and did not account for the 

appearance of the necrotic core in the central area of the microdevice. This result 

suggesed that the PI-positive area in the center of the microdevice was due to 

necrosis, rather than to the progression of early stage apoptotic cells into late stage 
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apoptosis. This process could be explored further by means of genetic expression 

quantification. 

 

Figure 4.7: Apoptosis characterization for HCT-116 and U-251 MG cells. HCT-116 (a) and U-251 MG cells 

(b) were confined in the central microchamber. An apoptosis sensing dye was injected in the system, 

showing that apoptosis increased along the time in both cell lines. The graphs show the apoptosis profile 

across the delimited region. Image adapted from Ayuso et al [202]. 

 

 

4.3.6 Validation of the tumor slice model for drug testing. 

Once the model was established, in previous work we validated it for drug testing 

applications. In this case, we chose doxorubicin (DOX), a standard of care drug with 

intrinsic fluorescence (Excitation/Emission peaks ca. 470/620 nm) [273]. First, the 

model was used to confirm drug penetration through the tumor slice model. To do so, 

we performed a diffusion assay, in which we tracked DOX fluorescence through the 

central microchamber of the microdevice in absence of cells. After 120 min, 

penetration had occurred through the entire central microchamber, obtaining 

comparable results to the assay in absence of cells (Figure 4.8 a). Next, we assessed 

the anti-tumor efficiency of DOX in the tumor slice model by injecting a 30 µM DOX 
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solution through the lateral microchannels. Cell viability comparison found an increase 

in cell mortality due to DOX treatment, which was limited to the outer rim of the 

tumor slice model (Figure 4.8 b).  

 

Furthermore, we analyzed the fluorescence intensity profile for cell mortality after 

treatment with DOX, and found that, after the initial peak, the profile then decreased 

when we analyzed further into the central microchamber, to a point where no 

differences with control conditions were observed (Figure 4.8 c). This indicated that 

DOX efficiency was lower in necrotic areas, suggesting that this difference in cytotoxic 

response may have been due to a difference in the proliferative rate of the cells in 

these different regions as shown in Figure 4.3. This fact could be explored more in 

depth by means of gene expression quantification of the sensitive and resistant areas 

separately, to elucidate the genetic profile implied in the resistance mechanism. 
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Figure 4.8: Doxorubicin effect on HCT-116 cells. The antiproliferative chemotherapy agent DOX was 

tested within the microdevice. a) 100 µM DOX was injected through one lateral microchannel to assess 

its penetration capacity through the hydrogel. The graph shows the doxorubicin diffusion profile along 

the time. b) 30 µM DOX was injected through both lateral microchannels to study the effect on cell 

viability. After 3 days in the presence of DOX, Nucblue and Nucgreen staining was injected through the 

lateral microchannel, showing all the cells in blue, whereas dead ones appear green. The graph shows 

the strong effect of doxorubicin on HCT-116 cell mortality. The green fluorescence intensity was 

analyzed along the delimited region. Image adapted from Ayuso et al [202]. 
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4.3.7 Cell recovery from the microdevices. 

All in all, previous results obtained in the group indicate that the model would greatly 

benefit from quantification of the genetic expression of the cells in the model. 

. To this end, we adapted the tumor slice model to traditional molecular biology 

benchtop techniques by recovering the cultured cells in the central. Therefore, the 

tumor slice model, as well as 3D culture systems with a lower cell density, were 

extracted and their genetic profile was analyzed by RT-PCR (Figure 4.8). To enable cell 

recovery from the microdevices, an enzymatic degradation procedure was optimized 

to degrade the collagen hydrogel used as scaffold for the 3D cell culture. 

 

 

Figure 4.9: Scheme of the procedure for genomic analysis of the tumor microenvironment development. 

Cells are embedded in 3D in the central microchamber of the microfluidic device (a), generating 

different stages of tumor development according to cell concentration and time (b). Cells are extracted 

from the central microchamber via enzymatic degradation of the hydrogel and recollected in an 

Eppendorf tube for subsequent RNA extraction, cDNA synthesis (c) and RT-PCR to generate genetic 

profiles for different genes related to tumor metabolism. 

 

To establish the cell recovery method, firstly we characterized the enzymatic 

degradation in terms of kinetics to optimize it for microfluidic applications. 

First, we tracked the enzymatic degradation reaction kinetics by means of confocal 

reflection microscopy. The number of collagen fibrils diminished over time when the 

collagenase solution was added, progressively until no fibril is observed (Figure 4.10 a).  

We also quantified in real time the area occupied by the collagen fibrils by means of 

Fiji, observing an exponential decay tendency in the curves (4.10 b). From this graph, 
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we can extract that the degradation dynamics is faster with higher concentrations of 

collagenase, as expected. 

Furthermore, we fitted the linear fraction of the curve to a linear model and thus 

extracted the degradation velocities for each reaction.  We found that the resulting 

graph was linear (y = 0.1457x + 0.0857). The constant term in this regression line is 

very small, which strongly suggests that the concentration of collagenase is the only 

factor contributing to the rate of the hydrogel degradation. 

 

 

Figure 4.10: Optimization of the enzymatic degradation of collagen hydrogels. Confocal reflection 

microscopy of the degradation dynamics of a collagen hydrogel using an 8 mg/ml solution (18 IU/ml of 

collagenase P in PBS (a). The pictures show how the number of collagen fibrils constituting the hydrogel 

decreases overtime. (b) Quantification of the hydrogel degradation dynamics for different collagenase 

concentrations by means of area quantification for 0.5, 2 and 8 mg/ml. (c) Characterization of the 

degradation speed for the different collagenase concentrations. Linear fitting of the degradation speeds 

resulted in a linear equation (y = 0.1457x + 0.0857) R2 = 0.9896. Graph shows average ± SEM (p-values < 

0.001 in both cases). 
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On the other hand, we observed the degradation of a hydrogel confined within the 

central microchamber of the microdevice by Fluosphere® fluorescent tracking using 

time-lapse confocal microscopy. For quantification purposes, we divided the central 

chamber of the microdevice in 3 regions: the triangular regions, located further from 

the microchannels (sources of nutrients and oxygen); and a rectangular region, with 

more access to nutrients and oxygen (Figure 4.11a). At the beginning of the 

experiment, the hydrogel and the Fluospheres® were confined in the central 

microchamber of the microdevice. After pipetting collagenase solution (8 mg/ml) we 

observed how the Fluospheres® flowed out of the microdevice in a time scale 

consistent with the described kinetics (Figure 4.11b). Furthermore, after pipetting the 

degraded hydrogel out of the microdevice through the lateral microchannels, we 

observed that the majority of the Fluospheres® were extracted from the central 

microchamber. Only a fraction of those lying at the triangular ends of the central 

microchamber and in the central microchannels were not extracted, which constituted 

a statistically significant difference (p<0.0001). 
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Figure 4.11: Recovery efficiency from the microdevices. a) The microdevice was divided into three 

different regions for the analysis: the triangular regions on both ends of the central microchamber and 

the rectangular region flanked by the pillars. b) Fluospheres® were embedded in a collagen hydrogel and 

confined in the central chamber of the microdevice. An 8 mg/ml collagenase P solution was pipetted 

through the lateral microchannels and incubated at room temperature for 7, 10 and 12 minutes. Images 

show the Fluospheres® before pipetting the collagenase solution and after 12 minutes. c) The area with 

remaining Fluospheres® was quantified for the defined regions and compared. Differences between 

regions 1+3 and region 2 were found statistically significant (p<0.0001). 

 

4.3.8 Cell viability of the recovery procedure. 

After establishing our degradation method, we proceeded to examine the possible 

effect of the collagenase on cell viability. To do so, we used both cell types used in this 

chapter (HCT-116 colon cancer cells and U-251 MG cells) and embedded them in a 

collagen hydrogel and cultured them for 24 hours. Next, we extracted and re-

embedded cells using the highest collagenase concentration used in this work 

(8 mg/ml) (Figure 4.12 a). We evaluated cell viability by confocal microscopy with a 

viability staining after 72 hours compared to control conditions (Figure 4.12 b-c & e-f). 

No significant decrease in cell viability was found in any of the cell types used in this 

study (Figure 4.12d). Based on these results, we decided to use the highest collagenase 
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concentration for cell recovery from the microdevices, since it significantly accelerates 

the process and shows no damage to cell viability after 72 hours. 

 

Figure 4.12: Biocompatibility of the cell extraction method. (a) Scheme of the experiment design. First, 

we embedded two distinctive cell types in collagen hydrogels. After 24 hours, cells were extracted from 

the hydrogels by enzymatic degradation with an 8 mg/ml (18 IU) solution of collagenase P in PBS. 

Recovered cells were thoroughly washed with PBS and re-embedded in collagen hydrogels. Cell viability 

was assessed after 72 hours by means of confocal imaging, the cell nuclei were stained (Hoechst 33342, 

blue) and a dead cell indicator was added to distinguish dead cells (propidium iodide, red). Results from 

extracted reseeded cells were compared with non-treated cells (control). Images of the control cells can 

be observed in (b) for HCT-116 cells and (c) for U-251 MG cells. Images of the recovered and re-

embedded cells can be observed in (e) for HCT-116 cells and (f) for U-251 MG cells. (d) Quantification of 

cell viability for control and extracted and re-embedded cells, for both mentioned cell types used in this 

study. 

 

4.3.9 Characterization of RNA extracted from recovered cells. 

The next step to validate the cell recovery protocol is comparing the amount of RNA 

and its quality for control conditions (cells seeded in one well of a 6-well plate) and 

two microdevices. To do so, we used a commercial kit to extract RNA from both 

setups, and in case of the microdevices we first recovered the cells via incubation with 

collagenase solution, as described before. We first compared the concentration of RNA 

extracted and found that both setups produced approximately 170 ng/µl of RNA. 

Therefore, we found no statistically significant differences between the quantity of 
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RNA extracted from one well of a 6-well plate and from 2 microdevices (Figure 4.13, 

left panel).   

Next, we assessed the quality of the extracted RNA, to discard a significant influence of 

the collagenase solution on RNA quality. Therefore, we assessed RNA quality by means 

of the 260/280 ratio. Interestingly, both setups produced 260/280 ratios of around 2, 

showing no significant differences between them (Figure 4.13, right panel). Overall, 

these data suggest that there is no negative influence of the extraction procedure on 

the quantity and quality of the RNA, as compared to one well of a 6-well plate. 

Figure 4.13: Assessment of the quantity and quality of RNA extracted from recovered cells. On the left, 

the graph shows the concentration of RNA extracted from 1 well of a 6-well plate and from 2 

microdevices. On the right, the graph shows the quality of RNA extracted from the mentioned setups, 

expressed as 260/280 absorbance ratio. No statistically significant differences were found in either case. 

 

4.3.10 RT-PCR demonstration of RNA from recovered cells. 

Finally, for the purposes of this Thesis, we performed a proof of concept for real-time 

PCR analysis. First, we retrotranscribed the samples for a two-step RT-PCR procedure. 

Afterward, we chose various samples and performed a RT-PCR for the GAPDH gene, 

considered as an internal control. We also included negative controls in the 

quantification to discard cross-contamination. As shown in Figure 4.14, there was 

amplification in many samples, while others remained negative, as expected. 

Furthermore, the samples which showed no amplification matched the negative 

controls, thus disproving the presence of cross-contamination and validating the use of 

RNA from recovered cells for genetic profiling. 
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Figure 4.14: Proof of concept for the genetic profiling procedure. GAPDH was chosen as internal control 

to determine whether the RT-PCR method was viable on the RNA samples extracted from recovered 

cells. The image shows a capture from the RT-PCR program, indicating the amplification of many 

samples of the selected cohort. 

 

4.3.11 Cell patterning in the microdevice. 

As we discussed in previous sections, the spatial heterogeneity is a key aspect of the 

TME to be considered. Hence, we developed a method to pattern two different 

hydrogels in our microdevices, one inside the other. This fact is advantageous to 

discriminate different regions within the microdevice (for analysis purposes) or pattern 

different cell types to increase the complexity of the model.  

The method is based on passive pumping mechanisms and requires generating 

hydrogels of different viscosity. Passive pumping is a mechanism occurring in fluids at 

the micro-scale and results in a driving force which can make liquids to flow through a 

microchannel. Based on this principle, the use of differently viscous hydrogels drives 

the width of the inner channel created by passive pumping. The higher the difference, 

the narrower the inner channel (Figure 4.15a). 

To demonstrate this method in our microdevice, we first pipetted a highly viscous 

hydrogel by supplementation of 50% methylcellulose. Fluospheres® were added to this 
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hydrogel to observe the patterning. Next, a non-supplemented hydrogel droplet was 

placed on top of the inlet, and therefore passively pumped creating an inner non-

labelled hydrogel (Figure 4.15 b). The patterning of both hydrogels can be observed in 

an orthogonal view (Figure 4.15 c). The fluorescence pattern strongly suggests the 

inner hydrogel created a “path” through the first hydrogel. Finally, we demonstrated 

the possibility of creating a HUVEC endothelium on the hydrogel interface by seeding 

the cells on a liquid-hydrogel interface. This can be achieved by substituting the second 

gel with PBS or culture media required for the cell seed (Figure 4.15 d). Overall, this 

method enables cell patterning in the central chamber of the microdevice, which can 

be used for combining different cell types, or for studying the normoxic and necrotic 

areas of the tumor slice model downstream separately.  

 

Figure 4.15: Patterning method in the microfluidic device. a) Protocol to generate blood vessel-like 

structures in microfluidic channels. After injecting a hydrogel, culture medium is injected through the 

channel to create a tunnel in the hydrogel. b) Example of tunnel through a hydrogel. For visualization 

purposes, 0.2µm diameter yellow-fluorescent spheres were embedded in the hydrogel. Scale bar is 

400µm. c) Cross-section of the central microchamber. Scale bar is 400 µm. d) Image showing the HUVEC 

endothelium on the hydrogel interface. Hydrogel was visualized using confocal reflection microscopy 

and is shown in blue. HUVEC were stained with the CAM/PI solution, showing cells were alive. Scale bar 

is 150 µm.  
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4.4 Chapter summary. 

In this chapter, we have established a “tumor slice model” by culturing cells in a 

microfluidic device at a sufficiently high density to generate necrotic cores. A necrotic 

core appeared after 1-3 days for the two different cell types. The appearance of a 

necrotic core is consistent with the existence of nutrient and hypoxia gradients. In the 

case of the latter, we have demonstrated their presence by using an oxygen-sensitive 

dye. Ultimately, both gradients have therefore a lower proliferation in the center of 

the central microchamber compared to the outer regions. All in all, this technique 

allows the reproduction of the spatial heterogeneity of a tumor in vitro, while enabling 

real-time monitoring of cellular and diffusion processes within the model. 

Furthermore, we have developed a gel-in-gel patterning technique based on viscosity 

differences. This technique enables positioning of distinctive cells in the center of the 

microdevice chamber compared to the external regions. In particular, this facilitates 

the recreation of complex tissue structures in vitro, as well as permits labelling cells 

differently. Finally, by using proteolytic enzymes we have achieved the recovery of 

cells from a 3D cell culture in a hydrogel while maintaining their cell viability and within 

a short time-scale. Afterward, we have successfully extracted RNA from recovered 

cells, yielding a concentration and purity comparable to 2D controls in Petri dishes. 

Finally, we have successfully demonstrated RT-PCR for housekeeping genes using the 

extracted RNA from recovered cells. Moreover, the application of the patterning 

technique permits downstream discrimination of cells situated in the center (necrotic 

area) of the microdevice from cells situated in the edges (normoxic area). This fact 

enables the maintenance of spatial heterogeneity after cell recovery. 

Overall, we have developed a microfluidic model of the TME, centered on the 

environment created by the tumor. The developed model includes the possibility of 

combining different cell types in the same microdevice and analyzing different regions 

of the model separately. We anticipate this model will provide valuable insight on the 

evolution of the tumor, which will potentially have a positive impact on in vitro and 

pre-clinical drug testing.  
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Chapter 5: Conclusions. 

In this Thesis, we have used microfluidic approaches to reproduce and characterize 

accurately the tumor microenvironment. Hence, the main conclusions of the Thesis are 

summarized in a thematically organized manner below: 

1. By means of capillarity, hydrophilic treatments and capillary valves, we have 

achieved a precise fluidic control to fill an open multiwell microfluidic device in only 

one pipetting step. Additionally, the generated liquid-air interface is flat and facilitates 

the generation of a 2D-3D co-culture microfluidic model of the tumor 

microenvironment. 

2. Oxygen and proliferation gradients self-produced by the 3D embedded cells 

were achieved thanks to the oxygen-impermeable properties of SU-8.  

3. The microfluidic 2D-3D model revealed the generation of gaps in the 

endothelium, which are consistent with the enhanced permeability and retention 

effect. In this context, the capacity of penetration and the anti-tumor efficiency have 

been probed for two TRAIL-based drug formulations, showing that LUV-TRAIL presents 

a higher bioactivity despite having a lower penetration rate through the endothelium. 

4. We developed an oxygen-sensitive matrix which presents no significant 

differences from a native collagen matrix. This matrix allows detection of the oxygen 

tension at any location of a 3D assay without any modification of the culture system 

during the measurement thus avoiding the introduction of free elements which could 

interact with the system.   

5. We have developed a mild enzymatic procedure to couple the tumor-slice 

model with gene profiling methods to characterize the tumor microenvironment for 

two different tumor types. 
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Capítulo 5: Conclusiones. 

En esta tesis se han empleado aproximaciones microfluídicas para reproducir y 

caracterizar de manera precisa el microentorno tumoral. Así pues, las siguientes 

conclusiones de la presente tesis se detallan a continuación organizadas por temática: 

1. Se ha logrado un control fluídico preciso para llenar un dispositivo microfluídico 

abierto al exterior mediante fuerzas capilares, tratamientos hidrofílicos y válvulas 

capilares, para generar un modelo microfluídico del microentorno tumoral mediante 

co-cultivo celular 2D3D. 

2. Las propiedades físicas del SU-8, incluyendo la baja permeabilidad al oxígeno, 

han permitido la reproducción de gradientes de oxígeno y proliferación inducidos por 

las células. 

3. La generación de poros en el endotelio del modelo microfluídico 2D3D son 

consistentes con el efecto de permeabilidad y retención mejorada. En dicho contexto, 

se ha determinado la capacidad de penetración y anti-tumoral de dos formulaciones 

de TRAIL, obteniendo el resultado de que LUV-TRAIL presenta una menor penetración, 

a la vez que una mayor bioactividad. 

4. Se ha logrado una matriz sensible al oxígeno que no presenta modificaciones 

significativas con respecto a una matriz de colágeno convencional. Esta matriz permite 

la detección de la tensión de oxígeno en cualquier punto de un ensayo 3D sin 

menoscabo del sistema de cultivo celular durante la medida, y evitando la introducción 

de elementos libres que pudieran interaccionar con el sistema. 

5. Hemos desarrollado un procedimiento enzimático para acoplar los modelos de 

“sección de tumor” con ensayos de perfilado genético para caracterizar el 

microentorno tumoral para dos tipos de tumor diferentes. 
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Chapter 6: Future work. 

Although the obtained conclusions add further insight into the development and 

characterization of biomimetic systems of the tumor microenvironment, the obtained 

conclusions have opened other questions in that respect. Keeping this in mind, 

potentially interesting future research lines are mentioned within this section. 

1. Increase the cellular complexity of our microfluidic tumor microenvironment 

models, adding more stromal components (such as immune cells and 

fibroblasts), assessing their interactions through exosome technology.  

2. Characterize the validity of the enhanced tumor microenvironment model for 

drug testing applications. 

3. Integrate the newly-developed oxygen-sensitive matrix in our model of the 

tumor microenvironment, to acquire real-time information on the oxygen 

profiles in the model. 

4. Use the newly-developed oxygen-sensitive matrix to assess the possible drug-

resistance of primary tumor cells, and to provide insight for the development of 

personalized medicine approaches for cancer patients. 

5. Explore the effect of different microenvironments on the gene expression 

profile for different cancer models. 

6. Utilize the information extracted from genetic profiles to characterize drug 

resistance evolution in tumor development. 

7. Utilize the enhanced tumor-microenvironment model for high-throughput in 

vitro drug testing and contrast the results with those obtained in traditional 

petri dish models. 
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Appendix 1: Graphene oxide increases the viability of 

C2C12 myoblasts microencapsulated in alginate. 

A1 Introduction to Atomic force microscopy. 

Atomic force microscopy (AFM) is a generic term grouping a sort of techniques of 

surface measurements based on the interaction of a sharp nanometer-sized tip with 

the sample surface. They were first utilized by Binnig and Quate in 1986 [274], 

although they are adapted from scanning tunneling microscope in 1985, a similar 

technique intended to image structures at an atomic level [275]. 

AFM allows superficial characterization of a sample with nanometric and even atomic 

resolution. Furthermore, the variation of the tip properties enables different kinds of 

surface characterization. (e.g.) topographic, mechanical, magnetic, molecular 

recognition or affinity and even the identification of different compounds in a complex 

sample [276-281]. These variety of techniques are represented in Figure A1. 

 

Figure A1: The AFM (center) has inspired a variety of other scanning probe techniques. Originally the 

AFM was used to image the topography of surfaces, but by modifying the tip it is possible to measure 

other quantities (for example, electric and magnetic properties, chemical potentials, friction and so on), 

and to perform various types of spectroscopy and analysis. Image reproduced with permission [282]. 
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AFM is based on the interaction of a microscopic probe (usually known as cantilever) 

with the sample surface. The effect of such interaction on the sample translates into a 

cantilever deflection, which is most commonly detected by means of a laser-based 

optical system. More specifically, a laser reflects on the cantilever and is directed onto 

a photodiode, which interprets the luminous signal into an electric and measurable 

one in Volts (Figure A2) [283,284].  

 

Figure A2: Scheme of the operation of an AFM. A laser beam impacts on the back of the cantilever and 

reflects onto the photodetector. The deflections of the cantilever while interacting with the sample are 

detected through the movement of the laser beam upon the photodiode. Images reproduced from 

Handbook Nanowizard® AFM Version 4.3-07/2015 JKP Instruments. 

 

To convert these electric measurements in force measurements, the cantilever is 

calibrated previously based on Hooke’s law. This calibration can be performed via 

diverse methods, all eventually determining the elastic constant of the cantilever 

[285]. 

AFM presents many advantages over traditional methods of microscopy. The main 

advantage is that its resolution does not rely on lenses, and therefore it is not limited 

by diffraction. Conversely, AFM resolution is limited by the interaction of the probe 

with the surface, which may go down to a few picometers. Furthermore, AFM provides 

much information about the nature of the surfaces, even during the same scanning 
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motion. Moreover, AFM can also be used to modify a surface, through the technique 

known as dip-pen [286]. Finally, an important advantage of AFM is that sample 

preparation is easy, and modification of the sample for processing is unnecessary 

[287,288]. This is possible, since measurements in air and liquid are compatible even 

with sub-nanometric resolution. 

However, AFM also presents a few limitations. Firstly, acquisition times are usually 

long, which incurs in sample displacement due to thermal effects. Finally, these 

techniques require a continuous medium for measuring. In other words, they are not 

very useful to examine solid-solid or liquid-liquid interfaces [289]. 

As it was mentioned in this section, AFM comprises many techniques and 

measurement modes. For the purposes of this Thesis, we will only explain one 

measurements mode: force-spectroscopy-based imaging. In this mode, the cantilever 

is brought into contact with the sample surface with a defined force. Very close to the 

surface, the cantilever jumps into contact with the surface, thanks to weak forces 

between both elements. The indentation of the cantilever in the sample provides 

stiffness data. Furthermore, while the cantilever is in contact with the sample, 

repulsive contacts between sample and cantilever appear. Afterward, the cantilever is 

retracted from the sample, although the contact persists, thus informing of adhesive 

forces between cantilever and sample. At some point, retraction force will overcome 

adhesion forces. Hence, the cantilever finally retracts from the sample (Figure A3). 

 

Figure A3: Scheme of the forces present in tip-sample interactions during approach and retraction 

cycles.  

 

In this Thesis, we have used force mapping and QI® (Quantitative Imaging). Both these 

work modes are based on consecutive force spectroscopy sets organized in grids. 

While the first one focuses on extracting information about stiffness and adhesive 

forces, the second one also provides topography data, simultaneously to stiffness and 

adhesive forces. 
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A feature of the AFM equipment utilized in this Thesis is that it is ideally suited to 

handle liquid samples. It includes a thermostated setup compatible with 30 mm Petri 

Dishes, which makes it possible to work comfortably in liquids (including other than 

distilled water) in relatively big setups pre-conditioned to a physiological temperature, 

such as the one described in the following work. 

In the following section, an application of AFM through force-spectroscopy-based 

imaging in physiological conditions is described. 

 

A2 Application of AFM to microcapsule characterization. 

A2.1 Introduction. 

Cell microencapsulation is widely used in research as a delivery system for therapeutic 

drugs. The structure of the capsule enables the flow of nutrients and gases (O2 and 

CO2) between its outer and inner side, as well as the waste outlet and release of 

therapeutic molecules produced de novo by encapsulated cells. The aim is to create a 

suitable microenvironment that promotes and controls cell viability and proliferation. 

Furthermore, microcapsules protect the cells from the immunological rejection they 

would suffer from if cells were directly implanted in an immunocompetent host. In 

fact, microcapsules do not allow the entrance of immunoglobulins or the recognition 

of the cells by the immune system [290]. Different biomaterials such as agarose, 

chitosan or hyaluronic acid have been used for cell microencapsulation [99,291,292]. 

However, alginate remains the most common choice for the development of such 

systems due to its excellent biocompatibility and suitable mechanical properties [102]. 

Pancreatic islets encapsulation in alginate matrices is the field in which cell 

microencapsulation has made more progress, with promising results starting in the 

early 90s. Encouragingly, one patient got to be independent of insulin injections for 9 

months thanks to the intraperitoneal administration of pancreatic islets encapsulated 

in alginate [293-295]. Currently, clinical trials are assessing the use of encapsulated 

xenogeneic islet transplants and they are showing an adequate biosafety profile 
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together with high effectiveness in patients with type I diabetes mellitus [296,297]. 

Our research group has previously studied the microencapsulation of genetically 

modified C2C12 myoblasts to secrete erythropoietin (EPO), and showed that the 

encapsulation of these cells allows the release of EPO for at least 210 days in an 

allogeneic transplant and for 98 days in a xenogeneic transplant [298,299]. 

Despite the great promise of cell encapsulation technology, there have been 

continuous challenges in cell therapy using microencapsulated cells. The major one has 

been to decrease the number of dying cells inside the microcapsules. In fact, these 

cells release factors that are detrimental to the health of neighboring cells. Moreover, 

they can be released to the host environment eliciting an antigenic response [300]. 

Thus, the search of new materials that can enhance microencapsulated cells viability is 

one the most important current trends on cell microencapsulation field. 

Research on graphene, a two-dimensional sheet with exceptional electrical, 

mechanical and thermal properties, has grown exponentially since its discovery. Its 

application in electronic and optoelectronic systems, in medicine, as photoconductive 

materials and delivery systems of therapeutic drugs, or even in tissue engineering has 

been explored [301]. Similarly, the application of nanomaterials from graphene 

derivatives, such as graphene oxide, has been studied. Graphene oxide (GO) is a 

chemically modified highly oxidized form of graphene, consisting of single atom thick 

layer of graphene sheets with carboxylic acid, epoxide and hydroxyl groups [301]. 

Thus, for example, surfaces of graphene and GO have shown to support proliferation 

and differentiation of induced pluripotent stem cells, promoting differentiation toward 

endoderm lines such as the insulin producing cells [302]. Moreover, graphene and GO 

increase the adhesion, proliferation and differentiation of mesenchymal stem cells 

toward osteogenic and adipogenic lines respectively [303,304]. GO has also shown a 

higher rate of maturation from murine myoblasts into myotubes compared with other 

materials [305]. Although most of the studies reported are performed on two-

dimensional (2D) graphene materials, three-dimensional (3D) scaffolds have also been 

studied. For instance, graphene foams support neural stem cell (NSC) proliferation and 

differentiation toward neuronal lineages [306]. 3D composite scaffolds have also been 

fabricated with gelatin methacrylate and GO, enhancing gelatin methacrylate 
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mechanical and electrical properties, while not affecting the viability of encapsulated 

fibroblast cells [307]. Overall, graphene materials, either on 2D or 3D, seem to 

promote the proliferation of different cell types although more detailed in vitro 

characterization of scaffolds needs to be done. Because of the unique properties of 

GO, we propounded to combine cell microencapsulation technology with this material. 

In fact, the selection of suitable polymer-matrices is essential to achieve long-term 

treatments with encapsulated cells. For example, alginate and pectin microcapsules 

have shown more resistance and maintenance of an adequate microenvironment for 

enclosed GDNF secreting Fischer rat 3T3 fibroblasts than the combination of alginate 

with other materials, such as cellulose sulfate or agarose [308]. Currently, there is only 

one study that has combined alginate capsules with GO. In this study, the size of 

alginate beads containing GO was 50 millimeters of diameter, suggesting the 

application of these spheres as efficient copper adsorption material [309]. The aim was 

to incorporate different concentrations of GO into 160 mm-diameter alginate 

microcapsules, characterize their physical properties and test its biocompatibility with 

EPO producing C2C12 myoblasts within the microcapsules for future clinical 

applications.  

 

A2.2 Material and methods. 

A2.2.1 Biomaterials. 

Graphene oxide (GO) 5 wt.% was obtained from Graphenea Company (Spain). The 

product was suspended in water and sonicated for 1 h to obtain a higher percentage of 

monolayer flakes. Ultra-pure low-viscosity and high glucuronic acid alginate (LVG) was 

purchased from FMC Biopolymer (Norway). Poly-L-lysine hydrobromide (PLL, 15–30 

kDa) was purchased from Sigma–Aldrich (St. Louis, MO). 
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A2.2.2 Atomic force microscopy (AFM). 

Mechanical characterization of capsules was measured by AFM on a JPK Nanowizard 3 

(JPK instrument, Berlin, Germany) coupled with an inverted microscope (NIKON Ti, 

Nikon Instruments). The samples were maintained at constant temperature by a 

PetriDish Heater® included in the system. QI® and Force Mapping modes were used for 

topography and apparent Young’s moduli respectively, since they have been reported 

as successful methods for these applications [90,310]. PNP-TR cantilevers 

(NanoAndMore, GMBH) with tip A were chosen due to the adequacy of its nominal 

spring constant, (0.32 N/m). Each tip was precisely characterized by thermal noise 

method before each measurement. 

For the experimental setup, the capsule was immobilized first to place the cantilever 

centered on top. Briefly, a 100-nm nylon mesh (Merck Millipore) was fixed to a Petri 

dish using a standard cyanoacrylate adhesive. Then, the dish was filled with Dulbecco’s 

Modified Eagle’s Medium (Sigma–Aldrich) and 20 mM in HEPES buffer (Sigma–Aldrich). 

Ten microliters of the capsule suspension were subsequently pipetted on the center of 

the dish and left alone for 5 min to let them reach 37 0C. Finally, a capsule centered 

within the nylon holes was identified by means of the optical microscope, and the AFM 

measurements were carried out. 

At least 5 capsules for each sample were studied. Image and data were processed with 

JPK Data Processing (JPK Instrument, Berlin, Germany) software. QI image data were 

flattened and low frequency enhancement was subsequently performed on each 

image. Young’s moduli were calculated by applying the Hertz model to each curve in 

the Force Map. Mode values were extracted from data histograms for every 

microcapsule. 

 

A2.2.3 Statistical analysis. 

Statistical analysis was performed using SPSS software, version 21.00.1, or GraphPad 

Prism 5.01 (GraphPad Inc., San Diego, CA). Data are expressed as mean ± standard 

error of the mean. Values from p < 0.05 to p < 0.001 were considered significant for 

comparison of groups using ANOVA, Tukey’s post hoc test. 
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A2.3 Results. 

Firstly, we attempted to produce alginate microcapsules smaller than 200 mm of 

diameter containing different concentrations of graphene oxide (GO) from the highest 

concentration of 1 mg GO/ml to the lowest of 50 µg GO/ml, based on previous 

descriptions of GO encapsulation into 0.5 cm of diameter alginate gel beads [309]. GO 

concentrations of 1 mg/ml plugged up the pneumatic atomization generator 

(Bioencapsulation portable platform Cellena), being 500 µg/ml the highest suitable GO 

concentration to incorporate into the matrix of alginate microcapsules with this 

system. After recovering the microcapsules from the CaCl2 where they gellified, it was 

already evident the presence of GO inside the microcapsules by simply observing the 

increase on brown color intensity as the GO concentration was raised (Figure A4). 

 

Figure A4: Fabrication and final aspect of the fabricated alginate microcapsules. (A) Macroscopic images 

of alginate and alginate–GO microcapsules collected over 100 mm strainers. (B) Microscopy images from 

alginate and alginate–GO microcapsules. Scale bar 100 mm. Note: final concentration of GO in the core 

of microcapsules: (1) alginate microcapsules without GO, (2) 50 mg/ml, (3) 125 mg/ml, (4) 250 mg/ ml 

and (5) 500 mg/ml. 
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Another key property on alginate microcapsules is their external surface. Thus, we 

analyzed our alginate–GO microcapsules under atomic force microscopy (AFM) [311]. 

Firstly, we performed Force Mapping experiments on each capsule, to extract Young’s 

moduli, since measurements tended to be most precise through this method. Force 

Mapping was followed by QI imaging for each capsule. We found this method was 

most appropriate for our samples, given that they are loosely immobilized and the 

applied force can be easily controlled through this method [312]. 

Our results showed very homogeneous topographical images for capsules lacking 

coatings and GO, with more smoothed surfaces after PLL and alginate coating addition. 

In fact, the PLL and alginate coating seemed to cover the grooves present in non-

coated microcapsules (Fig. A5 A, B). However, the addition of GO nanoparticles 

seemed to create inhomogeneous surface structures, which arose more frequently 

when GO concentrations were increased (Fig. A5 C–F). When PLL was added to 

alginate–GO microcapsules, a certain evenness of the surfaces was observed, 

particularly for intermediate GO concentrations, as the images produced were flatter 

than those ones corresponding to non-coated microcapsules (Fig. A5 D, F). Therefore, 

we could confirm that the coating of alginate microcapsules containing GO with PLL 

and alginate improves their surface biocompatibility by providing a smoother surface. 

As for apparent Young’s moduli, capsules lacking coatings and GO showed the highest 

values. When coatings were added, apparent Young’s moduli of microcapsules 

dropped, probably due to the low rigidity of the PLL compared to the core (Fig. A6). 

When alginate–GO, microcapsules were compared, apparent rigidity on the coated 

ones increased above non-coated stiffness values, while higher concentrations of GO 

tend to increase apparent rigidity in microcapsules. This suggests an interaction 

between alginate and GO nanoparticles, which could be creating a lower density 

structure and a lower apparent Young's Moduli. The interaction between alginate and 

GO nanoparticles could be established through edge-to-edge or face-to-face 

interactions between Ca2+ and GO, since Ca2+ has shown to be effective in aggregating 

GO nanosheets [313,314]. 

 



Development of microfluidic tools to reproduce and characterize the tumor 
microenvironment. 
 

151 
 

 

 

Figure A5. Atomic force microscopy (AFM) images from microcapsules containing graphene oxide (A) 

without GO non-coated microcapsules. (B) Without GO coated microcapsules. (C) With 125 mg/ml GO 

non-coated microcapsules. (D) With 500 mg/ml GO coated microcapsules. (E) With 125 mg/ml GO non-

coated microcapsules. (F) With 500 mg/ml GO coated microcapsules. Scale bar in mm. 
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Figure A6: Apparent Young’s Moduli for the alginate microcapsules as measured through Force 

Spectroscopy. Microcapsules of 0, 125 and 500 µg/ml of graphene oxide, both with and without poly-

lysine-alginate coating were examined. No statistically significant differences were found. 

 

A2.4 Conclusions. 

Altogether, our results show that GO concentrations between 25 and 50 mg/ml 

increase the viability, metabolic activity and membrane integrity of encapsulated 

C2C12–EPO myoblasts. The better viability obtained by the presence of GO inside the 

capsules could be beneficial for the therapy, since it provides a healthier 

microenvironment for the encapsulated cells. Moreover, the fact that GO contains a 

range of functional groups facilitates its application in Biomedicine. Importantly, GO 

shows good properties in this sense since it is cheap to produce, has a large surface 

area and has shown low toxicity. In conclusion, this kind of biocompatibility studies in 

alginate–GO cell microencapsulation (3D cultures) should be performed for each cell 

type and therapeutic protein since the GO concentrations might affect the viability of 

each cell type while the adsorption capacity of the GO nanoparticles might also be 

different depending on the secreted protein. Moreover, the size of GO particles should 

be controlled because different sizes seem to induce different responses from cells 

[315,316]. 
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