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ALBANESE VARIETIES OF CYCLIC COVERS OF THE PROJECTIVE

PLANE AND ORBIFOLD PENCILS

E. ARTAL BARTOLO, J.I. COGOLLUDO-AGUSTÍN, AND A. LIBGOBER

Abstract. The paper studies a relation between fundamental group of the complement to
a plane singular curve and the orbifold pencils containing it. The main tool is the use of
Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient
conditions for a plane singular curve to belong to an orbifold pencil, i.e. a pencil of plane
curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental
group is non trivial. We construct an example of a cyclic cover of the projective plane which
is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent
to which these conditions are necessary.

Introduction

There is an interesting correspondence between the fundamental groups of the complement
to plane algebraic curves and the structure of the pencils, possibly with multiple fibers which
one can associate with such curves. For example, if a plane curve C is composed of a pencil, i.e.
C =

⋃s

i=0Ci where Ci are zeros of sections ti in a 2-dimensional subspace L of H0(P2,O(d)),
then for each P ∈ XC := P2 \C there is a well defined element tP ∈ P(L) such that tP (P ) = 0
and the correspondence P → tP gives a holomorphic map XC → P(L) \ {Ti}si=0, where
Ti are the points of P(L) corresponding to the sections ti. This map induces a surjection
π1(XC) → π1(P(L) \ {Ti}si=0) and hence π1(XC) has a free group on s generators as its
quotient.

In a similar vein, the existence of pencils with multiple fibers containing C (see section 1.3)
may have implications for the fundamental group even if C is irreducible. For example,
suppose that an irreducible curve C ⊂ P2 belongs in a pencil having two multiple fibers of
multiplicities 2 and 3, i.e., the equation F of C can be presented as F = f 2+g3 where f, g are
homogeneous polynomials. Then the rational map π : P2

99K P1 given by π([x : y : z]) = [f 2 :
g3] induces a regular map of XC := P2 \C onto P1 \ {(1,−1)}. This map can also be viewed
as an orbifold map whose source is XC with a trivial orbifold structure and whose target is
the orbifold C2,3 which is an affine line with two orbifold points with stabilizers of orders 2
and 3. Such a dominant map yields a surjection of the fundamental group π1(X) onto the
orbifold fundamental group (cf. [4], [12, Prop.2.7]) for which one has πorb

1 (C2,3) = Z2 ∗ Z3
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2 E. ARTAL, J.I. COGOLLUDO, AND A. LIBGOBER

(isomorphic to PSL2(Z)). In the rest of the paper we call a map between orbifolds having a
one-dimensional target an orbifold pencil. The classically studied pencils (whether rational
or irrational) are a special case of orbifold pencils.

Previous work [12, 5, 6] has shown that sometimes the relation between the fundamental
group of a curve complement XC and its orbifold pencils can be reversed, namely, the structure
of the fundamental group provides information on the existence of (rational) orbifold pencils
on XC but the relation between fundamental groups and orbifold pencils has several aspects
not appearing in the context of ordinary pencils. If a curve has only nodes and ordinary
cusps as its singularities (or more generally, singularities called in [12] δ-essential) then the
positivity of the rank of the abelianization of the commutator π1(XC)

′/π1(XC)
′′ implies the

existence of orbifold maps on XC (see Section 1 for more precise statements).
In the present paper we consider the correspondence between orbifold pencils and funda-

mental groups of possibly reducible curves C which may have singularities much more general
than ordinary cusps and nodes. Our main result (see Theorem 4) describes a sufficient con-
dition for the existence of orbifold pencils on P2 containing C in terms of the fundamental
group π1(XC) of its complement. Let us describe the results of the paper in more detail.

As in the case of curves with nodes and cusps only, it is convenient to state our results
in terms of the Alexander invariants and the characters of the fundamental group. The
statements also use the local Albanese varieties of singularities (cf. Section 1). Recall (see
more details in Section 1.1) that there is a notion of Alexander polynomial ∆C,π ∈ Z[t, t−1]
associated with a given surjection π : π1(XC) → Γ onto a cyclic group. Such a polynomial
depends only on the quotient of π1(XC) by the commutator of Kerπ and it contains informa-
tion about the cohomology of rank one local systems on XC , namely, for χ ∈ Hom(Γ,C∗) one
has H1(XC , χ) 6= 0 if and only if, for a generator γ of Γ, ξ = χ(γ) is a root of ∆C,π. A root
ξ of the Alexander polynomial ∆C,π can also be described as an eigenvalue of the covering
transformation τC acting on H1(VC ,C) where VC is a smooth model of the cyclic cover of P2 of
degree degC branched over C (cf. [17]). Note that since H1(VC ,C) is a birational invariant,
the eigenvalues of τC are independent of a choice of the smooth model VC . An alternative
description of the multiplicity of the root ξ can be given as the superabundance of the linear
system of plane curves described in terms of the degree and the local type of the singularities
of C. We refer to [18] for details.

The Alexander polynomial is affected by the local types of the singularities of C as was
shown in [17]. For the statement of our main results we will need a more precise than stated
in [17] version of this relation and it will be shown below in Section 2.

Theorem 1. Let C be a plane curve with arbitrary singularities and let χ be a character of
finite order N > 0 of the fundamental group π1(XC). Assume that χ is ramified along each
irreducible component of C. Assume also that H1(XC , χ) 6= 0. Then there exists a singularity
P ∈ C with local equation fP (x, y) = 0 for which the following property holds.

Denote by BP a Milnor ball about P and let χP be the character of π1(BP \C) which is the
composition

π1(BP \ C) → π1(XC)
χ→ C∗
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where the left map is induced by the inclusion BP \ C →֒ XC. Then the corresponding map:

(T1) H1(XC , χ) → H1(BP \ C, χP )

has a non-trivial image (in particular H1(BP \ C, χP ) 6= 0).

The orbifold pencils on P2 which we attach to the curve C are obtained from irrational
pencils on VC and are constructed using the Albanese map VC → Alb(VC). Albanese varieties
of cyclic covers of P2 were considered classically for covers of small degree (cf. [10, 7, 9] for
a modern exposition). The work of Comessatti [10, 9] studies the irregular 3-cyclic coverings
of the plane, and he finds examples both for Albanese dimensions 1 and 2. In the latter case,
he constructs an example (also found in [7] and thoroughly explained in [9]) such that the
cyclic cover is the product of two copies of a special elliptic curve. Bagnera and deFranchis
take another viewpoint: they study rational cyclic quotients of abelian surfaces. However, as
presented in Theorem 1, our focus is on C and its algebraic/topological properties such as
cohomology conditions on its complement.

Note that we obtain an explicit model of such quotients in Theorem 3.3; the ramification
curve is described and we derived geometric properties of this curve from this fact. Our
construction depends on the relation between Alb(VC) and the invariants of singularities of C
described in [16]. There are also simple cases where such irrational orbifold pencils come up
in a straightforward way. This is the case when Alb(VC) is an elliptic curve, or analogously,
for curves whose local Alexander polynomial equals t2 − t + 1. More generally we have the
following,

Corollary 2 (cf. Theorem 4). Let C, χ be as in Theorem 1 and let V χ
C be a smooth projective

model of the cyclic cover associated with the kernel of χ. Assume that the Albanese dimension
of V χ

C is equal to one (see Theorem 3.1 for explicit examples). Then C is an element of a global
quotient orbifold pencil such that χ is the pullback of a character of the orbifold fundamental
group of the target of this orbifold pencil.

We want to relax the assumption on Albanese dimension in the Corollary 2 and assume only
that one has a one-dimensional image in one of the isogeny χ-equivariant factor of Alb(VC).
In what follows, we will describe how, under some restriction on the analytic type of the
singularities of C, we may identify the abelian varieties which are the isogeny χ-equivariant
factors of Alb(VC) projection onto which may lead to construction of an orbifold pencil.

This restriction on the analytic type of singularities is given in terms of introduced in
[12] the local Albanese varieties associated with a plane curve singularities (cf. section 1
for definition.) A local Albanese variety is equipped with an automorphism i.e. a Z-action
coming from the action of the semi-simple part of the local monodromy on the homology of
the Milnor fiber. The relation between local Albanese varieties of singularities and global
information about C comes from canonical maps of each local Albanese variety into Alb(VC).
The sum of these maps over all singularities of C surjects onto Alb(VC) (cf. [16]). These maps
from the local Albanese varieties of the singularities of C are Z-equivariant with respect to
the just mentioned monodromy action and the action of the (cyclic) covering group of VC .
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Before stating the main result of this paper (Theorem 4) we shall state sufficient conditions
for existence of orbifold pencil in the case when singularties of C have type Ap−1 and for which
fewer technical assumptions can be made.

Theorem 3. Let C, χ, P , and V χ
C be as in Theorem 1 and Corollary 2 above. Assume

that C has at P an Ap−1-singularity, p an odd prime, and in particular, the local Albanese
variety AlbP is the Jacobian of the curve D of genus g := p−1

2
. Let albχ,D : V χ

C → Jac(D)
be the composition of the Albanese map V χ

C → Alb(V χ
C ) with the projection on its isogeny

component Jac(D).

If the image of albχ,D has dimension one, then there is a pencil V χ
C → D inducing an

orbifold pencil

(T3) XC 99K D/ Imχ

onto the global quotient of D by the canonical action of Imχ on D.
Moreover the character χ is the pullback on π1(XC) of a character of πorb

1 (D/ Imχ) via the
pencil (T3).

Now we are ready to state the main result of the paper with milder than in Theorem 3
restriction on singularities of C but similar conclusion that global orbifold pencils exist.

Theorem 4. Let C, χ, N and P be as in Theorem 1. Let V χ
C be a smooth projective model of

the cyclic branched cover of P2 associated with the kernel of χ and let τχC be the map induced
by the deck transformation on H1(V

χ
C ,C).

(1) Assume that the local Albanese variety AlbP of the singularity P has an isogeny com-
ponent Jχ satisfying the following:
(a) The action of Imχ on AlbP induces an action on Jχ and the map Jχ → Alb(V χ

C )
induced by the (Imχ)-equivariant map AlbP → Alb(V χ

C ) has a finite kernel.
(b) Jχ is the Jacobian of a curve D such that D is a quotient of an exceptional

curve D of positive genus in a resolution of the singularity zN = fP (x, y) i.e.
D = D/∆(D, χ) where ∆(D, χ) ⊆ Imχ is a (possibly trivial) subgroup of the
covering group Imχ, the latter being considered as an automorphism group of D.

Let albχ,D be the composition of the Albanese map V χ
C → Alb(V χ

C ) with the projection
on the factor Jχ = Jac(D). If the dimension of the image of albχ,D is one, then there
exists a pencil

V χ
C → D

inducing an orbifold pencil

(T4) XC 99K Dorb
Imχ

where Dorb
Imχ = D/(Imχ/∆(D,χ)) is the global quotient orbifold obtained via the in-

duced action of (Imχ/∆(D,χ)) on D. For such an orbifold pencil (T4) the character χ
is the pull-back on π1(XC) of a character of πorb

1 (Dorb
Imχ) via (T4).

(2) If AlbP is simple (i.e. is not isogenous to a product of abelian varieties of positive
dimension) then the assumptions (a) and (b) in (1) are automatically satisfied.
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Note that assumption (1)(a) means that Jχ is an (Imχ)-equivariant isogeny component of
Alb(V χ

C ). In particular it implies that the tangent space to Jχ at the identity is contained in
the χ-eigenspace of τχC acting on the tangent space of Alb(V χ

C ) at the identity,
The conditions for existence of orbifold pencils given by this theorem have the following

converse showing that the existence of an orbifold pencil having the curve C as a member,
implies that the Albanese variety of the corresponding cyclic cover splits up to isogeny. Some
factors of this splitting are the Jacobians of the curves with the orbifold associated with the
pencils being the global quotients of these curves.

More precisely (see section 1.3 for definitions related to orbifold pencils) one has:

Theorem 5. Suppose that C belongs to a global quotient orbifold pencil π (cf. Definition 1.7)
of target P1 with orbifold points of multiplicities m̄ = (m1, . . . , ms) so that π induces a ho-
momorphism π1(XC) → πorb

1 (P1
m̄). Assume also that there is ρ ∈ Char πorb

1 (P1
m̄) such that

χ = π∗(ρ) and also that the orbifold P1
m̄ is a global quotient of a curve Σ. Then Alb(V χ

C )
admits an (Imχ)-equivariant surjection onto Jac(Σ) and hence one has an (Imχ)-equivariant
isogeny Alb(V χ

C ) ∼ Jac(Σ)×A for an abelian (Imχ)-variety A.
More generally, if there is a finite number φ1, . . . , φn of global quotient orbifold pencils

as above with targets (P1
m̄, ρ) (ρ ∈ Charπorb

1 (P1
m̄) which are Q-strongly independent, then

Alb(V χ
C ) admits an (Imχ)-surjection onto Jac(Σ)n, that is there is an equivariant isogeny,

Alb(V χ
C ) ∼ Jac(Σ)n × A for an abelian (Imχ)-variety A.

The proofs of Theorems 1, 3, 4 and Theorem 5 are presented in Section 2. In Section 3 we
consider applications of Theorem 4. Firstly we discuss an example of a curve C with A2g-
singularities, i.e. whose singularities are locally isomorphic to u2 + v2g+1 = 0, which belongs
to an orbifold pencil. For the curves described in Theorem 3.1, all roots of the Alexander
polynomial correspond to orbifold pencils on the complement. The Albanese variety of the
canonical cyclic cover VC is the Jacobian of a certain curve of genus g (described as a Belyi
cover). In Theorem 3.3 we give an example of a curve for which the Albanese variety is the
same as one of those in Theorem 3.1 (for the particular case of g = 2), but whose characters
corresponding to the roots of the Alexander polynomial cannot be obtained as pull-back via
orbifold maps. The difference between the curves in Theorems 3.1 and 3.3 comes from the
difference in the Albanese maps of the corresponding cyclic covers, namely, the images of
the Albanese maps have different dimensions. The curve given in explicit way described
in Theorem 3.3 is particularly interesting, since its canonical cyclic cover has as a minimal
model an abelian surface (specifically the Jacobian of a curve of genus 2 cf. also [9]). This
construction of an abelian surface via cyclic coverings branched over curves given by explicit
equation can be of independent interest. Finally, in Theorem 3.5 we present a family of curves
contained in more than one orbifold pencil and for which the Albanese dimension is maximal,
that is, two.

1. Preliminaries

1.1. Alexander polynomials. (cf. [17])
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Let C be a plane curve with irreducible components C0, C1, . . . , Cr where Fi(x, y, z) = 0
is a reduced equation of Ci of degree di. Then H1(XC ,Z) is an abelian group of rank r
isomorphic to Zr+1/(d0, . . . , dr)Z. This isomorphism is given by

γ 7→
(

1

2π
√
−1

∫

γ

dFi

Fi

)r

i=0

.

Fix a surjection π : π1(XC) → Γ onto a cyclic group Γ. Note that π can be factored through
H1(XC ,Z) and hence induces a homomorphism Zr+1/(d0, . . . , dr)Z → Γ. Let K = ker π.
Consider the exact sequence 0 → K/K ′ → π1(XC)/K

′ → Γ → 0 and the corresponding action
of Γ on K/K ′ ⊗ C. The Alexander polynomial ∆C,π(t) of C (relative to the surjection π) is
the characteristic polynomial associated with the action of Γ on the vector space K/K ′ ⊗C.
Note that dimK/K ′ ⊗ C < ∞ (cf. [17]), ∆C,π has integer coefficients and in the case of
irreducible C is independent, for all the previous choices, as an element in C[t, t−1] modulo
units. In the latter case, if Γ = Z/dZ, then K/K ′ is the abelianization of the commutator
of π1(XC).

Zeroes of the Alexander polynomial can be described in terms of the cohomology of local
systems as follows. Note that, since π1(XC)/K

′ is abelian, π factors through a character, say
χ. Let ξ ∈ C∗, (1, ..., 1) ∈ Zr+1/(d0, . . . , dr)Z = H1(XC ,Z) be a generator of Imχ ∈ C∗; one
has:

(1.1) ∆C,π(ξ) = 0 ⇐⇒ dimH1(XC , χ) > 0 (cf. [14, 19]).

The Alexander polynomial is restricted by the local type of singularities and the degree of
C as follows. Each singularity P ∈ C, has associated its local Alexander polynomial ∆P

C , or
equivalently the characteristic polynomial of the local monodromy acting on the Milnor fiber
of the singularity (cf. [21]). Then one has the divisibility relation (cf. [17])

(1.2) ∆C(t)|ΠP∆
P
C(t).

Moreover the roots of the Alexander polynomial are roots of unity of the degree degC.

Example 1.1. Let C be a curve whose singularities are topologically equivalent to the
A2g-singularity with local equation u2 = v2g+1. Since the characteristic polynomial of the

monodromy for such singularity is t2g+1+1
t+1

the Alexander polynomial of C is trivial unless

2(2g + 1)| degC and moreover it is equal to
(

t2g+1+1
t+1

)s
for some s ≥ 0.

1.2. Local Albanese Varieties and singularities of CM-type.

Let f = 0 be a germ of an isolated (i.e. reduced) plane curve singularity at the origin.
Let Mf be the Milnor fiber of f , i.e. the intersection of a sufficiently small ball Bǫ about
the origin and the hypersurface f = t, 0 < |t| ≪ ǫ. The cohomology of Mf (more generally,
the cohomology of the Milnor fiber of an isolated hypersurface singularity) supports the limit
mixed Hodge structure. It was constructed by Steenbrink and we refer to [24] for its study.
Here we only note that it depends on the family of germs f = t, rather than its specific
member and record the following properties of this mixed Hodge structure used below:
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(1) It has weight 2 and the weight filtration is associated with the unipotent part of the
monodromy Tu in the decomposition into unipotent and semisimple parts of T = TsTu,
the monodromy operator acting on H1(Mf ,C).

(2) The size of Jordan blocks of the monodromy operator is at most 2 and equals rkW0.
Moreover,

rkGrW2 − rkW0 = r − 1,

where r is the number of branches of f = 0.
(3) The Hodge filtration is invariant under the action of the semisimple part of the mon-

odromy. Note that by the Monodromy Theorem the order of Ts is finite (cf. [24]).
(4) Let Lf be the link of the singularity zn = f where n is the order of the automorphism

Ts. Then

(1.3) GrW1 H1(Mf) = GrW3 H2(Lf )(1)

(where H(1) is the Tate twist of a Hodge structure H , cf. [16, Proposition 3.1]).

Definition 1.2. The local Albanese variety of the germ f is defined as the abelian va-
riety (Gr0F H1(Mf ))

∗/H1((Mf ,Z), with polarization induced by the intersection form on
H1(Mf ,Z). Equivalently, the local Albanese is the abelian part of the semiabelian vari-
ety associated by Deligne (cf. [13]) to the 1-motif in the case of the mixed Hodge structure
dual to the limit mixed Hodge structure discussed above.

The above definition is rather technical but it admits a simpler description in terms of
the resolution of the singularity zn = f discussed above. Let B̃ → B be an embedded log-
resolution of the germ f = 0, Vn → B be the projection of the germ of the singularity zn = f
onto B. The singularities of the normalization of the fiber product S = Vn ×B B̃ are cyclic

quotient singularities and their (minimal) resolution S̃ provides a resolution of the singularity
of the germ zn = f (cf. [20]). In this resolution the boundary of the tubular neighborhood
of the exceptional locus can be identified with the link Lf in (1.3). Moreover H1(Lf ) (and
by duality H2(Lf )) can be identified in an appropriate way with

⊕
H1(Ei) where Ei runs

through the set of exceptional curves in S̃ having a positive genus. More precisely, we have:

Theorem 1.3. (cf. [16, Theorem 3.11]) Let f(x, y) = 0 be a singularity with a semi-simple
monodromy and let N be the order of the monodromy operator. The Albanese variety of the
germ f(x, y) = 0 is isogenous to a product of Jacobians of the exceptional curves of positive
genus for a resolution of

(1.4) zN = f(x, y).

The latter description suggests an approach to defining the local Albanese for the non-
reduced case, i.e. as the product of the Jacobians of curves of positive genus in the resolution
of the singularities of the germ zn = f .

Finally recall the following:
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Definition 1.4. (cf. [16, Definition 3.4]) A plane curve singularity has a CM-type if its local
Albanese variety is an abelian variety of CM-type. A plane curve singularity has a CM-type
if its local Albanese variety is isogenous to a product of simple abelian varieties of CM-type.

We refer to [23] for basic information regarding abelian varieties of CM-type. Unibranched
singularities and singularities for which the characteristic polynomial of the monodromy op-
erator has no multiple roots provide many examples of singularities of CM-type (cf. [16]).

Example 1.5. Let (C, P ) be a simple curve singularity of type A2g, with local equation
y2−x2g+1 = 0. The local Albanese variety is associated to the surface singularity y2−x2g+1 =
z2(2g+1). For any resolution of this surface singularity, there is only one non-rational irreducible
component DA2g

of its exceptional divisor, which is a Belyi cover of the unique branching
component of the minimal resolution of (C, P ), ramified at the three intersection points with
the other components, with ramification indices 2, 2g + 1, 2(2g + 1), whose genus is g.

1.3. Orbifold Pencils.

Definition 1.6. LetX be a quasi-projective manifold and S be an orbicurve (one-dimensional
orbifold). A holomorphic map φ between X and the underlying S complex curve we shall
call an orbifold pencil if the index of each orbifold point p divides the multiplicity of each
connected component of the fiber φ∗(p) over p.

We will concentrate our attention on orbifold pencils of curve complements. Let C ⊂ P2

be a plane curve (not necessarily irreducible) and let XC denote its complement. Consider an
orbifold pencil φ : XC → S, where S is a rational orbifold curve (that is, its compactification
is P1) given by a finite number of orbifold points, say Pi, i = 1, . . . , s, with orbifold structure
of order mi ∈ Z>0∪{∞}, i = 1, . . . , s (i.e. near which the orbifold chart is the chart given by
a disk with the standard action of the cyclic group of order mi). For convenience, mi = ∞
means that Pi has been removed from S, namely, S = P1 \ {Pi | mi = ∞}. In the future we
will denote S simply by P1

m̄, where m̄ := (m1, . . . , ms).

Definition 1.7. In the situation as above, we say that C belongs to an orbifold pencil of
type m̄. Moreover, the orbifold pencil φ will be called a global quotient orbifold pencil if there
exists a morphism Φ : XG → Σ, where XG is a quasi-projective manifold endowed with an
action of a finite group G and Σ a curve which makes the diagram

(1.5)

XG Σ

XC P1
m̄

Φ

φ

commutative, for which the vertical arrows are the models for the quotients by the action of
G.

If in addition, there is a character χ ∈ Char(XC) and a character ρ ∈ Charorb(P1
m̄) such

that χ = ρ ◦ π, and XG (resp. Σ) is the covering of XC (resp. P1
m̄) associated with the
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character χ (resp. ρ), then we say (C, χ) belongs to a global quotient orbifold pencil with
target (P1

m̄, ρ).

Oftentimes, the set of global quotient orbifold pencils –up to the obvious equivalence by
automorphisms of the target– is infinite (see [12, 5]). A very useful (cf. Theorem 3.5 below)
property to determine the different nature of such orbifold pencils is given by the following.

Definition 1.8. Global quotient orbifold pencils φi : (XC , χ) → (P1
m̄, ρ), i = 1, . . . , n are

called independent if the induced maps Φi : XG → Σ define Z[G]-independent morphisms of
modules

(1.6) Φi∗ : H1(XG,Z) → H1(Σ,Z),

that is, independent elements of the Z[G]-module HomZ[G](H1(XG,Z), H1(Σ,Z)).
In addition, if

(1.7)
⊕

Φi∗ : H1(XG,Z) → H1(Σ,Z)
n

is surjective we say that the pencils φi are strongly independent. If the previous morphism
(1.7) is considered with coefficients over Q, then we will use the term Q-strongly independent.

2. Proof of theorems 1, 3, 4 and 5

Proof of Theorem 1. We shall use notations set up in the Introduction and in Section 1 and
consider the Alexander polynomial ∆C,χ(t) of C relative to the homomorphism χ : π1(XC) →
Γ ⊂ C∗ where Γ = Imχ is the group of N -th roots of unity by hypothesis. Let ξ ∈ C∗ be
a primitive N -th root of unity. Since H1(XC , χ) 6= 0 one has ∆C,χ(ξ) = 0 (cf. (1.1)). Let
Sχ := {P ∈ Sing(C) | H1(BP \ C, χP ) 6= 0}; because of (1.2), this set is non-empty.

For each P ∈ Sχ, consider the unbranched covering of EP := BP \ C corresponding to the

surjection π1(EP ) → Γ and denote it by (ẼP )Γ. Then the restriction of the cyclic cover of BP

given by the equation (1.4) on EP is equivalent to (ẼP )Γ → EP . The proof of the Divisibility

Theorem (cf. [17, 16]) also shows that that there is a surjection
⊕

P∈Sχ
H1((ẼP )Γ,Q)ξ →

H1(V
χ
C ,Q)ξ, where the subindex ξ stands for the ξ-eigenspace of the corresponding deck

transformations. Hence one can take as P in (1) any singular point in Sχ for which the map

H1((ẼP )Γ,Q)ξ → H1(V
χ
C ,Q)ξ has a non trivial image. �

Remark 2.1. In fact H1(BP \ C, χP ) 6= 0 is not enough to ensure that the map (T1) in
Theorem 1 has a non-trivial image. For instance, consider C a sextic curve with seven ordinary
cusps. It is well known (already to O.Zariski, cf. [3, 17, 12] for more recent discussions) that
there is a conic passing through six out of the seven cusps. The Alexander polynomial of C is
t2− t+1, which coincides with the local Alexander polynomials of its singularities. However,
if χ is a character of order 6, the map

H1(XC , χ) → H1(BP \ C, χP )

is not trivial if and only if P is one of the six cusps on the conic.
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Proof of Theorem 4. Now let us assume that P is a singularity satisfying Theorem 4 and
consider a resolution of the associated surface singularity VP = {zN = fP (x, y)}, where N
is the order of the character χ and fP is a local equation of C near P . Recall that such
a resolution can be obtained (Jung’s method cf. [20]) by normalizing a pull-back of an
embedded resolution of the singularity at P .

It follows from the A’Campo formula (cf. [1]), or from discussion in Section 1.2, that
ξ is the root of the characteristic polynomial of the transformation induced on homology
by the action z 7→ ξz on a resolution of singularities of the surface VP and restricted to
one of the curves of positive genus in the resolution of the singularity VP . Denote such a
curve by D. Jung’s procedure implies that , D is an irreducible component of a Γ-cover of
a rational curve (namely an exceptional divisor of the resolution of P ). By Theorem 1.3
(i.e. [16, Theorem 3.11]) there is an isogeny component of the Jacobian of D (possibly a
direct sum of several simple components) which is also an isogeny component of Alb(V χ

C ).
If this component is an (Imχ)-invariant Jacobian of a curve D, i.e. if the assumption (b)
in Theorem 4 is fulfilled, then by Torelli’s Theorem Imχ acts on D as well (unfaithfully if
D 6= D). Note that Theorem 4 allows non-reduced curves f = 0, which are excluded in the
statement of Theorem 1.3.

As a consequence of Jung’s method, the resolutions of zn = f and zn = fred, where fred
is the product of irreducible factors of f , are both obtained by pull-back and normalization
of the same embedded resolution of the curve fred = 0. In particular the conclusions of
Theorem 4(1) still hold in the non-reduced case, whereas D depends on the ramification data
of the cyclic cover VP .

Returning to the proof of the existence of an orbifold pencil satisfying (1), suppose that
the composition of the Albanese map and the projection onto Jac(D) has a 1-dimensional
image W . Let σ : D → D be the quotient map. Consider the diagram

(2.1)

D

D Jac(D) Jac(D) = Jχ

V χ
C Alb(V χ

C ) W := Im albχ,D .

σ

Jac(σ)

6= 0

This diagram shows that the image of D in Jac(D) coincides with the image of D and hence
it is contained in W . The assumption that dim Imalbχ,D = 1 hence yields that Im albχ = D
(up to a translation). Moreover the map V χ

C → D is Γ-equivariant and hence it induces the
orbifold pencil as described in Theorem 4(1).

If Jac(D) is a simple abelian variety, then Jχ = Jac(D) as it follows from the discussion
above. This yields (2) which concludes the proof of Theorem 4. �
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Proof of Theorem 3. To derive this proof from Theorem 4 we have to verify that its hypothe-
ses are satisfied. For A2g-singularities, one has AlbP = Jac(D), where D is a covering of the
branching component of the minimal resolution of the singularity. Note that under the hy-
pothesis p = 2g+1 is prime, Jac(D) is simple (cf. [23, Example 4.8(1)]). Using Theorem 4(2),
the result follows. �

Proof of Theorem 5. Recall that πorb
1 (P1

m̄) = π1(P
1 \{Pi}si=1)/〈γmi

i 〉si=1 where γi are meridians
about the points Pi in π1(P

1 \ {Pi}si=1). Consider the composition λρ

π1(P
1 \ {Pi}si=1)

λ−→ πorb
1 (P1

m̄)
ρ−→ C∗.

Following the notation introduced in Definition 1.7, consider the natural surjection morphism
Λ : π1(P

2 \ (C ∪
⋃s

i=1Di)) → π1(XC). Note that the meridians about the components Di

generate the normal subgroup ker Λ. Since they are taken by π onto mi-th powers of (even-
tually powers of) meridians about Pi, the surjection π is induced by π1(P

2 \ (C ∪
⋃s

i=1Di)) →
π1(P

1 \ {Pi}si=1). Hence we have the following commutative diagram:

(2.2)

π1(P
2 \ (C ∪

⋃s

i=1Di)) π1(P
1 \ {Pi}si=1)

π1(XC) πorb
1 (P1

m̄)

Π

π
Λ λ

Since χ = π∗(ρ), the character χ is the composition π1(XC)
π−→ πorb

1 (P1
m̄)

ρ−→ C∗, one has
Π(ker(Λ ◦ χ)) ⊆ ker(λ ◦ ρ). Hence diagram (2.2) shows that π induces the map of covering
spaces

(2.3)

(
P2 \ (C ∪

s⋃

i=1

Di)

)

Λ◦χ

−→
(
P1 \ {Pi}si=1

)
λρ

corresponding to the subgroupsK := ker(Λ◦χ) andKρ := ker(λρ) respectively. The extension
of the map (2.3) to a smooth compactification of (P2 \ (C ∪

⋃s

i=1Di))Λ◦χ and then to a

resolution of its base points yields a map of a birational model of V χ
C to Σ; recall that the

orbifold P1
m̄ is a global quotient of a Riemann surface Σ. And hence we have also a map

Alb(V χ
C ) → Jac(Σ). The Poincaré Reducibility Theorem yields an isogeny between Alb(V χ

C )
and Jac(Σ)×A.

In the case of n > 1 pencils φ1, . . . , φn, we obtain a corresponding map for each φi and hence
a map Alb(V χ

C ) → Jac(Σ)n. By Definition 1.8, the corresponding map of H1 is surjective and
hence, as above, the Poincaré Reducibility Theorem yields the claimed isogeny. �

3. Curves with A2g-singularities

The purpose of this section is to justify the lengthy statements of the main theorems by
highlighting both their power and their subtleties through a series of examples. Simplifying
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the statements would only cause a more coarse description of the actual connection between
characteristic varieties and orbifold pencils.

In what follows we present three essentially different types of situations: the pivotal example
is shown in Theorem 3.3, where dim Imalb = 2, Alb(V χ2

C2
) is a simple abelian variety, which

is the Jacobian of a curve, and hence the image alb projected onto the isogeny factors of
Alb(V χ2

C2
) is never a curve. Therefore the conditions of Theorem 4 are not satisfied. Moreover,

(C2, χ2) does not contain a global orbifold pencil (see [4]). Another remarkable fact is that
V χ2

C2
is birational to an abelian surface of CM-type corresponding to the cyclotomic field Q(ζ5).

The cyclic quotients of these abelian surfaces have been studied by Bagnera and deFranchis [7];
this curve is the ramification divisor of one of such quotients.

On the other hand in Theorem 3.1 a curve C1 is exhibited (for k = 1 and g = 2)
whose Alb(V χ1

C1
) coincides with Alb(V χ2

C2
), however dim Imalb = 1, which implies, by Theo-

rem 3, the existence of a global orbifold pencil containing (C1, χ1). Finally, in Theorem 3.5,
dim Imalb = 2, as for C2. However Alb(V χ3

C3
) decomposes (up to isogeny) as a product of

three simple Jacobians of curves and the image alb projected onto these factors are always
1-dimensional. By Theorem 3 this implies the existence of three independent global orbifold
pencils containing (C3, χ3).

Theorem 3.1. Let C1 be an irreducible curve in P2 given by the equation

(3.1) f 2g+1
2k + f 2

(2g+1)k = 0,

where fi is a generic homogeneous polynomial of degree i. Let χ1 be the character of π1(P
2\C1)

sending the generator of H1(P
2\C1) = Z2k(2g+1) to a primitive root of unity of degree 2(2g+1).

Consider V χ1

C1
the cyclic covering of order 2(2g + 1) of P2 ramified along C1. Let DA2g

be the
curve of genus g which is the cyclic Belyi cover of P1

(2,2g+1,2(2g+1)) of degree 2(2g + 1). Then

Alb(V χ1

C1
) ∼ Jac(DA2g

) and the Albanese dimension of V χ1

C1
is 1.

Remark 3.2. These curves were studied by M. Oka in [22] and the pencil provided by The-
orem 3 is the one generated by f 2g+1

2k and f 2
(2g+1)k. Also note that Jac(DA2g

) is the local
Albanese variety of any singularity of C1, see Example 1.5.

Proof. The curve (3.1) has 2k2(2g + 1) singularities each locally equivalent to u2 = v2g+1

forming scheme theoretical (for generic f2k, f(2g+1)k) complete intersection B given by f2k =
f(2g+1)k = 0. The Example 1.1 provides a general form of its Alexander polynomial and a

calculation using [18] shows that s = 1 i.e. it is t2g+1+1
t+1

.

Consider the pencil of curves of degree 2k(2g + 1) given by:

(3.2) πC1
: [x0 : x1 : x2] 7→ [f2k(x0, x1, x2)

2g+1 : f2g+1(x0, x1, x2)
2k]

yielding a regular map P2 \ B → P1. We shall view this as an orbifold pencil with target
P1
2,2g+1. Since πC1

(C1) = p ∈ P1, this map induces another orbifold map P2\C1 → P1
2,2g+1\{p}

by restriction. Note that the inclusion P1
2,2g+1 \ {p} →֒ P1

2,2g+1,2(2g+1) is a dominant map. The
latter orbifold is a global orbifold quotient by the action of cyclic group Z2(2g+1) of a cyclic
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Belyi cover Σ having genus g (the value of the genus follows for example from the Riemann-
Hurwitz formula). Moreover the pencil (3.2) lifts to the regular map π̃C1

: V χ1

C1
→ Σ. It

follows from [17] that dimH1(V
χ1

C1
) = 2g. Hence the induced map ΠC1

: Alb(V χ1

C1
) → Jac(Σ)

is an isogeny and one has the commutative diagram:

(3.3)

VC1

π̃C1−→ Σ
↓ ↓

Alb(V χ1

C1
)

Π̃C1→ Jac(Σ)

where the vertical arrows are the Albanese map and the canonical embedding of Σ into its
Jacobian. This implies that the Albanese image of V χ1

C1
is one dimensional. �

Theorem 3.3. Let C2 be the union of a self-dual quintic C0 with 3 A4-singularities and the
line L which is tangent to C0 at one of its singularities, say P 0. Consider χ2 any character
of order 10 that ramifies along C0 + 5L (the coefficients represent the ramification indices).
Then

(1) The canonical class of the minimal model of V χ2

C2
is trivial.

(2) dimH1(V
χ2

C2
,C) = 4. In particular this minimal model is an abelian surface.

(3) This abelian surface is isomorphic to the Jac(DA4
) which is a simple abelian variety

and hence its Albanese dimension is 2.

Proof. In order to prove part (1), we will construct the 10th-cyclic cover of P2 associated with

χ2. Note that KP2 = −3H = −3
5
C0. Denote by P̂2 the resulting surface (see Figure 2) after

blowing up the singular points of C0 to obtain a normal crossing divisor and then blowing
down the preimage of L.

E0
2

E0
4

E0
3

E0
1 C0

L

Figure 1. Local resolution at P 0

To understand this, we will briefly describe the local resolution of the singularity at P 0

shown in Figure 1. The subindices of E0
i indicate the order of appearance of the exceptional

divisors. Since the first two blow-ups occur on infinitely near smooth points of L, its self-
intersection drops by 2. However, these first two infinitely near points are not smooth on C0,
but of multiplicity 2. Since two more blow-ups on infinitely near smooth points of C0 are
required to resolve the singularity, the self-intersection of C0 drops by 2 · (2)2 + 2 · (1)2 = 10.
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We denote by P± the other singular points of type A4. Note that Figure 1 (excluding
the germ of L) also describes a resolution of P± in C0. For the corresponding exceptional
divisors we replace the superscript 0 by ± accordingly. Analogously as mentioned above, the
self-intersection of C0 drops by 10 at each point.

By Bézout’s Theorem, L intersects C0 at another point. Since its self-intersection after the
blow-ups is −1 and it intersects only C0 and E0

2 , we can blow it down keeping the normal
crossing property. The self-intersection of both E0

2 and C0 increases by 1. The resulting

surface is P̂2 and the involved divisors are shown in Figure 2. By the Projection Formula we
obtain

KP̂2 = −3

5
C0 −

1

5

(
E+

1 + E−
1 + E0

1 + 2E+
2 + 2E−

2 + 2E0
2

)
.

E0
2

(−2)

E0
4

E0
3

E0
1

E+
2

(−3)

E+
4(−1)

E+
3

(−2)

E+
1(−2)

E−
2

E−
4

E−
3

E−
1

C0(−5)

Figure 2. Surface P̂2

The self-intersections of the divisors are shown in parenthesis unless (E•
i )

2 = (E+
i )

2. Since
we have blown-up 12 points and blown-down one exceptional divisor, one can compute the
Euler characteristic as follows:

χ(P̂2) = χ(P2) + 12− 1 = 14.

An alternative way to obtain a surface birationally equivalent to V χ2

C2
is to consider the 10th

cyclic cover of P̂2 ramified along the total transform of C0 + 5L, that is,

R := C0 + 7E0
1 + 14E0

2 + 15E0
3 + 30E0

4 + 2E±
1 + 4E±

2 + 5E±
3 + 10E±

4

≡ C0 + 7E0
1 + 4E0

2 + 5E0
3 + 2E±

1 + 4E±
2 + 5E±

3 mod 10Pic(P̂2),
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where E±
i = E+

i + E−
i . It is easier to factor such covering as the composition of a double

cover π2 and a 5th-fold cover π5.
The double cover of P̂2 is ramified along

R2 := C0 + E±
3 + E0

3 + E0
1 ≡ R mod 2Pic(P̂2)

and will be denoted by X . The dual graph of the total transform π∗
2(R) in X is shown

in Figure 3.

e04

(−2)

e02

(−4)

e03

(−1)

e01

(−1)

c0(−2)

e++
1

(−2)
e++
2

(−3)

e+4

(−2)

e+3

(−1)

e+−
2 e+−

1

e−−
1

e−−
2

e−4

e−+
2

e−+
1

e−3

Figure 3. Surface X

In order to compute the self-intersection of each divisor one has to apply the intersection
theory formulas for covers (cf. [8, Chapter II. Section 10]).

Note that

KX = −1

5
c0 +

3

5
e01 −

2

5
e02 + e03 −

1

5
e±±
1 − 2

5
e±±
2 + e±3 ,

where e±±
i denotes the sum e++

i + e+−
i + e−+

i + e−−
i .

By Riemann-Hurwitz, the Euler characteristic of X can be obtained as

χ(X) = 2(χ(P̂2)− χ(R2)) + χ(π∗
2(R2)) = 2(14− 10) + 10 = 18.

After blowing down the divisors e01, e
0
3, e

+
3 , and e−3 one obtains the surface Y , where

KY = −1

5

(
c0 + 2e02 + e±±

1 + 2e±±
2

)
and χ(Y ) = 14.

Finally one needs to perform the 5:1 cover of Y ramified along R5 := c0+2e02+e±±
1 +2e±±

2 ,
which incidentally is the support of KY . Note that this divisor has 5 connected components,
namely, e++

1 + 2e++
2 , e+−

1 + 2e+−
2 , e−+

1 + 2e−+
2 , e−−

1 + 2e−−
2 , and c0 + 2e02, each with the same

combinatorial structure as shown at the bottom of Figure 4. The appropriate ramified cover
on e++

1 + 2e++
2 is shown in Figure 4. Next to each irreducible component a list of numbers

is shown: the first one being the self-intersection of the component, the second one being its
multiplicity in the corresponding canonical Q-divisor (KY or KZ), and the third one (where
applicable) being the ramification index. The components ε++

i are the strict transforms of e++
i

by the 5:1 cover, while the remaining components a++ and b++ project onto the double point.
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Note that the support ofKZ is in the preimage of R5. After blowing down all components, one
obtains a smooth surface Ẑ with trivial canonical divisor, which is in particular the minimal
model of V χ2

C2
. Using Riemann-Hurwitz once again, one obtains

χ(Ẑ) = 5(χ(Y )− χ(R5)) + 5 = 5(14− 5 · 3) + 5 = 0.

ε++
1(−1, 3)

a++

(−2, 2)

b++

(−3, 1)

ε++
2 (−1, 2)

e++
1

(−2,−1
5
, 1)

e++
2

(−3,−2
5
, 2)

Figure 4. Surface Y

From the Kodaira classification (see [8, Table 10]) the minimal model is a torus and hence
it is an abelian surface.

For part 2, note that the degree of the Alexander polynomial of C2 associated with χ2 (see [5,
section 2.2]) is t4−t3+t2−t+1 ([4, Theorem 4.5]). Since dimAlb(V χ2

C2
) = 1

2
deg∆C2,χ2

(t) = 2,
the result follows. �

Remark 3.4. Note that Jac(A4) is a simple abelian variety. This follows from discussion in
[16] yielding that CM-field in this case is Q(ζ5) and explicit description of the CM-type there.
More generally, for the singularity type xp+ yq, where p, q are different prime numbers, recall
that Arnold-Steenbrink’s spectrum provides the CM-type for the local Albanese variety (cf.
[16]), whose explicit description is well known. One can apply Shimura-Taniyama conditions
for primitivity of a CM-type (cf. [23]) to verify that the local Albanese variety is simple in
this case. In particular Theorem 4(2) can be applied to those plane curve singularities.

In general, however, local Albanese variety has several isogeny components. In the case
of uni-branched curves they all are Jacobians of Belyi cyclic covers (cf. [16]) and hence are
the components of Jacobians of Fermat curves. We refer for additional information regarding
these Jacobians to [15] and [2].

Theorem 3.5. Let C3 be an irreducible curve in P2 given by the equation

(3.4) x2m
0 + x2m

1 + x2m
2 − 2(xm

0 x
m
1 + xm

1 x
m
2 + xm

2 x
m
0 ) = 0,

where m is an odd number, say m = 2g+1. Consider V χ3

C3
the cyclic covering of order 2m of

P2 ramified along C3. Let DA2g
be as above. Then Alb(V χ3

C3
) is isogenous to Jac(DA2g

)3 and
the Albanese dimension of V χ3

C3
is 2.
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Proof. The pencils of curves

Λi = {Fi,[α:β] | [α : β] ∈ P1},
(where Fi,[α:β] = {α(xjxk)

m+β(xm
j +xm

k −xm
i )

2 = 0} and {i, j, k} = {0, 1, 2}) induce orbifold
morphisms from P2 onto the compact orbifold P1

([1:0],2),([0:1],m). Since C3 = Fi,[−4:1] they also

define (by restriction) orbifold morphisms φi : P
2 \ C3 → P1

2,m,2m defined as

[x0 : x1 : x2]
φi7→ [xm

j x
m
k : (xm

j + xm
k − xm

i )
2].

If one shows that these morphisms are strongly independent, then by Theorem 5, they
define a surjective morphism Alb(V χ3

C3
) → Jac(DA2g

)3. Note that DA2g
is a curve of genus

g. Moreover, the Alexander polynomial of C3 associated with χ3 is the classical Alexander

polynomial since C3 is irreducible, which is ∆C3
(t) =

(
t2g+1
t+1

)3
(see [11]). Thus

dimAlb(V χ3

C3
) =

1

2
deg∆C3

(t) = 3g

and then Alb(V χ3

C3
) ∼ Jac(DA2g

)3 by dimension reasons.
For the last part, consider (φ1 × φ2) : P

2 \ C3 → (P1
2,m,2m)

2. Note that the preimage of a
generic point is the intersection of two generic members of the pencils Λ1 and Λ2 and hence
the morphism is finite. The same applies to (Φ1×Φ2) : V

χ3

C3
→ Σ2. By the standard properties

of the Albanese map, alb(Φ1×Φ2) : Alb(V
χ3

C3
) → Jac(DA2g

)2 is surjective. Since the Albanese
map of V χ3

C3
factors through alb(Φ1 × Φ2), the result follows.

It remains to show that the global quotient orbifold pencils φ0, φ1, and φ2 are strongly
independent, in other words, that the morphisms Φi,∗ : H1(V

χ3

C3
) → H1(Σ), i = 0, 1, 2,

obtained from (3.5),

(3.5)

V χ3

C3
Σ

P2 \ C3 P1
2,m,2m

Φi

φi

are Z[µ2m]-independent (µ2m ⊂ C∗ the cyclic group of 2m-roots of unity) and that ⊕2
i=0Φi,∗ :

H1(V
χ3

C3
) → H1(Σ)

3 is surjective (see Definition 1.8)
Note that the base points of the pencils can be described as follows: let {i, j, k} = {0, 1, 2}

and consider

∆i := {xi = 0} ∩Qj = {xi = 0} ∩Qk,

Qi := {xm
j + xm

k − xm
i = 0}. The 2m base points of Λi are ∆j ∪∆k.

In order to understand V χ3

C3
we will first consider a resolution of the base points of the pencil

Λi. This is shown in Figure 5, where ℓ̃P (resp. C̃3, and Q̃i) represents the strict preimage of
ℓP , the axis containing P (resp. C3, and the Fermat curve Qi). The notation [k] next to an
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irreducible component E indicates the image by χ3 of a meridian γ around the irreducible
component E as follows:

χ3(γ) = e
k
m
π
√
−1.

Unbranched components, i.e. [k] = [0], are shown in dashed lines.

[2g], Eg,P

Eg+2,P , [0]

C̃3, [1]

Eg+1,P , [m]

Q̃i, [0]
[2g − 2], Eg−1,P

...

[4], E2,P

E2,P , [2]

[0], ℓ̃P

Figure 5.

In other words V χ3

C3
is the cyclic covering of order 2m ramified along the locus

C3 +
∑

P∈∆

(2E1,P + 4E2,P + · · ·+ (2g − 2)Eg−1,P + 2gEg,P +mEg+1,P ) ,

where ∆ =
⋃2

i=0∆i. To resolve each Λi it would be enough to blow-up over ∆j ∪∆k, but this
way the same surface works for the three pencils.

In particular, note that V χ3

C3
will contain curves ΣP which are the cyclic covering of Eg+2,P

ramified at 3 points of ramification indices 1, m − 1, and m. It is easy to check that the
orders of χ3 at the meridians of these points are 2m, m, and 2 respectively. Hence ΣP = Σ
is the curve of genus g which is the Belyi cover DA2g

of P1
2,m,2m.

Moreover, if P ∈ ∆k, then Φi|ΣP
: ΣP → Σ and Φj |ΣP

: ΣP → Σ are isomorphisms since
Eg+2,P in Figure 5 is a dicritical section of Λi and Λj, whereas Φk|ΣP

: ΣP → Σ is a constant
map. This immediately implies the result as follows. Consider three indeterminacy points
distributed among the axes, for instance P0 := [0 : 1 : 1], P1 := [1 : 0 : 1], and P2 := [1 : 1 : 0].
By the previous considerations non-trivial meridians γi ∈ H1(ΣPi

) ∼= H1(Σ) exist considered
as cycles in H1(V

χ3

C3
) via the inclusion and such that

Φj(γi) =

{
γ if i 6= j

0 if j = i,
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where γ ∈ H1(Σ) is a non-trivial cycle. If Φi,∗ were dependent morphisms, then there should
exist coefficients α0, α1, α2 ∈ Z[µ2m] such that

α0Φ0,∗ + α1Φ1,∗ + α2Φ2,∗ ≡ 0,

but using the cycle γ0 one obtains that α1 = −α2, analogously, using γ1 (resp. γ2) one obtains
α0 = −α2 (resp. α0 = −α1). Therefore α1 = α0 = α2 = α and 2α = 0 in Z[µ2m], which
implies α = 0. The fact that the map ⊕2

i=0Φi,∗ : H1(V
χ3

C3
) → H1(Σ)

3 is surjective follows from
the existence of the dicritical sections Eg+2,Pi

and the induced isomorphisms Φj |ΣPi
: ΣPi

→ Σ
for j 6= i described above. �
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