
Trabajo Fin de Grado
Grado en Ingeniería Informática

Desarrollo de un sistema para la
población de bases de conocimiento en la

Web de datos
Development of a system to populate Knowledge Bases on

the Web of Data

Autor
Ismael Rodríguez Hernández

Directores
Raquel Trillo Lado

Roberto Yus Peirote

Universidad de Zaragoza
Escuela de Ingeniería y Arquitectura

Junio 2016

Agradecimientos
En primer lugar, me gustaría dar las gracias a los directores de mi proyecto, Raquel
y Roberto, por su completa dedicación y apoyo, contestando siempre a los cientos
de correos que les he enviado e incluso realizando videoconferencia con nueve
horas de diferencia horaria. Me gustaría reconocer el esfuerzo desinteresado que
han hecho manteniéndome informado en todo momento de becas, concursos y
oportunidades, permitiéndome así el haber participado en la elaboración de dos
artículos de investigación.

También quiero dar las gracias a mis compañeros y amigos de clase, especial-
mente a David, Luis, Raúl y Sergio, con los que he compartido los momentos más
duros de la carrera, pero también los mejores. Me han hecho darme cuenta de lo
importante que es el trabajo en grupo; incluso en los momentos más estresantes
siempre estaban dispuestos a ayudarme.

Quiero también agradecer a los organizadores y participantes de los eventos
“Editatón por la visibilidad de las mujeres de Aragón” y “Wikinformática 2016”
por usar mi prototipo, proporcionándome así mucha información útil.

Por último, y no por ello menos importante, quisiera dar las gracias a mis padres
y mi hermano, a mi novia Marta y a mis amigos, por su apoyo incondicional, su
paciencia cuando estaba más agobiado (casi cada dia) y por darme ánimos cada
dia desde que empecé la carrera. Sin ellos, no habría llegado hasta aquí; es por
eso por lo que quiero dedicarles todo el esfuerzo depositado en este proyecto.

¡Muchas gracias!

I

Resumen
Durante las últimas décadas, el uso de la World Wide Web ha estado creciendo de
forma exponencial, en gran parte gracias a la capacidad de los usuarios de aportar
contenidos. Esta expansión ha convertido a la Web en una gran fuente de datos
heterogénea. Sin embargo, la Web estaba orientada a las personas y no al procesado
automático de la información por parte de agentes software. Para facilitar esto,
han surgido diferentes iniciativas, metodologías y tecnologías agrupadas bajo las
denominaciones de Web Semántica (Semantic Web), y Web de datos enlazados
(Web of Linked Data). Sus pilares fundamentales son las ontologías, definidas
como especificaciones explícitas formales de acuerdo a una conceptualización, y
las bases de conocimiento (Knowledge Bases), repositorios con datos modelados
según una ontología. Muchas de estas bases de conocimiento son pobladas con
datos de forma manual, mientras que otras usan como fuente páginas web de las
que se extrae la información mediante técnicas automáticas. Un ejemplo de esto
último es DBpedia, cuyos datos son obtenidos de los infoboxes, pequeñas cajas de
información estructurada que acompañan a cada artículo de Wikipedia.

Actualmente, uno de los grandes problemas de estas bases de conocimiento es
la gran cantidad de errores e inconsistencias en los datos, la falta de precisión
y la ausencia de enlaces o relaciones entre datos que deberían estar relacionados.
Estos problemas son, en parte, debidos al desconocimiento de los usuarios sobre los
procesos de inserción de datos. La falta de información sobre la estructura de las
bases de conocimiento provoca que no sepan qué pueden o deben introducir, ni en
qué forma deben hacerlo. Por otra parte, aunque existen técnicas automáticas de
inserción de datos, suelen tener un rendimiento más bajo que usuarios especialistas,
sobre todo si las fuentes usadas son de baja calidad.

Este proyecto plantea el análisis, diseño y desarrollo de un sistema que ayuda
a los usuarios a crear contenido para poblar bases de conocimiento. Dicho sis-
tema proporciona al usuario información sobre qué datos y metadatos pueden
introducirse y qué formato deben emplear, sugiriéndoles posibles valores para
diferentes campos, y ayudándoles a relacionar los nuevos datos con datos ya
existentes cuando sea posible. Para ello, el sistema hace uso tanto de técni-
cas estadísticas sobre datos ya introducidos, como de técnicas semánticas sobre
las posibles relaciones y restricciones definidas en la base de conocimiento con
la que se trabaja. Además, el sistema desarrollado está accesible como apli-
cación web (http://sid.cps.unizar.es/Infoboxer), es adaptable a distintas bases de
conocimiento y permite exportar el contenido creado en diferentes formatos, in-
cluyendo RDF e infobox de Wikipedia.

Por último señalar que el sistema ha sido probado en tres evaluaciones con
usuarios, en las que ha demostrado su efectividad y sencillez para crear contenido
de mayor calidad que sin su uso, y que se han escrito dos artículos de investigación
sobre este trabajo; uno de ellos aceptado para su exposición y publicación en las
XXI Jornadas de Ingeniería del Software y Bases de Datos (JISBD), y el otro en
proceso de revisión en la 15th International Semantic Web Conference (ISWC).

II

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Document structure . 3

2 Technological Overview 5
2.1 Context of the project . 5

2.1.1 Semantic Web . 5
2.1.2 Wikipedia . 8
2.1.3 Other Technologies . 9

2.2 State of the Art . 10
2.2.1 Tools to Create And Populate KBs 10
2.2.2 Tools to Create and Manage Infoboxes 11

3 Generation of Semantic Templates 13
3.1 Overview of the Approach . 13
3.2 Combining Statistical and Semantic Information 14
3.3 Identifying Relevant Attributes . 15
3.4 Identifying Types of Values . 16
3.5 Dealing with Multiple Categories 16
3.6 Ranking Attributes and Types of Values 17
3.7 Providing Significant Suggestions of Values 17

4 Prototype of the System 19
4.1 Architecture of the System . 19

4.1.1 Frontend . 20
4.1.2 Backend . 22

4.2 Experimental Evaluation . 25
4.2.1 Evaluating the Quality of the Created Content 25
4.2.2 Comparing the System with the Current Wikipedia Mechanism 26

5 Conclusions 29
5.1 General Conclusions . 29
5.2 Methodology . 30
5.3 Project Schedule . 30
5.4 Future Work . 31
5.5 Personal Assessment . 32

III

Bibliography 33

A Analysis and Design of the Prototype of the System 39
A.1 Analysis of the Prototype . 39
A.2 Design of the Prototype . 41

A.2.1 General Use Case . 41
A.2.2 Package Diagrams . 46
A.2.3 Sequence Diagrams and Descriptions of Operations 51
A.2.4 Deployment Diagram . 56

A.3 MySQL Data Model . 58

B System Set-up, Configuration and Technical Aspects 61
B.1 Running the Prototype . 61
B.2 Configuration Files . 67
B.3 Loading different KBs . 71

B.3.1 Knowledge Base Considerations 71
B.3.2 DBpedia . 72
B.3.3 GeoSpecies . 75
B.3.4 IIMB Test KB . 78
B.3.5 SwetoDBLP . 81

B.4 Exposed HTTP API . 84
B.5 SPARQL Queries . 88

C Evaluations 93
C.1 Comparisons Between Approaches 93
C.2 Editatón por la visibilidad de las mujeres de Aragón 97
C.3 Wikinformática 2016 . 99
C.4 Amazon Mechanical Turk Tests . 101

D User Manual 105
D.1 How to Access the System . 105
D.2 Login Page . 105
D.3 Main Page . 106
D.4 Template Page (Expert) . 108
D.5 Template Page (Basic) . 110

IV

List of Figures

2.1 Knowledge Bases connected on the Linked data Cloud. 8
2.2 Infobox example. 8
2.3 RightField process schema. 10
2.4 Screenshot: Protége. 11
2.5 Example of a Wikipedia infobox and code to generate it. 12

3.1 Main steps to generate a semantic template. 14

4.1 Technological system architecture. 20
4.2 Screenshot: prototype’s GUI for expert users. 21
4.3 Screenshot: prototype’s GUI for non-expert users. 22
4.4 Sequence diagram: information flow between Frontend and Backend. 23
4.5 Generation of templates with MongoDB and NodeJS. 24
4.6 Generation of templates with RDF HDT and Java. 25
4.7 Quality of infoboxes for scientist category created with the prototype. 27

5.1 Project hours . 30
5.2 Gantt diagram: Project planning. 31

A.1 Use case diagram: General use case. 41
A.2 Package diagram: Backend. 48
A.3 Package diagram: Frontend. 50
A.4 Sequence diagram: “Instance count” operation. 51
A.5 Sequence diagram: “Property list” operation. 52
A.6 Sequence diagram: “Range list” operation. 53
A.7 Sequence diagram: “Suggestion list” operation. 54
A.8 Sequence diagram: “Class list” operation. 54
A.9 Sequence diagram: “Data for instance” operation. 55
A.10 Deployment diagram: developed system. 57
A.11 Data Model of the users interactions database. 58
A.12 Data Model of the suggestions database. 59

B.1 Screenshot: SPARQL Endpoint process output. 63
B.2 Screenshot: RDF to HDT conversion process output. 64
B.3 Screenshot: web server process output. 66
B.4 Screenshot: prototype using DBpedia KB. 75
B.5 Screenshot: prototype using GeoSpecies KB. 78
B.6 Screenshot: prototype using IIMB KB. 80

V

B.7 Screenshot: prototype using SwetoDBLP KB. 83

C.1 Tester Disagreement (TD) and System Disagreement (SD) for the
Wikinformática edit-a-thon test. 99

D.1 Screenshot: login page of the prototype. 106
D.2 Screenshot: main page of the prototype. 107
D.3 Screenshot: config windows of the prototype. 108
D.4 Screenshot: template page (expert) of the prototype. 110
D.5 Screenshot: template page (basic) of the prototype. 111

VI

List of Tables

3.1 Semantic properties obtained for different categories. 15
3.2 Types of values for the “Actor” category and the “deathPlace” prop-

erty. 16

A.1 Requirements of the developed system. 40
A.3 Use case: Select categories. 42
A.5 Use case: Generate the template. 42
A.7 Use case: Fill properties. 43
A.9 Use case: Introduce a page name. 43
A.11 Use case: Search on Google. 44
A.13 Use case: Export to RDF. 44
A.15 Use case: Export to Wikipedia infobox. 45
A.17 Use case: Change language. 45
A.19 Use case: Change mode. 46

B.2 System requirements for running the prototype. 62
B.3 Classes and number of instances for DBpedia. 75
B.5 Properties for ”SoccerPlayer” class, with their ranges and uses. . . . 75
B.6 Classes and number of instances for Geospecies. 77
B.8 Properties for ”Species Concept” class, with their ranges and uses. . 78
B.9 Classes and number of instances for IIMB test KB. 80
B.11 Properties for ”Actor” class, with their ranges and uses. 80
B.12 Classes and number of instances for SwetoDBLP. 83
B.14 Properties for ”Proceedings” class, with their ranges and uses. . . . 83

C.1 Required time to create “SoccerPlayer” and “BasketballPlayer” tem-
plates. 94

C.2 Required time to create templates using RDF and HDT. 95
C.3 Required time of mono-category operations using HDT Endpoint. . 95
C.4 Required time of mono-category operations using RDF Endpoint. . 95
C.6 Required time of multi-category operations using HDT Endpoint. . 95
C.8 Required time of multi-category operations using RDF Endpoint. . 96
C.9 Disk space used with MongoDB, Fuseki RDF and HDT approaches. 97
C.11 Time, categories, properties and linked properties on every infobox

created in the first Wikipedia edit-a-thon. 98
C.12 Time, properties, and linked properties on every Scientist infobox

created on Wikinformática . 100

VII

C.13 Information about the infoboxes created on MTurk tests, using the
developed system. 101

C.14 Information about the infoboxes created on MTurk tests, using the
Wikipedia mechanism. 102

C.16 Information of the users that participated in the MTurk test. 102
C.18 Advantages of the developed system according to MTurk users. . . . 103
C.20 Disadvantages of the developed system according to MTurk users. . 103

VIII

Chapter 1

Introduction

Since its definition in 1989 by Tim Berners-Lee [3], the World Wide Web has been
constantly evolving. With the Web 1.0, users could only visualize content. Later,
Web 2.0 [23, 22] allowed them to interact with the contents and create theirs.
Nowadays, more than 3,366 million people1 use the Web. The enormous quantity
of heterogeneous information present on the Web that could be interesting not only
for people, but also for computers, motivated the proposal of the Semantic Web
in the early 2000s [28]. It was defined as an evolution of the Web where data is
semantically annotated to make it easily processable by computers. As annotating
all the Web is a difficult task, the Semantic Web is still far from being widely
adopted. However, some projects like Google’s Knowledge Graph2 or Siri3 already
show its possibilities. These tools are capable of exploiting Knowledge Bases and
making inferences about their contents to answer human questions.

Knowledge Bases (KBs) contain data that is modelled according to an ontology
("[...] an explicit specification of conceptualizations" [15]) and are populated (data
is inserted on them) from diverse sources; some of them manually, while others are
populated automatically or semi-automatically from existing websites. For exam-
ple, DBpedia4 is a KB that obtains its data from Wikipedia infoboxes5. Nowadays,
KB have many problems, such as errors in the information, inconsistencies (e.g.,
different users represent dates in a different format), inaccuracies (e.g. saying that
the birth place of someone is a country instead of a city or town) and unlinked
data (i.e, inserting new data that makes allusion to existing values or entities in
the KB without linking to them, without following one of the principles of Linked
Data [4]). One cause is the difficult process of manually populating a KB; the
user has to know the structure of the associated ontology to discern what data can
be introduced and its format. Another reason is that automatic techniques have
lower performance populating KBs than users, specially if the data sources are of
low quality.

Although there are some tools (such as Protègè [30] or Populous [19]) that try
1http://www.internetworldstats.com/stats.htm. All the URLs in this document have

been last accessed on June 2016.
2https://goo.gl/x72FVy
3http://www.apple.com/ios/siri/
4http://wiki.dbpedia.org/
5Tables present on Wikipedia articles that summarize their most important information.

1

http://www.internetworldstats.com/stats.htm
https://goo.gl/x72FVy
http://www.apple.com/ios/siri/
http://wiki.dbpedia.org/

to help users to create and insert data, none of them suggest what kind of data
can be introduced (if it is more appropriate a number, text, a date,...), how is data
represented (e.g., how to format dates or person names) or what values already
exist in the KB to be linked. Because of that, it is really difficult for people to
introduce data correctly, therefore lowering the quality of content of the KB.

This TFG6 is focused on the analysis and development of a system that helps
users to create data to populate KBs. With this system, users do not need to know
either the inner structure or the semantics of the KBs, as the system provides them
with dynamic templates according to their needs. Statistic and semantic methods
(such as inductive reasoning) are used to generate the templates, determining the
properties and values that the user should introduce, and linking values to existing
entities whenever possible. For that, a functional web prototype has been designed,
implemented and highly optimized.

1.1 Goals
The main goal of this TFG is to develop a system which allows any user to populate
a KB with high quality data: semantically correct, consistent, precise and linked
to other data when possible. Therefore, the TFG is divided into two main parts:

1. Analysis and design of the solution

• Research about ontologies, Linked Data, structure of KBs, and tech-
nologies to store them.
• Design the operations needed to identify relevant attributes, types of

values, and rank them according to its importance, using that informa-
tion to generate templates (referred to as semantic templates) that help
the user to create content for a KB.
• Extend the design for being capable of integrating values from multiple

categories.

2. Development of a prototype

• Develop a web server that obtains, analyses, processes and stores the
needed information using the designed operations.
• Develop a web user interface that allows users to generate data for

inserting it on a KB or Wikipedia infobox, using the operations and
information generated on the server.
• Test the created prototype with real users, thus checking if data gen-

erated is more accurate and linked than with other systems and if the
user experience is good.

6Trabajo Fin de Grado (Final Degree Project).

2

1.2 Document structure
The rest of the document is structured as follows. First, Chapter 2 gives an
overview of the technological context of the project, describing concepts, used
software and related works. In Chapter 3, the approach to generate semantic tem-
plates using statistical and semantic information is detailed. Chapter 4 describes
aspects of the developed prototype such as its architecture, interface, information
flow, and evolution. Then it shows the results of the performed evaluations used
to test the generated data quality and user satisfaction. Finally, in Chapter 5, the
conclusions and personal opinion are shown, as well as the project schedule and
lines of future work.

In addition, a series of appendices to extend the information of the main docu-
ment are included. Appendix A shows the process of analysis and design through
multiple diagrams. Appendix B contains instructions on how to set-up, configure
and use the system. It also describes some technical aspects such as the exposed
HTTP API and the SPARQL queries used. Appendix C shows the results of the
different performed tests. Finally, Appendix D contains a user manual of the web
application.

3

4

Chapter 2

Technological Overview

In this chapter, several concepts are described in order to illustrate the context
of the project, including the technologies used in its development. Then, some
related works are described, analysing the differences between their approaches
and the proposed one.

2.1 Context of the project
This section first gives an overview of concepts about Semantic Web, so the next
sections can be understood. Then, it is told what Wikipedia and an infobox are,
as some Knowledge Bases are populated from them. Finally, a brief description of
the different technologies and software used in the project is provided.

2.1.1 Semantic Web
The Semantic Web [28] or Web of Data is an extension of the World Wide Web
that provides a standardized way of expressing relationships among web pages and
their contents, thus allowing computers to process, understand and extract knowl-
edge from the hyperlinked information. This concept is supported by ontologies,
resource annotation with metadata and the use of rules and reasoners. In the
following subsections these terms will be explained.

Ontologies

An ontology is an “explicit specification of a conceptualization” according to Gru-
ber [15]. In other words, it is a shared vocabulary used to model a domain, that
explicitly defines the “types of concepts used and the constrains on their use” [26].
Ontologies are sets of assertions that define:

1. Classes, also called concepts, are collections of objects, and are identified by
a name (e.g., Person or Country).

2. Properties define what types of relations can occur between objects of cer-
tain classes. Two classes are related through one or more properties; in a
relationship, one of the classes is the Domain of the property, and the other

5

the Range. The Domain class restricts the set of individuals to which the
property can be applied, while the Range restricts the type of the value of
the property.

3. Instances are specific objects, and belong to at least one class. (e.g., Spain is
an instance of the class Country). Instances can be related to other instances
or values through the properties defined on their classes in the ontology. (e.g.
given the axiom between classes “Person birthPlace Place”, a possible rela-
tion between instances would be “Obama birthPlace Honolulu”, and given
the axiom “Person age Number”, the relation “Obama age 54” would be
possible, too).

Some authors consider that the instances are part of the ontology, while others
don’t. Among the former, most of them use ontology and Knowledge Base as
interchangeable synonyms. In this project, the ontology is considered to specify
only the classes and properties of a domain, while the instances and facts about
them are defined in Knowledge Bases, later explained.

Representation Languages. In order to create ontologies, three standard languages
that provide a reusable vocabulary have been developed, each one serving as a
base for the next one:

1. RDF (Resource Description Framework) [20], a language used for conceptual
modelling of information of web resources. The central element of RDF is
the statement. A statement is a triple (S,P,O) where:

• S is a URI that represents the subject of the statement.

• P is also a URI but it represents a binary relationship between S and
O (i.e., a property of the subject).

• O is either a URI or a literal denominated object that represents the
value of the property P for the subject S.

RDF triples can be stored in triplestores, and compressed using formats like
HDT1 which substantially reduce the dataset size.

2. RDFS (RDF Schema) [9], a semantic extension of RDF that was created
to reduce the lack of semantic expressiveness of RDF and to facilitate the
definition of vocabularies, as in RDF there is no way either to define classes
or to apply domain and range constraints to properties.

3. OWL, the Web Ontology Language [31], a vocabulary description language
built using RDF and RDFS that provides new terms for describing resources
in more detail, thus allowing computers to extract implicit conclusions and
relations of data.

1http://www.rdfhdt.org/

6

http://www.rdfhdt.org/

The ontologies, that contain the semantic restrictions and vocabulary, are usu-
ally represented using the OWL language, while the Knowledge Bases, that only
contain instances, are described with the RDF language.

Query Language. SPARQL [16] is a semantic query language used to retrieve and
manipulate data stored in RDF format in a SPARQL server (e.g., Jena Fuseki2,
which provides REST-style SPARQL updates and queries using the SPARQL pro-
tocol over HTTP). It was standardized by the RDF Data Access Working Group
(DAWG)3 of the World Wide Web Consortium, and is one of the key technologies
of the Semantic Web. A modified version of Fuseki that provides read-only queries
on HDT files instead of plain RDF is used in the project.

Annotations

To make the Semantic Web a reality, besides having the enormous amount of data
on the web available in a standard format, relationships between data have to be
available. Linked Data [4] is a collection of interrelated datasets that tries to reach
that goal. For that, it makes uses of annotations and standard technologies. An
annotation is additional information (metadata) associated to an existing piece
of data or resource, whose purpose is to provide a formal representation of it
understandable by computers. Linked Data uses RDF to relate and describe data,
and URIs are used to identify any kind of concept. There are a set of rules that
govern Linked Data:

1. Use URIs as names for every entity (e.g., http://dbpedia.org/resource/Spain).
2. Use HTTP URIs so that people can look up those names.
3. Include links to other URIs, so that they can discover more things.

Publishing content that follows these rules helps to the growth and adoption of
the Linked Data.

Knowledge Bases. A Knowledge Base (KB) is a set of data that describes the
instances of an ontology, facts modelled according to it, following its restrictions
and relations. KBs are centred in a specific domain, and can be seen as a node or
dataset of the Linked Data Cloud (see Figure 2.1).

DBpedia [5] is one of the most famous KBs and the central point of the Linked
Data Cloud. It pretends to be a general purpose KB with data extracted semi-
automatically from Wikipedia, but also being connected with well-known KBs like
GeoNames [32], Gutenberg Project4 or FOAF [7].

Semantic Reasoners

A Semantic Reasoner [35] is a software that makes logical deductions from a set of
axioms (i.e., if “YoungPerson“ is equivalent to “hasAge<30” and “Ismael hasAge

2https://jena.apache.org/documentation/serving_data/
3https://www.w3.org/2001/sw/DataAccess/homepage-20080115
4https://www.gutenberg.org/

7

https://jena.apache.org/documentation/serving_data/
https://www.w3.org/2001/sw/DataAccess/homepage-20080115
https://www.gutenberg.org/

Figure 2.1: Knowledge Bases connected on the Linked Data Cloud. Obtained from
http://goo.gl/ivqJsY on May 2016.

21”, then “Ismael is a YoungPerson”). Semantic reasoners based on Description
Logics (DL)5 usually perform tasks such as consistency checking, verification of
hierarchical relationships, classification of new terms, and instance retrieval.

2.1.2 Wikipedia
Since its creation in 2001, Wikipedia6, a free, collaborative, and digital encyclo-
pedia, has become the one of the most important sources of reliable information
on the Web. The English version of Wikipedia currently contains more than five
million English articles7 and there are almost 300 versions of Wikipedia in other
languages with different content.

Figure 2.2: Infobox example.

Wikipedia articles are often split into two
parts: a body of unstructured text with details
on the article’s subject and an optional semi–
structured infobox (Figure 2.2) that summarizes
the most important facts about the article’s sub-
ject. The addition of an infobox enhances an
article in several ways: 1) it summarizes im-
portant information in an easy-to-read format
and enable the comparison across different pages;
2) the structured format makes it easy to de-
velop tools to consume Wikipedia information;
and 3) it provides increasing integration with
Wikidata [29], avoiding replicated and non con-
sistent data among Wikipedia versions in different languages.

The number and quality of infoboxes have a great impact on the success of
projects that use them, such as Google’s Knowledge Graph and DBpedia. There-
fore, Wikipedia infoboxes are very important in this project, as they are an indirect
way of populating multiple KBs.

5Description Logics (DL) [2] is “a family of knowledge representation formalism that represent
knowledge of an application domain [...]” which provides a logical formalism for ontologies.

6http://wikipedia.org
7https://en.wikipedia.org/wiki/Wikipedia:Statistics

8

http://wikipedia.org
https://en.wikipedia.org/wiki/Wikipedia:Statistics

2.1.3 Other Technologies
The programming languages, querying languages, and libraries used in the devel-
opment of this project are briefly described in this section.

• Java [14] is a multi-platform, object-oriented, and general-purpose program-
ming language. It has been chosen for developing the web server (Backend)
because of the acquired experience with it and the great amount of semantic
technologies available for this language.

• HTML [17] and CSS [6] are the standard languages for web development.
HTML is a mark-up language used to describe the structure of a website,
and CSS is a style sheet language using for providing style. They have been
selected to develop the Frontend of the system because their wide adoption
and compatibility among web browsers.

• Javascript [10] is an object-oriented, weak typed language mostly used to
give dynamism to web pages. It has been chosen to develop the web interface
(Frontend) because the needed dynamism and the great amount of available
libraries.

• AngularJS8 is a Javascript framework used to create powerful single-page
applications. It has been chosen because of the previous experience with it
and the easiness it provides compared to Javascript without any framework.

• Spring Framework9 is a framework that eases the development of Java ap-
plications, providing services such as RESTful Web Services. It has been
chosen because it makes possible a fast and easy set-up and maintenance of
the project.

• Bootstrap10 is an open-source Frontend library whose goal is to free the de-
veloper of designing all the interface components.

• OWL API V3.4.4 [18] is a Java library to manage OWL ontologies that
gives developers a high level of abstraction. It is widely used and a lot of
documentation can be found online.

• HermiT v1.3.8.1 [25] is a Java reasoner that supports OWL. It became
the first DL reasoner that had the capacity of classifying large ontologies
efficiently.

• MySQL11 is the most popular12 open source relational database management
system (RDBMS). It is used as an auxiliar storage system to save analytics
and caché data of value suggestions. The query language SQL [8] (Structured

8https://angularjs.org/
9https://projects.spring.io/spring-framework/

10http://getbootstrap.com/
11https://www.mysql.com/
12http://db-engines.com/en/ranking

9

https://angularjs.org/
https://projects.spring.io/spring-framework/
http://getbootstrap.com/
https://www.mysql.com/
http://db-engines.com/en/ranking

Query Language) is used for querying, creating, updating and deleting data
stored in it.

• MongoDB13 is a document-oriented NoSQL database that claims to provide
flexibility and a big performance. It was used in the preliminary prototype
of the system developed.

2.2 State of the Art
Due to the growing use of ontologies and KBs, many research works have focused on
their creation and population either manually or with automatic techniques. In this
section, the most representative systems focused on the creation and population
of KBs and ontologies are presented. As Wikipedia infoboxes are the source of
some KBs, tools focused on the creation and management of infoboxes are also
commented.

2.2.1 Tools to Create And Populate KBs
Four relevant tools related to KBs and ontologies are now described:

• RightField [33] is a tool that “allows data collectors to generate Excel spread-
sheet templates embedded with Ontologies [...]” (see Figure 2.3). The main
goal of RightField is to control what data is inserted into an Excel spread-
sheet using manually selected semantic restrictions. In contrast, the main
goal of the system presented in this TFG is to automatically provide the users
with semantic and statistic information to create data for being inserted into
a KB.

Figure 2.3: RightField process schema.

• Populous [19] is a tool built on top of RightField that helps users to create
new ontologies and add terms to existing ones from repetitive data. It is
focused on engaging a wide community of scientist in the mass production
of ontological content. This tool can export the content to RDF and check
semantic constraints in a similar way to the presented system. However, in
Populous, the suggestions of the terms and values to be inserted are based
only on semantic information and not on statistic data considering the con-
text.

13https://www.mongodb.com/es

10

https://www.mongodb.com/es

• Protégé [30] is an “open source ontology editor and knowledge management
system”, used to create and populate ontologies (see Figure 2.4). It also
allows to infer knowledge and check the consistency of the loaded ontologies
by using a reasoner. Although it can populate ontologies and KBs, it is
very time-consuming as it does not provides suggestions at all, so possible
properties, values, and ranges have to be looked up manually.

Figure 2.4: Screenshot: Protége. Obtained from http://goo.gl/OP02qQ on June
2016.

• OntoPop [1] is a tool that (semi-)automatically inserts new instances to a
KB as defined by an ontology, using information from natural language doc-
uments. To do so, it maps linguistic extractions with concepts of the ontol-
ogy. Unlike the developed system, it requires no user interaction, but needs
non-ambiguous documents as a source. The presence of a person is usually
required to fix errors and inaccuracy in the instances created automatically.

Although these systems are related to KBs and ontologies, none of them is specifi-
cally designed to ease the manual process of creating content for KBs by non-expert
users.

2.2.2 Tools to Create and Manage Infoboxes
Infoboxes are useful for both humans and information systems as they are the
source of multiple KBs. So, in this section, current tools to manage infoboxes are
described:

1. Wikipedia manual editor is the most used tool to create infoboxes. First,
editors have to select an appropriate template by considering the categories
related to the article. Then, the template has to be filled with informa-
tion related to the article. Choosing the proper template can be a source
of misunderstandings, as several ones could be selected for an article, and
different editors could select different templates for the same type of articles.
Besides, templates can have a large number of attributes, multiple attribute
names (e.g., date of birth and birthdate) for the same purpose, among other
problems that make users difficult to create quality and consistent infoboxes.

11

Figure 2.5 shows an excerpt of the infobox in the Wikipedia article of Arnold
Schwarzenegger on the left and the code to generate it on the right.

2. Wikidata [29] is a collaborative KB that provides a common source of data
for Wikipedia, infoboxes, and other Wikimedia projects. Although Wikidata
rolled out a feature which suggests popular attributes for a given entity14, it
cannot generate templates for entities belonging to multiple categories, nor
does it suggest or semantically control the attribute value and their types.

3. Multiple research projects are also focused on developing automatic tech-
niques to enhance infoboxes. Wu and Weld [34] developed KOG, an au-
tonomous system that automatically builds an ontology using Wikipedia
infoboxes and WordNet to semantically represent the attribute value pairs
of each infobox. Sultana et al. [27] developed SVM classifiers to recom-
mend a infobox template type (Soccer Player, Actor) using features based
on article content, article category, and related entities. iPopulator [21] is
a tool that mines the Wikipedia article text to identify additional attribute
value pairs for an infobox. Fetahu et al. [13] presented techniques to suggest
news articles that could be used to complete Wikipedia entity articles and
infoboxes.

In conclusion, although multiple and interesting projects related to infoboxes
exist, none of them provides users with so much suggestions and recommendations
as the system proposed in this TFG.

{{Infobox officeholder
|name = Arnold Schwarzenegger
|image = Arnold Schwarzenegger February 2015.jpg
|caption = Schwarzenegger in 2015
|order = [[List of Governors of California|38th]]

[[Governor of California]]
|term_start = November 17, 2003
|term_end = January 3, 2011
|predecessor = [[Gray Davis]]
|successor = [[Jerry Brown]]

...
}

Figure 2.5: Example of a Wikipedia infobox and code to generate it.

14http://lists.wikimedia.org/pipermail/wikidata-l/2014-July/004148.html

12

http://lists.wikimedia.org/pipermail/wikidata-l/2014-July/004148.html

Chapter 3

Generation of Semantic
Templates

In this chapter, the proposed approach to generate semantic templates (informa-
tion about the relevant attributes, types of values, and values that can be in-
serted into a KB) using statistical and semantic information is described. First,
an overview of the approach is given. Then, it is justified why both semantic
and statistical information are used. Finally, the most important processes are
detailed.

3.1 Overview of the Approach
The main goal of the approach is to generate semantic templates that help users to
create instances for an existing KB. These semantic templates contain semantically
relevant attributes or properties (e.g., “birth place” for a person) whose expected
values are controlled semantically to prevent users from filling them with incorrect
information (e.g., the value for the “birth place” property should be a place). The
semantic templates use statistical information of an existing KB to rank properties
according to their popularity and provide samples of the expected values.

The semantic templates are generated from information extracted from the
considered KB and its associated ontology. Thus, to generate a semantic template,
a user has to select a set of categories (e.g., “Governor”, “Actor”, and “Body
Builder” in the case of “Arnold Schwarzenegger”), defined in the ontology. Then,
the system performs the following steps (see Figure 3.1):

1. Obtain instances in the KB with the same category. For example, if using
DBpedia and the selected category is “Actor”, it obtains people such as “Tom
Hanks” and “Sylvester Stallone”.

2. Identify interesting attributes or properties using both statistical information
from existing entities in the KB, and semantic information from the asso-
ciated ontology. For example, attributes such as “birth place” or “award”
would be retrieved for the previous example.

13

Figure 3.1: Main steps to generate a semantic template.

3. For the identified attributes or properties, obtain the expected value types
(ranges) using both statistic and semantic information. For example, for
the attribute “birth place”, some expected value types are “Country” and
“Settlement”.

4. Repeat the previous steps for each category selected by the user and combine
the obtained information. Attributes with the same name are merged, taking
into account their expected value types.

5. Rank the attributes and ranges according to their usage and create the se-
mantic template with this information. For example, properties such as
“name” and “birth place” are more popular than “death place” or “siblings”.

Finally, a graphical user interface is generated to show the template to users,
and suggestions are provided in real time when the user types values for an at-
tribute. After users fill the template the system can export the generated data
to RDF so it can be later imported into the desired KB. As some KBs, such as
DBpedia [5], are populated automatically from Wikipedia infoboxes, the system
can generate infobox code as well. In the following sections more details about
how the approach works are provided.

3.2 Combining Statistical and Semantic Infor-
mation

Statistical and semantic information is used to determine which information should
be included in the semantic template. Ideally, this information could be extracted
from the associated ontology; in particular from the parts of the ontology that
define which attributes or properties can be used with the selected classes or cate-
gories, their restrictions such as types of data for each attribute or property (their
ranges), etc. However, this can be problematic when the definitions of the domains

14

and ranges of the properties are not accurate. For example, DBpedia 2015-04 (the
main KB used while building the prototype) contains 2,863 properties; 356 of
them (12%) have no domain defined, 376 (13%) have no range, and 131 (5%) have
not either domain or range. Moreover, statistical information about the instances
of a category can be also inaccurate depending on the number of instances avail-
able. For example, none of the 235 instances of the category “Body Builder” in
the previous KB uses properties such as “spouse” or “known for”, which might be
relevant for a body builder infobox. Therefore, the best option is to use a com-
bination of statistical and semantic information to generate complete and precise
templates and accurate content.

3.3 Identifying Relevant Attributes

Interesting and relevant attributes are obtained by combining semantic and sta-
tistical properties for a given category selected by the user. A semantic reasoner
and the ontology associated with the KB are used to identify semantically rele-
vant attributes (also referred to as “semantic properties”). The goal is to obtain
properties where the given category is a domain. Additional relevant properties
are included by considering properties where each of the superclass of the given
category is a domain. Therefore, given a category ci, all the properties (d, r) : p
such that the category ci is subsumed by the domain of p (i.e., ci v d, ci ∈ C) are
found. For example, given the category “Actor” using DBpedia 2015-04 , some
of the semantic properties for that category and its parent classes are shown in
Table 3.1.

Actor Artist Person
nationalFilmAward style colleague
arielAward voiceType bloodGroup
iftaAward mentor eyeColour
...
Total: 9 Total: 23 Total: 272

Table 3.1: Semantic properties obtained for different categories.

Statistically relevant attributes (which are also referred to as “statistical prop-
erties”) are also obtained by identifying properties associated with the instances
of the given category. These can be used to narrow the semantic property set in
cases where the domain/category is too broad. With the list of instances obtained
for the given category, a list of attributes used by these instances is generated
(along with information about their popularity in terms of number of instances
using each attribute). Duplicate counts are avoided by noting distinct attribute
for every instance only once (at this point it is interesting how many different
instances of the category are using the property to highlight its popularity). For
example, the property “award” appears several times with many instances of the
actor category (as they have won several awards) but it is only counted once.

15

Range Country
(statistical)

Settlement
(statistical)

owl#Thing
(statistical)

Place
(semantic)

Uses of
range

547 388 129 0

Some
suggested
values

England (159) London (118) Sussex (16) Tokyo (0)
Sweden (107) Stockholm (73) Kent (7) California

(0)
United
Kingdom (101)

Paris (39) Middlesex (7) Los
Angeles (0)

Table 3.2: Types of values for the “Actor” category and the “deathPlace” property.

3.4 Identifying Types of Values
For each relevant property obtained in the previous step, a semantic restriction
over its expected values is retrieved, which is referred to as types of values or
ranges. In an analogous way to the previous step, “semantic value types” and
“statistical value types” are obtained. The “semantic value types” are the ranges
defined in the ontology for each property, while the “statistical value types” are
ranges popular among the instances in the KB. For the latter, a list of attribute
values for a given category and attribute is first obtained, by identifying the list
of triples in the KB whose subject is an instance of the given category and whose
property is the given attribute. Based on the attribute, value types are either
semantic classes (e.g.,“City” or “Town”) or basic datatypes (e.g., a text string or a
number). For example, the types of values obtained for the category “Actor” and
the property “deathPlace” are shown in Table 3.2. Notice that, “Place” is the range
of the property in the ontology while “Country”, “Settlement” and “owl:Thing”
are types of values from instances of “Actor” in the KB.

Also, for each type of value a list of previously popular used values is gener-
ated from the statistical information obtained before. This list is used both as a
suggestion for users and as a way of helping users to select an existing entity from
the KB to create a linked value. How to generate the suggestions of values and
rank them is detailed in Section 3.7.

3.5 Dealing with Multiple Categories
Many instances of a KB could have more than one category associated (for in-
stance, Arnold Schwarzenegger is an actor, a governor, and body builder). There-
fore, two approaches have been studied and incorporated in the system to generate
semantic template for instances associated with a set of categories C = {c1...cn}.
When selecting the instances of the KB used to generate statistical information,
we can consider instances fulfilling:

1. ∀ci ∈ C ∃ <instance, rdf:type, ci>. Consider instances which belong to all
the categories selected by the user.

16

2. ∃ <instance, rdf:type, ci> | ci ∈ C. Consider instances which belong to at
least one category selected by the user.

The first approach provides more precise templates than the second approach,
as it can generate a template specialized in all the selected categories. However,
the number of instances fulfilling requirements of the first approach might decrease
with an increasing number of categories selected by the user. This could be prob-
lematic for the system’s approach as its model is partially based on statistical
data from the existing instances. For instance, in the KB used in the experiments
(DBpedia 2015-04), no instance is associated with the three categories that can be
used for Arnold Schwarzenegger (“Actor”, “Governor”, and “Body builder”) and
not even with two of them. In fact, the most common pair of types1 associated
with instances are “Artist” and “Writer” (7810 instances have these two types)
and the system obtains 62 relevant properties from these instances.

The second approach is obviously less restrictive than the first as it considers
instances belonging to any of the categories. Therefore, the number of instances
obtained might be greater and thus, more properties might be extracted by the
system. However, some of the properties obtained might be repeated. For instance,
from the 146 properties extracted for “Writer” and “Artist”, 66 are duplicate
(e.g., “birthName” and “birthPlace”). Duplicate properties are combined and
the computed value types of the different categories are merged.

3.6 Ranking Attributes and Types of Values
The system ranks the list of attributes to be filled in a template in order to improve
the users’ experience. The attributes are ordered based on their popularity in the
KB. Thus, the higher the frequency of the use of an attribute in the instances
of the selected categories in the KB, the higher its position in the ranking. The
attributes whose domain is one of the selected categories but not used in any
instance of those categories, are listed in the lowest positions of the ranking.

The types of values or ranges of each property are also ranked according to
its use frequency by the instances of the selected categories for that property.
However, in order to not provide the user with too much information, only a
maximum of four ranges are shown for every property; if N ranges are obtained,
being N > 3, then the (N-3) less frequent ranges are grouped into one, shown with
the name of a “semantic range” chosen by taking into account the ontology used.

3.7 Providing Significant Suggestions of Values
The system provides a ranked list of suggested values for each attribute and shown
range (type of value) that changes as the user types.

When the range is a class (e.g., “Soccer Team”, “City”, “Person”, ...), the
system suggests values from the whole KB whose type is the range of the attribute,

1The only types considered are the ones from the DBpedia ontology which can be associated
with categories from Wikipedia infoboxes. Other categories (e.g., from Yago) are not used.

17

thus allowing the selection of values even if they have never been used for the
selected categories and property. They are ranked according to their use frequency
and similarity with the typed text. In this case, as an exception, the frequency
of each value is calculated as the number of uses by instances which belong to
all the selected categories, for that property. For instance, for the “Actor” and
“Governor” categories, the property “birthPlace”, and the range “City”, all the
cities in the KB are suggested, ordered by how many times people that are both
actor and governor were born there. This provides more specialized values, and
when there are no instances belonging to all the selected categories, values from
the whole KB are still suggested.

When the range of the property is a basic datatype (e.g., a number, string, or
date), values from all the KB are not suggested, as there are millions of different
basic datatypes values (e.g., text descriptions, quotes, dates, ...) that provide
no relevant information. It suggests values used by instances which belong to at
least one selected category, so when there are no instances which belong to all the
classes, some values are still suggested. For instance, for the categories “Actor” and
“Governor”, the property “description”, and the range “String”, the descriptions
of people that are either actors or governors are suggested, ordered by how many
times these people use each description.

18

Chapter 4

Prototype of the System

In this chapter, first aspects about the fully functional system prototype developed,
composed by a Frontend and a Backend, are described. For that, the system
architecture is defined, the Frontend interface is explained, and some aspects about
the Backend (use of different KBs, generation of infobox code, and evolution)
are detailed. Finally, the performed evaluations that test the quality of created
contents and the user’s satisfaction are explained.

4.1 Architecture of the System
The developed system’s architecture is divided into two main different components:
the Frontend and the Backend of a web application system.

• The Frontend of the web application allows users to visualize data obtained
from the Backend (properties, value types...) and create new contents for a
KB. It has been developed using AngularJS and Bootstrap. The Graphical
User Interface (GUI) has been adapted to the expertise of users by displaying
statistical information for expert and non-expert users (see Section 4.1.1).

• The main component of the Backend is a Java application deployed on a web
server that processes data, maintains a cache of the results, and makes them
available in JSON format through an HTTP interface. It has the following
parts or modules:

– The “Main operations” module. It is responsible for the more impor-
tant and CPU-intense operations such as identifying relevant attributes
or value types, using a KB and its associated ontology. Every operation
result of this module is stored in a file cache, so if it has already been
calculated previously with the same parameters, it is returned immedi-
ately.

– The “Suggestions provider” module. Its purpose is to provide real-time
suggestions of possible values. All the possible values are retrieved from
the SPARQL Endpoint and previously generated cache files, and stored
in a indexed MySQL database so they can be efficiently queried every
time the user types a text.

19

– The “Analytics handler” module. It registers users’ interactions with
the web application (clicks, typed texts, times, etc) in a MySQL database.

– The “Exporter” module. It is in charge of exporting the data generated
by the user in semantic format (RDF) or Wikipedia infobox format.

Moreover, as it can be seen in Figure 4.1 other components are also required.
The system uses a SPARQL server Apache Jena Fuseki to store the KB that
supports the statistical analysis of the system, and to provide access to it. This
server is a modified version of Jena that allows to work with the KB stored in
the HDT format instead of in a non-binary format (which speeds up the data
management). The handling of the ontology to extract semantic properties and
ranges is done by using the OWL API along with the HermiT reasoner. The HTTP
interface for the Frontend component is created by using the Spring Framework.
Finally, the MySQL database is also used to store statistics about the user actions
(interactions with the system) to analyse how they work.

Figure 4.1: Technological system architecture.

4.1.1 Frontend

The Frontend has two different interface modes: the “Expert Mode”, that shows
details about statistical information; and a “Basic Mode”, that hides those details
for non-experts users. Both modes divide the interface in two parts (see Figures 4.2
and 4.3): the left part shows a list of properties or attributes, where the statistical
attributes are showed before the semantic attributes, ranked by frequency. Besides,
in this left part users are allowed to introduce values. The right part shows a
preview of the entity being created, using a visual format similar to Wikipedia
infoboxes, and a button that allows the user to submit the result to the server. A
complete user manual of the Frontend can be found on Appendix D.5.

20

Expert Mode

The “Expert Mode” (see Figure 4.2) shows, for every retrieved property, informa-
tion such as the frequency of instances from the selected categories that use the
property at least once. Also, if multiple categories are selected, the same infor-
mation is displayed for each individual category. A “Search” button that opens a
window with a Google search is also present. Possible ranges or types of values
are represented with bars, where at most four ranges are shown. Ranges inside a
bar are ranked according to the number of triples whose type of value is the given
range, whose subject is an instance of the selected categories and whose property
is the given one. Moreover, with multiple categories, a bar combining information
of all categories (instances that belong to one or more of the categories) is also
shown.

Figure 4.2: Screenshot: prototype’s GUI for expert users.

When a user clicks on an input box, a list of significant suggestions is provided;
this list changes as the user types. One group of suggestions is provided for each
one of the ranges shown in the top bar (either an aggregation bar if more than one
category was selected, or an individual bar). These groups have the range name
at the top, and for each value, the number of uses is shown (the frequency used
for ranking the suggestions, computed as it was explained in Section 3.7).

Regarding the right part where the infobox preview is shown, in this mode
some buttons that allow the generation of RDF and Wikipedia code are displayed.

Basic mode

The “Basic Mode” (see Figure 4.3) hides statistical information, and only shows,
for each property, a minimal box with its name, the same “Search” button as in
the previous mode, and suggestions of values. Although no frequency information
is displayed, properties are ranked according to it. No range bars are shown, but
the suggestions of the values are grouped by ranges as in the “Expert Mode”. The
only difference is that the frequency each value is not displayed.

21

Figure 4.3: Screenshot: prototype’s GUI for non-expert users.

4.1.2 Backend
In this section, some aspects of the Backend are detailed, including an overview of
the operations it performs, how it was made KB-agnostic, how Wikipedia infobox
code is generated and its evolution.

Operations and Information Flow

The information flow between the Frontend and the web server can be seen on
Figure 4.4. Firstly, there are three main operations that are repeated for every
individual selected category (“Instance Count”, “Property List” and “Range List”).
Secondly, if several categories have been selected, then operations to aggregate
information from those categories are performed.

The first operation, “Instance count”, calculates the number of instances that
belong to, at least, one of the given categories. The second one, “Property list”,
returns a list of relevant attributes obtained both semantically and statistically.
The third one, “Range list”, returns a list of ranges for each statistic property with
their frequencies. Besides, as users’ interactions are collected, when users click on
interface elements, input some text or finish their activities, information about
those actions is sent to the web server to be stored. For more details about these
operations see the Sequence Diagrams on Appendix A.2.3.

Using Different Knowledge Bases

The system has been designed and developed to be KB agnostic, i.e., to generate
templates for different and diverse KBs. To do so, all the parameters specific to a
KB such as URI prefixes, how property, range, and instance labels are obtained,
and available categories are isolated into configuration files. Thus, in order to
load a new KB into the system, the user only has to download it, load it into the
SPARQL endpoint and modify these configuration files. Four different KBs have

22

Figure 4.4: Sequence diagram: information flow between Frontend and Backend.

been tested, and the process to load them is detailed on Appendix B.3. These KBs
are DBpedia (about 6,000,000 instances), GeoSpecies (about 20,000 instances),
IIMB Test (about 200 instances), and SwetoDBLP (about 920,000 instances).

Generating Wikipedia Infobox code

As said before, the developed system, besides generating RDF code, also exports
the created instance to Wikipedia infoboxes code because their importance to
populate KBs such as DBpedia. To do so, when the user has finished filling the
semantic template, the system selects from a local repository of Wikipedia infobox
templates the most appropriate one depending on the categories the user selected.
Then, the system fills the infobox template with the provided information. Finally,
the infobox code is returned to the user.

That local repository of Wikipedia Infobox templates consists of one file for
each category in the KB used. Those files contain the name of the appropriate
infobox template and a series of associations between the property names in the KB
and in the properties in the template. The most appropriates Wikipedia infobox
templates have to be chosen beforehand by a human, and the associations in each

23

file have to be established manually. Nevertheless, there are works on the area of
Ontology Matching [11] that could generate these associations automatically.

Evolution

The system technology and how data was processed has evolved through the anal-
ysis and development, being more efficient every time a modification was done.
The three main approaches are explained in the following:

The first approach (corresponding to a previous research prototype [37] on
which this TFG is based on) used a NodeJS web server and a MongoDB database.
To generate a template for a category, a file with the processed data for one
unique category had to be manually prepared and stored into MongoDB. That
process took about 10 hours and 190MB disk space for the “SoccerPlayer” category
of DBpedia 2015-04. Then, the web server queried MongoDB, taking about 30
seconds the first time. This approach did not support templates with more than
one category.

The second approach (see Figure 4.5), consisted of rewriting the program that
made the category processing. That process was analysed and a Java program
1300% faster was implemented (for the “SoccerPlayer” category previously men-
tioned, it took about 45 min.) Also, the system was adapted for being able to
generate templates with more than one category. Even it was a great improve-
ment, it consumed a lot of time and disk space. The impedance between RDF
and MongoDB made queries complicated an inefficient. So the whole process was
reconsidered and a new version/approach of the system was designed.

Figure 4.5: Generation of templates with MongoDB and NodeJS using DBpedia
2015-04.

The third and current approach (see Figure 4.6), uses a SPARQL endpoint
to perform the needed operations. The previous operations were analysed and
SPARQL queries with the same goal as the previous used queries were designed
and tested with both Jena Fuseki and a modified version of Jena Fuseki using the
RDF HDT format. Results, detailed on Appendix C.1, concluded that using a
SPARQL endpoint was much faster (importing all the KB into the Endpoint took
10 minutes, and processing the “SoccerPlayer” category could take 3 minutes).
Between the two tested SPARQL endpoints, the one that supports RDF HDT was
chosen, as the KB occupies 714 MB, in contrast to 3 GB using plain RDF (full
comparison data can be seen in Appendix C.1).

24

In summary, a new Backend of the system was designed by using Java, Spring,
and OWL API. Moreover, the web server and the SPARQL queries have been
redesigned as new optimizations were discovered. Thus, currently, when a new
template is generated, the web server queries the KB through the Fuseki HDT
server and obtains the necessary data in a short time. After that, the system
caches the results in a file cache, making the following template generations almost
immediately.

Figure 4.6: Generation of templates with RDF HDT and Java using DBpedia
2015-04.

4.2 Experimental Evaluation
Three evaluations (two of them in Wikipedia edit-a-thon events, and one with
Amazon Mechanical Turk users) were made to test the quality of the generated
content, the level of satisfaction of the users and the usability of the prototype. As
users are more familiar to Wikipedia and its infoboxes than KBs and RDF, they
were asked to use the prototype to generate Wikipedia infoboxes.

4.2.1 Evaluating the Quality of the Created Content
In the first Wikipedia edit-a-thon, “Editatón por la visibilidad de las mujeres de
Aragón” (Edit-a-thon for the visibility of women in Aragon) organized by Wiki-
media Spain, the City Council of Zaragoza (Spain), and different associations1,
7 users, without previous experience in editing Wikipedia, created 13 infoboxes
(with an average of 8.30 properties, and 27.7% values linked to existing entities
in DBpedia) using the developed prototype. The goal of this preliminary test was
simply to obtain feedback about the usage of the prototype. Users highlighted that
creating the infobox with the prototype was easy but required additional function-
alities such as adding an image to the infobox (later incorporated). Detailed data
about the created infoboxes in this event can be found on Appendix C.2.

The second Wikipedia edit-a-thon, “Wikinformática 2016” organized by the
University of Zaragoza and Wikimedia2, was a competition where 32 teams of high-

1https://es.wikipedia.org/wiki/Wikipedia:Encuentros/Editat%C3%B3n_por_la_
visibilidad_de_las_mujeres_de_Arag%C3%B3n

2http://eules.unizar.es/wikinformatica/edicion2016

25

https://es.wikipedia.org/wiki/Wikipedia:Encuentros/Editat%C3%B3n_por_la_visibilidad_de_las_mujeres_de_Arag%C3%B3n
https://es.wikipedia.org/wiki/Wikipedia:Encuentros/Editat%C3%B3n_por_la_visibilidad_de_las_mujeres_de_Arag%C3%B3n
http://eules.unizar.es/wikinformatica/edicion2016

school students (187 in total) were asked to create Wikipedia articles about relevant
Spanish women working on ICT3. The participants created 66 infoboxes using the
prototype. In contrast, in the first edition of the same edit-a-thon4, without the
developed system, only one infobox was created. Users needed around 60 seconds
on average to fill in each property. The infoboxes created for the scientist cate-
gory (Figure 4.7) contained on average 9.34 properties, which is a higher number
of properties than the average number of DBpedia properties for scientists (6).
Besides, 51.18% of the values included in all the infoboxes were linked to existing
entities (50.5% in the case of the infoboxes for scientists)5. The correctness of
values of the infoboxes created in this event was informally verified as well; the
results indicated that, on average, only 0.91% of the values were incorrect (e.g.,
Ada Byron was born in Madrid instead of London) and 6.61% of the values were
correct but imprecise (e.g., Ada Byron was born in England instead of London).
Given that the subjects were creating infoboxes for the first time, these rates of
errors are quite low.

Finally, the ranking of properties or attributed offered to the users was evalu-
ated computing the generalized Kendall’s tau [12]. Results showed that the order
of properties generated by the system is very similar to the order of properties
that the users filled in, meaning that they find the ranking appropriate. Detailed
data about the ranking evaluation and the created infoboxes in the second edition
of "Wikinformática" last event can be found on Appendix C.3.

Analysing the created infoboxes in both events, it was discovered that most
of the missing links were caused by entities which do not exist in the DBpedia
version used in the test and an error in the prototype. This error was triggered
when users copied and pasted the values of the properties instead of inputting
them or selecting them from the list of suggestions. The prototype was fixed and
improved for the remainder of tests to automatically link a value to an existing
entity if the label is the same.

4.2.2 Comparing the System with the Current Wikipedia
Mechanism

The goal of this test was to compare the prototype against the current mechanism
for creating infoboxes in Wikipedia. To do so, a batch of tests was set in Amazon
Mechanical Turk [24], a crowdsourcing platform where requesters can hire users
(turkers) to perform tasks. Users were required to create the infobox of a given
Wikipedia page using the prototype and the Wikipedia mechanism (a simulation
developed to log all their interactions). One half of the turkers started with the
prototype and the other half of them started with the Wikipedia mechanism. The
turkers had 10 minutes to use each system and then had to fill in a survey with
questions to compare them. 11 users participated in the tests: 55% of them were
between 25 and 40 years old with high–school education (64%). Besides, 64% were

3Information and communications technology.
4http://hendrix-http.cps.unizar.es/dokuwiki/doku.php/start
5To compute the percentage of linked values literals as well as values which cannot be matched

with any entity in the KB were discarded.

26

http://hendrix-http.cps.unizar.es/dokuwiki/doku.php/start

Figure 4.7: Quality of infoboxes for scientist category created with the prototype.

very familiar using Wikipedia and the rest affirm to occasionally use it. None of
the users previously had edited a Wikipedia articles or created infoboxes.

The results of the test showed that 73% of the users found that the devel-
oped system was easier to use than the traditional Wikipedia interface. Users
highlighted benefits of the prototype such as being simpler, helpful in filling and
searching information, better looking, and more comfortable. Users also high-
lighted certain user interface disadvantages such as slightly confusing layout and
issues when typed text does not exactly match with a suggested value. Moreover,
64% of the users also considered the developed system faster. Although some users
declared that it was slower, this was contradicted by collected data. On average,
to fill a property, users required 7 seconds less using the developed system than
using the Wikipedia system. With the Wikipedia system, users filled 10.18 prop-
erties on average, but none of the values of those properties was linked to existing
Wikipedia pages. The average number of properties filled with the prototype was
16.09 (a 58% of improvement over Wikipedia) and half of these values were linked
to DBpedia resources. Regarding the precision and correctness of the information,
although the developed system had less imprecise data (3.95%, the half of the
Wikipedia mechanism), more incorrect values were introduced (2.26%, while this
number decreases to a 1.13% using Wikipedia); analysing the data, we can see
that those errors must be caused by the desire of the users to finish the test as
soon as possible; although they were given the page from which the information
had to be extracted, some users did not stop to think what suggested values would
be the more appropriates ones (e.g., selecting Austrian Empire instead of Austria
for a birth place). So, we can conclude that, besides the turkers had preference
on finishing the task quickly, the use of the developed prototype produced quality
and linked data, being easier and faster to use than the Wikipedia mechanism.
Detailed data about this test can be found on Appendix C.4.

27

28

Chapter 5

Conclusions

In this chapter, general conclusions of the project are commented. Information
about the planning and schedule of the project is shown by using a Gantt diagram.
Besides, some interesting lines of future work are proposed. Finally, a personal
assessment of the author is given.

5.1 General Conclusions
As commented before, the population of KBs is a difficult task, and some problems
can arise (errors, inconsistencies, ...). A solution to create semantic templates with
relevant properties by using semantic and statistical information from a KB, and
to enforce semantic constraints on the values of the properties to be filled has been
developed. The system allows to export the generated content in RDF or infobox
format. Also, some tests have been carried out to evaluate the improvement on
generated content, user satisfaction and usability. In more detail, the contributions
of this project are:

1. Extraction of relevant attributes, ranges, and suggestions:

• The needed operations and algorithms for extracting relevant informa-
tion from a KB and its associated ontology have been analysed and
optimized to develop a system that generates semantic templates effi-
ciently, taking into account statistical and semantic information.
• The presented approach does not depend on any specific KB; it can

be configured easily even for people with no programming aptitudes,
so it can work with almost every RDF KB. Also, due to the modular
structure of its code, it is scalable (i.e., it can be extended or changed
easily).
• The system and algorithms have been tested in different scenarios, show-

ing good results regarding the correctness and relevancy of the infor-
mation introduced by the user, as well as the easiness of usage and the
time required to create information about an entity.
• A demo paper has been accepted in the XXI Jornadas de Ingeniería
del Software y Bases de Datos (JISBD) with very good evaluations.

29

Also, a full research paper has been submitted to the 15th International
Semantic Web Conference (ISWC 2016), which is under review and the
notification is expected by the end of June.

2. Development of a fully functional web application:

• A complete web application that allows users to use the system through
their Internet browsers has been developed. It shows the generated
templates in a friendly interface that helps all kind of users to generate
data for a certain KB without knowing its inner structure or semantics.
• The web application has been tested with real users in order to collect

suggestions and criticisms from the public, hence improving it later.
The evaluation demonstrates that the approach helps no-experts users
to create complete and accurate data for a KB.

Therefore, the initial goals for the project have been covered.

5.2 Methodology
For the planning and development of the project, the Scrum1 agile methodology
has been applied. It is based on an incremental strategy in which the development
is divided in short iterations or sprints. Instead of doing a complete schedule at
the beginning of the project, the tasks for a sprint are defined before it starts.
At the end of every sprint (from one week to one month), a review is done and
a functional product is ready. Weekly meetings with the advisors to review the
progress and solve problems have been done.

5.3 Project Schedule

Figure 5.1: Project hours

The project took 15 months, starting in April
2015 and ending in June 2016. This can be ex-
plained because the project was performed part
time along with some degree classes.

The project was divided in four parts (see
Figure 5.2 for details about the tasks planned
on the project): the first one was the study
of documentation available about the project
and the simple existing research prototype de-
veloped in the Research Group of Distributed
Information Systems (SID) [37]. The second
part, the most important, was the analysis and
development of a new and better prototype with
the acquired information of the previous one. It started with the analysis, design
and implementation of a basic system, and then it was progressively improved,

1https://en.wikipedia.org/wiki/Scrum_(software_development)

30

https://en.wikipedia.org/wiki/Scrum_(software_development)

designing and developing new features and optimizations. Documentation about
decisions made, how the system works and technical references were being devel-
oped along the entire project, concluding in this Final Report elaboration. Besides,
some evaluations and tests were made during the development of the system. A
total of 423 hours were spent in this project, as seen in Figure 5.1.

Some problems caused the schedule to be modified. One of them was the lack
of structure and bad performance of the old prototype used. It was planned to
improve that early prototype and take it as a base, but finally the whole prototype
had to be redesigned and developed. As the new prototype was growing, I also
realized that some aspects could be changed or improved, thus completely changing
some parts of the code. In addition, I needed to understand the context of the
project, which involved studying concepts related to the Semantic Web, ontologies,
and Wikipedia.

Figure 5.2: Gantt diagram: Project planning.

5.4 Future Work
As future work, some interesting tasks (out of the scope of this project) are pro-
posed:

1. To improve data processing times by using parallel and distributed process-
ing techniques of large data sets (like the MapReduce technique used in

31

Hadoop2).

2. To use the system to help fixing errors and inconsistencies in existing KB
by detecting values that might be semantically or statistically incorrect or
inaccurate.

3. To integrate the tool with the Wikipedia and Wikimedia environment to
help users to create Wikipedia Infoboxes and to populate WikiData.

Related to the last point, it is worth noting that my advisors and I are in touch
with people from Wikimedia, and we have applied for a Wikipedia grant to achieve
this task.

5.5 Personal Assessment
This work has introduced me into research, developing a project from the begin-
ning. So, I consider that, thanks to this project, I have improved my skills as a
computer scientist and software engineer. I have not only deepened my knowledge
about technologies and techniques learnt during the degree, but I have also dis-
covered new fields such as Semantic Web and Linked Data. In the personal level,
it has taught me how to manage time in a better way, how to work in a big project
and document it. In addition, I had the opportunity of writing research articles
with researcher from University of Maryland - Baltimore County, and General
Electric. Technically, I have learnt a lot about ontologies, RDF and the SPARQL
query language, and I have discovered the great possibilities and future that this
technologies have. I have also greatly improved my knowledge of the AngularJS
framework, thus making me capable of developing a complex web application.

To sum up, the accomplishment of this project has been a great experience,
both academically and personally, making me apply and integrate a lot of knowl-
edge acquired during the degree and convincing me to continue my research for-
mation. I am very satisfied with the developed project because, after a very hard
work and difficulties, its result is a very useful, usable and complete system.

2http://hadoop.apache.org/

32

http://hadoop.apache.org/

Bibliography

[1] Amardeilh, F.: Ontopop or how to annotate documents and populate ontolo-
gies from texts. In: Proceedings of the ESWC 2006 Workshop on Mastering
the Gap: From Information Extraction to Semantic Representation. pp. 1613–
0073 (2006)

[2] Baader, F.: The description logic handbook: theory, implementation, and
applications. Cambridge University Press New York (2003)

[3] Berners-Lee, T.: Information management: A proposal (1989)

[4] Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Semantic
Services, Interoperability and Web Applications: Emerging Concepts pp. 205–
227 (2009)

[5] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the web of data. Web
Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–
165 (2009)

[6] Bos, B., Celik, T., Hickson, I., Lie, H.W.: Cascading style sheets level 2
revision 1 (css 2.1) specification. w3c candidate recommendation. World Wide
Web Consortium (W3C) (2009)

[7] Brickley, D., Miller, L.: Foaf vocabulary specification 0.98. Namespace docu-
ment 9 (2012)

[8] Date, C.J., Darwen, H.: A Guide To SQL Standard, vol. 3. Addison-Wesley
Reading (1997)

[9] D.Brickley, R.G.: RDF vocabulary description language 1.0: Rdf schema.
W3C Recommendation (2004)

[10] ECMA International: Standard ECMA-262 - ECMAScript Language Spec-
ification. 5.1 edn. (June 2011), http://www.ecma-international.org/
publications/standards/Ecma-262.htm

[11] Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)

[12] Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003). pp. 28–36
(2003)

33

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[13] Fetahu, B., Markert, K., Anand, A.: Automated news suggestions for pop-
ulating Wikipedia entity pages. In: 24th ACM Int. on Conf. on Information
and Knowledge Management. pp. 323–332 (2015)

[14] Gosling, J.: The Java language specification. Addison-Wesley Professional
(2000)

[15] Gruber, T.R.: Toward principles for the design of ontologies used for knowl-
edge sharing. International journal of human-computer studies 43(5), 907–928
(1995)

[16] Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language.
W3C Recommendation 21 (2013)

[17] Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E., O’Connor,
E., Pfeiffer, S.: Html5. w3c recommentation. World Wide Web Consortium
(W3C) (2014)

[18] Horridge, M., Bechhofer, S.: The OWL API: a Java API for working with
OWL 2 ontologies. In: Proceedings of the 6th International Conference on
OWL: Experiences and Directions-Volume 529. pp. 49–58. CEUR-WS. org
(2009)

[19] Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Wols-
tencroft, K., Stevens, R.: Populous: a tool for building OWL ontologies from
templates. BMC bioinformatics 13(1), 1 (2012)

[20] Klyne, G., J.Carroll, J.: Resource description framework (RDF): Concepts
and abstract syntax. W3C Recommendation (2004)

[21] Lange, D., Böhm, C., Naumann, F.: Extracting structured information from
Wikipedia articles to populate infoboxes. In: 19th ACM Int. Conf. on Infor-
mation and Knowledge Management. pp. 1661–1664 (2010)

[22] O’reilly, T.: What is web 2.0: Design patterns and business models for the
next generation of software. Communications & strategies (1), 17 (2007)

[23] O’reilly, T.: Web 2.0: compact definition (2005)

[24] Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on Amazon
Mechanical Turk. Judgment and Decision making 5(5), 411–419 (2010)

[25] Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient owl reasoner.
In: OWLED. vol. 432, p. 91 (2008)

[26] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles
and methods. Data & knowledge engineering 25(1), 161–197 (1998)

[27] Sultana, A., Hasan, Q.M., Biswas, A.K., Das, S., Rahman, H., Ding, C., Li,
C.: Infobox suggestion for Wikipedia entities. In: 21st ACM Int. Conf. on
Information and Knowledge Management. pp. 2307–2310 (2012)

34

[28] Tim Berners-Lee, J.H., Lassila, O.: The Semantic Web. Scientific american
284.5, 28–37 (2001)

[29] Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledge base.
Communications of the ACM 57(10), 78–85 (2014)

[30] Web, S.: Creating semantic web contents with protege-2000 (2001)

[31] Welty, C., McGuinness, D.L.: OWL web ontology language guide. W3C Rec-
ommendation (2004)

[32] Wick, M., Boutreux, C.: Geonames. GeoNames Geographical Database
(2011)

[33] Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep,
J.L., du Preez, F., Goble, C.: Rightfield: embedding ontology annotation in
spreadsheets. Bioinformatics 27(14), 2021–2022 (2011)

[34] Wu, F., Weld, D.S.: Automatically refining the Wikipedia infobox ontology.
In: 17th Int. Conf. on World Wide Web (WWW 2008). pp. 635–644 (2008)

[35] Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes se-
mantic: Dl reasoners on smartphones. 2nd International Workshop on OWL
Reasoner Evaluation (2013)

[36] Yus, R., Ilarri, S., Mena, E.: Real-time selection of video streams for live TV
broadcasting based on query-by-example using a 3D model. Multimedia Tools
and Applications 74(8), 2659–2685 (2015)

[37] Yus, R., Mulwad, V., Finin, T., Mena, E.: Infoboxer: Using statistical and
semantic knowledge to help create wikipedia infoboxes. In: 13th International
Semantic Web Conference (ISWC 2014). vol. 1272, pp. 405–408. CEUR-WS
(2014)

35

36

Appendices

37

Appendix A

Analysis and Design of the
Prototype of the System

In this appendix, the analysis and design process is shown using a list of require-
ments, use cases, and packages, sequence, and deployment diagrams. Moreover,
the data model used in the MySQL database is detailed.

A.1 Analysis of the Prototype
The requirements of the developed system, shown in Table A.1, are divided into
Functional Requirements (FR) and Non-functional Requirements (NFR).

39

Functional Requirements
Code Description
1 To allow the user to select one or more category.
2 To allow the user to select simple or expert mode.

3 To generate semantic templates for the selected categories,
from a KB and associated ontology.

4 To display the semantic template to the user.
4.1 To display a list of properties ordered by popularity.

4.2 If “Expert mode” selected, to display list of ranges for each
property, ordered by popularity.

4.3 To provide value suggestions to the user when
he/she types a value.

4.4 If “Expert mode” selected, to show detailed statistical information.

4.5 To allow the user to introduce one or more value for a
property.

4.5 To easy the user the process of searching
information about a property in Google.

5 To export the generated content in RDF format.
6 To export the generated content in Wikipedia infobox format.

Non-functional Requirements
Code Description
1 The “GUI” should be simple and intuitive.

2
The “GUI” texts, properties, and ranges must be
available in English and Spanish, allowing the user to
change the language, despite of the used KB.

3 The system must maintain a cache of results.

4 The system must gather user interactions data to
later analyze it manually.

Table A.1: Requirements of the developed system.

40

A.2 Design of the Prototype

In the following subsections the system is described using multiple diagrams (use
case, package, sequence, deployment, and data model).

A.2.1 General Use Case

The developed prototype only has one global use case, which can be decomposed
into several specific use cases (see Figure A.1).

Figure A.1: Use case diagram: General use case.

41

Use case: Select categories
Description: To select one or more categories from the provided list.
Actors:
User and System.
Pre-conditions:
-
Normal flow:
1.- The user clicks on the category input.
2.- The user starts typing and the shown categories are filtered.
3.- The user selects one category.
Alternative flow:
4.- The user types again and selects more categories.
Post-conditions:
A category or categories have been selected.

Table A.3: Use case: Select categories.

Use case: Generate the template
Description: To generate a semantic template from a list of categories.
Actors:
User and System.
Pre-conditions:
At least one category has been selected.
Normal flow:
1.- The user clicks on the Load button.
2.- The system generates the template.
3.- The system shows the template to the user.
Alternative flow:
-
Post-conditions:
A template has been generated and shown.

Table A.5: Use case: Generate the template.

42

Use case: Fill a property
Description: To type one or more values of a property (for example, the birth
place of a soccer player).
Actors:
User and System.
Pre-conditions:
The template has to be already generated.
Normal flow:
1.- The user clicks on the input box of the
desired property.
2.- The user types a value.
3.- The user clicks on a suggestion if available.
Alternative flow:
4.- The user adds another value for the property.
Post-conditions:
A value for a property has been typed.

Table A.7: Use case: Fill properties.

Use case: Introduce a page name
Description: To introduce a name for the template/page to fill (for example,
if creating data of a person, it would be him/her name).
Actors:
User and System.
Pre-conditions:
-
Normal flow:
1.- The user clicks on the “Page name” input.
2.- The user types the template/page name.
Alternative flow:
-
Post-conditions:
The page/template name has been introduced.

Table A.9: Use case: Introduce a page name.

43

Use case: Search on Google
Description: To search information about a property on Google.
Actors:
User and System.
Pre-conditions:
The template has to be already generated and a page name has been introduced.
Normal flow:
1.- The user clicks on the search button on the desired property.
2.- A browser windows is open, with a Google search of that property and
instance.
3.- The user looks up information about the property.
Alternative flow:
-
Post-conditions:
Information about the property value for an instance has been searched.

Table A.11: Use case: Search on Google.

Use case: Export to RDF
Description: To export the generated data in RDF format.
Actors:
User and System.
Pre-conditions:
One value for at least one property and the page name have been introduced.
Normal flow:
1.- The user clicks on the “Export to RDF” button
2.- The RDF code is generated and shown to the user
3.- The user copies the code and inserts it into a KB, for example using a Fuseki
Endpoint.
Alternative flow:
-
Post-conditions:
RDF code has been generated.

Table A.13: Use case: Export to RDF.

44

Use case: Export to Wikipedia infobox
Description: To export the generated data in Wikipedia infobox format.
Actors:
User and System.
Pre-conditions:
One value for at least one property and the page name have been introduced.
Normal flow:
1.- The user clicks on the “Generate infobox code” button
2.- The infobox code is generated and shown to the user
3.- The user copies the code and pastes it into a Wikipedia page.
Alternative flow:
-
Post-conditions:
Wikipedia infobox code has been generated.

Table A.15: Use case: Export to Wikipedia infobox.

Use case: Change language
Description: To change the interface and data language.
Actors:
User and System.
Pre-conditions:
-
Normal flow:
1.- The user clicks on “Configuration” button at the top bar of the web proto-
type.
2.- The user selects the new language.
3.- The users clicks on “Save and apply” and the language is changed.
Alternative flow:
-
Post-conditions:
Language has been changed.

Table A.17: Use case: Change language.

45

Use case: Change mode
Description: To change the interface mode between simple and expert mode.
Actors:
User and System.
Pre-conditions:
-
Normal flow:
1.- The user clicks on “Configuration” button at the top bar of the web proto-
type.
2.- The user selects the new mode.
3.- The users clicks on “Save and apply” and the mode is changed.
Alternative flow:
-
Post-conditions:
Mode has been changed.

Table A.19: Use case: Change mode.

A.2.2 Package Diagrams
This section uses package diagrams to show the packages and classes of the Back-
end, Frontend, and the relations between them. Also, a description of the respon-
sibility of each package is presented.

Backend

In the next list and in Figure A.2 the packages, classes and libraries used by the
Java Backend (web server) are detailed. The Backend does not offer a Graphical
User Interface, as it is a task of the Frontend. The task of the Backend is to
perform the needed operations to generate semantic templates, and offer them
through an HTTP interface.

1. Http is a package that contains the classes that offer the HTTP interface;
they are the entry point to the application.

2. Operations package is composed of multiple classes, each one responsible
of executing one important operation, such as obtaining the list of properties
for certain categories, the list of ranges, etc. Those clases are also responsible
of maintaining a cache of its results. If not previously calculated, they use
the “ontology” and “dataObtaining” packages to do so.

3. Suggestions package contains operations needed to provide real time sug-
gestions to the user. As the suggestions are stored in a MySQL database,
a class that manages the interaction with it is present; it uses the JDBC
driver.

46

4. StatsDatabase package only contains a class responsible for storing actions
and statistics from user interactions to a MySQL database. It uses the JDBC
drive.

5. InfoboxCreation package is responsible of the generation of Wikipedia
Infobox code, mapping the received data from the client to a Wikipedia
template.

6. Ontology package is in charge of the interactions with the ontology or
schema associated to the KB, such as obtaining super classes of a certain
class, semantic properties,...

7. DataObtaining is a package whose tasks are to interact with the SPARQL
endpoint, to make queries, and to retrieve results.

8. Translator package is responsible for translating the operations result into
another language, using the Yandex translator.

9. Common package is used by all the other developed packages, and it con-
tains useful operations (string manipulations, commonly used functions,...)
in the “utils” package and objects used to transport information along the
system in the “dto” package.

10. Application class is in charge of the launch of the Server.

11. Simulation class is responsible for performing benchmarks and measuring
times of the system.

47

Figure A.2: Package diagram: Backend.

48

Frontend

In the next list and in Figure A.3 the packages, modules. and libraries used by the
AngularJS Frontend are detailed. The main goal of the Frontend is to offer the
user a graphical interface he/she can interact with. It interacts with the Backend
to obtain the generated template and show it to the user.

1. Index.html is the first file executed by the browser, and is responsible for
importing the external libraries and passing the control to AngularJS and
the “App” module.

2. Views package contains all the HTML files rendered by the user Web browser.
They also contain AngularJS instructions that modify that HTML before be-
ing rendered.

3. Partials package contains views that are rendered inside another view, like
“modals” (windows that float over another content).

4. Styles package contains CSS stylesheets used to give style to the application.

5. Scripts package contains all the Javascript code in charge of the presentation
logic:

(a) App module is responsible for setting the configuration and initialize
the application.

(b) Controllers package contains Javascript files or modules that are in
charge of user interactions (clicks, typed text) and modifying the data
shown on the view according to it.

(c) Directives package contains “directives”, which are modules that en-
capsulate GUI components and their behaviour. For example, the drop-
down list used to give suggestions to the user.

(d) Filters package contains a unique module that implements functions
to format data on the views (for example, changing a date format).

(e) Service package contains several modules used to organize and share
code across the application. Each module encapsulates some behaviour
(such as obtaining the template for a category, saving statistics to the
server, access to the Frontend configuration or handling a shown modal)
and offers operations to access it.

(f) DataStructures contains data structures and objects definitions in
Javascript used in multiple parts of the application.

49

Figure A.3: Package diagram: Frontend.

50

A.2.3 Sequence Diagrams and Descriptions of Operations
In this section, the most relevant operations performed in the Backend are de-
scribed, and for each one a sequence diagram is provided to show the interactions
between its components.

“Instance count” operation

This operation (Figure A.4) calculates the number of instances that belong to, at
least, one of the given categories. For that, it only uses the KB.

Figure A.4: Sequence diagram: “Instance count” operation.

“Property list” operation

This operation (Figure A.5) returns a list of relevant attributes obtained both
semantically and statistically. Each statistical attribute comes with the number
of instances of the given categories that use it at least one time. For the semantic
attributes, it is provided the number of instances in the whole dataset that use it
and the semantic range according to the ontology.

The result is obtained by first querying the KB for the properties and its
frequency. Then, the semantic attribute list is obtained from the ontology. The
two lists are mixed and for each semantic property that is not in the statistic
property list, its count in the whole KB and its semantic range are retrieved.
Finally, the label and comment of each property is retrieved from the ontology if
available.

51

Figure A.5: Sequence diagram: “Property list” operation.

“Range list” Operation

This operation (Figure A.6), obtains a list of ranges or type values for each statis-
tical property of the given categories, with its frequency.

It is decomposed in multiple smaller operations, performed once for each in-
stance that belongs to at least one of the categories. Those smaller operations
obtain triples which have the instance as a subject, and every triple is accompa-
nied by the types of its value. (e.g., if the given category is “SoccerPlayer”, one
of the triples would be “David_Beckham PlaysOn Manchester_City”, and the
types of the value would be “Soccer Team” and “Association”). Then, using the
ontology reasoner, those types are processed to obtain the more concrete type or
types of each value (in the previous example, it would be “Soccer Team”). That
information is used to generate the returned list of ranges and a list of values used
to provide suggestions. Finally, for every range, its label is obtained from the
ontology if available.

52

Figure A.6: Sequence diagram: “Range list” operation.

“Suggestion list” Operation

This operation (Figure A.7) provides suggestions of values for a range, property,
and list of categories as the user types. For example, if the users wants to enter
information about the Birth Place of a Soccer Player, and the ranges for that
property are “City” and “Town”, it will suggest cities and towns filtered by the
entered text, ordered by how many times Soccer Players were born there.

1. First it checks if a table with all the instances with class the given range
exists in the database (for example, if a table with all the instances of “Town”
exists).

2. If it does not exist, that table is created and populated.

3. Then, it checks if a table with values whose class is the given range and
used by instances of the given categories for the given property exists. (for
example, if a table that contains towns used as a birth place by soccer players
exists). This table contains also the frequency of each value.

4. If it does not exist, that table is created and populated from data already in
file cache (as it was calculated by the “Range list” operation).

5. Finally, the two previous tables are queried and combined to obtain the
desired suggestion list.

53

Figure A.7: Sequence diagram: “Suggestion list” operation.

“Class list” Operation

This operation (Figure A.8) returns a list of classes descendant of a given class,
with the number of instances of every class, and filtered by an introduced text.

Figure A.8: Sequence diagram: “Class list” operation.

54

“Data for instance” Operation

Given a Wikipedia page URL, this operation (Figure A.9) finds an equivalent
instance in the KB and returns a list of its properties, values for those properties,
and for each value, its most concrete type or class.

To do so, it first converts the Wikipedia URL into an instance URI of the
used KB. Then, it performs a process very similar to the process done in “Range
list” operation, obtaining from the KB all the triples in which the subject is the
instance, and the type for every triple’s value.

Figure A.9: Sequence diagram: “Data for instance” operation.

55

A.2.4 Deployment Diagram
In this section a deployment diagram (Figure A.10) is shown. The nodes implied
on the deployment are four:

1. Web browser: This node is on the client, and it executes the Frontend,
previously served by the web Server. It interacts asynchronously with the
web Server to ask for data and send the user interactions.

2. Web server: This is the main node. It executes the developed system on a
Tomcat Server. Some of the components interact with the Frontend, while
others interact with the SPARQL endpoint, MySQL database, ontology or
file cache.

3. Sparql Endpoint: This is the server that hosts the KB. Queries are made
via an HTTP interface.

4. MySQL Database: This server hosts the database used for storing sugges-
tions and user interactions. It is queried by the web server using JDBC.

Note that, although the web server, SPARQL, and MySQL nodes are separated,
two or the three of them can be hosted in the same machine.

56

Figure A.10: Deployment diagram: developed system.
57

A.3 MySQL Data Model
In this section, the data model of the two used relational databases is shown, with
a brief description of their entities. As this databases are used for secondary tasks,
its structure has not been thoroughly optimized nor normalized.

User Interactions Database
The data model of the database that stores all the users interactions is shown on
Figure A.11. The entities that compose the model are:

• Register: it represents a record of one interaction of a certain user. It is
identified by an auto-incremented field, and contains the session identifier
(unique for each generated KB instance), the time stamp (the exact time
when that interaction occurred) and three different strings: a subject, an
action, and a value. The subject is the element target of the interaction, for
example, a text box. The action is what happened with that element, for
example, that it was clicked. The value is a feature of the element, such as
the contained text.

• Infobox: this entity represents the final content generated by the user; every
instance of it is associated with a certain register that indicates the action
of saving the data. It contains the RDF and Infobox code.

• Survey: this entity represents the filled survey by a user of the prototype
after having finished the creation of the content; every instance of it is asso-
ciated with one register that indicates the action of saving the survey.

• Summary: this entity represents the summary of the interaction of one
user; it contains data such as the session identifier, the username, and the
seconds it took the user to create the content.

Figure A.11: Data Model of the users interactions database.

58

Suggestions Database
The data model of the database that stores the values that are suggested to the
user when he types in the prototype is shown on Figure A.12. The entities that
compose the model are:

• rangeTableCLASS: for every class or range whose values have been sug-
gested, one table like this exists, where “CLASS” is replaced with the name
of that range. For example, if suggestions of places have been provided, a
table “rangeTablePlace” will exist. Those tables contain all the instances
that belong to the given range in the KB, with its URI and the label that
represents it.

• CATEGORIES-PROPERTY-RANGE: one table of this type is created
for each combination of categories, property, and range of values that have
been suggested. For example, if the user received suggestions of cities were
soccer players were born, a table named “SoccerPlayerBirthPlaceCity” will
exist. It contains the URIs and labels of instances that belong to the given
range (similar to the previous entity), but only the ones that appear as a
value on triples which subject is an instance of the selected categories, and
property is the given one. Every value comes with the number of uses or
frequency of that value.

These two kinds of tables are combined using join operations to generate the
list of suggestion that is sent and shown to the user. For example, if a user needs
suggestions of universities where actors studied, the tables “rangeTableUniversity”
(that contains all the universities) and “ActorStudiedInUniversity” (that contains
the universities where actors studied, with its frequency) will be combined. Also,
as the “uri” attribute is used for joining the tables, it is indexed to improve the
operation speed.

Figure A.12: Data Model of the suggestions database.

59

60

Appendix B

System Set-up, Configuration and
Technical Aspects

This appendix contains the needed information to run the developed project in a
personal computer, customize its functionalities (thanks to the configuration files),
and load different KBs. Also, the exposed HTTP API and the performed SPARQL
queries are described. The guides are designed for system administrators or tech-
nical experienced users, not for the final user that will actually create content with
the prototype using a web browser.

B.1 Running the Prototype
In this section, the requirements and the steps to run the prototype are speci-
fied. The used KB on the guide is DBpedia 2015-04; prepared configuration files,
an HDT file containing the KB and a owl file with the associated ontology are
provided. However, this guide can be used with any other KB.

System Requeriments
In order to execute the prototype, the used computers have to meet some require-
ment. As the web server, the MySQL database and the SPARQL endpoint can
be executed in different machines, the requirements for each one are detailed in
Table B.2. The system has been tested using a unique host running Ubuntu 14.04
and Windows 7. A Linux system is recommended, as some limitations arise in the
Windows set-up.

Download of the Required Files
The prototype source code and required files are hosted on a GitHub public repos-
itory1. To download it, the commands shown on Listing B.1 has to be executed
on a terminal. This commands download the project files in the working direc-
tory of the terminal. Note that, if using Windows, due to a limitation on folder

1https://github.com/ismaro3/infoboxer

61

https://github.com/ismaro3/infoboxer

Requirement WebServer MySQL SPARQL
OS Linux, Windows

XP or greater
Linux, Windows
XP or greater

Linux, Windows
XP or greater

RAM At least 4GB At least 2GB At least 4GB
Java Java 8 JRE None Java 8 JRE
GIT v2.0 client or

greater
v2.0 client or
greater

v2.0 client or
greater

Other software NodeJS v.5.10.0
or greater if using
Windows

MySQL v5.1 or
greater

GIT

Table B.2: System requirements for running the prototype.

paths length, the infoboxer directory created when downloading the files can not
be moved to a different location, so the command should be executed in the final
path where the project is located.

g i t c l one https : // github . com/ ismaro3 / in f oboxe r . g i t
Listing B.1: Command for downloading the project code.

Also, the prepared DBpedia 2015-04 KB is uploaded to a Google Drive folder2.
There, the HDT file containing the data and the associated ontology in owl format
are available.

MySQL Database Configuration
In the host responsible of hosting the MySQL the following steps have to be fol-
lowed:

1. Create a database user that will be used by the prototype’s web Server.
Don’t grant too many privileges to it, as it could be dangerous if the system
is compromised.

2. Create a database called “infoboxer” that will store the gathered user inter-
actions. Its schema is defined in the create_mysql_database.sql file available
in the previously downloaded prototype files.

3. Create a “suggestions” database that will store the values suggested to the
user. Its schema is created automatically by the web server.

Both databases can be built importing the create_mysql_database.sql file into
the database. The created user has to have permissions on the created databases
to create, query and drop tables, and to insert data on them. Instructions on how
to use MySQL can be found at the MySQL Reference Manual3.

2https://drive.google.com/open?id=0B1vXMuLLK1ybaU9zWXJPdGpVQnc
3http://dev.mysql.com/doc/refman/5.7/en/tutorial.html

62

https://drive.google.com/open?id=0B1vXMuLLK1ybaU9zWXJPdGpVQnc
http://dev.mysql.com/doc/refman/5.7/en/tutorial.html

SPARQL Endpoint Execution
The SPARQL endpoint is located in the hdt-fuseki-launcher folder in the down-
loaded project files. That folder has to be moved to the machine where the
SPARQL endpoint will execute. To execute the endpoint, the following steps
have to be performed:

1. The KB in HDT format has to be placed inside the hdt-fuseki-launcher folder,
with the name of kb.hdt. Please put there the kb.hdt DBpedia file downloaded
from Google Drive. If a file with that name, or named kb.hdt.index already
exists, please move or delete it.

2. The file start_linux.sh or start_windows.bat has to be executed, if using
Linux or Windows respectively. If it is the first time that a given KB is used,
an index will be built. It can take about 10 minutes with a KB of the size
of DBpedia. A screenshot of the console output of the process is shown on
Figure B.1.

3. The SPARQL endpoint will be running on port 3030.

For changing the port where the endpoint runs, or the name of the used HDT
file, please edit the start_linux.sh or start_windows.bat file.

Figure B.1: Screenshot: SPARQL Endpoint process output.

Converting a KB into HDT Format
Although in this guide the DBpedia KB in HDT format is provided, most of the
available KBs are not in that format. Usually, they are available in RDF/XML
or RDF N-triples format and have to be converted before being loaded into the
SPARQL endpoint. This is the case of the KBs detailed in Appendix B.3. To
convert a KB into HDT format the following steps have to be performed:

1. Navigate to the hdt-tools/bin directory of the downloaded project files.

2. Execute the hdt2rdf.sh or hdt2rdf.bat file, passing as parameters the source
and destination files, as shown in Listing B.2.

63

3. Rename the output HDT file to kb.hdt and move it into the hdt-fuseki-
launcher directory.

. / rd f2hdt . sh source . rd f d e s t i n a t i on . hdt
Listing B.2: Command for converting a Knowledge Base into HDT format

A screenshot of the console output of a conversion can be seen on Figure B.2.

Figure B.2: Screenshot: RDF to HDT conversion process output.

Web Server Configuration
Before starting the server, some configuration files have to be modified to adapt
the prototype to the hosts where it will run. In this section, the configuration files
for DBpedia are used as a reference. However, in Appendix B.3, files for other
three KBs are provided.

The configuration file for the web server is stored in the infoboxer folder, specif-
ically in the src/main/resources/application.properties file. The changes that have
to be made to the file are now detailed:

1. The “server.port” option has to be changed to the desired port where the
web application will be served. By default, it is 8080. Ports like 80 require
administrative privileges.

2. The “translator.apiKEY” value has to be introduced if “translator.enabled”
equals true. A Key can be obtained on the Yandex Translator website4.

3. The “sparql.url” option has to be changed to match the address of the server
that hosts the SPARQL endpoint and the port where it is running.

4https://tech.yandex.com/translate/

64

https://tech.yandex.com/translate/

4. The “ontology.location” value has to be modified to the path where the on-
tology file is located (in the case of the downloaded DBpedia KB, where the
owl file is placed).

5. At the bottom of the file, the options referring to host, port, username, and
password of the stats and suggestions database have to be changed to the
match host where the MySQL database is hosted, and the created user.

The configuration file for the Frontend is stored in the infoboxer folder, specif-
ically in the src/main/resources/static/data/config.json file. The only change to
be performed is to modify the “base” property, so it is equal to the public address
of the machine that hosts the web server with the port where it is running.

In the Appendix B.2, all the options of the configuration files are detailed.

Web Server Execution
Finally, to start the web server, the steps are the following:

1. Before the first execution, the dependencies of the Frontend have to be down-
loaded. To do so, if using Linux, the file install_frontend_auto_linux.sh
located in the infoboxer folder has to be executed. If using Windows, the
command npm install has to be executed in a terminal whose working direc-
tory is infoboxer/src/main/resources/static.

2. The MySQL database and SPARQL endpoint have to be running. If don’t,
they have to be started as detailed previously.

3. The file start_linux.sh or start_windows.bat has to be executed to launch
the server. The first time it will take some minutes as it has to download the
needed dependencies. A screenshot of the console output of the web server
process is shown on Figure B.3

So, from now on, only the two last steps of the previous list have to be followed
to launch the server. The web application can be accessed from a web browser on
the address and port configured for the web server.

65

Figure B.3: Screenshot: web server process output.

66

B.2 Configuration Files
In this section, the three configuration files used in the prototype are detailed.
They are used to configure the used KB, functionality of the web server and Fron-
tend, and what categories can be selected by the user.

Web Server Configuration File
The web server configuration file, available in the /infoboxer/src/main/resources/
static/application.properties directory of the project, contains a set of key-value
pairs that are now described. All the keys inside a group have the name of the
group as a prefix separated by a dot. Note that neither the keys nor the values
are surrounded by quotes.

• messages.enabled: if set to true, debug messages are shown in the process
console.

• translator: it defines three options related to the automatic translation of
property and ranges:

– enabled: whether the property and range translation from English to
other languages is enabled.

– apiURL: the URL of the Yandex translator API being used, for exam-
ple https://translate.yandex.net/api/v1.5/tr.json/translate.

– apiKEY: the Yandex Translator Developer Key being used.

• sparql.url: the URL where the SPARQL endpoint is located.

• ontology: it groups three settings about the ontology associated to the KB
and its classes:

– location: the local path where the ontology file is located.
– allowedClasses: a comma-separated list of regular expressions, that

defines which classes are taken into account. Classes not defined here
are ignored by the system.

– classTransformations: a list of comma-separated groups of parenthe-
sis, each containing a pair of properties separated by comma. The first
property in every group is transformed to the second property in the
same group. Used when a property in the KB has to be transformed.

• label: it groups settings about how property, class, and instance labels are
derived from URIs:

– propertyDelimiter: the last character of a property or instance URI
after which the property or instance name is defined. For example, for
the property <http://dbpedia.org/ontology/birthPlace>, this charac-
ter is ’/’ (without quotes).

67

– typeDelimeter: the last character of a class URI after which the
class name is defined. For example, for the property <http://a.org/
SoccerPlayer>, this character is ’/’.

– uriToLabelMode: it defines how the property or class name is rep-
resented in an URI. Can be either ’camelCase’ (if the name is defined
like ’SoccerPlayer’) or ’underscore’ (if it is defined like ’soccer_player’,
words separated by underscores).

• instanceLabel: it holds settings about the extraction of the label of in-
stances from the KB:

– fromKB: if true, the label for suggested instances is retrieved from the
KB, using for each instance the property defined in the next option. If
’false’, the label is derived from the URI using the ’propertyDelimiter’.

– property: the property, surrounded with ’<’ and ’>’, whose value
is used as a label for every suggested instance, if ’fromKB’ is set to
’true’. An example would be <http://www.w3.org/2004/02/skos/
core#prefLabel>. Leave empty if no property is used.

• unknownType: it contains expressions to control what type is assigned to
a value or instance that has no type defined in the KB:

– resource.value: regular expression to define how are resources or in-
stances identified in the KB (for example, “.*dbpedia.org/resource.*”
for DBpedia).

– resource.type: the URI of the type, surrounded with ’<’ and ’>’, that
is assigned to a value identified as a resource, when no type is found in
the KB.

– langString.type: the URI of the type, surrounded with ’<’ and ’>’,
that is assigned to a value whose format is the format of a langString
(string with language information associated).

– string.type: the URI of the type, surrounded with ’<’ and ’>’, that
is assigned to a value whose format is the format of a string.

– numeric.type:the URI of the type, surrounded with ’<’ and ’>’, that
is assigned to a value whose format is the format of a Number.

– else.type: the URI of the type, surrounded with ’<’ and ’>’, that is
assigned to a value not identified as any of the previous types (resource,
lang-string, string nor numeric).

• stats.db: it contains settings about the database of users interactions.

– host: the IP address of the MySQL host.
– port: the port of the MySQL server.
– username: The MySQL user created for the prototype.
– password: the password of the user.

68

<http://a.org/SoccerPlayer>
<http://a.org/SoccerPlayer>
<http://www.w3.org/2004/02/skos/core#prefLabel>
<http://www.w3.org/2004/02/skos/core#prefLabel>

– database: name of the database of stats. Recommended to be “in-
foboxer”.

• suggestions.db: it contains settings about the database of suggested values.

– host: the IP address of the MySQL host.
– port: the port of the MySQL server.
– username: the MySQL user created for the prototype.
– password: the password of the user.
– database: name of the database of stats. Recommended to be “sug-

gestions”.

Frontend Configuration File
The Frontend configuration file, available in the /infoboxer/src/main/resources/stat-
ic/data/config.json file, contains a JSON object whose content is now described.
All the keys and string values are surrounded by quotes. Booleans, numbers, and
arrays are not.

• endpoint: it is a JSON object that groups settings about where the web
server is located and paths of different methods:

– base: the public HTTP address with port where the web server is
running. For example, http://sid06.cps.unizar.es:8080.

– data: the relative path of the web server from which all the operations
are offered. It must be “/infoboxer”.

– suggestions: the relative path of the web server from which the sug-
gestions operations are offered. It must be “/suggestions”.

– fromWikipedia: the relative path of the web server where the “Data
for instance” operation is served.

– generateInfobox: the relative path of the web server where the oper-
ation that generates a Wikipedia Infobox is served.

– stats: a JSON object that contains properties defining the location
of each one of the methods for registering user interaction and stats.
The properties are “newSession”, “newAction”, “closeSession”, “save-
Infobox”, “saveRdf”, “saveSurvey” and “wikimediaTime”, and their val-
ues must be the name of the property prefixed by “/stats/”.

• stats: a JSON object that contains a unique property, “activated”, whose
value is a boolean. If true, the Frontend makes a call to the web server on
every user interaction, so it is registered.

• thumbnail: a JSON object that contains settings of the shown image
thumbnail in the infobox simulator:

69

– activated: boolean indicated if the thumbnail is shown or not.
– property: property not surrounded with “<” nor “>” that identifies

an image thumbnail in the current KB.
– description: property not surrounded with “<” nor “>” that identifies

the description of an entity in the current KB.

• infoboxCode: JSON object with settings about the generated infobox code.

– format: string that can be “wikipedia” or “mediawiki”. If “wikipedia”,
the generated code will have the format required in Wikipedia. If “me-
diawiki”, the format will be the required by the MediaWiki wikis.

– serverside: boolean indicating if the Infobox generated code will be
generated in the client (false), or will be generated on the server (true).
If generated on the server, Wikipedia Infobox templates are applied,
so it can be inserted in Wikipedia pages. Only valid if “wikipedia” is
selected in the “format” option.

• categoriesRestrictions: JSON object that contains settings about the cat-
egories that can be selected:

– restrictByNumber: boolean indicating if a limit on the number of
selected categories is set.

– maxNumber: if the previous property is set to true, it indicates the
maximum number of categories that can be selected.

– restrictByWhitelist: boolean indicating if, when two or more cate-
gories are selected, only the defined combinations in the next setting
can be selected.

– whitelist: array containing arrays of posible classes combinations.
Only valid if the previous setting is set to true.

• resourcePrefix: a JSON object that contains definitions about how re-
sources are represented in the KB. It contains a property for every language
to be supported (“es”, “en”, “fr”,...) , and one “default” property used when
the interface language is not listed there. The value of every property is the
URI prefix used for representing resources. For example, for DBpedia, it
would be “http://dbpedia.org/resource/”.

Frontend Categories File
This file, located in /infoboxer/src/main/resources/static/data/categories.json, con-
tains the categories shown in the drop-down list of the Frontend. Its format is a
recursive JSON array of “Category” objects. Each of these objects contain the
following properties:

• _id: the URI of the class or category, surrounded by “<” and “>”. For
example, <http://dbpedia.org/ontology/Artist>.

70

• name: the displayed name for that category. For example, “Artist”.

• children: an array of “Category” objects like the one being described. They
will be shown as children of this category.
More than one category can be present with the same “_id” attribute, but
the “name” attribute can not be repeated. A little example is shown on
Listing B.3.
[

{
‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Person >’’,
‘‘name ’’: ‘‘Person ’’,
‘‘children ’’: [

{
‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Artist >’’,
‘‘name ’’: ‘‘Artist ’’,
‘‘children ’’: []

}
]

}
]

File B.3: Example of Frontend categories file.

B.3 Loading different KBs
In this section, first the requirements that a KB must meet to be loaded into the
system are enumerated. Then, the needed files, configurations and steps to load
four different KB on the system are detailed. Also, for each KB, some statistics
about instances, classes, and properties are given.

B.3.1 Knowledge Base Considerations
In order to use a certain KB in the developed system, it must satisfy some require-
ments. Some or them are mandatory so the system can properly work. Others are
optional, and its compliance improve how data is presented to user.

Mandatory Features

1. Required files: the ontology schema and the KB must be separated in two
different files.

2. Files format: the format of the schema and KB should be either RDF/XML
or N-triples.

Optional Features

1. Property and range names: in order to show the name (label) of prop-
erties and ranges correctly, its definition in the ontology schema must have
“rdfs:label” defined, so its value is used. In the case it is not present, the
shown value will be automatically derived from its URI. For example, for

71

the URI “http://dbpedia.org/ontology/birthPlace” the text “Birth place”
will be shown. The way the name is derived from the URI can be set on the
Backend configuration files.

2. Property descriptions: to show a description of the obtained properties
when the user hovers the mouse over their name, their definitions in the
ontology schema should have “rdfs:comment” defined. If not present, no
description will be shown.

3. Instance names: Suggested instances names or labels are usually automat-
ically derived from its resource URI. Besides, a property’s value in the KB
can be used as the label for an instance. For example, each instance of a KB
could have a ’name’ or ’label’ property whose value represents the instance.

B.3.2 DBpedia
DBpedia is the most famous KB of the Linked Data project. It is a general purpose
KB whose data comes from Wikipedia, but is also connected with well-known KBs
like GeoNames, Gutenberg Project or FOAF. It has several versions, one for each
Wikipedia language. Currently, the English version contains almost 6,000,000
instances, with a mean of 7 properties per instance. The steps to use this KB
(version 2015-04) are now described.

Download of the Required Files

1. First, in the downloads page of DBpedia 2015-045 the ontology file6 must be
downloaded.

2. Then, in the same page, the “Mapping-based types” file7, the “Mapping-
based types (transitive)” file8 and the “Mapping based properties” file9 have
to be downloaded.

3. Next, the files downloaded in the previous point have to be decompressed
and joined into one only file to form the KB. The cat UNIX tool can be used
for that.

4. Finally, the composed KB has to be converted into HDT and loaded into
the endpoint, and the ontology location has to be written on the Backend
configuration file.

If a newer version of DBpedia or a version in a different language is wanted,
the same steps have to be performed but downloading the files appropriate for the

5http://wiki.dbpedia.org/Downloads2015-04
6http://downloads.dbpedia.org/2015-04/dbpedia_2015-04.owl.bz2
7http://downloads.dbpedia.org/2015-04/core-i18n/en/instance-types_en.nt.bz2
8http://downloads.dbpedia.org/2015-04/core-i18n/en/instance-types-

transitive_en.nt.bz2
9http://downloads.dbpedia.org/2015-04/core-i18n/en/mappingbased-properties_

en.nt.bz2

72

http://wiki.dbpedia.org/Downloads2015-04
http://downloads.dbpedia.org/2015-04/dbpedia_2015-04.owl.bz2
http://downloads.dbpedia.org/2015-04/core-i18n/en/instance-types_en.nt.bz2
http://downloads.dbpedia.org/2015-04/core-i18n/en/instance-types-transitive_en.nt.bz2
http://downloads.dbpedia.org/2015-04/core-i18n/en/instance-types-transitive_en.nt.bz2
http://downloads.dbpedia.org/2015-04/core-i18n/en/mappingbased-properties_en.nt.bz2
http://downloads.dbpedia.org/2015-04/core-i18n/en/mappingbased-properties_en.nt.bz2

desired version. A listing of the available versions can be found at the DBpedia
Dataset page10.

Backend Configuration

An example Backend configuration file for using both DBpedia 2015-04 English and
Spanish version is shown on Listing B.4. Only fields related to the KB configuration
are shown.
Infoboxer Core Backend configuration file for DBpedia
Ontology
ontology . location =/ PATH/TO/TBOX.owl
Allowed classes for all: obtaining superclasses , filtering ...
ontology . allowedClasses = http ://.* dbpedia \. org /.* , http :// www.w3. org /.*

XMLSchema .*, http :// www.w3. org /.* langString .*, http :// www.w3. org /.* owl#
Thing .*, http :// xmlns .com/foaf /.*

ontology . classTransformations = (http :// xmlns .com/foaf /0.1/ Person ,http ://
dbpedia .org/ ontology / Person)

label . propertyDelimiter = /
label . typeDelimiter = /
label . uriToLabelMode = camelCase

instanceLabel . fromKB = false
instanceLabel . property =

unknownType . resource . value =.* dbpedia .org/ resource .*
unknownType . resource .type=<http :// www.w3. org /2002/07/ owl#Thing >
unknownType . langString .type=<http :// www.w3. org /1999/02/22 - rdf -syntax -ns#

langString >
unknownType . string .type=‘‘ XMLSchema #String ’’
unknownType . numeric .type=<http :// www.w3. org /2001/ XMLSchema #integer >
unknownType .else.type=<http :// www.w3. org /2002/07/ owl#Thing >

File B.4: DBpedia Backend configuration file.

Frontend Configuration

An example Frontend configuration file for using DBpedia is shown on Listing B.5.
Only fields related to the KB configuration are shown. Also, Listing B.6 shows an
example category file for DBpedia.
‘‘resourcePrefix ’’:{

‘‘en ’’: ‘‘http:// dbpedia .org/ resource /’’,
‘‘es ’’: ‘‘http:// es. dbpedia .org/ resource /’’,
‘‘default ’’: ‘‘http:// dbpedia .org/ resource /’’

}

File B.5: DBpedia Frontend configuration file.

[
{

‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Person >’’,
‘‘name ’’: ‘‘Person ’’,
‘‘children ’’ : [

{
‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Athlete >’’,
‘‘name ’’: ‘‘Athlete ’’,
‘‘children ’’: [

{

10http://wiki.dbpedia.org/datasets

73

http://wiki.dbpedia.org/datasets

‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology / BasketballPlayer >’’,
‘‘name ’’: ‘‘Basketball Player ’’

},
{

‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology / SoccerPlayer >’’,
‘‘name ’’: ‘‘SoccerPlayer ’’

}
]

},

{
‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Artist >’’,
‘‘name ’’: ‘‘Artist ’’,
‘‘children ’’: [

{
‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Actor >’’,
‘‘name ’’: ‘‘Actor ’’

}
]

},
{

‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology /Governor >’’,
‘‘name ’’: ‘‘Governor ’’

},
{

‘‘_id ’’: ‘‘<http:// dbpedia .org/ ontology / Bodybuilder >’’,
‘‘name ’’: ‘‘Bodybuilder ’’

}
]

}
]

File B.6: DBpedia Frontend categories file.

Using the KB

The DBpedia KB is working successfully, as it has been the main KB used during
the prototype development (see screenshot in Figure B.4). It is the most complete
tested KB; property and range labels, and property comments can be extracted
from the ontology, as the “rdfs:label” and “rdfs:comment” attributes are present.
Besides, as the used URIs for the instances are very descriptive, the labels used
for the suggested values can be derived from them.

There are more than 700 classes defined on the DBpedia ontology. Some of
them are shown in Table B.3 along the number of instances of each one on the
English version of DBpedia 2015-04. They are indented according to its level in
the hierarchy (for example, “Athlete” is a child class of “Person”). Note that,
as “Person” is superclass of the rest of shown classes, it has a greater amount of
instances. It also happens for “Athlete” being superclass of “SoccerPlayer” and
“BasketballPlayer”, and for “Artist” being superclass of “Actor”. For example,
for the class “SoccerPlayer”, a total of 414 properties were retrieved, being 40
statistical and 374 semantic. Some statistical properties are shown in Table B.5,
with the number and percentage of uses and the suggested ranges with their use
frequency. Regarding the semantic properties, some of them are “Home Town”,
“Former team” or “Spouse”.

74

Class Number of instances
Person 710143
··Athlete 30071
····SoccerPlayer 102618
····BasketballPlayer 9411
··Artist 30451
····Actor 5102
··Governor 2689
··Bodybuilder 235

Table B.3: Classes and number of instances for DBpedia.

Property Name Team Birthplace
Uses of property 82811 (80.70%) 82661 (80.55%) 74879 (72.97%)

Shown
ranges

String (100%) Soccer club (76%) Country (42%)
Thing (22%) Settlement (24%)
Sports Team (1%) Place (18%)
Event (1%) Thing (16%)

Table B.5: Properties for ”SoccerPlayer” class, with their ranges and uses.

Figure B.4: Screenshot: prototype using DBpedia KB.

B.3.3 GeoSpecies

GeoSpecies is a KB that contains information about biological Kingdoms, Orders,
Families, Species, etc. Currently, it contains more than 20,000 instances, with a
mean of 21 properties per instance. The steps to use this KB are now described.

75

Download of the Required Files

The GeoSpecies dataset can be found at its Datahub Site11. There, the ontology
12 and the KB file13 are found. The KB has to be converted to HDT format using
the proper tool specified in Appendix B.1.

Backend Configuration

An example Backend configuration file for using GeoSpecies is shown on List-
ing B.7. Only fields related to the KB configuration are shown.
Infoboxer Core Backend configuration file for GeoSpecies
ontology . location =/ PATH/TO/TBOX.owl
ontology . allowedClasses = http :// rdf. geospecies .org .*, http :// purl.org /.* ,

http :// www.w3. org /.* XMLSchema .*, http :// www.w3. org /.* langString .*,
http :// www.w3. org /.* owl# Thing .*, http :// xmlns .com/foaf /.*

ontology . classTransformations =
label . propertyDelimiter = #
label . typeDelimiter = #
label . uriToLabelMode = camelCase

instanceLabel . fromKB = true
instanceLabel . property = <http :// www.w3. org /2004/02/ skos/core#prefLabel >

unknownType . resource . value =.* lod. geospecies .org .*
unknownType . resource .type=<http :// www.w3. org /2002/07/ owl#Thing >
unknownType . langString .type=<http :// www.w3. org /1999/02/22 - rdf -syntax -ns#

langString >
unknownType . string .type=<http :// www.w3. org /2001/ XMLSchema #String >
unknownType . numeric .type=<http :// www.w3. org /2001/ XMLSchema #integer >
unknownType .else.type=<http :// www.w3. org /2002/07/ owl#Thing >

File B.7: Geospecies Backend configuration file.

Frontend Configuration

An example Frontend configuration file for using GeoSpecies is shown on List-
ing B.8. Only fields related to the KB configuration are shown. Also, Listing B.9
shows an example category file for Geospecies.
‘‘resourcePrefix ’’:{

‘‘en ’’: ‘‘http:// lod. geospecies .org/ resource /’’,
‘‘default ’’: ‘‘http:// lod. geospecies .org/ resource /’’

}

File B.8: Geospecies Frontend configuration file.

[
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # KingdomConcept >’’,
‘‘name ’’: ‘‘Kingdom ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # PhylumConcept >’’,
‘‘name ’’: ‘‘Phylum ’’,

11https://datahub.io/es/dataset/geospecies
12https://datahub.io/es/dataset/geospecies/resource/d1c7cdf1-cd87-4764-8ed9-

01e6baa90c5b
13http://lod.geospecies.org/geospecies.rdf.gz

76

https://datahub.io/es/dataset/geospecies
https://datahub.io/es/dataset/geospecies/resource/ d1c7cdf1-cd87-4764-8ed9-01e6baa90c5b
https://datahub.io/es/dataset/geospecies/resource/ d1c7cdf1-cd87-4764-8ed9-01e6baa90c5b
http://lod.geospecies.org/geospecies.rdf.gz

‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # ClassConcept >’’,
‘‘name ’’: ‘‘Class ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # OrderConcept >’’,
‘‘name ’’: ‘‘Order ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # FamilyConcept >’’,
‘‘name ’’: ‘‘Family ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// rdf. geospecies .org/ont/ geospecies # SpeciesConcept >’’,
‘‘name ’’: ‘‘SpeciesConcept ’’,
‘‘children ’’: [
]

}
]

File B.9: Geospecies Frontend categories file.

Using the KB

The GeoSpecies KB is working successfully in the system, as seen in Figure B.5.
However, property and range labels, and property comments can not be extracted
from the ontology by using either “rdfs:label” or “rdfs:comment”, so they are de-
rived from the URI. In contrast, the labels used for the suggested value are obtained
from the KB using the “<http://www.w3.org/2004/02/skos/core#prefLabel>”
property.

There are six main classes in the KB, which are shown in Table B.6 along the
number of instances of each one. For the class with more instances (“SpeciesCon-
cept”), a total of 90 properties were retrieved, being 73 statistical and 17 semantic.
The most popular statistical properties are shown in Table B.8, with the number
and percentage of uses and the suggested ranges with their use frequency. Re-
garding the semantic properties, some of them are “Has Vernacular Name”, “Has
Basionym Name” or “Has Nomenclatural Code String”.

Class Number of instances
KingdomConcept 8
PhylumConcept 78
ClassConcept 50
OrderConcept 217
FamilyConcept 1650
SpeciesConcept 18878

Table B.6: Classes and number of instances for Geospecies.

77

Property Close match Has Canonical
Name

In Order

Uses of property 18878 (100%) 18878 (100%) 18878 (100%)

Shown
ranges

Thing (58%) String (100%) Order Concept
(100%)

DBpedia Resource
(22%)
Bio2RDFtaxo
(21%)

Table B.8: Properties for ”Species Concept” class, with their ranges and uses.

Figure B.5: Screenshot: prototype using GeoSpecies KB.

B.3.4 IIMB Test KB
IIMB14 (ISLab Instance Matching Benchmark) test KB is a KB that provides data
about actors, sport persons, and business firms taken from the OKKAM project,
used for testing purposes. It contains about 200 properties with a mean of 8
properties per instance. The steps to use this KB are now described:

Download of the Required files

The dataset can be downloaded from the IIMB page 15. This file has to be uncom-
pressed, and the original ontology (“tbox.owl”) and KB (“abox.owl”) files have to
be used (located in the root of the directory). The KB file has to be converted
into HDT format, and the ontology file location has to be indicated in the web

14http://islab.di.unimi.it/iimb/
15http://islab.di.unimi.it/iimb/iimb.tgz

78

http://islab.di.unimi.it/iimb/
 http://islab.di.unimi.it/iimb/iimb.tgz

server configuration files.

Backend Configuration

An example Backend configuration file for using GeoSpecies is shown on List-
ing B.10. Only fields related to the KB configuration are shown.
Infoboxer Core Backend configuration file for IIMB test KB
ontology . location =/ PATH/TO/TBOX.owl
ontology . allowedClasses = http :// islab .dico. unimi .it/iimb /.* ,
http :// www.w3. org /.* XMLSchema .*,
http :// www.w3. org /.* langString .*,
http :// www.w3. org /.* owl# Thing .*, http :// xmlns .com/foaf /.*
ontology . classTransformations =

label . propertyDelimiter = #
label . typeDelimiter = #
label . uriToLabelMode = underscore

instanceLabel . fromKB = false
instanceLabel . property =

unknownType . resource . value =http :// islab .dico. unimi .it/imb/tbox.owl*
unknownType . resource .type=<http :// www.w3. org /2002/07/ owl#Thing >
unknownType . langString .type=<http :// www.w3. org /1999/02/22 - rdf -syntax -ns#

langString >
unknownType . string .type=‘‘ XMLSchema #String ’’
unknownType . numeric .type=<http :// www.w3. org /2001/ XMLSchema #integer >
unknownType .else.type=<http :// www.w3. org /2002/07/ owl#Thing >

File B.10: IIMB Backend configuration file.

Frontend Configuration

An example Frontend configuration file for using GeoSpecies is shown on List-
ing B.11. Only fields related to the KB configuration are shown. Also, Listing B.12
shows an example category file for IIMB.
‘‘resourcePrefix ’’:{

‘‘en ’’: ‘‘http:// islab .dico. unimi .it/iimb/abox.owl\#’’,
‘‘default ’’: ‘‘http:// islab .dico. unimi .it/iimb/abox.owl\#’’

}

File B.11: IIMB Frontend configuration file.

[
{

‘‘_id ’’: ‘‘<http:// islab .dico. unimi .it/iimb/tbox.owl \# actor >’’,
‘‘name ’’: ‘‘IIMB Actor ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// islab .dico. unimi .it/iimb/tbox.owl \# sportsperson >’’,
‘‘name ’’: ‘‘IIMB Sports Person ’’,
‘‘children ’’: [
]

},
{

‘‘_id ’’: ‘‘<http:// islab .dico. unimi .it/iimb/tbox.owl \# business_firm >’’,
‘‘name ’’: ‘‘IIMB Business Firm ’’,
‘‘children ’’: [
]

79

}
]

File B.12: IIMB Frontend categories file.

Using the KB

The IIMB test KB is working successfully in the system, as seen in Figure B.6.
However, property and range labels, and property comments can not be extracted
from the ontology using rdfs:label nor rdfs:comment, so they are derived from the
URI. The labels used for the suggested values are also derived from the URI.

There are three main classes in the KB, which are shown in Table B.9 along the
number of instances of each one. For the class with more instances (“Actor”), the
most popular properties are shown in Table B.11, with the number and percentage
of uses and the suggested ranges with their use frequency. As it can be seen, only
the String range is present; in the whole KB, all the values are String. Also, no
semantic properties were retrieved.

Class Number of instances
Business-Firm 59

Actor 88
SportsPerson 75

Table B.9: Classes and number of instances for IIMB test KB.

Property first Sentence tag domain
Uses of property 88 (100%) 87 (98.86%) 87 (98.86%)
Shown ranges String (100%) String (100%) String (100%)

Table B.11: Properties for ”Actor” class, with their ranges and uses.

Figure B.6: Screenshot: prototype using IIMB KB.

80

B.3.5 SwetoDBLP
SwetoDBLP16 is “a large-size ontology (spin-off of SWETO ontology) focused on
bibliography data of Computer Science publications where the main data source
is DBLP”. Currently, it contains more than 920,000 instances, with a mean of 14
properties per instance. The steps to use this KB are now described.

Download of the Required Files

At the SwetoDBLP main page the ontology17 (schema) and KB18 (instances) files
can be found. The only needed processing is to convert the KB file to HDT. The
ontology file location has to be indicated in the web server configuration file.

Backend Configuration

An example Backend configuration file for using SwetoDBLP is shown on List-
ing B.13. Only fields related to the KB configuration are shown.
Infoboxer Core Backend configuration file for SwetoDBLP
ontology . location =/ PATH/TO/TBOX.RDF
ontology . allowedClasses = http :// www.w3. org /1999/02/22 - rdf -syntax -ns#Seq ,
http :// lsdis .cs.uga.edu .*, http :// www.w3. org /.* XMLSchema .*,
http :// www.w3. org /.* langString .*, http :// www.w3. org /.* owl# Thing .*,
http :// xmlns .com/foaf /.*
ontology . classTransformations =

label . propertyDelimiter = #
label . typeDelimiter = #
label . uriToLabelMode = underscore

instanceLabel . fromKB = true
instanceLabel . property =<http :// www.w3. org /2000/01/ rdf - schema #label >

unknownType . resource . value =http :// lsdis .cs.uga.edu/ projects / semdis /opus#
unknownType . resource .type=<http :// www.w3. org /2002/07/ owl#Thing >
unknownType . langString .type=<http :// www.w3. org /1999/02/22 - rdf -syntax -ns#

langString >
unknownType . string .type=<http :// www.w3. org /2001/ XMLSchema #string >
unknownType . numeric .type=<http :// www.w3. org /2001/ XMLSchema #integer >
unknownType .else.type=<http :// www.w3. org /2002/07/ owl#Thing >

File B.13: SwetoDBLP Backend configuration file.

Frontend Configuration

An example Frontend configuration file for using SwetoDBLP is shown on List-
ing B.14. Only fields related to the KB configuration are shown. Also, Listing B.15
shows an example category file for SwetoDBLP.

16http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
17http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus_

august2007.rdf
18http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/swetodblp_

august2007.rdf.gz

81

http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus_august2007.rdf
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus_august2007.rdf
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/swetodblp_august2007.rdf.gz
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/swetodblp_august2007.rdf.gz

‘‘resourcePrefix ’’:{
‘‘en ’’: ‘‘http:// dblp.uni - trier .de/rec/’’,
‘‘default ’’: ‘‘http:// dblp.uni - trier .de/rec/’’

}

File B.14: SwetoDBLP Frontend configuration file.

[
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus#Book >’’,
‘‘name ’’: ‘‘SwetoDBLP Book ’’

},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus# Proceedings >’’,
‘‘name ’’: ‘‘SwetoDBLP Proceedings ’’

},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus#
Article_in_Proceedings >’’,

‘‘name ’’: ‘‘SwetoDBLP Article in Proceedings ’’
},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus#Webpage >’’,
‘‘name ’’: ‘‘SwetoDBLP Webpage ’’

},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus#Article >’’,
‘‘name ’’: ‘‘SwetoDBLP Article ’’

},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus# Masters_Thesis >’’,
‘‘name ’’: ‘‘SwetoDBLP Masters Thesis ’’

},
{

‘‘_id ’’: ‘‘<http:// lsdis .cs.uga.edu/ projects / semdis /opus# Doctoral_Dissertation
>’’,

‘‘name ’’: ‘‘SwetoDBLP Doctoral Dissertation ’’
},

]

File B.15: SwetoDBLP Frontend categories file.

Using the KB

The SwetoDBLP KB is working successfully in the system, as seen in Figure B.7.
However, property and range labels, and property comments can not be extracted
from the ontology using “rdfs:label” nor “rdfs:comment”, so they are derived from
the URI. In contrast, the labels used for the suggested value are obtained from
the KB using the “<http://www.w3.org/2000/01/rdf-schema#label>” property
(as seen in Figure B.7).

There are seven main classes in the KB, which are shown in Table B.12 along
the number of instances of each one. For a class with a representative number
of instances (“Proceedings”), a total of 36 properties were retrieved, being 15
of them statistical and 21 semantic. Some statistical properties are shown in
Table B.8, with the number and percentage of uses and the suggested ranges with
their use frequency. Regarding the semantic properties, the most popular are
“Pages”, “Cdrom” and “Gmonth”.

82

Class Number of instances
Book 1235

Proceedings 9027
Article in Proceedings 561895

Webpage 10610
Article 340488

Masters Thesis 8
Doctoral Dissertation 89

Table B.12: Classes and number of instances for SwetoDBLP.

Property Last Modified Date Isbn Cites
Uses of property 9027 (100%) 7769 (86.06%) 1 (0.01%)

Shown
ranges

Date (100%) String (100%) Article (46%)
Article in Proceed-
ing (43%)
Book (9%)
Thing (2%)

Table B.14: Properties for ”Proceedings” class, with their ranges and uses.

Figure B.7: Screenshot: prototype using SwetoDBLP KB.

83

B.4 Exposed HTTP API
Here the exposed operations through HTTP by the Web Server are described. For
each operation, a description of the returned data, parameters and an example
response is provided.

Some aspects have to be taken into account when making HTTP requests:

• All parameters are passed in the URL
(e.g: /infoboxer/propertyList?classList=...&language=es).

• All parameters have to be in URL-encoded format.

• All categories, ranges, and properties passed by parameter have to be in URI
format (e.g: <http://dbpedia.org/ontology/SoccerPlayer>) and surrounded
by “<” and “>”.

• All parameters are mandatory unless indicated.

“Instance count” Operation
• Path: /infoboxer/instanceCount

• Returns: number of instances that belong to at least one of the indicated
categories.

• Parameters:

– classList: category list in URI format, sepparated by commas.

• Response example:
{"count":161}

Result B.16: Example result of “Instance count” HTTP operation.

“Property list” operation

• Path: /infoboxer/propertyList

• Returns: List of properties used at least once by instances that belong to
one or more classes of the given class list. For each property, it is included the
URI, the label, the number of instances of the given classes that manifest that
property, a comment if available and a flag that indicates if is semantic or
not. If it is semantic, a “rangeForSemantic” object is added, which contains
the semantic range for that property. Also, in that case, the count represents
the number of instances in the whole KB that use the property.

• Parameters:

– classList: category list in URI format, sepparated by commas.

84

– language (Optional): “es” for Spanish, “en” for English, “fr” for French...
Default is “en”.

– semantic (Optional): if set to true, semantic properties will be returned.
Else, only statistic properties will be returned.

• Response example:
[

{
"_id":"<http :// dbpedia .org/ ontology /birthPlace >",
"count":1,
"label":"Birth place",
" semantic ":false,
" comment ":"where the person was born",
" rangeForSemantic ":null,

},
{

"_id":"<http :// dbpedia .org/ ontology /child >",
"count":1,
"label": "Child",
" semantic ":true,
" comment ":null,
" rangeForSemantic ": {"_id": <http:// dbpedia .org/

ontology /Person >, "label": " Person "}
}

]

Result B.17: Example result of “Property list” HTTP operation.

“Range list” Operation
• Path: /infoboxer/rangesAndUses

• Returns: given one or more categories it returns, for each property used by
instances of those categories, a list of ranges and, for each range, the number
of uses. For each property, the three most used ranges are returned, and a
fourth one grouping the rest is given when there are more than three ranges.

• Parameters:

– classList: category list in URI format, sepparated by commas.
– language (Optional): “es” for Spanish, “en” for English, “fr” for French...

Default is “en”.

• Response example:
[{

"key":"<http :// dbpedia .org/ ontology /occupation >",
"value":[

{

85

"_id":"owl#Thing",
"count":79,
"label":"Thing"

}
]

},
{

"key":"<http :// dbpedia .org/ ontology / nationality >",
"value":[

{
"_id":"owl#Thing",
"count":5,
"label":"Thing"

},
{

"_id":"<http :// dbpedia .org/ ontology /Country >
",

"count":57,
"label":" Country "

}
]

}]

Result B.18: Example result of “Range list” HTTP operation.

“Class list” Operation
• Path: /infoboxer/classList

• Returns: list of classes descendant of the given category, with the number
of instances of every class. Only a maximum of 50 results are retrieved,
according to the introduced text.

• Parameters:

– superClass: class in URI format whose children classes are retrieved.
– label (Optional): text used for filtering results.
– language (Optional): “es” for Spanish, “en” for English, “fr” for French...

Default is “en”.

• Response example:
[{"_id":"<http :// dbpedia .org/ ontology /Athlete >", "

count":141253," semantic ":false},
{"_id":"<http :// dbpedia .org/ ontology /Saint >","count"

:1763," semantic ":false},
{...}]

Result B.19: Example result of “Class list” HTTP operation.

86

“Suggestion list” Operation
• Path: /suggestions

• Returns: list of suggested values for the given list of classes, property and
range, sorted by frequency and filtered by the given text “label”. If “prop-
erty” and “classList” parameters are not provided, the suggested values will
be values with type “rangeType”.

• Parameters:

– classList (Optional): category list in URI format, sepparated by com-
mas.

– property (Optional): property in URI format.
– rangeType: range in URI format.
– label (Optional): text used for filtering results.

• Response example:

[
{

"_id":"<http :// dbpedia .org/ resource /Rusia >",
"count":8,
"label":"Rusia"

},
{

"_id":"<http :// dbpedia .org/ resource / United \
_States _of_America >",

"count":8,
"label":" United States of America "

}
]

Result B.20: Example result of “Suggestion List” HTTP operation.

“Data for instance” Operation
• Path: /fromWikipedia

• Returns: Given a Wikipedia page URL, it finds an equivalent instance in
the KB and returns a list of its properties, and, for each one, a list of values
and their concrete types.

• Parameters:

– wikipediaUrl: Wikipedia page URL.

• Response example:

87

[{
"key":"<http :// dbpedia .org/ ontology /profession >",
"value":[

{
"uri":"<http :// es. dbpedia .org/ resource /

Registro _de_la_propiedad >",
"label":" Registro de la propiedad ",
"type":" unknownRDFType "

}
]

},
{

"key":"<http :// dbpedia .org/ ontology /successor >",
"value":[

{
"uri":"<http :// es. dbpedia .org/ resource /Angel

_Acebes >",
"label":"Angel Acebes ",
"type":"<http :// dbpedia .org/ ontology /

President >"
},
{

"uri":"<http :// es. dbpedia .org/ resource /
Rodrigo _Rato >",

"label":" Rodrigo Rato",
"type":"<http :// dbpedia .org/ ontology /

President >"
}

]
}]

Result B.21: Example result of “Data for instance” HTTP operation.

B.5 SPARQL Queries
In this section the SPARQL queries used in every important operation are detailed.
As the used SPARQL endpoint does not optimize the queries like a Database
Management System would do, some operations have been decomposed in smaller
ones and additional processing was needed in some of them. The shown queries
are the result of an optimization process, the fastest queries among a lot of tried
alternatives. All of them can be used with one or more categories.

“Instance count” Operation
This is a simple operation that requires no further processing, only a SPARQL
query (see Listing B.22).

88

SELECT (COUNT (DISTINCT ?name) AS ?pcount)
{

{?name a " c l a s s 1 " } UNION . . . UNION {?name a " c l a s s 2 " }
}

Query B.22: SPARQL query for “Instance count” operation.

“Property list” Operation
This operation, as mentioned in Section 4.1.2, retrieves the list of statistical and
semantic properties for a given list of categories. First obtains a list of statistical
properties and its frequency from the KB, using the query on Listing B.23. Then,
the list of semantic properties is retrieved from the ontology, and for each one, the
count of instances in the whole KB that use that property (query on Listing B.24).
Finally, the results are combined.
SELECT DISTINCT ? property (COUNT(DISTINCT ?name) as ? count)
{

{ ?name a " c l a s s 1 " } UNION {?name a " c las sN " }
?name ? property ? value

}
GROUP BY ? property

Query B.23: SPARQL query for “Property list” operation.

SELECT (COUNT(DISTINCT ?name) AS ? count)
{

?name " semanticProperty " ? value
}
Query B.24: SPARQL query to obtain the number of instances that use a property
in the whole KB.

“Range list” Operation
This operation, as mentioned in Section 4.1.2, is decomposed in multiple queries.

1. First, two operations for obtaining a list of instances are performed. One of
them obtains the instances that belong to at least one of the given categories
(Listing B.25), while the other retrieves the instances that belong to all the
given categories (Listing B.26). The first one is used for obtaining ranges,
and the second one for obtaining suggestion values.

2. For each retrieved instance of the first list, all the triples which have the
instance as a subject along the types for every value are retrieved (see query
on Listing B.27 and example result on Listing B.29). Note that, if in the
Backend configuration it has been indicated that a value of a property can

89

be used as the label for the retrieved instances, the query on Listing B.28 is
performed. Its difference with the previous one is that it also retrieves, for
each value, its label according to the indicated property (“PROPERTY” in
the example).

3. Then, for each different retrieved value, its most concrete type is obtained
using the ontology and reasoner. In the case that the type is not known (like
in “Leytonstone”, the value of “BirthPlace” in the example), a default one
is assigned (usually “owl#Thing”).

SELECT DISTINCT ?name {

{?name a " c l a s s 1 " } UNION {?name a " c l a s s 2 " }

}
Query B.25: SPARQL query to obtain instances of at least one of the given cate-
gories.

SELECT DISTINCT ?name {

{?name a " c l a s s 1 " } .
{?name a " c l a s s 2 " }

}
Query B.26: SPARQL query to obtain instances of all the given categories.

SELECT DISTINCT ?prop ? value ? type
{

" i n s t anc e " ?prop ? value .
OPTIONAL {? value a ? type}

}
Query B.27: SPARQL query to obtain properties values and types for an instance.

SELECT DISTINCT ?prop ? value ? type ? l a b e l
{

" i n s t anc e " ?prop ? value .
OPTIONAL {? value a ? type} .

OPTIONAL {? value PROPERTY ? l a b e l }

}
Query B.28: SPARQL query to obtain properties values types and labels for an
instance.

90

PROPERTY VALUE TYPE
PlaysOn Madrid_F .C. Thing
PlaysOn Madrid_F .C. Soccer_Club
Name "David "^^xsd : S t r ing
Bir thPlace Leytonstone

Query B.29: Example result of the SPARQL “Range list” operation

“Suggestion list” Operation
This operation, that returns a list of value suggestions for a certain category list,
property, and range, takes its data from the cache file generated by the “Range
list” operation and complements it with values from all the KB that belong to
that range. Those values are obtained with the SPARQL query previously shown
in Listing B.25.

“Data for instance” Operation
This operation, that obtains all the properties and values of an instance equivalent
to the given Wikipedia page URL, uses the query previously shown in Listing B.27,
with little additional processing.

91

92

Appendix C

Evaluations

This appendix gathers the collected data in the different performed tests. Firstly,
the results of a comparison between different system approaches are provided.
Then, data of the three different evaluations where users participated are shown.

C.1 Comparisons Between Approaches
In this section, the results of multiple comparisons of time and disk space between
different approaches are shown. These results support the decision of using a Fuseki
SPARQL Endpoint over a MongoDB database because its greater performance in
the application context, and specifically a modified version that uses the HDT
compression format, because the little used disk space.

Time Comparison between MongoDB, Fuseki HDT and
Fuseki RDF
Table C.1 shows the results of an evaluation that compares the time that different
versions of the system took to generate a template for the “SoccerPlayer” and
“Basketball Player” categories, using DBpedia 2015-04. The shown times are the
arithmetic mean of three different executions. The version that uses MongoDB
was an early prototype discarded because of its inefficiency, and the system version
that uses a Fuseki SPARQL Endpoint (HDT or RDF) is the used in the developed
system.

As it can be seen on the results, using the Fuseki SPARQL endpoints more time
is spent on the first queries, but the expensive process of generating intermediate
data and importing it to MongoDB is not required. In the three approaches, the
second and next queries are quicker because of the built response file cache. The
Fuseki HDT and RDF versions take approximately the same time, and are far
quicker than the MongoDB version.

93

MongoDB Fuseki HDT Fuseki RDF
Generate SoccerPlayer
intermediate data 1331.18 s N/A N/A

Generate BasketballPlayer
intermediate data 203.66 s N/A N/A

Import to MongoDB 66.40 s N/A N/A
1st SoccerPlayer query 92 s 184.22 s 191.45 s
1st BasketballPlayer query 91 s 17.44 s 17.57 s
1st multicategory query 95 s 198.99 s 189.28 s
Next SoccerPlayer queries 0.5 s 0.5 s 0.5 s
Next BasketballPlayer queries 0.5 s 0.5 s 0.5 s
Next multicategory queries 0.5 s 0.5 s 0.5 s
Total one query 1879.24 s 400.65 s 398.3 s
Total two queries 1880.74 s 402.15 s 399.8 s

Table C.1: Required time to create “SoccerPlayer” and “BasketballPlayer” tem-
plates.

Detailed Time Comparison between Fuseki HDT and RDF
In this section, more detailed results of the comparison between the two SPARQL
endpoints (Jena Fuseki, that uses plain RDF, and a modified version that uses
HDT to store the data) are given.

Table C.2 shows the difference in the average time required to generate a se-
mantic template for the categories “Body Builder”, “Actor”, and “Governor”, its
combination (BB&G&A), “Soccer Player”, “Basketball player”, and its combina-
tion (SP&BP) using the RDF and the HDT versions of the used Fuseki SPARQL
Endpoint. Notice that, for the combinations, the number of instances to process
is exactly the sum of the number of instances of each category, as no instance in
the KB belongs to all the categories of the combinations. Also, as the prototype
implements a caching mechanism, this time is needed the first time the semantic
template has to be created.

Tables C.3 and C.4 show the time took on the generation of templates of one
category, broke down by each of the performed operations, and using the HDT
endpoint and RDF, respectively. Tables C.6 and C.6 show the broke down times
on the generation of templates for multiple categories (BB&G&A and SP&BP).
The results show that both approaches are pretty similar in times; the differences
are very little.

94

Category # instances Time needed (s) Time needed (s) Speedup (%)Fuseki RDF Fuseki RDF HDT
Body Builder 235 0.54 0.48 5.9
Governor 2,689 17.24 11.04 21.92
Actor 5,102 12.6 11.27 5.57

BB&G&A 8,026 19.65 21.16 -3.7
Soccer Player 102,618 191.45 184.22 1.92

Basketball Player 9,411 17.57 17.44 0.74
SP&BP 112029 189.28 198.99 -4.87

Table C.2: Required time to create templates using RDF and HDT.

Operation Soccer
Player

Basketball
Player

Gover-
nor

Ac-
tor

Body
Builder

instances 102618 9411 2689 5102 235
Instance Count (s) 0.35 0.03 10.25 0.03 0.01
Property List (s) 17.54 2.21 1.90 2,23 0.09
Range List (s) 166.33 15.20 8.88 9.01 0.38
Total time (s) 184.22 17.44 11.04 11.27 0.48

Table C.3: Required time of mono-category operations using HDT Endpoint.

Operation Soccer
Player

Basketball
Player

Gover-
nor

Ac-
tor

Body
Builder

instances 102618 9411 2689 5102 235
Instance Count (s) 0.72 0.07 0.58 0.34 0.02
Property List (s) 12.72 1.98 3.64 2.31 0.07
Range List (s) 178.01 15.52 13.02 9.95 0.45
Total time (s) 191.45 17.57 17.24 12.6 0.54

Table C.4: Required time of mono-category operations using RDF Endpoint.

Operation BB&G&A SP&BP
instances 8026 112029
Instance Count (s) 0.03 0.40
Property List (s) 4.09 16.45
Range List (s) 17.04 165.68
Total time (s) 21.16 182.53

Table C.6: Required time of multi-category operations using HDT Endpoint.

95

Operation BB&G&A SP&BP
instances 8026 112029
Instance Count (s) 0.06 0.16
Property List (s) 3.18 10.9
Range List (s) 16.41 167.31
Total time (s) 19.65 178.37

Table C.8: Required time of multi-category operations using RDF Endpoint.

96

Disk Space Comparison
In Table C.9 the disk space used by the different storage approaches with DBPedia
2015-04 is detailed. With MongoDB, a file for every category has to be generated,
so the size of the five tested categories is specified. With the Fuseki SPARQL
endpoint, either the RDF or the HDT version, all the KB is loaded into it, so the
size of the full KB is shown. The results show that the HDT version of the Fuseki
SPARQL endpoint is the approach that occupies less space disk. As RDF and
HDT were similar in means of time to generate the templates, the disk space was
decisive to choose HDT over RDF. MongoDB also would take too much space to
store all the categories from a KB, and was discarded because its bad performance
in the system context.

MongoDB Fuseki RDF Fuseki HDT
Soccer Player 627.4 MB

3 GB
(All the KB)

714 MB
(All the KB)

Basketball Player 67.2 MB
Governor 18.5 MB
Actor 29.2 MB
Body Builder 0.859 MB

Table C.9: Disk space used with MongoDB, Fuseki RDF and HDT approaches.

C.2 Editatón por la visibilidad de las mujeres de
Aragón

This section provides data gathered in the “Editatón por la visibilidad de las
mujeres de Aragón” (Edit-a-thon for the visibility of women in Aragón), whose
results were analysed in Section 4.2. In Table C.11, for every infobox created in
the event, it is specified the took time, page name, categories selected, properties
filled, how many of them could be linked, and the number of them that were linked.

97

ID time (s) Page Categories Props. Linkable Linked
12 236 Carmen Magal-

lón Portolés
Scientist 6 4 3

14 1020 Eva berlanga
camacho

Scientist 6 4 3

15 474 María Lostal Resistance
Member

3 2 2

17 411 María Jesús Fer-
nández

Scientist 17 11 2

19 194 María Jesús Fer-
nández

Scientist 12 8 0

20 256 Luisa Gavasa
Moragón

Actress 7 4 1

22 136 María del Car-
men García

Historian 3 3 3

23 600 Ana Labordeta
de Grandes

Actress 5 2 0

26 180 Paula Ortiz Ál-
varez

Screenwriter 8 5 4

27 97 Paula Ortiz Screenwriter 8 5 4
29 633 María Josefa

Yzuel Giménez
Scientist and
Coach

15 10 4

30 669 María José
Pueyo Bergua

Athlete 9 7 0

31 386 Belen Masia Scientist 9 6 4
Table C.11: Time, categories, properties and linked properties on every infobox
created in the first Wikipedia edit-a-thon.

98

C.3 Wikinformática 2016
In this section, some results of the “Wikinformática 2016” edit-a-thon are detailed.
First, raw data of the creation of infoboxes of scientists is shown. Then, the
evaluation of the offered ranking of properties and its results are described.

Data of Created Infoboxes
In Table C.12 the raw data that supports the Figure 4.7 (Section 4.2) is shown. For
every scientist infobox created, the seconds it took and the page name are detailed.
Also, the number of properties filled, how many were linkable and the quantity of
linked properties is provided. Note that linkable properties are properties whose
introduced values (for example, “Zaragoza” for birth place) were already in the
KB, hence they could be linked.

Evaluation of Property Ranking

Figure C.1: Tester Disagreement (TD) and System Disagreement (SD) for the
Wikinformática edit-a-thon test.

The performed evaluation of the property ranking offered to the user focused
on the infoboxes of the “Scientist” category, and compared the order of properties
generated by the system with the order of properties that the users filled in. To
compare these rankings, the approach described in [36] was used for the top
6 (the average number of properties for Scientists in DBpedia), 9 (the average
of properties filled in by the users), and 18 (the maximum number of properties):
first, the generalized Kendall’s tau [12], a measure widely used to compare rankings,
was computed. Then, a global level of disagreement between all the users and the
system, and a global level of disagreement among the users, SD and TD in [36],
respectively, was obtained. If SD ≤ TD, the disagreement between the users and
the system is not higher than the disagreement between the users themselves. This
happens for the top-6 and top-9 rankings (see Figure C.1) but for the top-18 the
disagreement of the system is slightly higher. This occurs because the infoboxes

99

ID time (s) Page name Properties Linkable Linked
9685 550 Frances Elizabeth Allen 9 4 4
9687 728 Anita Borg Naffz 14 4 2
9697 551 Augusta Ada Lovelace (Ada Byron) 9 4 1
9698 535 María López 9 4 2
9703 434 Alexandra Ferrerón 9 3 1
9706 210 Alexandra Ferrerón 9 4 0
9707 302 6 3 2
9710 903 Nieves Rodríguez Brisaboa 7 5 4
9711 550 Nieves Rodríguez Brisaboa 7 5 4
9712 513 Nieves Rodríguez Brisaboa 5 3 3
9713 402 Nieves Rodríguez Brisaboa 5 4 3
9714 393 Nieves Rodríguez Brisaboa 6 4 1
9716 148 Nieves Rodríguez Brisaboa 6 4 3
9720 667 Nieves Rodríguez Brisaboa 7 4 4
9722 1670 Anita Borg 15 6 5
9723 1255 Frances Elizabeth Allen 18 11 7
9726 102 Anita Borg 10 6 4
9734 500 María López 7 5 5
9736 469 Asunción Gómez Pérez 13 6 5
9737 774 Ana Cristina Murillo 7 2 2
9740 155 Arantza Illaramendi 4 3 2
9747 708 Anita Borg 15 6 2
9752 991 8 6 2
9753 915 Alicia Asín 14 6 0
9754 848 11 6 5
9764 1413 Susan Kare 10 4 3
9765 709 Carol Shaw 11 4 0
9768 271 Carol Shaw 11 3 1
9772 8 4 3
9776 399 Ada Lovelace 6 4 3
9777 333 Ada Lovelace 8 4 3
9779 394 Ana Cristina Murillo Arnal 8 3 0
9781 383 Alicia Asín 13 7 0
9788 320 Ana Cristina Murillo 5 4 3
9798 437 Celia Sánchez - Ramos Roda 9 3 0
9827 187 11 4 1
9830 698 ada lovelace 9 5 0
9833 285 María López Valdes 7 4 0
9834 215 Ada Lovelance 9 5 0
9859 721 Frances Elizabeth Allen 10 6 7
9861 780 Anita Borg 10 6 4
9863 566 Frances Elizabeth Allen 7 5 0
9865 438 Margarita Salas 8 5 0
9867 827 Barbara H. Liskov 9 4 0
9868 459 Barbara H. Liskov 11 6 0
9870 15 11 11
9873 Ana Cristina Murillo 14 10 10

Table C.12: Time, properties, and linked properties on every Scientist infobox
created on Wikinformática

100

created with high number of properties made use of “semantic properties” which
are not used by any instance of the scientist category in the KB (e.g., “eye colour”
or “sibling”).

C.4 Amazon Mechanical Turk Tests
In this section, data gathered on the test set in Amazon Mechanical Turk (MTurk),
explained in Section 4.2, are shown. Note that conclusions about the results are
commented in that chapter.

Data of Created Infoboxes
Table C.13 shows information about the Infobox created by every user using
the developed system. The information about the infoboxes created using the
Wikipedia mechanism for those same users is shown on Table C.14. Note that,
in the Wikipedia case, the linkable properties are those whose introduced values
have a Wikipedia page.

ID Time (s) Properties Linkable Linked
8877 434 15 9 7
8879 722 14 7 4
8884 372 13 5 0
8890 425 14 6 4
8891 515 12 4 2
8894 159 11 5 3
8897 759 33 24 8
8898 464 20 10 5
8899 506 25 14 8
8900 193 9 2 1
8962 1048 11 4 1

Table C.13: Information about the infoboxes created on MTurk tests, using the
developed system.

Survey Results
Table C.16 shows, for every user that participated in the test performed in Amazon
Mechanical Turk, data such as age, education, experience using Wikipedia (WP),
and which system he/she finds easier and faster to use. Then, Table C.18 and
C.20 show the advantages and disadvantages of the developed system, according
to each user. Note that the developed prototype is mentioned as "Infoboxer".

101

ID Time (s) Properties Linkable Linked
8877 485 14 11 0
8879 492 20 10 0
8884 370 10 7 0
8890 426 9 6 0
8891 356 10 8 0
8894 489 9 7 0
8897 241 5 5 0
8898 227 6 4 0
8899 431 16 13 0
8900 103 5 3 0
8962 434 8 6 0

Table C.14: Information about the infoboxes created on MTurk tests, using the
Wikipedia mechanism.

ID Age Education Experience
using WP

Experience
editing
WP

Infoboxes
created
before

Easier sys-
tem

Faster sys-
tem

8877 25-40 High
School

Very
familiar

No 0 Infoboxer Infoboxer

8879 25-40 High
School

Very
familiar

No 0 Infoboxer Infoboxer

8884 40-55 High
School

Very
familiar

No 0 Infoboxer Infoboxer

8890 25-40 High
School

Occasional No 0 Wikipedia Wikipedia

8891 < 25 Bachelor’s
Degree

Very
familiar

No 0 Infoboxer Infoboxer

8894 40-55 Undergrad.
program

Occasional No 0 Wikipedia Infoboxer

8897 40-55 High
School

Very
familiar

No 0 Infoboxer Wikipedia

8898 < 25 High
School

Occasional No 0 Infoboxer Infoboxer

8899 40-55 Bachelor’s
Degree

Very
familiar

No 0 Wikipedia Wikipedia

8900 40-55 High
School

Very
familiar

No 0 Infoboxer Infoboxer

8962 40-55 Master’s
Degree

Occasional No 0 Infoboxer Wikipedia

Table C.16: Information of the users that participated in the MTurk test.

102

ID Comment
8877 It has a great layout and it makes it simple to search for things with the click

of a button.
8879 I think it looks easier therefore making me feel like I am better qualified to

use it.
8884 You can search easier.
8890 Unsure.
8891 It is easier to input the information.
8894 It is quicker to input information.
8897 It offers suggestions when you start typing.
8898 It’s simple and clear.
8899 it fills in some information for you.
8900 Looks better and easier to read and figure out what data i needed to put in

the boxes.
8962 The Infoboxer tool is neat and systematic, with slots for specific information

making it smooth and streamlined.
Table C.18: Advantages of the developed system according to MTurk users.

ID Comment
8877 It looks for specific information, so small typos could bring up different results.
8879 User friendly.
8884 Not sure what to do when info isn’t relevant.
8890 Confusing.
8891 There are many irrelevant categories.
8894 You still have to search out the information to be input.
8897 It is slower to use.
8898 None.
8899 The way the boxes are aligned make it difficult to work smoothly.
8900 Could not see one.
8962 You need to break up the information into specific parts to suit the Infoboxer’s

requirement which makes it time consuming.
Table C.20: Disadvantages of the developed system according to MTurk users.

103

104

Appendix D

User Manual

In this appendix, the application functioning is explained, detailing each screen
and its components, so a non-technical user can understand how to use it.

D.1 How to Access the System
To use the system, the user has to access with a web browser (tested on Google
Chrome and Mozilla Firefox) to the address configured by the responsible technical
person. Then, the login page will appear.

D.2 Login Page
The first view the user sees when he/she enters the prototype is the login page
(Figure D.1). It allows the user to select the language, the type of properties
shown, and to introduce an username that will be used to identify him/her in
the gathered information (interactions, time used, stats...). The elements which
appear in the view are:

1. A username input box, where the user must type a username that identifies
him/her.

2. Two language selection buttons, where the user can select the interface and
shown data language between English and Spanish.

3. Two properties mode selection buttons. The user can decide if statistical
and semantic properties are shown, or only the statistical ones.

4. The start button, that requires a username to be introduced. If pressed, it
takes the user to the main prototype page.

105

Figure D.1: Screenshot: login page of the prototype.

D.3 Main Page
The next page is the main prototype page (Figure D.2). In it, the user can input
the name of created instance and select the appropiate categories that define it.
Also, some presentation settings can be changed. The elements appearing in the
view are:

1. A text input where the user has to input the name of the instance whose
information wants to create. For example, “David Beckham”.

2. A category input where the user can select a category that best fits the
instance being introduced. When the user makes click on it, a drop-down
list appears, and its results are filtered as the user types. As classes usually
have hierarchies, the user can fold and unfold them however he/she likes.

3. An “Add” button to add a new category input, so multiple categories can
be selected.

4. A “Load data” button that generates the template for the introduced cate-
gories and shows it to the user. It has to be clicked when one or more cat-
egories are already selected. When clicked, a “waiting” icon appears while
loading, and finally the template appears at the bottom of the page (See
“Template page (expert)” and “Template page (simple)”).

5. A “Configuration” button that shows a floating window where the user can
configure presentation settings. It can be seen on Figure D.3 and its elements
are:

(a) Two buttons to select the interface and shown data language.

106

(b) Two buttons to change the interface mode between complete/expert
and simple/basic mode.

(c) Two buttons to select what kind of properties are shown.

6. An “Info” button that shows information about the prototype creator.

7. A “Create new” button that discards all the introduced data and reloads the
page.

8. A “Close without saving” button that takes to the login page without gen-
erating RDF nor Infobox code.

9. A dropdown, “Multicat mode”, that only appears in Expert mode when more
than one category has been selected. It allows the user to select if properties
are merged or not.

Figure D.2: Screenshot: main page of the prototype.

107

Figure D.3: Screenshot: config windows of the prototype.

D.4 Template Page (Expert)
This page (Figure D.4) is accessed when the user selects one or more categories,
clicks on the “Load data” button and the Expert mode is selected. It shows
the generated template in the left side, allowing the user to introduce values for
the given properties, and simulates an Infobox in the right side. The elements
appearing in this page are:

1. The list of statistical and semantic properties that form the generated tem-
plate. It can be scrolled, and a pagination system is present. Each property
has the following components:

(a) The name or label of the property in the selected language.
(b) The frequency of the property (percentage of instances of at least one

of the given categories that manifest that property).f
(c) The frequency of the property on each individual selected category.
(d) A search button that opens a browser window with a Google Search

about the property value for the instance being created.
(e) A value input where the user can introduce the value for a property or

select one from the provided suggestion list (1h).
(f) A button that adds another value input to the property, so more than

one value can be introduced.
(g) A ranges bar that show the used ranges for that property and their

frequencies. When multiple categories are selected, first a bar for the
combination of categories is shown, and then one for each individual
class.

(h) A dropdown list of suggestions. Suggestions are grouped by the ranges
shown in the top bar, and in this mode, the count of uses is also shown.
The provided suggestions change as the user types to propose the value

108

he/she is looking for. When a value is clicked, it is automatically entered
in the value input.

2. A preview of the entity being generated, using for that a visual format sim-
ilar to Wikipedia infoboxes Each time a value is modified in the left side
of the interface, the Infobox is updated in real time. It has the following
components:

(a) The name of the instance being inserted.
(b) A thumbnail of image of the instance. Doing click on the camera icon

allows the user to enter an image URL that will be shown there.
(c) The list of entered values. If a value is linked, it appears like an hyper-

link (blue). The pencil icon at the right side of each value moves the
interface directly to were that value was introduced so it can be edited.

(d) The “Save and Finish” button generates the Wikipedia Infobox code for
the introduced information, saves it to the server, and stops counting
the time that takes the user to fill the template. Also, a little survey is
shown where the user can express whether the system is easy to use or
he/she had any problem.

(e) When this button is clicked, a Wikipedia Page URL is asked to the user.
When it is introduced, the properties are automatically filled according
to the information about that page contained in the KB.

(f) This button generates the Wikipedia Infobox code and shows it to the
user.

(g) This button generates and shows to the user HTML code. This HTML
code, when introduced into a website, shows an Infobox similar to the
displayed in the prototype.

(h) This button generates and shows the RDF code belonging to the intro-
duced data.

109

Figure D.4: Screenshot: template page (expert) of the prototype.

D.5 Template Page (Basic)
This page (Figure D.5), accessed when the user selects one or more categories,
clicks on the “Load data” button and the Simple mode is selected, has the same
structure as the Expert mode page, but shows only the basic data. The elements
appearing in the page are:

1. The list of statistical and semantic properties that form the generated tem-
plate. For each property, the following components are shown:

(a) The name or label of the property, in the language selected by the user.
(b) An value input where the user can type a value or select one from the

suggested values list.
(c) A button to add another value input, so a property can have more than

one value.
(d) A search button that opens a browser window with a Google Search

about the property value for the instance being created.
(e) A dropdown list that provides suggestions of values, similar to the one

in Expert mode, but without displaying the frequency of each value.
They are grouped by ranges as in the “Expert mode”, but no range bar
is shown.

2. A preview of the entity being generated identical to the one shown in the
Expert mode. It has the following components:

110

(a) The name of the instance being inserted.
(b) A thumbnail of image of the instance. Doing click on the image allows

the user to enter an image URL that will be shown there.
(c) A list of introduced values with an edit button, similar to the Expert

mode.
(d) A “Save and Finish” button that generates the Wikipedia Infobox code

for the introduced information, saves it to the server and stops counting
the time that takes the user to fill the template. Also, a little survey is
shown where the user can express whether the system is easy to use or
he/she had any problem.

Figure D.5: Screenshot: template page (basic) of the prototype.

111

	Introduction
	Goals
	Document structure

	Technological Overview
	Context of the project
	Semantic Web
	Wikipedia
	Other Technologies

	State of the Art
	Tools to Create And Populate KBs
	Tools to Create and Manage Infoboxes

	Generation of Semantic Templates
	Overview of the Approach
	Combining Statistical and Semantic Information
	Identifying Relevant Attributes
	Identifying Types of Values
	Dealing with Multiple Categories
	Ranking Attributes and Types of Values
	Providing Significant Suggestions of Values

	Prototype of the System
	Architecture of the System
	Frontend
	Backend

	Experimental Evaluation
	Evaluating the Quality of the Created Content
	Comparing the System with the Current Wikipedia Mechanism

	Conclusions
	General Conclusions
	Methodology
	Project Schedule
	Future Work
	Personal Assessment

	Bibliography
	Analysis and Design of the Prototype of the System
	Analysis of the Prototype
	Design of the Prototype
	General Use Case
	Package Diagrams
	Sequence Diagrams and Descriptions of Operations
	Deployment Diagram

	MySQL Data Model

	System Set-up, Configuration and Technical Aspects
	Running the Prototype
	Configuration Files
	Loading different KBs
	Knowledge Base Considerations
	DBpedia
	GeoSpecies
	IIMB Test KB
	SwetoDBLP

	Exposed HTTP API
	SPARQL Queries

	Evaluations
	Comparisons Between Approaches
	Editatón por la visibilidad de las mujeres de Aragón
	Wikinformática 2016
	Amazon Mechanical Turk Tests

	User Manual
	How to Access the System
	Login Page
	Main Page
	Template Page (Expert)
	Template Page (Basic)

