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Abstract This work shows the modelling process of the occurrence of ex-
treme heat events in daily maximum and minimum temperatures of Barcelona
(Spain). The suggested model, a nonhomogeneous bivariate Poisson process,
allows us to account for the mutual dependence between the two types of
events, and to study their time evolution and relationship with temperature
predictors. A wide kit of tools for validating the model, including an influence
analysis, is provided.

This model is a useful downscaling tool to obtain medium-term local pro-
jections of the occurrence of extreme heat events in a climate change scenario,
using the temperature trajectories from general circulation models. Due to the
generalised global warming of climate change scenarios, it is necessary to check
that the values used to project do not extrapolate the conditions of the data
used to fit the model. Different solutions for dealing with this extrapolation
problem are suggested.

The results of the fitted model for the temperature series of Barcelona in
1951-2005, and the future projections of the extreme heat events for the period
2031-2060, using three global circulation model trajectories under the SRES
A1B scenario, are discussed.
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1 Introduction

Heat waves are known to produce serious impacts on ecosystems, human health
and economy; some examples are the heat waves of 1980 and 1995 in the
United States and 2003 in Europe. Palecki et al (2001), Grintzevitch (2006) and
other studies about the effect of extreme heat on mortality rates, found that
both maximum and minimum temperatures have an impact on human health.
Hence, an increasing number of heat wave definitions include information on
both temperatures, see for example Plummer et al (1999), and Tryhorn and
Risbey (2006). The U.S. National Weather Service issues an excessive heat
watch, when apparent temperature in excess of 105oF (41oC) during the day,
and 80oF (27oC) during the night are forecast for two consecutive days.

Climate extremes are a growing problem according to the results by Plum-
mer et al (1999), or Mannshardt-Shamseldin et al (2010) who reported consid-
erable increases in the frequency and intensity of precipitation and tempera-
ture extreme events during the 20th century. In addition, Cubasch et al (2001),
Meehl and Tebaldi (2004), Kharin and Zwiers (2005), Meehl et al (2005), Try-
horn and Risbey (2006), Abaurrea et al (2007) and other authors suggest that
heat waves will become more frequent and more severe during the 21st cen-
tury. Given that more information about future climate behaviour at local and
finer time scales is essential for preventing climate impacts, see Sivakumar and
Christakos (2011), the interest of characterizing and projecting maximum and
minimum temperature extreme events is clear.

This work suggests a bivariate model for describing the occurrence of ex-
treme heat events in maximum and minimum daily temperatures. Instead of
using two different univariate models, our approach takes advantage from the
information provided by the dependence between both temperatures. The sug-
gested model is a common Poisson shock process, which can be described by
three independent Poisson processes. It allows us to characterize the occur-
rence over time of both types of extreme events, their mutual dependence and
relationship with different predictors. The model is also a downscaling tool
which can be applied to obtain projections of the occurrence of extreme heat
events, at a daily scale, under a climate change scenario.

Section 2 describes the common Poisson shock process and the method-
ology for modelling the occurrence process of extreme heat events. Section 3
summarizes the results and the modelling process of the series of Barcelona
(Spain). The use of the model to obtain projections for the period 2031-60,
in the climate change scenario SRES A1B, is shown in Section 4. Section 5
summarizes the most relevant conclusions.
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2 Methodology

2.1 Bivariate point processes for the occurrence of extremes

The excess over threshold approach is often used to analyse extreme events
in climatology and other environmental sciences. In this approach, an obser-
vation whose value exceeds a reference threshold is considered extreme. A
well-known result of extreme value theory states that, asymptotically with in-
creasing thresholds, the extreme events occur according to a Poisson process
(PP), see Coles (2001). When a constant occurrence rate is not a reasonable
assumption, a nonhomogeneous Poisson process (NHPP) should be consid-
ered, see for example Ogata (1988) or Evin and Favre (2013). This is the case
for the temperature extremes, where a seasonal behavior and a trend must be
expected, see Abaurrea et al (2007). In this context, a model which generalizes
the univariate NHPP to the bivariate case seems a reasonable option for the
joint modelling of the occurrence of extreme events in maximum and minimum
temperature. This model should be flexible enough to allow the inclusion of
predictors, to model a nonhomogeneous behaviour and the dependence be-
tween the two components.

There are different types of bivariate point processes. Lindskog and McNeil
(2003) suggested the common Poisson shock process, Pfeifer and Neslehová
(2004) used a copula based model, and Bauerle and Grubel (2005) introduced
the TaS (Thinning and Shifts) model, trying to avoid some limitations of
the two previous approaches. Since this work focuses on the event occurrence
times, we opt for the common Poisson shock process (CPSP).

The CPSP is a continuous time model, but in most applications the avail-
able data are discrete. However, when the time unit is short compared with
the length of the recorded period and the occurrence rate low, the use of a
continuous time model can be justified.

2.1.1 Common Poisson shock process

A CPSP, denoted by N , is a multivariate point process which assumes that
there is an underlying PP of shocks N0, that can yield d different types of
events. The counting process of the jth type of events, for j = 1, . . . , d, is the
component process Nj .

Let us define the vectors Ir = (I1,r, . . . , Id,r)′ for r = 1, . . . , N0(t), formed
by the binary variables Ij,r, which indicate if an event of type j occurs at the rth

point of N0. The CPSP assumes that Ir are i.i.d multivariate Bernoulli vectors.
Hence, each shock corresponds to a new independent event, but the trigger
variables for the different type of events may be dependent. Each component
process can be expressed as a sum of independent binary variables,

Nj(t) =

N0(t)∑
r=1

Ij,r.
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Since each Nj(t) results from an independent thinning of the PP N0, they

are PPs themselves. However, the total process, N(t) =
∑d

j=1Nj(t), is not a
Poisson but a compound Poisson process, where the compounding distribution
is the distribution of

∑d
j=1 Ij,r.

Decomposition of a CPSP. Herein, the model is restricted to the bivari-
ate case d = 2, where events can be divided into 3 types, (1, 0), (0, 1), (1, 1),
depending on the component where they have been observed. Given two com-
ponent processes N1 and N2, see Figure 1, the total process can be decom-
posed into three marginal processes which are independent: N(1), N(2) and
N(12) which include the events occurring only in the N1 process, only in N2,
and the events occurring simultaneously, respectively. Their intensities are de-
noted λ(1), λ(2) and λ(12). The distribution of the CPSP is totally specified by
the three marginal processes and N1 = N(1) + N(12) and N2 = N(2) + N(12)

with intensities λ1 = λ(1) + λ(12) and λ2 = λ(2) + λ(12). A basic assumption
of this model is that the dependence between N1 and N2 occurs only via the
simultaneity of the events, so that independent component processes are ob-
tained when λ(12) = 0. An equivalent way to specify the model is by means
of a single PP N0, with intensity λ = λ(1) + λ(2) + λ(12), and an independent
marking process of its points with probabilities p(1) = λ(1)/λ, p(2) = λ(2)/λ
and p(12) = λ(12)/λ.

This decomposition into three independent PPs allows the model to be
readily applied for data modelling. It can be easily generalized to the nonho-
mogeneous case, by permitting the marginal intensities to be a function of a
vector of time-varying predictors x(t) and using a logarithmic link to guaran-
tee that the intensities are positive, λ(t|x(t)) = exp(β′x(t)). The predictors
also help to model the dependence induced by the systematic part of the three
intensities and consequently, in the nonhomogeneous case, the assumption of
independence between the marginal processes becomes conditional indepen-
dence given the predictor values.

2.2 Estimating the model

The estimation of a nonhomogeneous CPSP (NHCPSP) reduces to the estima-
tion of the three independent marginal NHPPs, which can be carried out by
maximum likelihood. The loglikelihood of a NHPP, see Coles (2001), is given
by

LL(t1, . . . , tn;β) = −
∫ T

0

λ(t;β)dt+

n∑
i=1

log λ(t1, . . . , tn;β),

where ti are the observed occurrence times, T the length of the observed pe-
riod and λ(t;β) = exp(β′x(t)) the intensity given the predictors. The integral∫ T

0
λ(t;β)dt is easily calculated since, given the usual information available,

the predictors are considered constant between times t and t + 1. Covariate
selection is based on likelihood ratio tests with a significance level α = 0.05.
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Fig. 1 Decomposition of the CPSP with component processes N1 and N2 into the three
independent marginal PPs, N(1), N(2) and N(12).

The AIC criterion, as the likelihood function, can be used for the predictor
selection but none of them is useful for comparing models with a different re-
sponse, such as the three marginal processes of a CPSP, or models for different
locations. As a performance measure, we suggest the square correlation coeffi-

cient between the empirical and the cumulative fitted intensities
∫ l2
l1
λ̂(t;β)dt,

calculated in periods of adequate length. This measure is analogous to the R2

coefficient in multiple regression.

2.3 Validation analysis

The assumptions to be checked are the NHPP behavior of the three marginal
processes and their mutual independence. The validation of the marginal pro-
cesses, including an influence analysis to study the robustness of the model, is
described in the next section. The independence assumption is checked using
the test by Abaurrea et al (2013).

2.3.1 Checking the Poisson character of the marginal processes

The usual approach to check a univariate NHPP with intensity λ(t) is to

test if the process resulting from the time transformation t∗ =
∫ t

0
λ(u)du is a

unit rate homogeneous Poisson process (HPP). Then, the validation analysis
is standard and it is based on the study of the uncorrelation (using for ex-
ample the Pearson’s test) and the exponentiality of the inter-event distances
d∗i = t∗i − t∗i−1 or, equivalently, the uniform character of exp(−d∗i ), using the
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Kolmogorov-Smirnov (KS) test. An example of the application of these vali-
dation techniques can be found in Abaurrea et al (2007).

A complementary approach to validate a NHPP, N , is the analysis of raw
residuals, see Baddeley et al (2005), defined as,

r(t1, t2) = R(t2)−R(t1) = N(t2)−N(t1)−
∫ t2

t1

λ̂(u)du

where R(t) = N(t)−
∫ t

0
λ̂(u)du. These residuals are useful to check the inten-

sity function since, under the model assumptions, E[r(t1, t2)] ≈ 0. There are
different types of raw residuals: scaled (such as the Pearson residuals), based
on disjoint or overlapping intervals, etc. Residuals plots versus time are useful,
but lurking plots, see Baddeley et al (2005), are more adequate to analyse
the relationship with predictors which are non monotonous functions of time.
The reason is that raw residuals are not linked to a point but to a time in-
terval where the predictor may not be constant or monotonous. Approximate
confidence envelopes can be calculated in both types of plots.

2.3.2 Identifying influential observations

In order to identify if one observation has an excessive influence on the fitted
model, an influence plot based on the ratio likelihood test is suggested. An
indicator variable equal to 1 for the observation analysed is defined. Then, a
model including the interactions between this variable and the predictors of
interest is fitted. A ratio likelihood test, which compares this model with the
original one, is used to check if the effect on the response of the considered
predictor values of this observation and the rest of the sample are significantly
different. The p-values obtained for each observation are plotted, together with
the 0.1 and the 0.05 values as a reference. It must be taken into account that
multiple tests are being performed, and even if the null hypothesis is true, it
must be expected that the test will reject H0 in 5% of the cases. This tool
allows us to analyse the influence of an observation on a particular predictor,
on all the predictors in the model, or on a group of them. In the application
in Section 3, for example, the effect on all the temperature predictors in the
model is analysed. This approach can also be applied to analyse not one, but
a set of observations; in the application, the influence of all the observations
in each year is analysed jointly.

As a complementary tool, a β influence plot based on a leave-one-out cross-
validation procedure is suggested. The model is fitted omitting each time one
observation from the original sample, and the coefficients of the kth-predictor
resulting from each fit are plotted. If observation i is influential, the coefficient

β̂
(i)
k , fitted without observation i, will be very different from the other coeffi-

cients β̂
(j)
k with j = 1, . . . i− 1, i+ 1, . . . , n. It is noteworthy that the influence

graph and the β influence plots are not equivalent: the former allows the effect
of one, or more predictors, to be different for the observation under study,
while in the latter the effect of the observation is eliminated from the whole
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Fig. 2 Time and seasonal evolution of the frequency of summer extreme heat days

model. In addition, the likelihood test analyses the global effect on the model,
while in the β influence plot the effect on each β̂k is analysed separately. As
the previous tool, this plot can be applied omitting a set of observations each
time, instead of one.

3 Modeling Barcelona extreme heat events

3.1 Describing the data

The daily maximum and minimum temperature series of Barcelona for the
period [1951, 2005], Tx and Tn herein, are used for illustration. Since in this
region extreme heat events occur just in summer, only the observations from
May to September (MJJAS) are considered. The exploratory analysis of tem-
perature extreme behavior is applied to the values exceeding the 95th percentile
of the daily data from June to August, in the reference period 1971-2000. These
percentiles are 31.8oC for Tx and 22oC for Tn.
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non-isolated % Tx Tn

Period MJJAS Jun. Jul. Aug. MJJAS Jun. Jul. Aug.

[1951, 1975] 75% 86% 65% 86% 46% 50% 49% 42%

[1976, 1994] 56% 86% 51% 56% 59% 50% 55% 65%

[1995, 2005] 86% 89% 85% 86% 80% 76% 71% 89%

Table 1 Percentage of non-isolated extremes in Tx and Tn for summer and for each month.

Time and seasonal evolution of the number of extreme heat days in Tx and
Tn. The monthly frequency of extreme days for June, July and August, and
the corresponding lowess with a 20% window are plotted in Figure 2 (top). The
lowess (with 0 iterations and a 40% window) separated for each month (June,
July, August and September) are displayed at the bottom plots; May is not
shown since no extreme event was observed. The time evolution in the different
months is not parallel. The most remarkable feature of the Tx evolution is the
strong increase observed in August from 1980 onwards. June shows an increase
from about 1990 in both Tx and Tn.

Tail dependence in Tx and Tn. A coefficient for summarizing the extremal
dependence between two variables is defined in terms of their transformed
uniform marginals U and V

χ = lim
u→1

χ(u)

with χ(u) = P (U > u|V > u), see Coles et al (1999). Barcelona shows a strong
tail dependence between Tx and Tn since χ̂(0.95) = 0.56 and χ̂ = 0.4, while
under independence they should be 0.05 and 0, respectively.

In order to explore the simultaneity of Tx and Tn hot observations, the
concept of non-isolated extremes is defined: a non-isolated extreme is an ex-
treme of Tx (Tn) such that at least one of the observations of Tn (Tx) around
it, is also extreme. Table 1 shows the percentage of non-isolated extremes with
respect to the total number of extreme observations, for the whole summer
and for each month, during three consecutive time intervals. The simultaneity
rate is high but the complementary percentage is not negligible. There is an
increase of the occurrence of non-isolated extremes in the period [1995, 2005],
which is greater in Tn.

To sum up, the exploratory analysis shows a time evolution seasonally het-
erogeneous, and a time-varying dependence between the occurrence of both
type of extremes. This result confirms that a bivariate model, such as the
NHCPSP, is required for describing the occurrence and the dependence be-
tween the Tx and Tn extremes.
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3.2 Definition of the extreme events

An extreme heat event (EHE) only in Tx is a run of consecutive days where
Tx exceeds Ux but Tn does not exceed Un, with Ux and Un their respective
extreme thresholds. An EHE only in Tn is defined analogously and a simulta-
neous EHE is a run where both Tx and Tn exceed their extreme thresholds.
Ux and Un are the 95th percentiles used in the exploratory analysis. Tools for
selecting an adequate threshold can be found in Coles (2001) and in Abaurrea
et al (2007).

As mentioned before, the occurrence of the extreme events can be modelled
by a point process, but it is necessary to assign an occurrence point to each
event. In only Tx and Tn events, the occurrence point is located at the maxi-
mum temperature time, and in the simultaneous events at the time where the
sum of both temperatures is maximum. In the Barcelona temperature series,
there are 97 EHEs only in Tx, 114 only in Tn and 82 simultaneous EHEs.

3.3 Predictors

The fitted model will be used to obtain projections of the occurrence of EHEs
in climate change scenarios, see Section 4.3, so we need predictors whose future
21st century values can be obtained. The temperature projections from general
circulation models, after being rescaled to fit the local characteristics, are
reliable at an aggregated time scale but not at a daily one, see Wang et al
(2012). For this reason, only aggregated temperature signals are considered as
potential predictors.

• Seasonal terms. They are defined as the part of the annual harmonic
signals corresponding to the five summer months, that is, cos(2kπit) and
sin(2kπit) with it =121/365,..., 273/365, the time index from the 1st of
May to the 30th of September and k = 1, 2, ...

• Temperature terms. A clear influential factor on EHE occurrence is the
current temperature level. The moving average of Tx and Tn in 15 or
31 day intervals around t, Txm15, Tnm15, Txm31 and Tnm31, are used to
define short term temperature predictors. The decadal temperature trend is
another variable to be considered, but this type of predictors was discarded
since the model could not be used to project due to extrapolation problems,
see Section 4.2.

• Interaction terms. Interaction terms between the harmonics and the
temperature predictors are considered to allow different temperature effects
over the summer.

3.4 Fitting process

The result of the initial predictor selection process for N(1) is,

log(λ̂(1)(t)) = −21.4− 2.0 cos(2πit)− 0.34 sin(2πit) + 0.07Txm15 − 0.02Tnm31.
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Fig. 3 Plots of the influence analysis of the first fitted model for N(1), Barcelona

The residuals of this model pass the validation analysis, with a Pearson auto-
correlation p-value of 0.83 and a KS p-value of 0.17. An influence analysis is
performed for the observations in each year. The influence graph, the first plot
in Figure 3, shows that the year 2003 has a significantly different temperature
effect with a p-value lower than 0.001. This yields a high residual and a high
influence on the fitted coefficients, as it shows the β influence plots of the tem-
perature predictors, Figure 3 (bottom). Also the year 1981 has an important
influence on the fitted coefficients.

To get a more robust model, a new predictor selection process, adding
the quadratic terms of the temperature variables as possible predictors, was
carried out. It was observed empirically that these terms help to smooth the
influence of the observations. The estimated coefficients of the intercept and
the significant predictors are shown in the first row of Table 2. Both Txm15

terms are significant and the p-value of Tnm31 is 0.07; although this predictor
is not significant at a 0.05 level, it is not removed since the results of the
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Fig. 4 Influence plots of the final model for N(1), Barcelona

Marginal processes β̂0 cos(2πit) sin(2πit) Txm15 Txm31 Tnm15 Tnm31

N(1) -138.6 1.2 0.69 0.86 -0.001

(quadratic terms) -0.02

N(2) -68.0 -0.48 0.55 0.63 -0.03

(quadratic terms) -0.001

N(12) -23.0 -0.26 -0.02 0.03 0.10 -0.06

Table 2 Fitted models for the three marginal processes in Barcelona

validation analysis are better, see the first row in Table 3. This model is more
robust, as the influence analysis shows, see Figure 4. The lowest p-value in the
55 influence tests is 0.065, for the year 2001. The rest of the validation analysis
is satisfactory, as shows the first row in Table 3 and the plot of the Pearson
residuals versus time in Figure 5.
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Fig. 5 Pearson residuals from the final model for N(1), Barcelona
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Fig. 6 Influence plots of the final models for N(2) and N(12), Barcelona

The final models for N(2) and N(12) resulting from similar modelling pro-
cesses are shown in Table 2. The first harmonic is significant in all the models;
Txm15 is required in N(1) and N(12) (the two processes defined from Tx), while
both Tnm15 and Tnm31 are included in the processes defined from Tn, N(2)

and N(12). These final models satisfy the validation analysis, see Figure 6 and
Table 3 where R2 and the p-values of the Pearson correlation test and the KS
test for checking the uniform distribution are summarized. The lowest p-values
of the influence test are 0.06 (year 1996) in N(2) and 0.05 and 0.06 (years 1956
and 1994) in N(12).

The empirical and the cumulative fitted rates
∫ t2
t1
λ̂(u)du/(t2 − t1), calcu-

lated in moving 5-month long intervals, are plotted in Figure 7 for the three
marginal processes. The observed evolution is satisfactorily reproduced by the
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Process R2 KS pv Pearson pv

N(1) 0.75 0.39 0.28

N(2) 0.46 0.40 0.97

N(12) 0.73 0.60 0.62

Table 3 Summary of the goodness of fit and validation analysis for the marginal processes,
Barcelona
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Fig. 7 Empirical and fitted intensities of the NHCPSP marginal processes, Barcelona.

fitted intensity, and a clear increase of the occurrence rate from about the
middle 80’s is observed in N(2) and N(12), and a bit earlier in N(1). This in-
crease becomes steeper from 2000 onwards. The R2 measures are around 0.75
for N(1) and N(12) and 0.46 for N(2).

The assumption of independence of the marginal processes is checked using
the test by Abaurrea et al (2013) with n = 1000 simulations. The p-value is
0.936 and independence cannot be rejected.
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λ̄(1) λ̄(2) λ̄(12) λ̄1 λ̄2 λ̄(12)/λ̄

[1951, 1955] 0.004 0.011 0.005 0.009 0.016 0.249

[1981, 1985] 0.022 0.009 0.009 0.031 0.018 0.225

[2001, 2005] 0.029 0.029 0.081 0.110 0.110 0.582

Table 4 Mean fitted intensities in three 5-year periods.

Interpretation of the fitted models. The mean fitted intensities of the three
marginal and the two component processes are calculated for three 5-year long
periods located at the beginning, in the middle and at the end of the record,
see Table 4. The occurrence rate is increasing in all the marginal processes,
and N(12) shows, in relative terms, the highest increase. Its proportion with
respect to the total intensity λ̄ = λ̄(1) + λ̄(2) + λ̄(12) is summarized in the last
column, and it has doubled in the last period. This is a relevant result, since
the combination of extreme hot days and nights is more harmful for human
health and for energy demand.

4 Projection of the occurrence of EHEs in a climate change
scenario

General Circulation Models (GCMs) are the best tool to reproduce atmo-
spheric variables at a monthly or seasonal scale over broad areas, see IPCC
(2007) and Jeong et al (2012). However, GCMs cannot be directly applied to
obtain variables at a daily or local scale, as it is often necessary for climate
change impact studies. The interest of projections of extreme events at these
scales is underlined by Wang et al (2012) and Casanueva et al (2013).

The model developed in the previous sections can be used as a downscaling
tool for obtaining daily scale projections from wider time scale predictors.
More precisely, in this section the fitted model is used to obtain medium-
term projections for the EHE evolution in a climate change scenario, using
predictors based on the temperature GCM trajectories, properly downscaled
to fit the local characteristics.

4.1 GCM data

Initially, seven GCM daily trajectories were available from the WCRP CMIP3
Multi-Model Data webpage1 and the ENSEMBLES distribution portal at the
Max Planck Institute for Meteorology2. Four of them (CGCM3.1, MIROC3.2,
ECHAM5 and HadGEM) are among the best five in reproducing the sea level
pressure patterns in the North Atlantic-Europe region, from 23 GCMs of IPCC

1 https://esg.llnl.gov:8443/home/publicHomePage.do
2 http://www.mad.zmaw.de/projects-at-md/ensembles/
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AR4, see van Ulden and van Oldenborgh (2006). According to Errasti et al
(2011), three of them (MIROC3.2, ECHAM5 and HadGEM) are among the
best five, from 24, in reproducing the seasonal cycle and the variability of
the sea level pressure and the surface air temperature over the Iberian Penin-
sula. We use for illustration the period 2031-60 and the scenario A1B, which
describes a future world of rapid economic growth, a global population that
peaks in the mid-century and more efficient technologies.

To project the temperature in a small area, the GCM Tx and Tn trajec-
tories must be downscaled to fit the local characteristics of the climate. We
opted for the following bias correction approach,

ysca(t) =
yGCM (t)− ŷGCM,20c3M (t)

ŝGCM,20c3M (t)
ŝobs(t) + ŷobs(t)

where yGCM (t) is the daily GCM trajectory to be scaled; ŷ.(t) is the fitted
value in day t from a regression model with the daily temperature as response
and the annual harmonic terms as predictors; ŝ.(t) is the squared root of the
fitted value for day t from a regression model with response the square of the
residuals obtained in the previous regression and the annual harmonic terms as
predictors. The subscripts obs and GCM,20c3M indicate if the regression models
have been fitted to the observed data in 1971-2000, or to the GCM trajectories
for the 20c3M scenario. More details can be found in Abaurrea et al (2014).

A future GCM trajectory downscaled with the previous procedure is con-
sidered reliable, if the downscaled GCM trajectory for the 20c3M scenario
reproduces satisfactorily the global distribution of the observed temperatures,
according to a KS test. From the seven trajectories initially considered, only
E5r1, E5r3 and E5r4, the three trajectories from ECHAM5, and the one from
CGCM3 passed that checking analysis.

4.2 Extrapolation analysis

Statistical downscaling models require that the relationship between predictor
and predictand is unchanged between the present and the future climate, see
for example Fowler et al (2007) and Schmith (2008). Given that climate change
scenarios show a general global warming trend and that the range of current
and future values of some temperature-related variables is quite different, that
assumption cannot be guaranteed even for medium-term projections. Sharif
et al (2013) and Wang and Chen (2013) note that regression-type models
can account for variability to an acceptable level but frequent extrapolation
beyond the historical conditions may be unreliable. Hence, in order to get
reliable results, the fitted models should not be used under severe extrapolation
conditions.

We suggest different approaches to avoid this extrapolation problem. The
first one is to eliminate from the set of possible predictors those with future
values far outside the range used to fit the model. The second is to check each
day of the trajectory in order to eliminate from the projection the days under
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Fig. 8 Boxplots of short and long term temperature predictors (in Celsius degree tenths)
using observed values (white boxplots) and scaled values from E5r1-A1B (coloured boxplots)

severe extrapolation. Finally, to reduce the effect of the observations which
are very far from the center of the distribution, robust measures such as the
trimmed mean should be used to summarize and to obtain conclusions, see
Section 4.3.

Predictors with future values far outside its range in the fitting
period. For illustrating this problem, the boxplots of some temperature pre-
dictors calculated with the downscaled trajectory E5r1 for the period 2031-60
and the observed series are shown in Figure 8. The high increase in the long
term temperature predictors, TTx and TTn (defined as the lowess with a 30%
window of Tx and Tn) would lead to extrapolation problems in most of the
values and, consequently, they were eliminated from the set of potential pre-
dictors. As a general rule, the predictors whose future range have a low or no
intersection with the observed one should not be included in the model. In this
case, the variables with longer aggregation time periods show less variability,
and the percentage of values leading to extrapolation is greater.
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Trajectory E5r1 E5r3 E5r4 CGCM3
2.96 2.24 1.39 30.22

Table 5 Percentage of days under extrapolation in the downscaled trajectories, scenario
A1B 2031-60.

Checking extrapolation conditions of the trajectories. A day of
a trajectory should be projected only if its predictor values are not under
extrapolation, so a preliminary analysis to check it must be carried out.

We apply the following procedure to check both marginal and multivariate
extrapolation:

Marginal checking. The day t is not under extrapolation and is projected
if its values in all the predictors are lower than their corresponding maxima
in the fitting period.

Multivariate checking. The day t is projected if its Mahalanobis distance
(with respect to the observed mean vector and covariance matrix) is lower
than the maximum of the Mahalanobis distances of the observed values or,
alternatively, if all the predictor values are lower than their 90th percentiles in
the observed period.

The left top plot in Figure 9 shows the bivariate distribution of the two pre-
dictors in the model for N(1), Txm15 and Tnm31, estimated from the observed
data with a Gaussian density kernel based on 50 points. The points of the
E5r1-A1B trajectory under extrapolation, according to the previous criteria,
are plotted in the same graph. The other plots in Figure 9 show the marginal
densities estimated by a kernel, the marginal values of the points under extrap-
olation, and the observed maximum and 90th percentile (the reference limits
of the extrapolation analysis). The election of these limits is heuristic and the
plots help us to calibrate them, checking the location of the points eliminated
due to extrapolation with respect to the observed distribution of the predictor.

The percentage of days under extrapolation in 2031-60 for the four down-
scaled trajectories is summarized in Table 5. If the percentage of days not
projected due to extrapolation in a trajectory is high, the whole trajectory is
eliminated from the study. This is the case of the CGCM3 trajectory, with
more than 50% of the observations under extrapolation in August.

4.3 Projections for the period 2031-60

To obtain the projected intensity of the EHE occurrence in the period 2031-60,
the downscaled GCM values of the predictors in that period are used as in-
put of the model. Figure 10 shows the lowess of the three marginal intensities
obtained from the models fitted to the observed data and to the three down-
scaled ECHAM5 trajectories. The characterization of the future distribution
of the EHE occurrence is usually more interesting than the daily projections.
To describe the future seasonal pattern, the quantiles of the intensities for
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Fig. 9 Bivariate distribution of the two predictors in the model for N(1) estimated from
the observed data. The points are the E5r1-A1B observations under extrapolation. Right
top and bottom plots display the marginal distributions.

each day of the summer are estimated using quantile regression, see Koenker
(2005). The response of these models is the fitted intensity and the predictors
are the two first harmonics, which guarantee an adequate fit of the seasonal
behaviour.

Some plots characterizing the future distribution of only Tx EHEs, based
on the E5r1 trajectory, are shown in Figure 11. The estimated 25th, 50th

and 75th percentiles, q25, q50 and q75, of the intensities fitted to the observed
data (herein denoted by simplicity observed percentiles) and to the downscaled
trajectory (projected percentiles) are shown in the left plot. The percentile 90
(q90) is not calculated for the E5r1 trajectory due to the extrapolation level.
The plot shows that the projected q25 is higher than the observed q50 in
July and it almost reaches the observed q75 in the middle of August. All the
projected q75 are higher than the observed q90 of the same Julian day. The
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Fig. 10 Lowess of the fitted intensities for the three marginal processes using the observed
data (1954-2005) and the three ECHAM5 downscaled trajectories, scenario A1B 2031-60.

right plot displays the estimated q50 of the intensities fitted to the observed
data and to the projected values for the intervals, 2031-40, 2041-50 and 2051-
60; a high increase is forecast from 2041 onwards.

To describe the behaviour of the projections based on the ECHAM5 trajec-
tories, Table 6 summarizes the monthly 25% trimmed means of the intensities
fitted to the observed data and to the 2031-60 trajectories under scenario A1B.
The highest mean of the observed intensities is 0.023 and corresponds to N(2)

in July. The means of the projected intensities of the three processes in July
and August attain twice to four times this value. To make the comparisons
easier, the projected/observed mean ratios are shown in brackets (except in
May where the observed means are nearly 0). For each process and month,
the ratios of the three GCM trajectories do not show relevant differences. The
highest differences are found in June and September in N(1), due to the low
observed values. Projected values in June and September are getting closer to
the current means in July and August, while projected values for those months
are between 2 and 9 times the observed ones. The highest ratios in July and
August are found in N(12), and the increase in this process is so high that, al-
though its observed means are the lowest of the three processes, its projected
means are higher than those projected for N(2) and than most of the projected
ones for N(1). In June and September the highest increase ratio is forecast in
N(1) but, as in the observed case, the highest mean of the projected intensities
corresponds to N(2).
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Fig. 11 Estimated percentiles of the intensities fitted to the observed data and to the E5r1
downscaled trajectory (left plot). Estimated q50 of the intensities fitted to the observed data
and to three different time intervals of the projected period (right plot).

May June July August September

λ̂(1) E5r1 0.0000 0.0079 (79) 0.0703 (5) 0.0739 (6) 0.0019 (19)
E5r3 0.0000 0.0045 (45) 0.0779 (5) 0.0669 (6) 0.0016 (16)
E5r4 0.0000 0.0056 (56) 0.0960 (6) 0.0523 (4) 0.0013 (13)
Observed 0.0000 0.0001 0.0155 0.0119 0.0001

λ̂(2) E5r1 0.0000 0.0108 (18) 0.0525 (2) 0.0432 (2) 0.0089 (8)
E5r3 0.0000 0.0096 (16) 0.0548 (2) 0.0448 (2) 0.0107 (10)
E5r4 0.0000 0.0112 (19) 0.0658 (3) 0.0425 (2) 0.0060 (5)
Observed 0.0000 0.0006 0.0234 0.0187 0.0011

λ̂(12) E5r1 0.0002 0.0038 (8) 0.0704 (7) 0.0772 (8) 0.0037 (4)
E5r3 0.0001 0.0033 (7) 0.0557 (6) 0.0872 (9) 0.0042 (5)
E5r4 0.0001 0.0035 (7) 0.0827 (8) 0.0426 (5) 0.0029 (3)
Observed 0.0000 0.0005 0.0099 0.0093 0.0009

Table 6 Monthly 25% trimmed means of the intensities fitted to the observed data
and to the ECHAM5 downscaled trajectories under scenario A1B; in brackets, the pro-
jected/observed mean ratios.

Concerning the seasonal pattern, although the differences between months
diminish, they do not disappear: the June/July ratio for the observed means
is around 1/100, 1/30 and 1/20, depending on the marginal process, while for
the projected values it varies between 1/18 and 1/5. A similar behaviour is
shown by the September/August ratio.

Since the intensity of the first component process is λ1 = λ(1) + λ(12),
the mean of the projected intensities for the occurrence of Tx EHEs in July
and August is between 3 and 5 times the observed mean. Analogously, the
projected intensity for the occurrence of Tn EHEs is between 3 and 4 times
the mean of the observed λ2.
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5 Conclusions

Occurrence model of extreme heat events. A bivariate process, the non-
homogeneous common Poisson shock process, is successfully applied to model
the occurrence of EHEs in daily maximum and minimum temperatures, taking
into account their mutual dependence. The NHCPSP can be readily applied
to statistical modelling since it can be decomposed into three independent
NHPPs: the process of the events only in Tx, N(1), the events only in Tn,
N(2), and the simultaneous events, N(12). The model allows us to characterize
the time evolution of the EHE occurrence and its relationship with different
predictors. The dependence structure between the components is described via
the simultaneous event process N(12), and also by conditioning the marginal
intensities on adequate covariates.

The modelling process of the Barcelona temperature series is thoroughly
described. In this case, only moving average temperatures and harmonic terms
are used as predictors but, depending on the use of the model, other types of
variables such as time trends or atmospheric variables could be considered. The
application illustrates the importance of carrying out an exhaustive validation
of the model, for which the necessary tools are suggested. In particular, two
influence plots, one based on the likelihood ratio test and the other on a leave-
one-out approach, are proposed.

Projections under climate change scenarios. The suggested model
can be used to obtain medium-term regional projections of the occurrence
of EHEs in climate change scenarios. It works as a downscaling tool which
provides projections at a daily scale, using wider time scale temperature tra-
jectories from the GCMs. This is important since climate projections at a daily
and local scale are often essential for climate change impact studies.

As in all regression-type models, it is necessary to check that projections
are not made under extrapolation conditions. Different solutions to avoid this
problem are considered: the elimination of predictors which suffer an important
range change under climate change scenarios, a marginal and multivariate
extrapolation analysis of the GCM trajectories, and the calculation of robust
measures, such as trimmed means, to summarize the results.

Barcelona results. The fitted model for Barcelona reveals an increase
of the rate of the EHE occurrence from 1980 onwards, which is higher from
the late 90’s. There is evidence of an important increase of the intensity of
the simultaneous EHEs, whose ratio with respect to the total intensity has
doubled in the 2001-2005 period.

As regards the future behaviour under the A1B scenario, even though
the most extreme temperature GCM trajectories are not projected due to
extrapolation and conservative approaches have been applied, we obtain a
clear increase of the mean intensity of the three marginal processes in 2031-
60. The fastest increase is found in the intensity of the simultaneous events.
Concerning the seasonal pattern, the projected values for June and September
are getting closer to the current values for July and August, and the projected
values for these months are between 2 and 9 times the observed ones.
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