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Abstract. In this paper, an ischemia detector is presented based on the analysis of
QRS-derived angles. The detector has been developed by modeling ischemic effects
on the QRS angles as a gradual change with a certain transition time and assuming
a Laplacian additive modeling error contaminating the angle series. Both standard
and non-standard leads were used for analysis. Non-standard leads were obtained by
applying the PCA technique over specific lead subsets to represent different potential
locations of the ischemic zone. The performance of the proposed detector was tested
over a population of 79 patients undergoing percutaneous coronary intervention in one
of the major coronary arteries (LAD (n=25), RCA (n=16) and LCX (n=38)). The
best detection performance, obtained for standard ECG leads, was achieved in the
LAD group with values of sensitivity and specificity of Se=90.9%, Sp=95.4%, followed
by the RCA group with Se=88.9%, Sp=94.4 and the LCX group with Se=86.1%,
Sp=94.4%, notably outperforming detection based on the ST series in all cases, with
the same detector structure. The timing of the detected ischemic events ranged from
30 s up to 150 s (mean= 66.8 s) following the start of occlusion. We conclude that
changes in the QRS angles can be used to detect acute myocardial ischemia.
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1. Introduction

Ischemia detectors are commonly applied in two scenarios: Holter monitoring, typically

during 24 hours, to assess patients with suspected or known coronary artery disease

(CAD); and continuous monitoring (e.g. in Intensive Care Units). Most ischemia

detectors are based on evaluation of changes in the ST segment deviation of the

electrocardiogram (ECG), which has been traditionally considered as the most sensitive

marker to diagnose ischemia in clinical practice (Garćıa et al. 1998, Jager et al. 1998,

Taddei et al. 1995, Smrdel & Jager 2004, Stadler et al. 2001, Shook et al. 1987). Because

ST segment changes may result from many other causes apart from ischemia, such as
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variations in the electrical heart axis due to body position changes, heart rate-related

events, other electrical conduction changes or ECG artifacts, many developed ST-based

ischemia detectors are not robust enough to distinguish between ischemic and non-

ischemic episodes of ST segment changes (Mincholé et al. 2010), which nowadays still

remains a challenge.

Other developed ischemia detectors have also taken into account changes in the T

wave morphology and in the entire ST-T complex rather than in the ST segment only

(Laguna et al. 1999, Garćıa, Sörnmo, Olmos & Laguna 2000). When ischemia becomes

acute, ECG changes start to be also reflected in the depolarization phase (QRS complex)

(Weston et al. 2007, Wong et al. 2009, Surawicz 1998, Barnhill et al. 1989). In particular,

QRS duration (Michaelides et al. 1993, Cantor et al. 1998), high-frequency QRS

components (in the band of 150–250 Hz) (Pettersson et al. 2000) and QRS slopes (Pueyo

et al. 2008, Firoozabadi et al. 2015) have been proposed as depolarization markers for

detecting induced-ischemia, either during stress exercise or coronary occlusion. Thus,

depolarization changes could be used to trigger an alert indicating the presence of a

more severe ischemia.

In a recent work, temporal and spatial changes in the three QRS angles, shown

in Fig. 1, were characterized during coronary occlusion (Romero et al. 2013). In that

study the R wave angle was found to be correlated with the amount of the image-based

quantified ischemia while the other two angles presented a fast transient ischemia-

induced change, which suggested they could be appropriate features for ischemia

detection. In this work, we present and evaluate a myocardial ischemia detector based

on the quantification of these QRS angles, for which a model of gradual transitions with

Laplacian additive error is assumed.

2. Materials and Methods

2.1. Population

The STAFF III dataset comprised 108 patients admitted to the Charleston Area

Medical Center in West Virginia, USA, for prolonged, elective percutaneous coronary

intervention (PCI) due to stable angina pectoris (Wagner et al. 1988, Garćıa, Wagner,

Sörnmo, Olmos, Lander & Laguna 2000). The following inclusion criteria were met for

each patient of this database:

• no clinical or ECG evidence of an acute or recent myocardial infarction,

• no intraventricular conduction delay with QRS duration equal to or more than 120

ms (including left and right bundle branch block),

• no pacemaker rhythm, low voltage, atrial fibrillation/flutter or any irregular

ventricular rhythm at inclusion or at the time of the PCI.

Patients undergoing an emergency procedure or presenting signal loss during

acquisition were excluded from the original dataset so that a total of 79 patients were

included in our study.
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All ECGs were recorded using equipment provided by Siemens-Elema AB, Solna,

Sweden. Nine standard leads (V1-V6, I, II and III) were recorded and digitized at a

sampling rate of 1 kHz with an amplitude resolution of 0.6 μV. The three augmented

leads aVL, -aVR and aVF were then generated from the limb leads to yield the complete

standard 12-lead ECG system. For each patient, two ECG recordings were acquired.

The first one served as a control recording and was continuously acquired in resting

supine position for 5 min within the hour prior to the beginning of the PCI procedure.

The second one served for ischemia analysis and was continuously acquired during the

PCI procedure (from balloon inflation to deflation). The duration of the occlusion

ranged from 1 min 30 s to 7 min 17 s (mean 4 min 26 s). The occlusion sites of the PCI

procedures were: left anterior descending coronary artery (LAD) in 25 patients, right

coronary artery (RCA) in 38 patients and left circumflex coronary artery (LCX) in 16

patients. The electrodes were either retained on the patient between the recordings, or

removed but with their positions being marked, to enable accurate comparisons of the

ECG variables.

2.2. Preprocessing

All ECG signals involved in the study were preprocessed before evaluation of the

analyzed indices as follows: (1) QRS complex detection, (2) selection of normal beats

according to (Moody & Mark 1982), (3) baseline drift attenuation via cubic spline

interpolation and (4) wave delineation using a wavelet-based technique (Mart́ınez

et al. 2004).

2.3. QRS angles evaluated from standard leads

The QRS angles evaluated in this study are illustrated in Fig. 1. In brief, lines lU and

lD were obtained by least square fitting the ECG signal in 8-ms windows centered at

points of maximal inflection nU and nD, respectively, in the upstroke and downstroke of

the ECG around the R wave peak. The line lR was additionally obtained by connecting

the points [nU, x(nU)] and [nD, x(nD)] where x(n) is the ECG signal. The slopes of the

lines lU, lD and lR were denoted by sU, sD and sR, respectively. sU and sD were obtained

from the least square fitting, whereas sR was calculated as sR = x(nD)−x(nU)
nD−nU

.

The three QRS angles were obtained from the triangle built from the intersection

of the lines lU, lD and lR, as shown in Fig. 1.

• φU: the Up angle of the R wave

• φD: the Down angle of the R wave

• φR: the R-wave angle

The full methodology used to compute the QRS angles is described in (Romero

et al. 2013). The angles φU, φR and φD were calculated in the following order. First, the
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Figure 1: a) QRS angles evaluated in this study. b) Temporal evolution of the angles

φU and φD during coronary occlusion, comprised within the two dashed vertical lines.

angle φR was assumed to be an acute angle (<90◦) and was calculated using the general

angular expression:

φR = arctan

(∣∣
∣
∣

s∗U − s∗D
1 + s∗Us∗D

∣
∣
∣
∣

)

(1)

where s∗U and s∗D are the slopes expressed in mm/mm. The next step consisted in first

computing φU or φD depending on the sR value, as described in (Romero et al. 2013). If

the slope sR was positive, the angle φU was first computed using an expression analogous

to (1) and subsequently the angle φD was computed as φD = 180◦ - (φR + φU). On the

contrary, if the slope sR was negative, we first computed φD and then φU following the

same strategy. To compute the expression in (1) time and amplitude were re-scaled

to match that of ECG tracings in clinical printouts, where a speed of 25 mm/s and a

gain of 10 mm/mV are conventionally used. In this way, all the slopes denoted as s∗

are expressed in mm/mm for the typical scaling. Depending on the original amplitude

resolution as well as the sampling rate of the analyzed ECG signals, the slopes sU and

sD (in μV/ms) in the equation for φR need to be multiplied by a scaling factor to convert

from, in this particular case, μV/ms to mm/mm (i.e., 1 μV/ms=0.01 mm/0.025 mm=0.4

mm/mm) resulting in s∗U and s∗D. Considering that conversion, (1) can be written as:

φR = arctan

(∣∣
∣
∣

sU − sD

0.4(6.25 + sUsD)

∣
∣
∣
∣

)

. (2)

The same conversion was also applied to the other two angles, φU and φD, by scaling

the involved slopes sR and sU in the case of φU, and sR and sD in the case of φD.



5

2.4. QRS angles evaluated from transformed leads

In addition to the standard leads, transformed leads were derived from the PCA

technique. The transformed leads were obtained by learning from sets of three

contiguous leads of the standard system (i.e., V1-V2-V3, V2-V3-V4, ..., II-aVF-III).

Then, the transformed lead associated with the first principal component of each set

was retained:

lPCA

k (n) = uT
k ∙ lk(n), k = 1, ..., K. (3)

where K is the total number of lead subsets (K=10) and uk is the first column of

the matrix Uk (containing the right singular vectors), representing the first principal

component obtained after applying singular value decomposition (SVD) of the matrix

Lk:

Lk = UkΣV′ (4)

which contains the 3 leads of subset k, represented by lk(n). With this notation,

lk(n) = [lk,1(n), lk,2(n), lk,3(n)]T (5)

and

Lk = [lk(0), lk(1), . . . , lk(N)] (6)

where lk,j(n) is the n-th sample of the j-th lead in subset k, and N denotes the total

number of samples.

2.5. Ischemia detection using a GLRT-based method

In (Romero et al. 2013) it is shown that the temporal evolution of the angles φU and

φD in response to the induced ischemia follows a non-linear pattern, especially in those

leads close to the ischemic region, unlike the observed one for φR which was much more

linear and gradual during the whole occlusion process (Fig 1-b). Those observations

served to formulate an ischemia detection problem where a step-like pattern with a short

transition in φU and φD was searched for in a running observation window throughout

the PCI recording.

The angle series of φU or φD represented here as ϕl[n], and computed for each lead l,

was considered for determining whether an acute ischemic episode occurred (hypothesis

H1) or only noise was present (hypothesis H0) in the observation window of length D.

The acute ischemic episodes were assumed to be represented by a unitary step with a

linear transition h[n], n = 0, ∙ ∙ ∙ , D − 1, scaled by a lead-dependent amplitude al and

distorted by an additive, lead-dependent noise signal wl[n] with mean value ml and

Laplacian distribution, which can be estimated based on the angles’ probability density

functions calculated in the control recordings. For the window starting at n = n0, the

signal model is:

H0 : ϕl[n] = wl[n],

H1 : ϕl[n] = alh[n − n0] + wl[n].

}

n = n0, ∙ ∙ ∙ , n0 + D − 1 (7)
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where D represents the length of the observation window (an even-valued integer), and

l = 1, ..., L represents the lead number. The acute ischemic episodes, of transition

duration T (even-valued integer), were modeled as:

h[n] =






1 n = 0, ..., D−T
2

− 1

1 − 2
T+1

(n − D−T−2
2

) n = D−T
2

, ..., D+T
2

− 1

-1 n = D+T
2

, ..., D − 1

(8)

al

al

−al

a
lh

[n
]

sample n
D − 10

T

(D−T )
2 -1 (D+T )

2

Figure 2: Step-like change with a transition of duration T .

The noise wl[n] was assumed to have a Laplacian probability density function

(PDF):

p(wl[n]) =
1

√
2σl

exp

[

−

√
2

σl

|wl[n] − ml|

]

(9)

with mean ml and variance σ2
l . All variables were assumed to be mutually independent

and uncorrelated to the observation angle series ϕl[n].

Figure 3 shows the histograms of the noise samples ŵl[n], resulting from the control

recordings of the database in leads V5 and V6. Data corresponding to all patients

merged after subtracting the median. All these samples together defined the set Ψ.

The notation ŵl[n] is obtained after subtracting to w[n] its own median in each control

and lead, i.e., ŵl[n] = wl[n] − median(wl[n]); the mean was instead subtracted when

the Gaussian model was studied. As illustrated in Fig. 3, the distributions of the angle

series have a leptokurtic behavior, being more closely modeled by Laplacian distribution

than by a Gaussian distribution.

LL(σL;xl) =
∏

n∈Ψ

1
√

2σl

exp

[

−

√
2

σL

|ŵl[n]|

]

, (10)

LG(σG;xl) =
∏

n∈Ψ

1
√

2πσ2
G

exp

[

−
ŵ2

l [n]

2σ2
G

]

. (11)

Moreover, the logarithm of the likelihood values are displayed within each graph,

confirming that the Laplacian model is the best fitting model, presenting less negative

values. Similar observations took place in the remaining leads.
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Figure 3: The histograms of ŵl[n] for φU and φD in leads V5 (left column) and V6 (right

column) with the best fit of the Laplacian and Gaussian probability density functions

obtained by maximizing their respective likelihood functions. ln(LL) and ln(LG) are the

values of the Log likelihood obtained for each fitting noise model.

The generalized likelihood ratio test (GLRT), based on the Neyman-Pearson

theorem, was used as the basis for ischemia detection. Basically, the GLRT is the

likelihood ratio between the probabilities associated with the two hypotheses, when

the unknown parameters of the signal model, under both hypothesis H0 and H1, are

replaced with their maximum likelihood estimates (MLEs). Thus, using the Laplacian

distribution, the GLRT decides H1 or H0 according to:

Λn0
G (ϕl) =

p(ϕl; âl,H1 , m̂l,H1 ,H1)

p(ϕl; m̂l,H0 ,H0)

=

exp

[

−

√
2

σl

n0+D−1∑

n=n0

|ϕl[n] − m̂l,H1 − âl,H1h[n − n0]|

]

exp

[

−

√
2

σl

n0+D−1∑

n=n0

|ϕl[n] − m̂l,H0 |

] ≷ H1
H0

γ (12)

where âl,Hi
and m̂l,Hi

denote the MLEs of al and ml under hypothesis Hi (i = 0, 1).

Vector ϕl denotes the vector consisting of the samples ϕl[n], n = n0, ..., n0 + D − 1.
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2.6. Calculation of the MLEs m̂l,H0, m̂l,H1 and âl,H1

The MLEs m̂l,H0 , m̂l,H1 and âl,H1 used in the ischemia detector were computed as (see

appendix for derivation):

m̂l,H0 = med(ϕl[n]) (13)

m̂l,H1 = med(ϕl[n] − âl,H1h[n − n0]) (14)

âl,H1 = med

(

|h[n − n0]| �
(ϕl[n] − m̂l,1

h[n − n0]

))

(15)

where med(αi � xi) denotes the weighted median (Arce 1998) of xi with weights αi and

n = n0, . . . , n0 + D − 1.

As both MLEs m̂l,H1 and âl,H1 need to be estimated together, an iterative

optimization was applied. An initial estimate m̂l,H1was taken as the median of ϕl[n]

based on the symmetry of h[n] (Mincholé et al. 2014). This was included in (15) to

compute âl,H1 . The obtained value was then included back in (14) to compute m̂l,H1

and so forth until convergence. Typically, stable values for m̂l,H1 and âl,H1 were achieved

in less than 10 iterations.

Considering the MLEs for the unknown parameters (m̂l,H0 , m̂l,H1 and âl,H1) and

applying the logarithm to both sides of (12), we got:

T [n0] = ln Λn0
G (ϕl)

=

√
2

σ̂l

n0+D−1∑

n=n0

(|ϕl[n]−m̂l,H0 |

−|ϕl[n]−m̂l,H1−âl,H1h[n−n0]|) ≷
H1
H0

γ′ (16)

with γ′ = lnγ. The standard deviation (SD) of the Laplacian noise in (16), σ̂l, was

estimated from an interval containing Nσl
samples corresponding to the entire baseline

control recording ϕb
l [n]:

σ̂l =

√
2

Nσl

Nσl∑

n=1

∣
∣ϕb

l [n] − m̂b
l

∣
∣ (17)

where m̂b
l is the sample median of ϕb

l [n]. Note that the Gaussian counterpart of the

standard deviation is σ̂l = 1
Nσl

∑Nσl
n=1(ϕ

b
l [n] − m̂b

l )
2.

The detector statistic T [n0] in (16) can be interpreted as the difference between the

mean absolute deviation of the signal, and the mean absolute deviation after subtracting

the estimated step. Therefore, if the signal does really have a step-like shape, T [n0] will

have a larger value.

A simulated example is illustrated in Fig. 4. The detector parameters were selected

to have values close to the real ones as obtained from the analysis of the QRS angles.

The step-like change with linear transition was defined to have an amplitude of al=50◦

and centered at the time instant n=300. It was then contaminated with an additive
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Figure 4: Simulated example of the ischemia detector performance. Evaluation is shown

at five different positions marked as dashed red vertical lines superimposed to the series

of ϕl[n] corresponding to n0=150, 225, 250, 275, 450. ϕl[n] contains a step-like change

with linear transition occurring at n=300. The additive Laplacian noise has a median

of ml=100◦ and standard deviation of σl=5◦. The output is displayed for different

transition values corresponding to the optimum T=20 s plus three larger and three

smaller T values. The duration of the observation window is D=100 s.

Laplacian noise with mean ml=100◦ and SD σl=5◦. Five different time instants were

selected to obtain the corresponding detection outputs: well before or nearly before,

centered at the timing of the step-like change, nearly after or well after it. The sliding

window duration for the GLRT was set at D=100 s with a transition duration of T=20

s. As illustrated in the bottom panel of Fig. 4, the detector is quite insensitive to the

different tested values for the parameter T as compared with the optimum one T=20 s.

2.7. Design parameters of the ischemia detector

The design of the ischemia detector applied to the QRS angles series is presented in Fig.

5. It consists of three individual detectors working in parallel where each one works

with a different subset of leads. The final lead subset selected within each individual

detector of the two available strategies (standard ECG leads or the first component of

PCA-transformed leads, shown above and below the input lines of the detector blocks

in Fig. 4) is that maximizing the detection performance in terms of sensitivity (Se) and

specificity (Sp), when evaluated in the three occluded artery groups. Specifically, the
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Figure 5: General block-diagram of the designed ischemia detector. The block on the

right side represents the internal configuration of each ischemia detector block for the

analyzed leads l corresponding to either three standard leads or a PCA-transformed

lead. IE: ischemic episode.

optimal detector was selected based on the computation of the statistic J = Se+Sp−1,

known as Youden’s index. Note that all the detectors share a common configuration,

which is displayed on the right side of Fig. 5. The procedure applied to determine the

optimal parameters of each individual detector as well as the most sensitive lead subset

is described below.

2.7.1. GLRT detector block All QRS angles series evaluated in standard and

transformed leads were filtered to remove outliers using a median absolute deviation

(MAD) method (Hampel 1987) and were subsequently resampled at 1 Hz.

For the GLRT detector, the duration of the observation window D was set to

70 s. This value was selected considering the smaller occlusion duration in the analyzed

database. For the duration T of the transition, different values were tested ranging from

2 to 58 seconds in 4-s steps to cover the different transition durations observed in the

analyzed recordings. The QRS angles φU and φD were independently considered in the

detection process using (16).

2.7.2. Noise estimation The estimates σ̂l in (17) were obtained for each analyzed lead

l from the control recording of each patient. This implies that, even when the signal

amplitude is very similar between leads, the detector statistic will be adapted to the noise
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level in each individual lead. Therefore, the individual detector outputs corresponding

to the involved leads were independently used to apply the final decision in case of

using the standard leads separately. When using the PCA transformed leads, only the

detector output corresponding to the first principal component was taken into account.
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Figure 6: Example of how the ischemia detector works on a recording of a patient

with LAD occlusion: a) φU series corresponding to leads V2-V5; b) ischemia detector

outputs corresponding to lead V2, c) lead V3, d) lead V4 and e) lead V5. Two values

for parameter T (T = 20 and T = 40 s) are shown. Horizontal dashed lines correspond

to thresholds obtained by using δ = 8 in the computation of γ′
l for each lead. Vertical

gray lines mark the occlusion period. Vertical blue line marks the earliest time instant

related to the detected ischemic event.

2.7.3. Decision stage After lead selection (applied in the cases of standard leads only),

a lead-dependent threshold γ′
l for the detector statistic was selected as a function of the

SD σ̂l and the window length D: γ′
l = δσlD, where different values of δ were tested. In

the case of using standard ECG leads the threshold γ′
l was required to be exceeded by

at least one of the three detector outputs (corresponding to the three involved leads)

to consider the detection of an ischemic event. In the case of using a PCA-transformed
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lead, a threshold γ′
l was fixed for the corresponding detector output. Fig. 6 displays an

example with the outputs of the four individual ischemia detectors (Fig. 6 -b) applied

over the series of the angle φU in four (Fig. 6 -a) precordial leads (V2-V5) for a particular

recording corresponding to a LAD occlusion. The value of δ was set to 8 whereas the

transition T was set to either T=20 or T=40 s. It can be observed that two successful

detections took place (leads V2 and V3) and two other failed (leads V4 and V5).

2.7.4. Performance evaluation To evaluate the performance of the proposed ischemia

detector, Se and Sp were computed. All the PCI recordings were considered to have

ischemia while all the control recordings were considered not to have ischemia. The

performance was individually assessed for each group of patients according to the

occlusion site. The Se and Sp values were evaluated for different thresholds γ′ (as

a function of δ, δ = 0.01, 0.02, ..., 40) and transition durations T (ranging between 2 and

58 s) in the ischemia detector. The optimal values of γ′ and T maximizing the detection

performance according to Youden’s index were selected for the final ischemia detector.

In order to evaluate the performance of the QRS angle-based detector described

above as compared to an ST-based detector, Se and Sp were additionally evaluated

after applying the same ischemia detector to the ST series, calculated as the ST level

measured at J point plus 60 ms.

2.8. Timing of ischemic episodes

The time tE elapsed from the beginning of the occlusion, t0, until the instant when an

ischemic event was detected, tIE, was also evaluated (tE = tIE − t0) for each patient.

Because ischemic events were detected at different time instants depending on the

analyzed lead, we considered the estimated detection time as corresponding to the

earliest time when any detection statistic was above the corresponding threshold (see

Fig. 6).

2.9. Dynamics of the QRS angles

As the proposed ischemia detector was tested in PCI recordings presenting a clear

change in QRS angles and additional control recordings were available, we quantified

and characterized the values of the QRS angles at baseline and just before the end of the

balloon inflation, corresponding to maximum changes. These values were statistically

compared. Statistical analysis was carried out for the whole population and for each

of the three artery groups using the nonparametric Wilcoxon signed-rank test. The

significance level was defined as p < 0.05.
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3. Results

3.1. Ischemia detection using PCA-transformed ECG leads

The performance of the ischemia detector was evaluated in transformed leads obtained

from PCA. Fig. 7 shows the ROC curves corresponding to three different transition

values T (T=2, 26, 58 s) evaluated for different thresholds γ′ (obtained with δ =

0.01, 0.02, ..., 40). Results in Fig. 7 correspond to the angle φU evaluated in PCA

transformed leads generated from leads V1-V3 (LAD group, left panel) and aVR-II-

aVF (RCA group, right panel). The optimal values for parameters δ and T are those

simultaneously maximizing Se and Sp, i.e. the closest point to the left-top corner in

the ROC curve. From the figure it is clear that all tested T values yield similar results.

The two PCA-transformed leads with the best performance in terms of their area under

the curve (AUC) values are summarized in Table 1, for both φU and φD angles and each

of the three artery groups. The corresponding Se and Sp values are also shown in each

case.
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Figure 7: Receiver operating characteristic curves obtained for different transition values

T and evaluated for different thresholds γ′ in the LAD group (left) and RCA group

(right) for the angle φU.

The LAD group presented the highest global detection performance when

comparing the resulting AUCs, achieving a maximum value of 87.7%, whereas values

for RCA and LCX groups were 78.4% and 78.5%, respectively.

3.2. Ischemia detection using standard ECG leads

The performance of the ischemia detector was also tested in standard ECG leads. As

previously described in 2.7.3, an ischemic event was considered as detected if any of

the involved leads in the combination of standard leads met the specified criterion.

Results are summarized in Table 2 for the three artery groups and for the two lead

combinations with the best detection performance. The two QRS angles φU and φD
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Table 1: Optimal ischemia detector’s performance using PCA-derived leads.

QRS LAD RCA LCX

angle Se/Sp(%) Se/Sp(%) Se/Sp(%)

AUC AUC AUC

V1-V3 aVR-II-aVF V4-V6

angle φU 77.3/95.5 83.3/72.2 72.2/77.8

87.7 78.4 78.5

angle φD 77.3/100 75.0/77.7 66.7/66.7

82.9 77.0 72.1

V2-V4 II-aVF-III V5-V6-aVL

angle φU 72.7/100 47.2/91.6 55.6/100.0

82.3 67.7 77.5

angle φD 77.3/100 36.1/100 61.1/94.4

84.7 72.4 75.5

yield similar performance. Precordial leads V1-V3 presented the best results in the

LAD group and led to a global performance in terms of AUC of 93.1%. In the RCA

group, leads aVR, II and aVF were the best suited for ischemia detection and reached

a global performance of 91.2%. In the LCX group leads V4-V6 were the ones with the

highest detection capability, achieving an AUC of 95.8%. Fig. 8 shows the ROC curves

obtained for the RCA group using the two optimal lead combinations and a range of T

values.

The optimal δ value obtained in each artery group was highly dependent on the

range of changes in the φU and φD angles developed during the occlusion as well as the

respective SD values measured in control. For the LAD group, the optimal δ value was

δ = 2.4; for the RCA group, δ = 0.35; and for the LCX group, δ = 0.14.

Table 2 also shows results obtained when applying the ischemia detector to the

ST level series. It can be observed that, using the same sets of leads, the QRS angles

notably outperform the results obtained with the ST segment.

3.3. Timing of ischemic events

The timing of detected ischemic events with respect to the beginning of the occlusion

was 66.8 ± 30.9 s for the whole study population. Particularizing for the LAD group,

the timing was 72.3± 29.8 s (range: 27− 88 s); in the RCA group, 71.9± 33.3 s (range:

27− 154 s); and in the LCX group, 46.6± 22.2 s (range: 31− 122 s). The above results

indicate that in some patients ischemia can be detected as a change in the QRS angles

as early as 0.5 min after the start of the coronary occlusion, while in others 2.5 min of

occlusion are needed.
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Figure 8: Receiver operating characteristic curves obtained for the RCA group using

combinations of standard ECG leads. Left column: Using the lead combination II-aVF-

III and 4 different transition durations (T=2, 10, 30, 50 s); Right column: Using the

lead combination aVR-II-aVF and the same T values.

3.4. Significance of ischemia-induced changes in QRS angles

The averaged values of the QRS angles representative of both baseline (reference) and

occlusion stages were computed for each analyzed lead. Although there were significant

differences between these stages in the overall population (especially in precordial leads

V2-V5, p < 0.05), the most significant differences were observed when comparing these

two stages in the LAD group. The largest differences in LAD correspond to leads V2-V4

(p < 0.001 in most cases) while in other leads no significant differences were observed.

In the RCA group, significant differences were found in leads aVR, II, aVF and III

(p < 0.01 in all cases). In the LCX group, variations were smaller and only significant

in V2 (p = 0.022) and V3 (p = 0.031). A summary of the QRS angle values before

and after coronary occlusion are shown in Table 3 for those leads with the greatest

differences.
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Table 2: Optimal ischemia detector’s performance using combinations of standard ECG

leads.

QRS angles/ LAD RCA LCX

ST level Se/Sp (%) Se/Sp (%) Se/Sp (%)

AUC AUC AUC

( Lead Comb.) (V1-V3) (aVR-II-aVF) (V4-V6)

φU 86.4/100 86.1/94.4 88.9/88.9

91.5 91.2 88.9

φD 90.9/95.4 86.1/91.7 88.9/94.4

93.1 90.3 95.8

ST60 77.7/85.2 76.3/97.7 44.4/72.7

80.1 87.5 59.8

( Lead Comb.) (V2-V4) (II-aVF-III) (V5-V6-aVL)

φU 81.8/100 86.1/91.7 66.7/100

89.2 89.8 90.6

φD 86.4/96.3 80.6/94.4 94.4/66.7

90.9 88.9 88.1

ST60 77.4/82.6 77.3/100 77.8/87.5

78.1 86.2 81.6

4. Discussion

In this work an acute ischemia detector based on the analysis of the QRS angles, denoted

as φU and φD, has been developed and evaluated. The detector was implemented based

on a model of Laplacian noise added to a step-like change with a linear transition,

modeling the observed signature of the QRS angles series during acute ischemia. The

QRS angles were previously studied in (Romero et al. 2013) for predicting the extent

and severity of ischemia and were found to be very sensitive to the ischemia-induced

changes, presenting both φU and φD a sudden change during coronary occlusion, unlike

the gradual changes observed in φR. The latter turned out to be the best angle in that

study for predicting the ischemia extension and severity, since it reflects concomitant

changes occurring in the upstroke and downstroke of the QRS complex, thus providing,

in a certain way, a measure of the conduction velocity and a surrogate of the QRS

width. On the other hand, the more abrupt changes observed in φU and φD occurred

few seconds after the occlusion started, changing very quickly up to a certain saturating

value reached before occlusion completion. Changes in the angle φD during occlusion

are mainly associated with the non-linear changes occurring in its vertex position (point

[nD x(nD)]), produced by the first signs of the induced ischemia, reflected as ST segment

elevation or depression depending on the lead, or changes in the S wave. The change in
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φD is then inversely reflected in a change of similar magnitude in the angle φU, except

for the smaller changes occurring in φR. This particular behavior of the angles φU and

φD has been exploited in this study as a trigger for detecting acute ischemic episodes.

Table 3: Mean ± SD of the QRS angles at baseline and during coronary occlusion.

Angle φU(◦) φD(◦)

Baseline ⇒ Ischemia Baseline ⇒ Ischemia

L V2 140±51 ⇒ 86±67 30±51 ⇒ 75±63

A V3 147±50 ⇒ 72±65 26±47 ⇒ 96±64

D V4 154±19 ⇒ 89±65 19±18 ⇒ 83±63

R II 69±52 ⇒ 53±49 102±53 ⇒ 118±50

C aVF 60±44 ⇒ 43±39 106±48 ⇒ 121±43

A III 62±49 ⇒ 39±37 99±153 ⇒ 120±44

L V5 107±37 ⇒ 85±52 67±38 ⇒ 89±53

C V6 58±45 ⇒ 46±41 114±48 ⇒ 124±41

X I 97±36 ⇒ 87±38 62±37 ⇒ 62±43

The QRS angles were first evaluated in a set of transformed leads derived from

PCA. Different combinations of contiguous standard ECG leads were explored and used

to generate the transformed leads. The transformed leads with the highest sensitivity

and specificity for ischemia detection were those involving leads close to the region

irrigated by the occluded artery. This result is in line with (Romero et al. 2013) where

we showed that the standard leads presenting the largest changes in QRS angles during

ischemia were those close to the ischemic region.

Although the LAD group developed the highest changes in response to

the induced ischemia as a result of the largest irrigated area, the sensitivity

of the detector was very similar for the three artery groups, while the speci-

ficity was notably higher for LAD. In the RCA and LCX groups, the opti-

mal Se/Sp values according to Youden’s index (J) were of 83.3%/72.2% and

72.2%/77.8%, respectively, whereas in the LAD group they were 77.3%/100%. Nev-

ertheless, it is important to highlight that these results were obtained using different

thresholds for each group due to the different magnitude of changes developed in each

case. In this respect, if a fixed value was to be used for all leads, either higher false pos-

itives detection rate for LAD artery or missdetection for RCA and LCX arteries would

occur. However, given the different set of leads optimized for each artery occlusion,

one can imagine three detectors working in parallel for each potential occluded artery

generating ischemia, and then, each detector could have their own optimum design

parameters.
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When the ischemia detector was evaluated in standard ECG leads, the detection

performance improved with respect to that obtained for PCA-derived leads. In the LAD

group the global detection performance in terms of AUC increased from 87.7 to 93.1

(5.4), in RCA from 78.4 to 91.2 (12.8) and in LCX from 78.5 to 95.8 (17.3). The location

of the leads associated with the best performance were, nevertheless, the same in the

case of the standard and PCA-derived leads. In general, small differences between the

outcomes for the two angles, φU and φD, were observed, being usually the angle φU the

most sensitive one, especially when evaluated in PCA-transformed leads.

The detection performance of the QRS angles was also compared with that of ST

level, by applying the ischemia detector to the series of ST levels. Results shown in

Table 2 indicate that the sensitivity and specificity values were mostly lower for the

ST level, which could to a certain extent be expected due to the more gradual changes

occurring in the ST segment during the occlusion period. This values, however, need to

be taken in the context of this abrupt changes detector, since other ST-based detectors

designed for the more gradual ST changes (Jager et al. 1998), could report better ST-

based sensitivity and specificity.

The timing of ischemic episodes was found to be, on average, of about one minute

after the start of occlusion, starting from only 30 s in some patients up to 150 s for

others. This suggests a potential application in which QRS angles could contribute to

detect ischemia and have an estimate of the occlusion timing as an aid in making

decisions regarding therapy to be employed. On the other hand, sudden ischemic

changes detected by the proposed detector using the QRS angles series could also serve

to distinguish between supply ischemia (eventually given by total artery occlusion) or

a more gradual demand ischemia (eventually given by an increased demand associated

with heart rate changes and hypothesized to have a much more gradual signature not

so easily detectable by this QRS angle-based detector). As both types of ischemic

episodes present similar ST patterns (normally gradual transient ST changes rather

than sudden changes), the use of QRS angles could help in distinguishing between both

situations (Mincholé et al. 2007). Furthermore, despite not having been considered in

this work, the proposed ischemia detector could also be used for detecting the sudden

changes occurring after balloon release, which are usually faster and more abrupt than

those observed during ischemia onset. Those detections could be useful, for instance, to

identify when a clot has been dissolved or removed.

We also assessed the QRS angle values at baseline (in the control recordings) and

at the end of artery occlusion (in the PCI recordings) and statistically compared these

values. Results showed significant differences between both conditions in the three

artery groups, with the highest differences found in the LAD group. The angle φU was

found to decrease during ischemia, while the opposite was observed for the angle φD. As

discussed above, the QRS angles not only have potential for detecting acute ischemic

events, but could also serve to diagnose an existing ischemia, by comparing the current

QRS angles values with some reference value, if available, for instance from previous

ECG recordings.
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Finally, with respect to the design parameters of the detector, we found that the

detector performance was almost insensitive to the values of parameter T , representing

the transition duration of the ischemic change. However, the involved set of leads was a

determinant factor when detecting a particular occluded artery. Also, the performance

was good for a wide range of values of δ, being this a factor in the definition of the

threshold on the detector statistic.

4.1. Limitations of the study

Despite the benefits offered by the proposed detector, there are some limitations that

affect its optimum performance. First, the change in the QRS angles series needs

to be fast enough for the statistical model to capture it. The faster the change, the

narrower and larger the peak in the detector output, thus allowing a more robust and

trustworthy detection of the ischemic events. Likewise, the larger the amplitude of

the change, the easier it will be detected. Second, the threshold used to detect the

ischemic events varies for LAD, RCA and LCX occlusions, with the resulting need to

use parameter values optimized for each one of the internal ischemia detector blocks

according to the artery rather than just a single value for all individual blocks, even this

limitation can be overcome by having three detectors working in parallel. Furthermore,

the design of the ischemia detector was fitted to the particular features of the analyzed

database, where the sudden balloon inflation causes a sudden change in the QRS angles,

thus, an overfitting effect to the database can be present in the optimized design

parameters. It would be desirable to test the proposed ischemia detector in other

databases containing more gradual ischemic events, such as the Long Term ST Database

(LTSTDB) (Jager et al. 2003) and the European ST-T Database (Taddei et al. 1992),

to assess improvements in the specificity for the identification of ischemic events.

5. Conclusion

Morphological ECG changes occurring during acute myocardial ischemia, evaluated in

this study through a QRS angle-based method, have proved to be a suitable tool to

detect acute ischemic episodes. The upstroke and downstroke QRS angles allow to

detect more than 85% of acute ischemic events in any of the three major coronary

arteries.

Appendix

The three MLEs, m̂l,H0 , m̂l,H1 and âl,H1 , needed for computation of the GLRT detector

in (16) were computed as follows. Under hypothesis H0, the MLE of ml,H0 was found

by maximizing the related log-likelihood function of the Laplacian noise model (9) with

respect to ml:

m̂l,H0 = arg max
ml

ln p(ϕl; ml) (A.1)
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which is equivalent to minimizing the cost function:

J(ml) =

n0+D−1∑

n=n0

|ϕl[n] − ml| (A.2)

with derivative:

∂J(ml)

∂ml

= −
n0+D−1∑

n=n0

sgn(ϕl[n] − ml) (A.3)

In (A.2) the minimum is reached when ml takes the median value of the observed

data:

m̂l,H0 = med(ϕl[n]) (A.4)

Under hypothesis H1, the MLEs of ml,H1 and al,H1 were determined by maximizing:

[m̂l,H1 , âl,H1 ] = arg max
ml,al

ln p(ϕl; ml, al) (A.5)

or, equivalently, by minimizing the cost function:

J(ml, al)=

n0+D−1∑

n=n0

|ϕl[n]−ml−al ∙ h[n − n0]| (A.6)

with respect to ml and al, respectively. The partial derivative of J(ml, al) with respect

to ml is:

∂J(ml, al)

∂ml

=−
n0+D−1∑

n=n0

sgn(ϕl[n] − ml − al ∙ h[n−n0]) (A.7)

which, when set to zero, yielded the following MLE:

m̂l,H1 = med(ϕl[n] − âl,H1h[n − n0]) (A.8)

with n = n0, ∙ ∙ ∙ , n0 + D − 1. The partial derivative of J(ml, al) with respect to al is:

∂J(ml, al)

∂al

=−
n0+D−1∑

n=n0

h[n − n0]sgn(ϕl[n]−ml−alh[n − n0]) (A.9)

Inserting the definition of h[n] (8) in the above equation:

∂J(ml, al)

∂al

= −
n0+D/2−1∑

n=n0

h[n − n0] sgn(ϕl[n] − ml − al ∙ h[n − n0])

−
n0+D−1∑

n=n0+D/2

−h[n − n0] ∙ sgn(−ϕl[n] + ml − al(−h[n − n0])) (A.10)

= −
n0+D−1∑

n=n0

|h[n − n0]| ∙ sgn

(
ϕl[n] − ml

h[n − n0]
− al

)

(A.11)
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The MLE of al,H1 can be obtained by computing the weighted median:

âl,H1 = med

(

|h[n − n0]| �
(ϕl[n] − ml

h[n − n0]

))

(A.12)

being n = n0, ∙ ∙ ∙ , n0+D−1 and where med{∙�∙} denotes the weighted median operation.

The weighted median was computed using the algorithm described in (Arce 1998).

An approximate and computationally faster solution to the MLE of al,H1 can be

given by the expression in (A.13), as the internal part of the sign function in (A.11)

under hypothesis H1 is equal to (wl[n]−ml)
h[n−n0]

, whose sign is uncorrelated to |h[n−n0]| which

is symmetric:

âl,H1 = med

(
ϕl[n] − ml

h[n − n0]

)

(A.13)

Finally, it should be noted that the MLEs of ml,H1 and al,H1 are dependent

on each other, and therefore an iterative optimization algorithm was applied for the

computation, as described in the main text.
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