1	Changes in analytical and volatile compositions of red wines induced
2	by pre-fermentation heat treatment of grapes
3	
4	Authors: Olivier Geffroy ^{1*} , Ricardo Lopez ³ , Eric Serrano ¹ , Thierry Dufourcq ² , Elisa Gracia-
5	Moreno ³ , Juan Cacho ³ , Vicente Ferreira ³
6	¹ Institut Français de la Vigne et du Vin Pôle Sud-Ouest, V'innopôle, BP22, 81 310 Lisle Sur
7	Tarn, France
8	² Institut Français de la Vigne et du Vin Pôle Sud-Ouest, Domaine de Mons, 32100 Caussens,
9	France
10	³ Laboratorio de Análisis del Aroma y Enología, Facultad de Ciencias, Aragón Institute of
11	Engineering Research I3A, Universidad Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
12	* Corresponding author: Olivier GEFFROY, tel +33 563 336 262 fax +33 563 336 260, email:
13	<u>olivier.geffroy@vignevin.com;</u>

2 Abstract:

3

Background and Aims: Pre-fermentation heat treatment is becoming more widespread in France in the production of red wines with fruity characteristics. Between 2009 and 2011, experiments were carried out on Grenache, Carignan and Fer grapes in order to characterize the changes in nitrogen content of the musts, conventional enological parameters and aroma compounds of the wines induced by pre-fermentative (?) heating of the grapes.

9

10 Methods and Results: Pre-fermentative heat treatments followed by alcoholic fermentation in 11 liquid phase or in solid phase were compared to a standard vinification. In 2009 and 2010, we 12 showed that a two-hour heat treatment at 70°C induced a significant loss in several grape-13 derived aroma compounds (terpenols, norisoprenoids and some phenols) associated with an 14 increase in α -terpineol, guaiacol and 2,6-dimethoxyphenol, which suggests thermal degradation. 15 A significant increase in most of the ethyl esters, in acetates and in fatty acids were observed in 16 wines fermented in liquid phase, together with a decrease in fusel alcohols. The substantial 17 modification in the amino acid composition of the must seems to be a crucial element for the 18 understanding of these changes as in 2011 we recorded gains varying from +101.2% for 19 Carignan to 200.2 % for Fer.

20

21 Conclusions: New findings on the chemical composition of musts and wines in response to heat 22 treatments were obtained during this study. Most consistent results (?) suggest a thermal 23 degradation of several compounds in the two pre-fermentation heat treatments.

24

Significance of the study: Better knowledge of the impact of heat treatments may provide the
wine industry with key elements to produce fruit driven wines.

Key words: pre-fermentative heat treatment, thermovinification, conventional enological
 parameters, aroma compounds, nitrogen, amino acids.

2 Introduction

3

4 There is an increasing interest in the world wine market in red wines with fruity characteristics.
5 As winemakers face a lack of new references and techniques to produce wine that can fulfill
6 these expectations, old techniques developed some decades ago in a completely different
7 context of production, such as pre-fermentation heat treatment or thermovinification, are
8 becoming more widespread.

9

10 The first works on heat treatment of musts were conducted more than 60 years ago in 11 California, both in the laboratory and in an artisanal manner (Berg 1950). The development of 12 industrial heating systems in the seventies and the large number of associated research papers 13 published in the same decade (Marteau and Olivieri 1970, Rankine 1973; Poux 1974; Humbert 14 and Mignonac 1975; Lowe et al. 1976) reflect the strong interest of the wine industry in this 15 technology at that time.

16

17 The volume of wine elaborated in France with this technique was estimated some years ago at 18 500 million liters (Escudier et al. 2008). Pre-fermentation heat treatment is spreading quickly 19 through French vineyards and is becoming a must-use in the production of wines either with or 20 without Protected Geographical Indication (PGI). This pre-fermentation heat treatment consists 21 of heating grapes between 70-75°C for a length of time varying from 30 minutes to 24 hours. 22 When heating is limited to a short time period (<1 hour), this technique is known as 23 "thermovinification." If the heating is extended over a longer period, up to 24 hours, it is known 24 as pre-fermentation heat treatment (Escudier et al. 2008). Heating allows the extraction of 25 phenolic compounds in aqueous phase, mainly anthocyanins and, to a lesser extent, tannins 26 (Girard et al. 1997). In practice, this weak tannin/anthocyanin ratio in thermovinified wines can 27 often lead to color instability, especially when the heating is not maintained for enough time.

1 Heating also assists in the extraction of grape polysaccharides, responsible for roundness in 2 wine (Doco et al. 2007). Maceration heat treatment is often associated with straight pressing at 3 hot temperatures, clarification and fermentation in liquid phase at low temperatures around 4 18°C. It was originally used on botrytised grapes in order to destroy laccase activity. Another 5 advantage of the maceration heat treatment is that it quickly eliminates pomace and therefore 6 decreases the need for fermentation vessels in the cellar. The recent rapid development of this 7 technique can be explained by the availability of more advanced technologies to clarify heated 8 must, which has a high solid content. The rotary-vacuum drum and the latest generations of 9 cross-flow filters, centrifugation and flotation are commonly used to clarify must after heating. 10 The treatment (?) can be associated (?) with specific technologies such as flash-détente or 11 thermo-détente that induce a rapid vacuum or a high pressure. The must is then brought back to 12 atmospheric pressure and the variation of pressure that occurs on weakened heated skins 13 provokes the lysis of skin cells and allows significant tannin extraction (Escudier et al. 2008). A 14 variant of the maceration heat treatment, used to obtain a higher extraction of polyphenolic 15 compounds, consists of fermenting grapes after heating with pomace as a standard vinification. 16 This alternative was found to increase phenolic compounds in wine from 25% to 45% 17 (Cottereau and Desseigne 2007).

18

19 Most recent research on this maceration technique has been focused on phenolic extraction and 20 antioxidant potential (Atanacković et al. 2012, Fretté et al. 2012) while just a few works on 21 aroma chemical composition have been carried out to date. Thermovinification or pre-22 fermentative heat treatment is known to produce wines with a standardized sensory profile often 23 described as "banana yogurt" by winemakers. Research works on volatile composition showed 24 that maceration heat treatment allowed the elimination of a high amount of 3-isobutyl-2-25 methoxypyrazine (Roujou de Boubée 2000) and that fermentation conditions of thermovinified 26 wines particularly enhanced ester formation (Girard et al. 1997, Fisher et al., 2000, Cottereau 27 and Desseigne 2007), while the thermal inactivation of lipoxygenase enzyme system 1 contributed to reducing C6-alcohols and their subsequent esters. The purpose of the present 2 work is to investigate the changes in the analytical and volatile composition of red wines 3 induced by the pre-fermentation heat treatment of grapes. In 2009 and 2010, pre-fermentation 4 heat treatments associated or not associated with fermentation with pomace ? (with and without 5 pomace?) were compared to a standard vinification of Grenache, Carignan and Fer grapes, three 6 cultivars which are known to produce wines with different sensory profiles. In 2011, an 7 additional trial was carried out to study the changes in nitrogen content of the must induced by 8 the heating of the grapes.

9

10 Material and Methods

11

12 Grape varieties and vineyard locations

13

14 Carignan and Grenache grapes used for this study were obtained from two commercial 15 vineyards located in Cariñena (Aragon, Spain). The Grenache vineyard, non-irrigated and goblet 16 trained, was selected as representative of an area with vines older than 50 years of age with a 17 low production level (4-6 t/ha). The Carignan grapes were sampled from a young and 18 productive (15-20 t/ha) espalier trained vineyard equipped with an underground irrigation 19 system. The Fer grapes were collected from a hillside dryland vineyard located in the South 20 West of France, in the heart of the Gaillac Protected Designation of Origin (PDO) area with 21 moderate crop yields (10-15 t/ha).

22

The pre-fermentation heat treatments tested on the three varieties were replicated twice in 2009 and 2010. The harvest dates were 14 Sept 2009 and 16 Sept 2010 for the Grenache grapes; 25 Sept 2009 and 8 Oct 2010 for the Carignan grapes; and 24 Sept 2009 and 1 Oct 2010 for the Fer grapes. In both years, grapes of each variety were hand harvested in 18 cases of 20 kg each. Six homogenous lots of sixty-kg were constituted in our experimental winery by randomly collecting bunches from each case. To ensure the homogeneity of each lot, standard analyses
 such as Potential Alcohol, pH, TA, tartaric and malic acids, potassium and fermentable nitrogen
 were performed on the grape must just after crushing. These analyses confirmed the good
 homogeneity between the lots. The grapes were stored overnight at 4°C before being processed
 the following day.

6

7 Winemaking and maceration techniques

8

9 Fermentation took place in our experimental cellar (Lisle Sur Tarn, France). In 2009 and 2010,
10 three maceration treatments were investigated in duplicate for each variety: control vinification
11 (CTRL), pre-fermentation heat treatment with pomace (PHTS) and pre-fermentation heat
12 treatment without pomace (PHTL).

13

14 Vinification operations were carried out using the standard procedures validated in our 15 experimental cellar. Due to the excellent sanitary conditions of the harvests in 2009 and 2010, 16 sulfur dioxide addition was limited to 40 mg/L using a 10% bisulfite liquid solution. Standard 17 vinification (CTRL) was carried out at 25°C using selected dry yeasts chosen for their ability to 18 express and optimize the aromatic potential of each variety. Strains ICV D21[®] (ICV, Lattes, 19 France), ICV GRE® (ICV, Lattes, France), and Vitilevure MT® (Martin Vialatte, Epernay, 20 France) were applied at a rate of 200 mg/L to Grenache, Carignan, and Fer, respectively. 21 Maceration treatments were conducted after destemming and crushing. Destemming was carried 22 out with modern vibrating equipment (Socma, Narbonne, France).

23

The control treatment (CTRL) was fermented (?) with the skin for 8 days until the volumetric mass reached 994 g/l. Alcoholic fermentation was carried out at a fixed time every day and the volumetric mass was measured with a mustimeter (Dujardin-Salleron, Paris, France). A single punch down per day was performed with a stainless steel manual plunger for exactly 15 seconds until the volumetric mass of the musts reached 1000 g/L. No extraction operations were carried
 out after this period.

3

4 The pre-fermentation heat treatment was performed using a water bath system. The stainless 5 steel tank fermenter containing the crushed and destemmed grapes was submerged into heated 6 water for 3 hours. The temperature was carefully monitored during this period and the grapes 7 were mixed every 30 minutes using a manual plunger to homogenize their temperature. Thanks 8 to the elongated shape of the tank (height = 75 cm; diameter = 37 cm), the rise in temperature 9 of the grapes from room temperature up to 70°C was fast, taking exactly 1 hour. Therefore, the 10 effective heating time at 70°C was 2 hours; a temperature/time ratio commonly used at wineries. 11 The first treatment (PHTL) associated with the pre-fermentation heat treatment consisted in 12 pressing the grapes while at high temperature into a 30 L beer keg. Pectolytic enzyme addition 13 with Rapidase CB® (DSM, Heerlen, Netherlands) was carried out at 2 mg/L once the 14 temperature of the musts reached 40°C. The musts were then cooled down within 24 hours to 15 0° C, and maintained at this temperature for 72 hours to allow a good clarification (150-200 16 NTU). The level of turbidity expressed in Nephelometric Turbidity Units (NTU) was controlled 17 with a 2100 AN IS Turbimeter (Hach, Loveland, USA). After clarification, heating at 15°C and 18 yeast inoculation, the musts were fermented at 18°C. In the second heat treatment (PHTS), after 19 heating under the same conditions as for the PHTL, the tank was kept without any pressing in a 20 cool room (0° C) for active cooling during 6 hours. Once the temperature reached 15°C, yeasts 21 were inoculated and fermentation was carried out in contact with pomace at 25°C as in the 22 control vinification.

23

After alcoholic fermentation (less than 1 g/L of glucose plus fructose), all the wines were racked in a 30 L beer keg and inoculated with Lalvin 31® lactic bacteria (Lallemand, Montreal, Canada). At the end of the malolactic fermentation (less than 0.2 g/L of malic acid), the wines were racked and 50 mg/L of sulfur dioxide was added. The wines were stored in the cellar for 3 1 months at room temperature which did not exceed 8°C during winter. Free sulfur levels were 2 measured according to the iodometric method proposed by the OIV (2009) and adjusted to 25 3 mg/L every month over that period. Prior to bottling, the wines were tartrate stabilized (1 month 4 at 0°C) and filtered through a cartridge filter (Pall France, Saint Germain-en- Laye, France) 5 equipped with 5 and 1 µm filtration cartridges (Prédel, Saint-Loubès, France). The free sulfur 6 level was adjusted to 25 mg/L and carbon dioxide to 500 mg/L at bottling. Dissolved oxygen 7 levels were followed as a control parameter between the treatments. The wines were then 8 bottled into 750 mL bottles, closed with screw caps and stored at 12°C before being analyzed.

9

10 Analysis of conventional enological parameters

11

12 Conventional enological parameters were determined for the bottled wines after one month. 13 Alcohol content was measured using an Alcoquick L200 infralyser (Unisensor, Karlsruhe, 14 Germany) and pH with a Titromatic pHmeter (Hachlange, Düsseldorf, Germany). Titratable (?) 15 acidity was measured according to the OIV method (2009). A Konelab Arena 20 sequential 16 analyzer (Thermo Electron Corporation, Waltham, USA) using enzyme kits provided by several 17 suppliers was used to determine volatile acidity (Megazyme, Wicklow, Ireland) and malic acid 18 (Thermo Fisher Scientific, Waltham, USA). Potassium determination was done by flame 19 photometry (Bio Arrow, France) according to the OIV method (2009) and tartaric acid 20 determination by colorimetric titration (Hill and Caputi 2009). Anthocyanins and the Total 21 Phenolic Index (TPI) were quantified according to the techniques described by Ribéreau-Gavon 22 and Stonestreet (1965) and Ribéreau-Gayon (1970), respectively, using an Evolution 100 23 spectrophotometer (Thermo Electron Corporation, Waltham, USA). Absorbance was measured 24 at 420, 520 and 620 nm and Color Hue and Color Intensity were calculated by the A420/A520 25 ratio and by summing the three color components (A420-yellow, A520-red, and A620-blue), 26 respectively. All determinations were carried out in duplicate.

Chemical quantitative analysis of volatile compounds

2

Several families of volatile compounds were analyzed in the bottled wine with five different
analytical methods. The analyses were performed in two different years but during the same
period of each year to reduce potential variations associated with different post-bottling times.

6

7 Major Compounds (Liquid-Liquid Microextraction and GC-FID Analysis). The quantitative 8 analysis of major compounds was carried out using the method proposed and validated in our 9 laboratory (Ortega et al. 2001). In accordance with this method, 3 mL of wine containing the 10 internal standards -IS- (2-butanol, 4-methyl-2-pentanol, 4-hydroxy-4-methyl-2-pentanone, and 11 2-octanol) and 7 mL of water were salted with 4.5 g of ammonium sulfate and extracted with 12 0.2 mL of dichloromethane. The extract was then analyzed by GC with FID detection. The area 13 of each analyte was normalized by that of its corresponding IS and was then interpolated in the 14 corresponding calibration plot built by applying exactly the same analytical method (as that 15 applied to?) to synthetic wines containing known amounts of the analytes covering the natural 16 range of occurrence of these compounds. Details are given in the reference.

17

18 Minor Compounds (SPE and GC-Ion Trap-MS Analysis). This analysis was carried out using 19 the method proposed and validated in our laboratory (Lopez et al. 2002). In accordance with the 20 method, 50 mL of wine, containing 25 μ L of BHA solution and 75 μ L of a surrogate standards 21 solution (3-octanone, β -damascone, heptanoic acid, and isopropyl propanoate), were passed 22 through a LiChrolut EN (Merck, Darmstadt, Germany) 200-mg cartridge at a rate of about 2 23 mL/min. The sorbent was dried under nitrogen stream (purity 99.999%). Analytes were 24 recovered by elution with 1.3 mL of dichloromethane. Twenty-five µL of an internal standard 25 solution (4-hydroxy-4-methyl-2-pentanone and 2-octanol, both at 300 mg per g of

2

dichloromethane) were added to the eluted sample. The extract was then analyzed by GC with ion trap MS detection under the conditions described in the reference.

3

4 Volatile sulfur compounds (VSCs) (HS-SPME-GC-PFPD Analysis). This analysis was carried 5 out using the method proposed and validated in our laboratory (Lopez et al. 2007). In 6 accordance with the method, saturated NaCl brine (4.9 mL) was placed in a 20 mL standard 7 headspace vial and sealed. The vial was then purged with a 2 bar nitrogen stream (purity 8 99.999%) for 1 min. Immediately after this operation, 100 µL of wine sample, 5 µL of glyoxal 9 solution (8% w/v), and 20 μ L of the IS solution (ethyl methyl sulfide, 200 μ g/L in methanol) 10 were injected through the septum with a syringe. The sample was then analyzed by HS-SPME-11 GC with PFPD detection under the conditions described in the reference. The compounds 12 analyzed were hydrogen sulfide (H_2S) , methanethiol (MeSH) and dimethyl sulfide (DMS).

13

14 Polyfunctional mercaptans (SPE and GC-NCI-MS Analysis). This analysis was carried out 15 using the method first proposed and further improved in our laboratory (Mateo-Vivaracho et al. 16 2008 and 2010). First, 0.2 g of ethylenediaminetetracetic acid and 0.6 g of L-cysteine 17 chlorohydrate were added to twenty five mL of wine. This sample mixture was then transferred 18 to a 20 mL volumetric flask where it was spiked with 15 μ L of an ethanolic solution containing 19 1400 μ g/L of 2-phenylethanethiol as internal standard (IS). The complete volume was then 20 transferred into a 24 mL screw-capped vial together with 0.2 g of O-methylhydroxylamine, 21 shaken for 15 s, purged with pure nitrogen (99.999%), sealed and incubated in a water bath at 22 55 °C for 45 min. Six milliliters of this incubated sample were then loaded into a 50-mg Bond 23 Elut-ENV SPE cartridge (Varian, Walnut Creek, USA). Major wine volatiles were removed by 24 rinsing with 4 mL of a 40% methanol-water solution 0.2 M in phosphate buffer at pH 7.7. A 25 second internal standard was also loaded into the cartridge by passing through 220 µL of 26 solution (20 μ L of 4-methoxy- α -toluenethiol, 150 μ g/L in ethanol and 200 μ L water). 27 Mercaptans retained in the cartridge were directly derivatized by passing 1mL of an aqueous

1 solution of DBU (6.7%) and 50 µL of a 2000 mg/L solution of PFBBr in hexane, and letting the 2 cartridge become imbibed with the reagent for 20 min at room temperature (25 °C). The 3 remaining derivatizating agent was removed by addition of 100 μ L of 2000 mg L⁻¹ 4 mercaptoglycerol in an aqueous solution containing 6.7% DBU, and letting the reaction take 5 place for another 20 min at room temperature. The cartridge was further rinsed with 4 mL of 0.2 6 M H_3PO_4 in water containing 40% methanol (v/v) and 1 mL of water. Derivatized analytes were 7 eluted with 600 μ L of a solvent mixture (hexane 25% in diethyl ether), spiked with 10 μ L of chromatographic internal standard (Octafluoronaphtalene -OFN- 22.5 µL L⁻¹ in hexane). The 8 extract was finally washed with 5 x 1 mL fractions of brine (200 g L^{-1} NaCl in water). Four μL 9 10 of this sample were directly injected in cold Splitless mode in the GC-negative chemical 11 ionization MS system.

12

13 Alkylmethoxypyrazines (SPE and GC-MS Analysis). This analysis was carried out using the 14 method proposed and validated in our laboratory (Lopez et al. 2010). In accordance with the 15 method, 25 mL of wine was spiked with 30 ng/L of internal standard (3-isopropyl-2-16 ethoxypyrazine). The wine pH was adjusted to 2.0 after which it was passed through an SPE 17 cartridge (Bond Elut Plexa PCX 60 mg). The sorbent was washed with 1 mL of milli-Q 18 water/methanol (30%) adjusted to pH 2.0 and dried for 10 min with a nitrogen stream. A second 19 washing step with 0.5 mL of dichloromethane was performed. Afterwards, elution with 20 triethylamine in dichloromethane (10 g/L) was carried out: the first 600 µL of the eluate was 21 discarded and the next 200 µL of the eluate was recovered and analyzed by GC with MS 22 detection under the conditions described in the reference. 3-isobutyl-2-methoxypyrazine (IBMP) 23 and 2-isopropyl-3-methoxypyrazine (IPMP) were only analyzed in Fer wines since preliminary 24 analysis revealed that these compounds were virtually absent from wines made with Grenache 25 and Carignan. IPMP was not detected in any of the analyzed wines.

1 Statistical analysis

2

3

4

5

26

Conventional enological parameters

6 freedom = 18). The results presented in this article will focus on the maceration treatment 7 factor, while the effect of the vintage and variety factors will be very briefly discussed. 8 9 Additional trial on nitrogen content of the musts 10 11 In order to study the changes in nitrogen content of the must induced by the heating of the 12 grapes, a complementary trial in quadruplicate was carried out in 2011. For Carignan, Fer and 13 Grenache, 12 cases of 20 kg each were sourced from the same plot as in 2009 and 2010 in order 14 to constitute 4 homogenous lots of 60 kg. The harvest dates were 9 Sept for Grenache, 26 Sept 15 for Fer and 3 Oct for Carignan. The grapes were processed according to the PHTL protocol 16 described previously. The grape musts were sampled just after crushing (before sulfur addition 17 and heating) and just after pressing at hot temperature and homogenization in a 30 L beer keg. 18 Before performing the analyses with a Konelab Arena 20 sequential analyzer (Thermo Electron 19 Corporation, Waltham, USA), the grape musts were centrifuged (14 000 x g for 6 min). 20 Enzymatic determinations of ammonium based on its reaction with α -ketoglutaric acid were 21 conducted using a kit provided by Thermo Electron Corporation (Waltham, USA). The amino 22 acid analysis was carried out using the method proposed by Dukes and Butzke (1998). 23 24 **Results and discussion** 25

Statistical analyses were conducted with Xlstat software (Addinsoft, Paris, France). All the 2009

and 2010 analytical data were subjected to a three-way analysis of variance (ANOVA)

treatment (vintage x variety x treatment) with first-order interaction (n=36; residual degrees of

2 As may be expected, the analytical results obtained from conventional enological analyses 3 revealed that the *cultivar* and to a lesser extent the *vintage* had a strong impact on the 4 characteristics of the wines (Table 1). 10 and 7 parameters out of 10 were significantly impacted 5 (at least at p < 0.05) by these factors, respectively. The Grenache wines were characterized by 6 higher total acidity, higher alcohol content (?) and higher volatile acidity as a consequence of 7 the high-sugar fermentation level (Table 2) whereas the Fer wines had greater potassium and 8 anthocyanin concentrations and a weaker color hue. These features lead to a more intense red 9 and violet perception of the color of Fer wines. The Carignan wines had a lower Total Phenolic 10 Index (TPI) which should result in a less astringent sensation on tasting. As for the vintage 11 factor, the 2010 vintage was more favorable to maturity with higher levels of alcohol, pH and 12 polyphenolics. The few significant vintage x cultivar interactions suggest that climatic 13 conditions over the maturation period were almost similar in Spain and France even if the two 14 studied vineyards are almost 500 km distant and separated by the Pyrenees mountain range

15 which has a strong climatic influence.

16

17 The treatment also had a large impact on the conventional enological parameters as this factor 18 impacted significantly 8 out of the 10 measured parameters. Higher levels of ethanol observed 19 in the PHTL wines confirm previous observations made on this technique (Girard et al. 1997) 20 which must be mainly attributed to a weaker evaporation of ethanol during the alcoholic 21 fermentation, carried out at 18°C rather than at 25°C (Cottrell and McLellan 1986). In most 22 cases, potassium and tartaric concentrations in the finished wines were higher in PHTL whereas 23 PHTS was more similar to the CRTL wines. These increases might be the consequence of a 24 larger extraction of potassium and tartaric acid found in the pericarp tissue of the berries. The 25 differences between the PHTL and PHTS samples may be attributed to the fact that in the 26 former case the pressing of the grapes took place prior to fermentation at high temperatures, 27 making the extraction more efficient. Surprisingly, volatile acidity was not significantly

1 impacted by the treatment even if, as will be discussed later, the acetic and other fatty acid 2 concentrations were increased in PHTL wines. Higher levels of amino acids in thermovinified 3 musts obtained under conditions similar to those of the PHTL treatment carried out in our study 4 have been previously reported by Poux (1974). The expected high yeast assimilable nitrogen 5 (YAN) should have (?) led to an increased formation of volatile acidity in PHTL wines as 6 reported by Bell and Henschke (2005). The higher levels of potassium and tartaric acid found in 7 the PHTL wines modified the acid-base balance, provoking a clear increase in total acidity 8 without affecting the pH.

9

10 For TPI, anthocyanins, color hue and color intensity, interactions were observed which indicates 11 that polyphenolic extractability and extraction on heated grapes especially associated with 12 pressing and fermentation in liquid phase (PHTL) is complex and depends on several 13 parameters such as the grape variety and vintage conditions. In our experiment, extractability by 14 heating was particularly limited on Carignan grapes. For this cultivar, polyphenolic contents of 15 the PHTL wines, as reflected by anthocyanins, TPI and color intensity, were decreased. For 16 Grenache and Fer, the PHTS wines had a higher TPI which is in agreement with previous 17 research works (Cottereau and Desseigne 2007).

18

- 19 Aroma-chemical composition
- 20

78 compounds from 13 chemical families were analyzed in the 36 experimental wines produced.
The significance (*P*-values) of *vintage*, *cultivar*, *treatment*, *vintage* x *cultivar*, *vintage* x *treatment* and *cultivar* x *treatment* for the 77 compounds detected in the bottled wines are
shown in Table 3.

25

26 Of all the factors, *cultivar* had the greatest impact on the aroma-chemical composition of the 27 wines. As different selected dry yeasts were used on each variety, this factor reflects differences

1 in grape-derived volatile compounds, both in the release of these compounds by the enzymatic 2 activities of the yeasts and in the production of fermentation aroma compounds by 3 Saccharomyces cerevisiae. Some major differences were observed between the cultivars among 4 the grape-derived compounds with the highest sensory impact in wines according to Ferreira 5 (2002). Notably, the Carignan and Fer wines were characterized by significantly higher 6 concentrations of β -damascenone and 4-mercapto-4-methyl-2-pentanone, respectively (Table 4). 7 The *vintage* factor also strongly impacted the concentrations in aroma compounds including 8 those produced by yeasts such as ethyl esters, acetates and acids. As the fermentation conditions 9 (yeast strain, clarification level of PHTL musts, temperature) were exactly the same for the two 10 vintages, the differences observed might be the result of distinct amino acid compositions of the 11 musts as shown in the model solutions by Hernández-Orte et al (2002) in relation to the vintage 12 climatic characteristics. Among other key aroma compounds detected in the experimental wines 13 and impacted by the *vintage* factor, concentrations of terpenols and norisoprenoids were in 14 general higher in 2010 (the vintage with a better maturity) whereas polyfunctional mercaptan 15 concentrations were lower in the wines from the same vintage.

16

17 The heating of the grapes induced substantial changes in the aroma composition. This process, 18 in both PHTL and PHTS, had a depreciative impact on several grape-derived flavor compounds 19 such as β -damascenone, β -ionone, β -citronellol, o- cresol, ethyl vanillate and ethyl cinnamate. 20 In the case of PHTL, the effect was also evident in linalool, m-cresol, γ -butirolactone and γ -21 nonalactone. In the cases in which a precursor has been reported for the aroma compound, the 22 decrease can be explained by the destruction of the associated enzyme activity by denaturation. 23 However, it might not be the only possible explanation. A research work (Loscos et al. 2007) 24 has shown that most of the previously cited aroma compounds from the terpenol and 25 norisoprenoid chemical families could also be released by the enzymatic activity of the yeast. 26 The higher concentrations of α -terpineol (especially in Fer wines), guaiacol and 2,6-27 dimethoxyphenol observed for both PHTL and PHTS treatments would be consistent with the

1 hypothesis of a thermal degradation of terpenols and of phenolic compounds. α -terpineol is a 2 known linalool and β -citronellol degradation product (Maicas and Mateo 2005) and the two 3 phenols are end products of phenolic degradation. The odor thresholds of linalool (25 μ g/L) and 4 β -citronellol (100 µg/L) are lower than α -terpineol (250 µg/L), according to Ferreira et al 5 (2000), Etievant (1991) and Ferreira et al. (2000), respectively. In consequence, the aromatic 6 impact of these changes might penalize the overall perception of the terpenol family. The 7 decrease in β -damascenone and β -ionone deserve further comment, since several studies on 8 Merlot wines and on sweet potato Shoch, have shown that heat treatments, moderate or through 9 distillation, could enhance the production of β -damascenone and β -ionone (Kotseridis et al. 10 1999, Yoshozaki et al. 2011). In our work, when heating was performed prior to the beginning 11 of fermentation in the aqueous phase, the same phenomenon could not be observed. This 12 observation supports the results from the Japanese research team (Yoshozaki et al. 2011) who 13 found that most β -damascenone in *shochu* was formed by acid hydrolysis during fermentation 14 and/or distillation, and not during the initial steaming of the sweet potato. This is also in 15 agreement with the assertion that the formation of β -damascenone by carotenoid chemical 16 degradation might need a solvent such as ethanol or benzene in order to take place (Mendes-17 Pinto 2009). Other varietal compounds such as 3-mercaptohexanol, 4-mercapto-4-methyl-2-18 pentanone and 3-mercaptohexyl acetate showed no significant differences between heat 19 treatments and controls. However, an increase in 3-mercaptohexanol, particularly due to the 20 expected larger amino acid content and its consequence on nitrogen catabolite repression 21 (NCR), should have been expected in the PHTL wines (Subileau et al. 2008). These findings 22 suggest the potential involvement of other mechanisms and a possible degradation of the 23 precursors for 3-mercaptohexanol during pre-fermentative heating. Surprisingly, the 3-isobutyl-24 2-methoxypyrazine concentration was not impacted by the heat treatment even though a direct 25 thermal degradation would have been expected (Roujou de Boubée 2000).

1 In addition, the PHTL treatment had a very different composition in most fermentative volatile 2 compounds due to the fact that the fermentation was carried out in liquid phase at a relatively 3 low temperature on a high Yeast Assimilable Nitrogen (YAN) clarified must (Moreno et al. 4 1988). In particular, this treatment had the highest concentrations in most ethyl esters (with the 5 exception of ethyl butyrate, ethyl isobutyrate, ethyl 2-methylbutyrate and ethyl hexanoate), 6 acetates, fatty acids and the lowest in fusel alcohols, in accordance with previous observations 7 (Ferreira et al, 1996, Fisher et al. 2000). As a consequence of the higher nitrogen content of the 8 PHTL musts, a decrease in hydrogen sulfide and methanethiol should also have been expected 9 (?) (Rauhut 2009). It is important to note that the magnitude of the differences between the 10 CTRL and PHTL treatments was particularly large for hexanoic, octanoid and decanoic acid 11 concentrations. Together with the observed increases in acetates, butyric acid, diacetyl and 12 acetoin, this should help to understand the typical "banana yogurt" sensory profile of the 13 thermovinified wines.

14

15 In most cases, the aroma composition of the PHTS wines was more similar to those of the 16 CTRL. However, a large increase in 2-furfurylthiol, responsible at this high level of 17 concentration for heavy toffee notes, was observed in the PHTS treatment for Fer.

18

19 Impact of heating of the grapes on nitrogen content of the must

20

The impact of heating the grapes followed by pressing at high temperature on the nitrogen content of the must is presented in Figure 1. The gain in amino acids induced by a 2 hour effective heating was +101 % \pm 11, +200 % \pm 26 and +150 % \pm 11 for Carignan, Fer and Grenache, respectively. For ammonium, the increase was lower and did not exceed +16.3% \pm 3.3, +15.7% \pm 14.5 and +9.3% \pm 8.1 for Carignan, Fer and Grenache, respectively. The largest gain was observed for Fer, the variety showing the lowest initial nitrogen concentration in the must. These observations are consistent with previous research works (Poux 1974) but much larger in intensity as the increase reported by the same author did not surpass 2% for ammonium and 36.5 % for amino acids. These variations can be explained by differences in the implementation conditions of the heating whose duration extended up to 2 hours in our study, which is more representative of the current industry trend. This might have induced a larger nitrogen compound extraction from the berry skin. The intensity of these changes in the nitrogen composition is essential for understanding the modifications in the aroma compounds observed in PHTL wines, especially fatty acids and acetates.

8

9 Conclusion

10

11 The present study provides a chemical characterization of wines elaborated after a pre-12 fermentative heat treatment. In 2009 and 2010, we showed that a two-hour heat treatment at 13 70°C followed by pressing at high temperature (PHTL) induced some changes in the acid-base 14 balance of the wines by higher tartaric acid and potassium extractions from the skin. A 15 significant increase in the alcohol concentration was also observed in PHTL wines whereas 16 modifications to the polyphenolic contents induced by heating were complex and depended on 17 several parameters such as variety and vintage in likely relation with the level of maturity of the 18 grapes. The heating of the grapes provoked a loss in several grape-derived aroma compounds 19 (terpenols, norisoprenoids and some phenols) and an increase in α -terpineol, guaiacol and 2,6-20 dimethoxyphenol, suggesting thermal degradation. Despite the changes in amino acids induced 21 by the heating, the concentration of 3-mercaptohexanol was not improved in the finished wines. 22 When the heat treatment was linked with alcoholic fermentation in liquid phase (PHTL), a 23 significant increase in some ethyl esters, in acetates and particularly in fatty acids, and a 24 decrease in fusel alcohols, were observed in the wines. Even if the fermentation conditions 25 (lower temperature, clarified must) may play a role in explaining these changes, especially in 26 fusel alcohols, the large modifications to amino acids induced by the heating of the grapes

followed by pressing at high temperature is another crucial element. In 2011, gains in amino acid concentrations varying from +101.2% for Carignan to 200.2 % for Fer were observed in PHTL musts. These results suggest that heating temperatures in relation with amino acid extraction and thermal degradation could be adjusted in order to modulate the aroma of wines elaborated after a pre-fermentative heat treatment. As current heating technologies are often implemented on non-botrytized grapes in a perfect sanitary state, new ranges of temperature, especially below 70°C, deserve to be investigated.

8

9 Acknowledgements

10

This study was carried out with financial support from the European Community through the
Programme Opérationnel de Coopération Territorial France – Espagne – Andorre (POCTEFA –
www.poctefa.eu). E. Gracia-Moreno is grateful to the Spanish Government for support from
the "Formación de Profesorado Universitario" (FPU)- program (grant number: AP2008-03811).
Brigitte Mille, Philippe Saccharin and Jérémie Diesel, IFV, are acknowledged for their technical
assistance.

	4	
	1	
	1	
	1	

References

3	Atanacković, M., Petrović, A., Jović, S., Bukarica, L. G., Bursać, M., & Cvejić, J. (2012).
4	Influence of winemaking techniques on the resveratrol content, total phenolic content and
5	antioxidant potential of red wines. Food Chemistry, 131(2), 513-518.
6	
7	Bell, S-J. and Henschke, P.A. (2005) Implications of nitrogen nutrition for grapes, fermentation
8	and wine. Australian Journal of Grape and Wine Research 11, 242–295.
9	
10	Berg H.W. 1950. Heat treatment of musts. Wines & Wines, 31(6): 24-26
11	
12	Cottereau, P. and Desseigne, J.M. (2007) Chauffage de la vendange et arômes fruités.
13	Proceedings for the technical seminar Entretiens vitivinicoles Rhône-Mediterranée, Narbonne,
14	France pp. 20-22.
15	
16	Cottrel, T.H.E. and McLellan, M.R. (1986) The effect of fermentation temperature on chemical
17	and sensory characteristics of wines from seven white grape cultivars grown in New York State.
18	American Journal of Enology and Viticulture 37, 190-194.
19	
20	Doco, T., Williams, P. and Cheynier, V. (2007) Effect of flash release and pectinolytic enzyme
21	treatments on wine polysaccharide composition. Journal of Agricultural and Food Chemistry 55,
22	6643-6649.
23	
24	Dukes, B. C., & Butzke, C. E. (1998). Rapid determination of primary amino acids in grape
25	juice using an o-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometric assay. American

26 Journal of Enology and Viticulture, 49(2), 125-134.

1
-

2	Escudier, J.L., Mikolajczak, M. and Bes, M. (2008) Chauffage de la vendange: les technologies
3	disponibles et les méthodes de vinification associées. Proceedings for the technical seminar
4	Microorganisme et gestion thermique en œnologie, Toulouse, France pp. 32-37.
5	
6	Etievant, P.X. (1991) Wine. In Volatile Compounds in Food and Beverages. Eds. H. Maarse
7	(Marcel Dekker: New York) pp. 483-546.
8	
9	Ferreira, V. (2012) Bases moléculaires de l'arôme du vin. Proceedings of the international
10	symposium on wine aroma (VINAROMAS project); 20 November 2012; Toulouse, France
11	(IFV Sud-Ouest: Lisle Sur Tarn, France) pp. 5-6.
12	
13	Ferreira, V., Lopez, R. and Cacho, J. (2000) Quatitative determination of the odorants of young
14	red wines from different grape varieties. Journal of the Science of Food and Agriculture 80(11),
15	1659-1667.
16	
17	Ferreira, V., Fernandez, P. and Cacho, J. (1996) A study of factors affecting wine volatile
18	composition and its application in discriminant analysis. Lebensmittel-Wissenschaft und-
19	Technologie Journal 29, 251-259.
20	
21	Fischer, U., Strasser, M., & Gutzler, K. (2000). Impact of fermentation technology on the
22	phenolic and volatile composition of German red wines. International journal of food science &
23	technology 35(1) , 81-94.
24	
25	Fretté, X. C., Hansen, J. H., Raasthøj, J. C., Broe, J., & Christensen, L. P. (2012). Content of

selected phenolic compounds in wine from rondo grapes grown in denmark and effect of heat
and cryomaceration. Planta Medica, **78(11)**, PJ150.

2	Girard, B., Kopt, T.G. and Reynolds, A.G. (1997) Influence of vinification treatments on aroma
3	constituents and sensory descriptors of Pinot noir wines. American Journal of Enology and
4	Viticulture 48 , 198-206.
5	
6	Hernández-Orte, P., Cacho, J. F., & Ferreira, V. (2002). Relationship between varietal amino
7	acid profile of grapes and wine aromatic composition. Experiments with model solutions and
8	chemometric study. Journal of Agricultural and Food chemistry 50, 2891-2899.
9	
10	Hill, G. and Caputi. A. (1970) Colorimetric determination of tartaric acid in wine. American
11	Journal of Enology and Viticulture 21, 153-161
12	
13	Humbert, C. and Mignonnnac, J.M (1975) A new method of vinification by immersion
14	"IMECA" process. Paper presented at conference held in Budapest.
15	
16	Kotseridis, Y., Baumes, R.L. and Skouroumounis, G.K. (1999) Quantitative determination of
17	free and hydrolytically liberated β -damascenone in red grapes and wines using a stable isotope
18	dilution assay. Journal of Chromatography A 849, 245-254.
19	
20	Loscos, N., Hernández-Orte, P., Cacho, J., & Ferreira, V. (2007). Release and formation of
21	varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor
22	precursors fractions. Journal of agricultural and food chemistry 55, 6674-6684.
23	
24	Lopez, R., Aznar, M., Cacho, J. and Ferreira, V. (2002) Determination of minor and trace
25	volatile compounds in wine by solid-phase extraction and gas chromatography with mass
26	spectrometric detection. Journal of Chromatography A 966, 167-177.
27	

1	Lopez, R Lapeña, M.C., Cacho, J. and Ferreira, V. (2007) Quantitative determination of wine
2	highly volatile sulfur compounds by using automated headspace solid-phase microextraction
3	and gas chromatography-pulsed flame photometric detection: Critical study and optimization of
4	a new procedure. Journal of Chromatography A 1143, 8-15.
5	
6	Lopez, R., Gracia-Moreno, E., Cacho, J. and Ferreira, V. (2010) Development of a mixed-mode
7	solid phase extraction method and further gas chromatography mass spectrometry for the
8	analysis of 3-alkyl-2-methoxypyrazines in wine. Journal of Chromatography A 1218, 842-848.
9	
10	Lowe, E.J., Oey, A. and Turner T.M. 1976. Gasquet Thermovinification system perspective
11	after two years' operation. American Journal of Enology and Viticulture 27, 130-133.
12	
13	Maicas, S. and Mateo, J.J. (2005) Hydrolysis of terpenyl glycosides in grape juice and other
14	fruit juices: a review. Journal of Applied Microbiology and Biotechnology 67, 322-335.
15	
16	Marteau, G. and C.H. Olivieri. (1970) Bases et perspectives de la vinification en rouge par
17	macération à chaud. Bull. Tech. d'information 253.
18	
19	Mateo-Vivaracho, L., Cacho, J. and Ferreira, V. (2008) Improved solid-phase extraction
20	procedure for the isolation and in-sorbent pentafluorobenzyl alkylation of polyfunctional
21	mercaptans: Optimized procedure and analytical applications. Journal of Chromatography A
22	1185 , 9-18.
23	
24	Mateo-Vivaracho, L., Zapata, J., Cacho, J. and Ferreira, V. (2010) Analysis, Occurrence, and
25	Potential Sensory Significance of Five Polyfunctional Mercaptans in White Wines. Journal of
26	Agricultural and Food Chemistry 58, 10184-10194.
27	

1	Mendes-Pinot, M.M. 2009. Carotenoid breakdown products the norisoprenoids in wine aroma.
2	Archives of Biochemistry and Biophysics 483, 236–245.
3	
4	Moreno, J., Median, M. and Garcia, M.D. (1988) Optimization of the fermentation conditions of
5	musts from Pedro Ximénez grapes grown in Southern Spain. Production of higher alcohols and
6	esters. South African Journal of Enology and Viticulture 9, 16-20.
7	
8	Ortega, C., Lopez, R., Cacho, J. and Ferreira, V. (2001) Fast analysis of important wine volatile
9	compounds: Development and validation of a new method based on gas chromatographic-flame
10	ionisation detection analysis of dichloromethane microextracts. Journal of Chromatography A
11	923 , 205-214.
12	
13	Poux, C. (1974) Chauffage de la vendange et composés azotés. Industries Alimentaires et
14	Agricoles 91 , 335-340.
15	
16	Rankine, B.C. (1973). Heat extraction of color from red grapes of increasing importance. Wines
17	& Vines. 54 , 33-6.
18	
19	Rauhut, D. (2009). Usage and formation of sulphur compounds. In Biology of Microorganisms
20	on Grapes, in Must and in Wine (pp. 181-207). Springer Berlin Heidelberg.
21	
22	Ribéreau-Gayon, P. (1970) Les dosages des composés phénoliques totaux dans le vin rouge.
23	Chimie Analitica 52 , 627-631.
24	
25	Ribéreau-Gayon, P. and Stonestreet, E. (1965) Le dosage des anthocyanes dans le vin rouge.
26	Bulletin de la Société de Chimique de France 9, 2649-2652.
27	

1	Roujou de Boubée, D. (2000) Recherche sur la 2-méthoxy-3-isobutylpyrazine dans les raisins et
2	les vins. Approches analytique, biologique et agronomique. PhD Thesis, University of Bordeaux
3	2, Bordeaux, France. 170 pp.
4	
5	Subileau, M., Schneider, R., Salmon, J.M. and Degryse, E. (2008) Nitrogen catabolite
6	repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the
7	level of precursor transport. FEMS Yeast Research 8, 771–780.
8	
9	Yoshizaki, Y., Takamine, K., Shimada, S., Uchihori, K., Okutsu, K., Tamaki, H., Ito, K. and
10	Sameshima, Y. (2011) The formation of β -damascenone in sweet potato <i>Shochu</i> . Journal of the
11	Institute of Brewing 117, 217-223.

Table 4: Impact of pre-fermentative heat treatments on the concentration of aroma compounds detected in bottled wines.

	2009										2010							
Aroma compounds	Carignan			Fer			Grenache			Carignan			Fer			Grenache		
	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS
Ethyl esters (mg/L)																		
Ethyl propanoate	0.07^{a}	0.13	0.06	0.10	0.10	0.18	0.07	0.18	0.16	0.08	0.08	0.08	0.09	0.06	0.09	0.17	0.09	0.14
Ethyl butyrate***	10.05	7.48	12.82	14.24	6.28	9.04	12.16	7.79	10.36	9.93	3.92	7.30	6.87	2.96	4.51	3.79	3.17	3.44
Ethyl 2-methylbutyrate**	112.85	107.48	165.41	180.86	103.25	168.76	126.41	111.29	134.61	124.48	59.41	112.69	78.28	59.38	101.57	44.12	51.31	51.62
Ethyl isobutyrate	15.94	11.57	17.68	21.66	10.54	10.88	24.78	13.76	20.63	14.19	5.95	10.48	8.86	4.13	5.13	8.51	4.83	6.04
Ethyl isopentanoate***	0.07	0.40	0.07	0.18	0.33	0.12	0.06	0.33	0.07	0.14	0.70	0.11	0.33	0.67	0.26	0.12	0.82	0.12
Ethyl hexanoate***	5.36	5.81	5.86	5.75	2.78	2.16	6.20	3.96	4.51	5.95	3.75	4.48	2.62	1.22	1.00	2.88	1.07	1.48
Ethyl furoate**	73.25	72.26	53.98	105.66	72.40	123.35	36.06	36.43	38.92	56.73	52.77	44.59	68.40	43.51	72.80	36.69	19.12	38.55
Ethyl lactate	0.39	0.90	0.54	1.18	1.03	0.79	0.43	0.29	0.41	0.80	0.71	0.54	2.69	1.35	1.69	0.52	0.72	0.75
Ethyl octanoate***	0.05	0.42	0.07	0.17	0.28	0.10	0.05	0.23	0.05	0.12	0.54	0.07	0.28	0.46	0.18	0.10	0.36	0.08
Ethyl decanoate***	0.02	0.17	0.01	0.02	0.09	0.00	0.01	0.09	0.01	0.03	0.14	0.03	0.05	0.14	0.03	0.03	0.10	0.02
Diethyl succinate	2.77	4.05	1.91	2.88	2.59	3.81	1.21	1.74	1.52	0.47	0.88	0.63	2.01	2.21	4.01	0.38	0.62	1.27
Acetates (mg/L)																		
Ethyl acetate*	26.84	48.62	14.48	33.66	54.25	61.59	12.31	60.31	42.60	30.85	52.04	28.60	48.44	56.71	66.97	52.17	54.71	49.21
Hexyl acetate**	nd	0.01	nd	nd	0.02	nd	nd	nd	nd	nd	nd	nd	0.01	0.03	0.02	nd	0.02	0.01
soamyl acetate*	0.11	0.94	0.09	0.47	0.67	0.65	0.04	0.68	0.09	0.21	0.67	0.11	1.04	1.05	2.41	0.18	0.83	0.43
Isobutyl acetate*	41.50	156.69	65.43	116.93	115.46	135.70	31.53	74.41	36.29	115.71	156.58	90.66	194.98	179.62	411.96	37.88	116.84	99.76
Butyl acetate*	2.09	5.68	7.32	2.70	6.20	4.24	4.74	10.45	11.26	3.26	12.27	6.00	8.33	10.95	16.26	9.28	16.62	15.62
Linalol acetate	nd	nd	nd	0.29	nd	0.27	nd	nd	nd	0.41	0.31	0.57	0.70	0.50	0.56	0.43	0.48	0.24
Phenylethyl acetate	0.12	0.79	0.12	0.36	0.44	0.51	0.19	0.21	0.21	0.08	0.07	0.06	0.28	0.48	1.12	0.05	0.33	0.23
Acids (mg/L)																		
Acetic acid*	125.72	265.27	141.11	214.15	390.92	381.68	293.71	277.86	358.91	253.60	378.42	218.23	297.85	598.07	371.70	515.55	689.16	463.28
Butyric acid***	0.43	1.41	0.45	0.95	1.42	1.05	0.47	0.85	0.43	0.59	1.45	0.44	1.26	2.21	1.15	0.75	1.44	0.60
Isobutyric acid	1.66	1.71	1.46	1.90	1.00	3.29	0.65	0.80	0.68	1.90	1.37	1.44	2.20	1.45	3.25	1.17	1.34	1.11
Valeric acid	nd	nd	nd	0.72	nd	nd	nd	nd	nd	1.26	0.88	0.90	1.83	1.01	1.22	1.03	1.10	0.65
Hexanoic acid***	0.91	6.43	0.89	2.24	6.08	1.92	0.72	3.67	0.57	1.06	5.16	0.84	4.06	8.97	3.26	1.22	5.50	1.06
Octanoic acid***	0.83	7.74	0.82	2.01	6.02	1.81	0.45	4.12	0.54	0.85	5.83	0.66	2.38	7.05	2.88	0.86	4.74	0.79
Decanoic acid*	0.07	0.98	0.16	0.28	0.80	0.16	0.06	0.53	0.09	0.21	0.91	0.19	0.41	0.89	0.40	0.15	0.76	0.16
Alcohols (mg/L)	102.63	210 (5	150.57	077 (0	122.01	016.60	00.00	114.15	05 70	101 74	152.46	125.01	201101	110.55	207.22	120 51	107 (01.10
Isoamyl alcohol	183.04	210.67	158.56	277.69	133.01	216.69	80.82	114.17	85.78	181.76	153.40	135.91	286.94	119.53	207.23	139.51	107.66	91.19
Benzyl alcohol	0.19	0.18	0.17	0.14	0.09	0.17	0.24	0.14	0.14	0.05	0.13	0.07	0.16	0.17	0.31	0.12	0.46	0.38
Methionol*	2.17	1.45	1.95	2.91	0.57	3.43	0.55	0.44	0.35	1.60	1.23	1.43	4.93	1.13	3.97	0.76	2.00	0.74
1-hexanol***	0.74	0.41	0.50	1.23	0.41	0.61	0.70	0.39	0.47	0.82	0.54	0.56	1.31	0.41	0.40	0.91	0.34	0.36
Cis-3-hexenol	0.076	0.077	0.062	0.100	0.047	0.080	0.019	0.030	0.014	0.052	0.074	0.042	0.090	0.075	0.070	0.038	0.038	0.031
1-butanol	0.71	0.90	0.75	0.65	0.50	0.68	1.10	0.90	1.05	0.89	1.15	0.94	0.73	0.56	1.17	1.39	0.94	1.15
β-phenylethanol	33.02	43.82	38.97	34.04	13.61	22.65	10.81	10.64	10.04	38.19	22.96	34.79	46.89	15.26	33.78	18.78	26.59	18.36
Isobutanol**	54.57	49.12	44.60	86.60	27.26	81.74	13.91	12.29	13.25	54.41	29.89	37.96	75.92	33.29	64.51	21.06	15.17	15.83
Carbonyl																		
compounds (mg/L)																0.45		
Diacetyl*	11.87	27.01	2.02	14.61	23.98	24.67	5.78	11.61	7.17	nd	0.27	nd	nd	0.34	0.57	0.43	1.03	1.03
Phenylacetaldehyde	63.81	103.67	105.75	75.39	104.74	66.66	67.49	68.65	82.83	20.99	21.01	20.32	17.88	22.48	17.03	20.59	23.39	15.66
								-										

Acetoin*	5.18	16.64	4.67	9.59	25.91	10.44	6.91	10.66	9.98	9.08	6.86	4.42	15.56	12.16	9.53	6.22	12.24	11.02
Acetaldehyde	1.09	1.09	2.04	0.88	0.46	0.50	1.08	1.13	1.06	0.48	0.48	0.82	0.67	0.62	0.63	0.80	0.81	0.63
Benzaldehyde	30.43	17.79	17.75	21.92	nd	nd	nd	nd	nd	29.38	19.53	9.35	2.61	nd	nd	nd	nd	nd
Ferpenols and norisoprenoids (μg/L)																		
Geraniol	3.07	4.93	3.94	3.64	3.86	4.29	2.48	3.59	3.76	12.64	10.60	9.99	16.10	11.79	13.87	11.54	10.34	8.95
3-citronellol ***	2.18	1.73	3.77	3.03	1.09	1.92	12.67	7.30	8.92	5.00	1.79	3.29	3.98	1.93	2.23	17.33	11.85	6.97
x-terpineol**	3.32	3.65	4.52	9.17	24.99	19.33	6.57	5.19	7.52	2.98	1.46	2.75	4.61	11.11	20.53	2.72	3.78	6.69
Linalool*	5.83	6.91	7.59	7.33	6.29	6.53	8.12	7.01	8.66	8.37	4.86	7.30	8.60	5.20	7.73	6.64	6.38	6.78
3-damascenone*	7.19	7.70	7.63	1.90	1.67	1.08	4.26	2.66	3.17	9.72	9.15	7.84	1.73	0.36	0.84	4.94	2.00	2.64
3-ionone***	0.37	0.20	0.49	0.62	0.17	0.35	0.92	0.19	0.67	0.96	0.25	0.89	1.08	0.27	0.61	0.88	0.50	0.50
Phenols (µg/L)																		
Guaiacol**	0.66	1.59	1.12	0.87	4.60	3.09	2.19	3.36	3.92	1.02	0.88	1.44	1.09	4.56	7.22	2.32	9.84	15.15
Eugenol*	5.68	2.01	4.02	0.75	0.70	0.35	0.27	nd	nd	8.49	2.83	3.55	nd	nd	nd	nd	0.67	nd
4-allyl-2,6-dimetoxyphenol	7.17	5.51	5.64	0.18	1.15	0.27	0.63	1.34	1.57	4.68	3.00	4.49	nd	nd	nd	1.81	0.95	1.07
2,6-dimetoxyphenol***	11.39	20.02	25.72	16.69	121.94	86.71	14.64	25.93	27.84	19.11	13.52	29.89	17.00	73.14	122.42	13.74	55.38	104.19
4-vinylguaiacol	111.10	91.33	153.78	12.10	17.12	12.38	1.45	1.56	2.93	76.12	47.62	79.64	7.42	9.92	10.85	1.94	1.98	1.84
4-propylguaiacol	nd	nd	0.10	nd	nd	nd	nd	nd	nd	0.21	0.17	0.27	nd	nd	nd	nd	nd	nd
4-vinylphenol	2.52	5.78	4.34	2.73	3.55	3.34	3.01	3.59	3.77	2.14	1.93	2.06	1.64	1.50	1.63	3.35	4.60	4.00
4-ethylphenol	0.35	0.44	28.35	0.56	0.71	0.15	0.48	0.20	0.34	1.31	0.09	0.59	nd	nd	nd	0.69	0.07	nd
4-ethylguaiacol	0.12	0.08	3.28	0.11	0.00	0.00	0.11	0.00	0.08	0.00	0.00	0.00	nd	nd	nd	nd	nd	nd
o-cresol***	1.82	0.84	1.42	1.43	0.90	0.62	2.73	1.09	1.43	3.75	1.21	1.95	1.73	0.71	0.86	2.34	0.86	0.73
<i>n</i> -cresol***	0.57	0.49	0.76	0.64	0.47	0.43	0.42	0.35	0.47	1.50	0.18	0.92	1.13	0.69	0.74	1.25	0.76	0.12
Vanillin derivates (µg/L)		_					_		_									
Vanillin	nd	nd	nd	nd	nd	nd	nd	nd	nd	11.51	11.22	9.89	nd	nd	1.41	nd	nd	6.81
Methyl vanillate*	24.35	34.23	31.65	1.71	1.78	1.02	49.49	51.58	40.51	85.03	65.76	68.90	12.76	2.49	5.25	78.82	92.82	52.97
Ethyl vanillate**	137.65	152.05	91.66	125.45	17.81	19.30	816.75	100.74	378.71	294.47	309.94	317.87	139.68	32.29	34.28	981.91	258.42	99.33
Acetovanillone	155.74	208.95	204.40	33.15	46.30	27.68	418.66	437.42	365.78	177.09	140.99	165.07	26.32	34.30	30.88	360.57	459.91	315.81
High volatile																		
lludro con gulfido	43.95	31.55	28 57	106.21	75 24	39.74	57.29	34 33	39.16	49 51	24.14	35.04	39.91	22.00	27.65	44 21	26.96	30.56
Asthemathial	5 44	5 16	4 50	5 47	2 15	4.60	2 20	A 71	5 75	7 /1	631	5.60	8.02	5 13	6.62	5 20	4.68	A 17
Dimothyl sulfide*	8.83	9.79	4.59 8.16	9.04	6.91	6.43	2.29	23 32	22.05	10.71	15.05	10.43	5.02	13.86	6.82	12 21	14 59	10.73
	0.05).()	0.10	2.04	0.71	0.45	24.54	23.32	22.05	10.71	15.05	10.45	5.72	15.00	0.02	12.21	14.57	10.75
Ethyl dihydroginnamata	0.39	0.90	0.54	1 18	1.03	0.79	0.43	0.29	0.41	0.80	0.71	0.54	2 69	1 35	1.69	0.52	0.72	0.75
Ethyl cinnometo***	1 19	0.20	1.06	0.71	0.23	0.39	1 22	0.29	0.60	1.55	0.65	1.03	3 30	0.54	0.68	4 90	1 24	0.54
	,	0.20	1.00	0.71	0.25	0.57	1.22	0.20	0.00	1.00	0.00	1.05	0.00	0.01	0.00			0.01
rolylunctional mercantans (ng/L)																		
2-furfurs/thiol**	19.06	12.99	16.60	11.63	7.47	36.10	11.58	3.54	6.80	2.93	4.17	3.15	3.43	7.13	28.55	2.02	0.90	8.20
2-methyl_3-furanthiol	642.06	1683.8	968.77	277.58	355.98	363.31	955.91	263.01	631.40	490.54	1626.4	506.31	248.07	414.17	383.63	551.50	638.18	488.12
Benzylmercantan	20.02	30.37	18.01	11.74	7.64	6.56	17.11	14.10	13.06	11.15	14.12	11.75	3.36	2.37	2.72	7.41	4.83	7.25
B-mercantohevanol	399.25	381.46	587.46	899.32	745.97	879.87	737.24	833.24	1234.0	292.56	169.29	208.46	150.83	61.75	161.79	195.80	159.55	251.03
1-mercaptorexanor	3.26	0.18	8.04	28.90	0.00	8.73	nd	8.83	4.50	14.28	18.48	25.12	27.80	52.14	39.68	4.98	3.56	6.92
3-mercaptohexyl acetate	nd	nd	nd	46.83	31.72	18.47	39.85	7.78	nd	16.25	5.46	8.67	10.54	9.67	21.09	4.13	18.35	15.79
Lactones (µg/L)																		
-whiskylactone	0.13	3.00	1.41	3.44	4.92	1.24	1.15	3.17	2.90	4.99	4.52	3.79	1.24	0.64	2.22	1.38	4.64	2.04
y-butirolactone**	14.04	5.47	14.60	10.01	3.08	26.42	7.03	2.77	7.68	9.05	5.52	7.54	8.75	4.60	7.90	7.69	4.00	5.08
-nonalactone*	22.37	11.42	25.21	8.77	5.60	4.94	31.07	15.36	28.16	26.42	9.35	24.11	5.86	3.34	6.32	26.58	22.34	22.06
y-decalactone	2.41	2.78	3.74	1.39	2.36	2.63	3.18	1.77	4.13	2.18	1.43	2.17	0.42	0.71	1.47	1.64	3.21	1.34

δ-decalactone***	17.17	38.95	29.31	26.88	40.83	28.55	19.92	41.11	24.82	16.19	42.67	17.57	27.89	27.65	42.08	28.97	50.63	29.53
Pyrazine (ng/L) 3-isobutyl-2-methoxypyrazine	nd	1.55	1.00	3.80	1.50	nd	nd	nd	0.45	nd	nd	nd	0.95	0.70	3.20	nd	nd	nd

Significance of three way analysis of variance for the treatment factor *P<0.05; **P<0.01; ***P<0.001; nd. not detected; ^aMean of two replicates

	P -values											
Parameter / Source of variation	Vintage (V)	Cultivar (C)	Treatment (T)	V x C	V x T	СхТ						
Alcohol	< 0.001	< 0.001	0.038	0.002	0.688	0.880						
Total Acidity	0.298	< 0.001	0.004	0.319	0.766	0.255						
pH	< 0.001	0.026	0.136	0.077	0.411	0.179						
Tartaric acid	0.002	0.046	0.045	0.112	0.284	0.376						
Potassium	< 0.001	< 0.001	0.005	0.121	0.387	0.494						
Volatile acidity	0.097	0.001	0.121	0.861	0.670	0.614						
Anthocyanins	< 0.001	< 0.001	0.010	0.067	0.483	0.003						
Total Phenolic Index	< 0.001	< 0.001	< 0.001	0.017	0.048	0.097						
Color Hue	0.078	< 0.001	0.007	0.375	0.719	0.027						
Color Intensity	< 0.001	0.025	0.007	0.078	0.206	0.007						
<i>Occurrence of</i> P <i>-value</i> < 0.05	7	10	8	2	0	3						

Table 1: Results of three-way analysis of variance for conventional enological parameters measured in bottled wines.

Table 2: Impact of pre-fermentative heat treatments on conventional enological parameters measured in bottled wines.

	2009								2010									
Parameter -	Carignan			Fer		Grenache		Carignan		Fer			Grenache					
	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS	CTRL	PHTL	PHTS
Alcohol (% vol.)*	11.2 ^a	12.5	10.7	12.1	12.8	12.1	15.3	15.5	15.0	13.7	14.1	13.6	13.2	13.9	13.3	15.3	15.6	15.1
Total Acidity** (g/l H ₂ SO ₄)	1.90	3.40	2.14	1.51	2.34	1.94	2.42	2.39	2.47	1.31	1.53	1.31	1.23	1.63	1.85	1.83	2.12	2.44
рН	3.48	3.53	3.48	3.47	3.56	3.52	3.47	3.59	3.51	3.70	3.59	3.50	3.77	3.76	3.80	3.60	3.79	3.60
Tartaric acid (g/l)*	1.90	3.40	2.14	1.51	2.34	1.94	2.42	2.39	2.47	1.31	1.53	1.31	1.23	1.63	1.85	1.83	2.12	2.44
Potassium (g/l)**	0.68	0.83	0.72	0.81	1.04	0.87	0.62	0.80	0.71	1.05	0.98	1.02	1.29	1.39	1.34	0.98	1.20	1.02
Volatile acidity (g/l acetic acid)	0.32	0.32	0.33	0.29	0.52	0.48	0.56	0.60	0.63	0.24	0.35	0.23	0.24	0.50	0.32	0.42	0.52	0.52
Anthocyanins* (mg/l)	344	252	360	419	352	422	279	237	247	607	320	626	714	702	795	548	402	371
Total Phenolic Index*** (TPI)	37	31	38	41	56	64	47	44	56	50	29	51	57	64	90	64	67	87
Color Hue** (A420/A520)	0.60	0.73	0.57	0.51	0.57	0.53	0.62	0.63	0.61	0.58	0.78	0.56	0.56	0.59	0.55	0.63	0.70	0.76
Color Intensity** (A420+A520+A620)	7.1	4.3	7.8	7.7	8.8	11.0	8.4	7.8	9.2	14.7	5.9	16.2	12.3	13.0	18.1	14.2	9.1	6.6

Significance of three way analysis of variance for the treatment factor *P<0.05; **P<0.01; ***P<0.001; *Mean of two replicates

