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Abstract

Furuta pendulum as an academic benchmark example for evaluating non-linear
control algorithms. The main aim of this dissertation is to study this physical
system, showing its dynamic model and several strategies for its control. An
assortment of swing-up and upright control approaches is reported with its de-
sign and simulations.

Besides, this document describes the project development which is being done at
the FabLab of the Óbuda University, whose objective is to design and manufac-
ture a demonstration device that is capable to test and display various control
strategies. Requirements and specifications of the design, used tools and future
work are described.

The dissertation is structured in eight different chapters: (1) History of the
Furuta pendulum, describing the origin of this system; (2) State-of-the-art in
non-linear control, giving a background for the different control strategies; (3)
Dynamic model of the Furuta pendulum; (4) Swing-up by energy control, based
on the work of Åström and Furuta; (5) Stabilizing local control, via full state
feedback; (6) Hybrid control, which sums up the previous approaches; (7) De-
velopment project, which describes the work realized in the FabLab and (8)
Conclusion, discussing the knowledge extracted from the development of this
thesis.
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1 History

Inverted pendulums are a family of devices that constitute a very comprehen-
sive and interesting testing bench for non-linear control engineering. The most
studied member of this family is called inverted control on a vehicle, which is
commonly referred as cart. It consists of a pendulum or rod freely rotating
on one end by a joint located on a cart that moves on a horizontal straight
guide under the action of a force F , which is the control input with which it
is intended to act on the position of the rod. Initially, in the 60s of the last
century, this system could be seen in the control laboratories of the most presti-
gious universities. The demonstration consisted of manually set the pendulum
in the vertical position, release it and autonomously feeding back the position
the pendulum continued in the inverted position by applying the proper action
to the cart. The issue of control is local and its interest lies in that it was stabi-
lize an unstable position in open loop which, as we know, is a very remarkable
control problem. This issue because of its local character can be solved with
linear methods, and this has been done since the 60s. It is important to note
that in linear systems closed loop stabilization of unstable points in open loop
offers no particular problems. They appear when the system is non-linear. The
drawback with this version of the pendulum, when global problems are raised,
is that the cart path is limited, so if one of the ends of the horizontal support is
reached the system stops working. To avoid this limitation Katsuhisa Furuta,
from the Tokyo Institute of Technology, proposed in the 70s the rotary inverted
pendulum known since then as Furuta pendulum [1].
It consists of a driven arm which rotates in the horizontal plane and a pen-
dulum attached to that arm which is free to rotate in the vertical plane. The
pendulum is an under-actuated 2 degrees of freedom system, extremely non-
linear due to the gravitational forces and the coupling arising from the Coriolis
and centripetal forces. As [2] reports, the pendulum shows two different and
interesting control problems: The first one is to swing the pendulum up from
the rest state (down) to the upright position. The second one comes once the
pendulum is close to the desired upright position. At low speed, a stabilization
or balancing strategy is needed there. Other control problems which are also
quite interesting are the stabilization of autonomous oscillations or the control
through bifurcation analysis.

2 State-of-the-art in Non-linear Control

2.1 Linear Control (PI or PID)

The PID controller is by far the most dominating form of feedback in use today.
More than 90% of all control loops are PID. In fact, most loops are PI because
derivative action is not used very often. A strength of the PID controller is that
it also deals with the important practical issues such as actuator saturation or
integrator windup. However, the PID controller being linear is not suited for
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strongly non-linear systems, such as an inverted pendulum. Nevertheless, as [3]
introduces, in order to improve the performance of linear PID controllers, many
approaches haven been developed to enhance the adaptability and robustness
by adopting the self-tuning method, general predictive control, fuzzy logic and
neural networks strategy. Among these approaches, non-linear PID (N-PID)
control is one effective and simple method for industrial application. It has
application in nonlinear systems, where N-PID control is used to accommodate
the non-linearity and achieve consistent response across a range of conditions.

2.2 Sliding Mode Control

As mentioned in [4], the sliding mode approach is an efficient tool to design
robust controllers for complete high-order non-linear dynamic systems. The re-
search in this area began 40 years ago in the Soviet Union. The major advantage
of sliding mode is low sensitivity to plant parameter variations and disturbances
which eliminates the necessity of exact modelling. Sliding mode control enables
the decoupling of the overall system into independent partial components of
lower dimension and, as a result, reduces the complexity of feedback design.
Sliding mode control implies that control actions are discontinuous state func-
tions which may easily be implemented by conventional power converters with
on-off as the only admissible operation mode.

2.3 Feedback Linearization

According to [5], feedback linearisation is perhaps the most important non-linear
control design strategy developed during the last few decades. The main objec-
tive of the approach is to algebraically transform non-linear system dynamics
into linear by using state feedback and a non-linear coordinate transformation
based on a differential geometric analysis of the system. By eliminating non-
linearities in the system, conventional control techniques can be applied. The
linearisation is carried out by model-based state transformation and feedback
rather than by linear approximations of the dynamics, as used in Jacobian lin-
earisation, where the resulting linear model is only locally valid. Differential ge-
ometry has proved to be a successful mean of analysing and designing non-linear
control systems, equivalently to that of linear algebra and Laplace transform in
relation to linear systems. Feedback linearisation is a strong research field with
rigorous mathematical formulations.

2.4 Parallel Distributed Control (PDC)

There has been a rapidly growing interest in fuzzy controllers in recent years.
Fuzzy logic has many varieties to be implemented for control purposes. As
[6] reports, one of them is parallel distributed compensation (PDC). The PDC
offers a procedure to design a fuzzy controller from a given TakagiSugeno (TS)
fuzzy model. Most of the non-linear systems can be transformed into the TS
fuzzy model. The main idea of the PDC technique is to partition the dynamics
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of a non-linear system into a number of linear subsystems, design a number
of local controllers for each linear subsystem, and finally generate the overall
controller (compensator) by the fuzzy blending of such local controllers.

2.5 Tensor Product Model Transformation

As mentioned in [7], the Tensor Product (TP) model transformation based con-
trol approach is applied to stabilize a system with structural non-linearities. It
can decompose numerically any given non-linear Quasi Linear Parameter Vary-
ing (qLPV) model into a composition of several Linear Time Invariant (LTI)
systems. It is a numerical transformation that can be executed quasi automat-
ically without deep analytical manipulations and stability analysis of delayed
differential equations. This method establishes a gateway between the various
delayed system representations and the tensor product (TP) type convex poly-
topic models which allows the direct use of LMI-based multi-objective synthesis
techniques [8].

3 Dynamic model of the Furuta Pendulum

3.1 Fundamentals

3.1.1 Definitions

Following the modelling realized in [9] , let’s use a right hand coordinate system
to define the inputs, states, and the Cartesian coordinate systems 1 and 2. The
inertia tensors are diagonal form due to the coordinate axes of Arm 1 and Arm
2 are the principal axes

J1 =

J1xx 0 0
0 J1yy 0
0 0 J1zz

 (1)

J2 =

J2xx 0 0
0 J2yy 0
0 0 J2zz

 (2)

The angular rotation of Arm 1, θ1, is measured in the horizontal plane where a
counterclockwise direction (when viewed from above) is positive. The angular
rotation of Arm 2, θ2, is measured in the vertical plane where a counterclockwise
direction (when viewed from the front) is positive, when Arm 2 is hanging down
in the stable equilibrium position θ2 The torque the servomotor applies to Arm
1, τ1, is positive in a counterclockwise direction (when viewed from above).
A disturbance torque, τ2, is experienced by Arm 2, where a counterclockwise
direction (when viewed from the front) is positive. L1 and L2 are the length of
the horizontal and vertical respectively. Similarly, l1 and l2 are the position of
the mass centre of each arm relative to its beginning. Finally, m1 and m2 are
the masses of each arm.
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Figure 1: Schematic of the Furuta pendulum

3.1.2 Assumptions

The following assumptions where used for the model:

� The motor shaft and the first arm are assumed to be rigidly coupled and
infinitely stiff.
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� Arm 2 is assumed to be infinitely stiff.

� The coordinate axes of Arm 1 and Arm 2 are the principal axes. Therefore
the inertia tensors are diagonal.

� Backlash effects are not being modelled.

� Motor and pendulum have only viscous friction. Other forms, such as
Coulomb damping, have been disregarded.

3.2 Lagrangian formulation

3.2.1 Rotation matrices

Let’s define first two rotation matrices which are used in the Lagrange formu-
lation. The rotation matrix from the base to Arm 1 is a Z axis basic rotation:

R1 =

 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1

 (3)

The rotation matrix from Arm 1 to Arm 2 is composed by two different matrices:
a Y axis basic rotation to match the frame 1 and the frame 2, followed by a Z
axis basic rotation for θ2, given by

R2 =

 cos θ2 sin θ2 0
− sin θ2 cos θ2 0

0 0 1

0 0 −1
0 1 0
1 0 0

 =

0 sin θ2 − cos θ2
0 cos θ2 sin θ2
1 0 0

 (4)

3.2.2 Velocities

The angular velocity of Arm 1 is

ω =

 0
0

θ̇1

 (5)

Let’s consider the base frame at rest, such that the joint between the frame and
Arm 1 is at rest as well and the velocity is given by

v1 =

0
0
0

 (6)

The total linear velocity of the centre mass of Arm 1 is

v1c = v1 + ω1 ×

l10
0

 =

 0

θ̇1l1
0

 (7)
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The angular velocity for Arm 2 is given by

ω2 = R2ω1 +

 0
0

θ̇2

 =

− cos (θ2)θ̇1
sin (θ2)θ̇1

θ̇2

 (8)

The velocity of the joint between Arm 1 and Arm 2 in reference frame 1 is

ω1 ×

L1

0
0

 (9)

which in reference frame 2 gives

v2 = R2(ω1 ×

L1

0
0

) =

θ̇1L1 sin θ2
θ̇1L1 cos θ2

0

 (10)

The total linear velocity of the centre of mass of Arm 2 is given by

v2c = v2 + ω2 ×

l20
0

 =

 θ̇1L1 sin θ2
θ̇1L1 cos θ2 + θ̇2l2
−θ̇1l2 sin θ2

 (11)

3.2.3 Energies

The potential energy of Arm 1 is

Ep1 = 0 (12)

and the kinetic energy is

Ek1 =
1

2
(vT1cm1v1c + ωT

1 J1ω1) =
1

2
θ̇21(m1l

2
1 + J1zz) (13)

The potential energy of Arm 2 is

Ep2 = gm2l2(1− cos θ2) (14)

and the kinetic energy is

Ek2 =
1

2
(vT2cm2v2c + ωT

2 J2ω2)

=
1

2
θ̇21(m2L

2
1 + (m2l

2
2 + J2yy) sin2 θ2 + J2xx cos2 θ2)

+
1

2
θ̇22(J2zz +m2l

2
2) +m2L1l2 cos (θ2)θ̇1θ̇2

(15)

The total potential and kinetic energies are given, respectively, by

Ep = Ep1 + Ep2 (16)

Ek = Ek1 + Ek2 (17)
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3.2.4 Lagrangian

The Lagrangian is the difference between kinetic and potential energies

L = Ek − Ep (18)

From this, we obtain the Euler-Lagrange equation

d

dt
(
∂L

∂qi
) + biq̇i −

∂L

∂qi
= Qi (19)

where qi =

[
θ1
θ2

]
is a generalised coordinate, bi =

[
b1
b2

]
is a generalised viscous

damping coefficient and Qi =

[
τ1
τ2

]
is a generalised torque.

Evaluating the terms of the Euler-Lagrange equation for qi = θ1 and θ2 gives

d

dt
(
∂L

∂θ̇1
) = θ̈1(J1zz +m1l

2
1 +m2L

2
1

+(m2l
2
2 + J2yy) sin2 θ2 + J2xx cos2 θ2)

+m2L1l2 cos (θ2)θ̈2 −m2L1l2 sin (θ2)θ̇22

+θ̇1θ̇2 sin (2θ2)(m2l
2
2 + J2yy − J2xx)

(20)

d

dt
(
∂L

∂θ̇2
) = θ̈1m2L1l2 cos θ2

+θ̈2(J2zz +m2l
2
2)− θ̇1θ̇2m2L1l2 sin θ2

(21)

− ∂L

∂θ1
= 0 (22)

− ∂L
∂θ2

= −1

2
θ̇21 sin (2θ2)(m2l

2
2 + J2yy − J2xx)

+θ̇1θ̇2m2L1l2 sin θ2 + gm2l2 sin θ2

(23)

3.2.5 Equations of motion

Substituting the previous terms into the Euler-Lagrange equation, the following
simultaneous differential equations are obtained:

θ̈1(J1zz +m1l
2
1 +m2L

2
1

+(m2l
2
2 + J2yy) sin2 θ2 + J2xx cos2 θ2)

+m2L1l2 cos (θ2)θ̈2 −m2L1l2 sin (θ2)θ̇22

+θ̇1θ̇2 sin (2θ2)(m2l
2
2 + J2yy − J2xx) + b1θ̇1 = τ1

(24)

θ̈1m2L1l2 cos θ2 + θ̈2(J2zz +m2l
2
2)− 1

2
θ̇21 sin (2θ2)

×(m2l
2
2 + J2yy − J2xx) + gm2l2 sin θ2 + b2θ̇2 = τ2

(25)
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3.3 Simplifications

Due to the Furuta pendulum has long arms, the moment of inertia along the
axis of the arms can be obviated. Besides, the arms have rotational symmetry,
such that the moments of inertia in two of the principal axes are equal. Based
on previous information, the inertia tensors may approximated as follows:

J1 =

J1xx 0 0
0 J1yy 0
0 0 J1zz

 ≈
0 0 0

0 J1 0
0 0 J1

 (26)

J2 =

J2xx 0 0
0 J2yy 0
0 0 J2zz

 ≈
0 0 0

0 J2 0
0 0 J2

 (27)

We can get more simplifications making the following substitutions: The to-
tal moment of inertia of Arm 1 about the pivot joint (using the parallel axis
theorem) is Ĵ1 = J1 + m1l

2
1. In the same way, the total moment of inertia of

Arm 2 about its pivot point is Ĵ2 = J2 + m2l
2
2. Finally, the total moment of

inertia the motor rotor experiences when the pendulum is in its equilibrium
position (hanging vertically down) is given by Ĵ0 = Ĵ1 +m2L

2
1. Besides, due to

the underactuated nature of the system, the second element of the generalised
torque (τ2) can be taken as 0. Finally, τ1 can be expressed as Ku, where K is
the equivalent gain from the motor to the control and u the input the control
applies.
Substituting the previous definitions into the above equations of motion gives a
more compact form

θ̈1(Ĵ0 + Ĵ2 sin2 θ2) + θ̈2m2L1l2 cos θ2 −m2L1l2

× sin θ2θ̇
2
2 + θ̇1θ̇2Ĵ2 sin (2θ2) + b1θ̇1 = Ku

(28)

θ̈1m2L1l2 cos θ2 + θ̈2Ĵ2 −
1

2
θ̇21Ĵ2 sin (2θ2)

+b2θ̇2 + gm2l2 sin θ2 = 0
(29)

As [10] proposes, these equations can be expressed in a more compact form
using the following parameters

α =
m2L1l2

Ĵ2
β =

Ĵ0

Ĵ2
γ =

K

m2gl2

ω2
0 =

m2gl2

Ĵ2
cp1 =

b1

Ĵ2
cp2 =

b2

Ĵ2

(30)

And substituting into (28) and (29) the following equations are obtained

θ̈1(β + sin2 θ2) + θ̈2α cos θ2 − θ̇22α sin θ2

+2θ̇1θ̇2 sin θ2 cos θ2 + θ̇1cp1 = γω2
0u

(31)
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θ̈1α cos θ2 + θ̈2 − θ̇21 sin θ2 cos θ2 + ω2
0 sin θ2 + θ̇2cp2 = 0 (32)

which can be rewritten in the standard matrix form

D(q)q̈ + C(q, q̇)q̇ + g(q) = Mu (33)

where θ̈1 and θ̈2 can be easily solved. Thus, we obtain[
β + sin2 θ2 α cos θ2
α cos θ2 1

] [
θ̈1
θ̈2

]
+

[
θ̇2 sin θ2 cos θ2 + cp1 −θ̇2α sin θ2 + θ̇1 sin θ2 cos θ2
−θ̇1 sin θ2 cos θ2 cp2

] [
θ̇1
θ̇2

]
+

[
0

ω2
0 sin θ2

]
=

[
γω2

0u
0

] (34)

From which we can solve both accelerations by applying

q̈ = D−1(q)× (Mu− C(q, q̇)q̇ − g(q)) (35)

Thus, the two accelerations are obtained in their explicit form

θ̈1 =
1

∆
(γω2

0u− 2θ̇1θ̇2 sin θ2 cos θ2 − θ̇1cp1 + θ̇22α sin θ2

−θ̇21α sin θ2 cos2 θ2 + θ̇2cp2α cos θ2 + αω2
0 sin θ2 cos θ2)

(36)

θ̈2 =
1

∆
(−αγω2

0u cos θ2 + 2θ̇1θ̇2α sin θ2 cos2 θ2 + θ̇1cp1α cos θ2

−θ̇22α2 sin θ2 cos θ2 + (β + sin2 θ2)θ̇21 sin θ2 cos θ2

−(β + sin2 θ2)θ̇2cp2 − βω2
0 sin θ2 − ω2

0 sin3 θ2)

(37)

where ∆ = β+sin2 θ2−α2 cos2 θ2 is the determinant of the matrix D(q). Notice
that (36) and (37) are a fourth-order non-linear system strongly coupled and
the coordinate q1 = θ1 is cyclic. Remind that, a coordinate is said to be cyclic
when it does not appear in the Lagrangian (19).

3.4 Linearisation via Taylor Series

A linearised model of the system can be obtained using Taylor Series and ne-
glecting the quadratic and higher order terms. Thus, a function f(x1, . . . , xn)
can be approximated around a steady-state operating point xs = {x1s, . . . , xns}
as follows

f(x1, . . . , xn) ≈ f(xs) +
∂f

∂x1

∣∣∣∣
xs

(x1 − x1s) + · · ·+ ∂f

∂xn

∣∣∣∣
xs

(xn − xns) (38)

which can be also expressed as

f̄(x̄1, . . . , x̄n) =
∂f

∂x1

∣∣∣∣
xs

x̄1 + · · ·+ ∂f

∂xn

∣∣∣∣
xs

x̄n (39)
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where the bar symbol indicates that the variables are linear deviation variables
around the steady-state operating point.
Thus, the upright position of the pendulum defines a steady-state operating
point given by

θ1s = 0 θ̇1s = 0

θ2s = π θ̇2s = 0
(40)

and applying (39) to (36) and (37), the following linear space state equations
are obtained:

θ̇1
θ̇2
θ̈1
θ̈2

 =
1

∆


0 0 ∆ 0
0 0 0 ∆
0 αω2

0 −cp1 −cp2α
0 βω2

0 −cp1α −cp2β



θ1
θ2
θ̇1
θ̇2

+
1

∆


0
0
γω2

0

αγω2
0

 [u] (41)

where ∆ = β − α2. Note that for avoiding clutter of symbols between bars and
dots, the deviation variable notation has been omitted even though the above
equations express deviation around the steady-state operating point.
We can observe that the matrix A has a column of zeros. This with the fact that
the variable θ1 is cyclic indicates that the order of the system can be reduced.
Thus, we obtainθ̇2θ̈1

θ̈2

 =
1

∆

 0 0 ∆
αω2

0 −cp1 −cp2α
βω2

0 −cp1α −cp2β

θ2θ̇1
θ̇2

+
1

∆

 0
γω2

0

αγω2
0

 [u] (42)

3.5 Error function model

Due to the control approaches applied to the Furuta pendulum aim to keep
it in the upright position, it is interesting to obtain an error model which can
measure the difference between the actual angle and the upright position one. In
other words, the objective is to match θ2 = 0 to the upright position. A simple
way to get it is to substitute θ2 in (36) and (37) for θ2 +π. Thus, an angle shift
is introduced so that the downward position is given by θ2 = π and the upright
position is given by θ2 = 0. Thereby, with the above mentioned and applying
the trigonometric identities cos(θ2 +π) = − cos(θ2) and sin(θ2 +π) = − sin(θ2),
(36) and (37) can be transformed into the following error functions:

θ̈1 =
1

∆
(γω2

0u− 2θ̇1θ̇2 sin θ2 cos θ2 − θ̇1cp1 − θ̇22α sin θ2

+θ̇21α sin θ2 cos2 θ2 − θ̇2cp2α cos θ2 + αω2
0 sin θ2 cos θ2)

(43)

θ̈2 =
1

∆
(αγω2

0u cos θ2 − 2θ̇1θ̇2α sin θ2 cos2 θ2 − θ̇1cp1α cos θ2

−θ̇22α2 sin θ2 cos θ2 + (β + sin2 θ2)θ̇21 sin θ2 cos θ2

−(β + sin2 θ2)θ̇2cp2 + βω2
0 sin θ2 + ω2

0 sin3 θ2)

(44)

where ∆ = β + sin2 θ2 − α2 cos2 θ2 is the determinant of the matrix D(q).
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4 Swing-up by energy control

4.1 Preliminaries

The control law proposed in [11] by Åstrom and Furuta is based on controlling
the energy of the pendulum regardless of the horizontal arm. The simplified
model of two dimensions is given by

m2l
2
2θ̈2 −m2gl2 sin θ2 −m2gl2u cos θ2 = 0 (45)

where u is the acceleration of the pivot of the pendulum. The model given in
(45) is based on several assumptions: friction has been neglected and it has
been assumed that the pendulum is a rigid body. It has also been assumed that
there is no limitation on the velocity of the pivot.
The energy of the uncontrolled pendulum (u = 0) is

E =
1

2
m2l

2
2θ̇

2
2 +m2gl2 cos θ2 (46)

Being θ2 = π the downward position and θ2 = 0 the upright equilibrium (3.5),
in order to swing the pendulum up its energy must be increased from −m2gl2
to m2gl2. We set E0 = m2gl2. Now, to perform energy control it is necessary
to understand how the energy is influenced by the acceleration of the pivot.
Differentiating with respect to time we find

dE

dt
= m2l

2
2θ̈2θ̇2 −m2gl2θ̇2 sin θ2 = m2gl2θ̇2u cos θ2 (47)

where (45) has been used to obtain the last equality. (47) implies that the energy
can be controlled in an easy way, due to the system behaves like an integrator
with varying gain. To increase energy the acceleration of the pivot u should be
positive when the quantity θ̇2 cos θ2 is positive, and similarly to decrease it the
acceleration should be negative when the mentioned amount s negative.

4.2 Energy control

A control strategy is easily obtained by the Lyapunov method. As [12] mentions,
given an autonomous dynamical system

ẋ = f(x, u) (48)

where x ∈ IRn is the state-vector, u ∈ IRm is the control vector and we want
to feedback stabilize it to x = 0 in some domain D ⊂ IRn. A control-Lyapunov
function is a function V : D → IR that is continuously differentiable, positive
definite and such that

∀x 6= 0,∃u :
dV

dt
(x, u) = ∇V (x) · f(x, u) < 0 (49)

Which in words it says that for each state x we can find a control u that will
reduce the “energy” V . Intuitively, if in each state we can always find a way to
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reduce the energy, we should eventually be able to bring the energy to zero.
The function V = (E−E0)2/2 is proposed in [11]. In order to fulfil the condition
in (49), let’s differentiate V with respect to the time

dV

dt
= m2l2uθ̇2 cos θ2(E − E0) (50)

where applying the proposed control law

u = −k(E − E0)θ̇2 cos θ2 (51)

where k > 0 is an adjustable gain, we find that

dV

dt
= −m2l2k((E − E0)θ̇2 cos θ2)2 < 0 (52)

Thus, the Lyapunov function decreases as long as θ̇2 6= 0 and cos θ2 6= 0. Since
the pendulum cannot maintain a stationary position with θ2 = ±π/2, strategy
(51) drives the energy towards its desired value E0.
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Figure 2: Input and response of the system to a Swing-up strategy using a linear
control law
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In the Figure 2 we can see the evolution of the output θ2 and the input τ1
when the swing-up strategy (51) is applied. Note that the parameters used for
this and the following simulations are the ones in [9], with a higher m2 so that
the features of the control may be appreciated in a better way. Thus, we can
observe a high initial action due to the high difference of energies E−E0, which
quickly decreases as the pendulum approaches the upright position.
To change the energy as fast as possible the magnitude of the control signal
should be as large as possible. This is achieved saturating the signal to a value
umax, that is

u = −umaxsgn((E − E0)θ̇2 cos θ2) (53)

or

u =

{
umax if (E − E0)θ̇2 cos θ2 < 0

−umax if (E − E0)θ̇2 cos θ2 > 0
(54)

which drives the function V = (E − E0)2/2 to zero and E towards E0.
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Figure 3: Input and response of the system to a Swing-up strategy using a
saturated control variation

18



However, as it is shown in the Figure 3 the problem is that control law (53)
may result into chattering. This can be avoided with the control law

u = −sat(k(E − E0)sign(θ̇2 cos θ2)) (55)

or

u =



k(E − E0) if θ̇2 cos θ2 < 0 ∧ k(E − E0) < umax

umax if θ̇2 cos θ2 < 0 ∧ k(E − E0) ≥ umax

−k(E − E0) if θ̇2 cos θ2 > 0 ∧ −k(E − E0) > −umax

−umax if θ̇2 cos θ2 > 0 ∧ −k(E − E0) ≤ −umax

(56)

where sat in (55) denotes a linear function which saturates at umax, as can
be seen in (56).
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Figure 4: Input and response of the system to a Swing-up strategy using a
hybrid variation
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Thus, as Figure 4 shows, strategy (55) behaves like a linear controller (51)
for small errors and like (53) for large errors, which supposes an intermediate
solution between the two ones above cited.
Notice that the function sign is not defined when its argument is zero. If the
value is defined as zero the control signal will be zero when the pendulum is at
rest or when it is horizontal. If the pendulum starts at rest in the downward
position strategies (51), (53) and (55) all give u = 0 and the pendulum will
remain in the downward position. For this reasons it is convenient to set a
default value (e.g. ±umax or ±k(E − E0)). Thus, the system does not remain
stuck in the downward position.

5 Stabilizing local control

In this section a control strategy for the stabilization of the pendulum around the
upright equilibrium position is deduced. Note that there is no known strategy
which reaches the equilibrium position starting from any point. In other words,
this strategy has a local area of application around the desired operation point.

5.1 Full State Feedback with pole placement

As [13] reads, given a linear time-invariant (LTI) system on the form

ẋ(t) = Ax(t) +Bu(t) (57)

A natural control law is to use a state feedback

u = −Kx(t) (58)

The closed-loop system under (58) is then

ẋ = (A−BK)x(t) (59)

The closed-loop dynamics is completely determined by (A−BK), and the sta-
bility of the closed-loop system as well as the rate of regulation of x to zero is
determined by the eigenvalues of (A−BK), which can be also called the poles
of the closed-loop system. In particular, the system (57) is stable if and only
if all eigenvalues of (A − BK) lie in Re(s) < 0. The problem of finding a K
to achieve a prescribed set of eigenvalues for (A − BK) and set the dynamic
behaviour of the system is called the pole assignment problem.
Before applying any strategy the controllability of the system must be checked.
For that, let’s define the controllability matrix

ζ =
[
B AB . . . An−1B

]
(60)

where n is equal to the number of state variables (in other words, the number of
rows of x(t)). Thus, the system will be controllable if and only if ζ is invertible,
which is equivalent to

rank(ζ) = n (61)
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If the system is controllable the next step is to select the desired dynamical
behaviour of the system or in other words the closed-loop poles. For that, let’s
define the closed-loop characteristic polynomial as

D(s) = (s− p1)(s− p2) . . . (s− pn) (62)

where {p1, p2, . . . , pn} are the closed-loop poles and n the number of state vari-
ables.
Finally, the last step is to apply the Ackerman’s formula, which is given by

K = υT ζ−1D(A) (63)

where υT = [0, 0, . . . , 0, 1] is a vector with dimension n, ζ is the controllability
matrix and D(A) is the closed-loop characteristic polynomial evaluated in A.
Let’s now apply the strategy above related to our system. The chosen poles are
s1 = −10− 10j,s2 = −10 + 10j and s3 = −1, so D(s) = s3 + 21s2 + 220s+ 200.
Thus, simulating with the same parameters used in the Swing-up section we
obtain
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Figure 5: Upright control using Full State Feedback with pole placement
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Where an initial value of θ2 = 6◦ ≈ 0.11 rad has been set. We can observe
how the action τ1 decreases as θ2 approaches to the upright position. Notice that
the system presents an small overshoot and although it takes several seconds to
achieve a zero error, a half degree difference is acquired in less than 0.5 seconds.

6 Hybrid control

A global solution to lead the pendulum from its stable position (θ2 = π) to the
upright position (θ2 = 0) is carried out by a hybrid control. It gathers the two
different approaches described above: the swing-up by energy control and the
stabilizing local control. Thus, establishing a threshold which determines which
strategy is applied in each moment, we are able to lift the pendulum and keep
it upright.
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Figure 6: Input and response of the system to a hybrid control

For example, for the Figure 6 simulation two different thresholds have been
chosen: while θ2 > 25◦ the swing-up strategy will be applied. Once the pen-
dulum goes through the 25◦ threshold it will move with its remaining energy.
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Finally, when the error is 15◦ or lower, the stabilizing local control keeps the
pendulum in a vertical position. For the swing-up strategy the third variation
has been chosen due to it provides a low lifting time without chattering.

7 Development Project

7.1 Goal and motivation

The Furuta pendulum is a well known academic benchmark example for eval-
uating non-linear control algorithms. The purpose of this work is the physical
realization of such a device focusing not only the control theoretical aspects but
also for practical problems of design and implementation. The goal is to design
and manufacture a demonstration device that is capable to test and display
various control strategies.

7.2 Requirements

Since the physical system is going to be a teaching presentation object it must
be mobile. The model needs to be light and easy to transport. Besides, it has
to be interesting for several demonstrations and tests, which means that its
characteristics must be variable. This results in that the main parameters must
be able to be changed, for example the length of the arms or the mass of the
weight. Finally, each part should fit into each other in a way that there is not
backslash effect or it is as small as possible for the correct demonstration. Of
course an exception for this is the bearing in the direction that they are able to
rotate.

7.3 Specifications

The design realized by László Szücs consists basically of a cylindrical body, an
horizontal holder and the two arms. The body is composed of three detachable
cylinders. These sub-parts have been holed so that their weight is minimized
without affecting its stiffness and strength. They fit into each other so the big
cylindrical body can be easily transportable, and have an opening so that the
motor and wiring is accessible.
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Figure 7: Cylindrical body of the Furuta pendulum

The horizontal holder consists of a bell part, a circular linkage, a support for
the arm and a coupler. The binding of this part and the cylindrical structure
is carried by a holed circular cap which fits into the cylinder. The function of
the bell part is to house the coupling between the motor shaft and the rest of
the structure, which is carried by a plastic coupler and a brass axis fixed to the
circular linkage. To ensure proper rotation of the shaft, the coupling between
the bell and the circular linkage is made with a bearing. Besides, the support
holds an aluminium pipe inside which is the horizontal arm, which can rotate
by two bearings arranged at both sides of the pipe. Finally, in one end of the
pipe there is a plastic holder for the encoder which measures the inclination of
the pendulum. It is covered by an acrylic glass piece so that the rotation of the
encoder wheel can be seen from the outside. Moreover, at the other end of the
pipe there is the joint of the two arms, carried by two small brass pieces (one
cylindrical and one cubic) which allow a stable connection between the arms
and also ensures an opportunity to take the device apart for transportation.

Figure 8: Horizontal holder of the Furuta pendulum

Both arms are made of carbon fibre. As it is said above, the horizontal one
rotates inside of the pipe. On the other hand, the vertical one holds a brass
mass which can be moved along the whole arm.

24



Figure 9: Full design of the Furuta pendulum

7.4 Tools

The project has been carried out using the following devices:

� The manufacture of the plastic (polylactide) structure was realized by a
3D printer (MakerBot Replicator 2) as it allows the fabrication in the
laboratory in a simple and fast way, without the need of resort to external
suppliers. Besides, the rapid prototyping makes parts can be checked in
situ and if they don’t fit the requirements, the design can be changed and
improved at the time.

� The movement of the horizontal arm is carried out by a Maxon EC45
brushless DC motor. It is a �45 mm and 150 Watt motor, with a 24
Volts input, 183 mNm of nominal torque and 952 mNm of stall torque.
It includes a Hall sensor, a 500 PPR encoder (HEDS-9140) and a brake,
which was removed due to the additional current supply it needs and the
heating involved. Besides, the torque used is small which involves that
the security requirements are minimum and an emergency brake is not a
must.

� Another encoder (HEDS-9040) measures the inclination of the pendulum
(the vertical arm). It has a higher resolution that the one inside the motor
(2000 PPR versus 500 PPR). This is because the angle of the pendulum is
the controlled variable and requires a higher precision. Besides, the mea-
surement of the exact angle of the horizontal arm is not necessary, only its
variation which via derivation by time gives the velocity and acceleration
of the arm.

� A Trinamic’s TMCM-1640. It is a small low cost controller and driver
module for universal brushless DC motors applications. The board can
be used in standalone operation or remote controlled via serial interface
using the Trinamic Motor Control Lenguage (TMCL). In our project, the
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module is responsible for carrying out the torque control. It is connected
via USB to a computer where the control algorithm for the pendulum is
executed in a MATLAB environment. The adaptation of language be-
tween the board (TMCL) and MATLAB has been performed developing
an Object Oriented library (Appendix A).

� An Arduino Micro board performs the reading of the two encoders. It
is connected also via USB to the computer and sends the angle of both
arms. With this measure, the velocity and acceleration of the arms can
be obtained and with them, the torque needed for the pendulum control.

� A Simulink simulation model was realized to perform simulations of vari-
ous control techniques and to adjust the parameters of them. The model
allows switching between the different swing-up techniques and choose be-
tween swinging the pendulum up, control its vertical position or perform a
hybrid control. A scheme of the Simulink model can be found in Appendix
B.

7.5 Future work

The next steps in the development of the project are to conduct a thorough
measurement of the parameters of the real system, performing various measures
and focusing mainly on the moments of inertia, motor torque constant and fric-
tion coefficients. After that, the different control strategies explained along this
document will be implemented and tested, so that the results may be compared
with the theoretical ones obtained by the simulations.
Besides, there are some features which can be improved in the near time. One
of them is the utilization of two different boards. The Trinamic’s board has
only one encoder slot, which makes necessary adding another device. Besides,
executing a command in that board, such as setting a torque or reading the en-
coder, is expensive in time. For that reason, the distribution of tasks in parallel
is a must. Thus, the Arduino board is responsible of reading the two encoders
whereas the Trinamic’s one sets the torque for the control of the pendulum. A
possible solution for this could be the utilization of a more powerful board (for
example a Raspberry Pi). This new board would perform the control of the
system by itself, which means read the encoders, execute the control algorithm
and set the proper torque. Every device would be connected to this board so
that the time spent on serial communication would be minimized. Finally, the
connection with a computer would be only used for showing information about
the system, plotting graphics or setting the system’s operation mode.
On the other hand, another feature that could be improved is the cable con-
nection of the system. As there are two boards, two different cabling can be
differentiated: the connection between the motor and Trinamic’s board, where
the cables run inside the cylindrical structure in a clean and unproblematic way.
Otherwise, the connection between the Arduino board and the two encoders is
where the problem resides. The connection with the motor encoder is carried
out inside the structure as well, but the connection with the encoder in the
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vertical arm the cables hang around the structure. This means that while the
system is running several cables are rotating with the arm, which can generate
electrical noise as well as curls and pulls in the cables. A possibility to solve this
situation is to connect the encoder to the board via wireless connection. Along
with the other solution proposed above, it would allow the encapsulation of the
system, so it was much more compact, robust and easy to transport (which was
one of the main requirements).

8 Conclusion

A detailed dynamical model of the Furuta pendulum is provided. To this model
several control strategies have been applied, both swing-up and vertical position
stabilization. This two different control strategies result in a hybrid control,
which allows to raise the pendulum from its stable downward position to a
vertical position. To discuss these techniques, several simulations have been
made and attached, that allow to check the behaviour of the system to such
controls strategies.
Besides, the development project realized in the FabLab of the Óbuda University
has been described. The motivation of the project as well as the design, used
tools and the work that will be performed in the future time have been discussed.
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A TMCL-MATLAB library

1 classdef driver
2

3 properties (Access = private)
4

5 port;
6

7 end
8

9 methods (Access = private)
10

11 function receivedValue = decryption(value)
12

13 byte1 = dec2hex(value(5),2);
14 byte2 = dec2hex(value(6),2);
15 byte3 = dec2hex(value(7),2);
16 byte4 = dec2hex(value(8),2);
17

18 bit1 = hex2dec(byte1(1));
19 bit2 = hex2dec(byte1(2));
20 bit3 = hex2dec(byte2(1));
21 bit4 = hex2dec(byte2(2));
22 bit5 = hex2dec(byte3(1));
23 bit6 = hex2dec(byte3(2));
24 bit7 = hex2dec(byte4(1));
25 bit8 = hex2dec(byte4(2));
26

27 valuehelp8 = bit8;
28 valuehelp7 = bit7 * 16;
29 valuehelp6 = bit6 * 256;
30 valuehelp5 = bit5 * 4096;
31 valuehelp4 = bit4 * 65536;
32 valuehelp3 = bit3 * 1048576;
33 valuehelp2 = bit2 * 16777216;
34 valuehelp1 = bit1 * 268435456;
35

36 receivedValue = valuehelp1 + valuehelp2 + valuehelp3 ...
+ valuehelp4 + valuehelp5 + valuehelp6 + ...
valuehelp7 + valuehelp8;

37 end
38

39 end
40 methods
41

42 function obj = driver(comnumber)
43

44 obj.port = serial(comnumber);
45 set(obj.port, 'BaudRate', 1000000);
46 set(obj.port, 'InputBufferSize', 9);
47 fopen(obj.port);
48

49 end
50

51 function answer = setBaudRate(obj, value)
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52

53 binvalue = dec2bin(value,32);
54 value1 = uint8(bin2dec(binvalue(1:8)));
55 value2 = uint8(bin2dec(binvalue(9:16)));
56 value3 = uint8(bin2dec(binvalue(17:24)));
57 value4 = uint8(bin2dec(binvalue(25:32)));
58 message = [uint8([1 9 65 0]) value1 value2 value3 ...

value4 0];
59 checksum = sum(message);
60 while checksum > 255
61 checksum = checksum - 256;
62 end
63 checksum = uint8(checksum);
64 message(9) = checksum;
65 fwrite(obj.port, message);
66 answer = fread(obj.port);
67 end
68

69 function BaudRate = getBaudRate(obj)
70

71 message = uint8([1 10 65 0 0 0 0 0 76]);
72 fwrite(obj.port, message);
73 msgback = fread(obj.port);
74 BaudRate = decryption(msgback);
75

76 end
77

78 function setEncoderSteps(obj, value)
79

80 binvalue = dec2bin(value,32);
81 value1 = uint8(bin2dec(binvalue(1:8)));
82 value2 = uint8(bin2dec(binvalue(9:16)));
83 value3 = uint8(bin2dec(binvalue(17:24)));
84 value4 = uint8(bin2dec(binvalue(25:32)));
85 message = [uint8([1 5 250 0]) value1 value2 value3 ...

value4 0];
86 checksum = sum(message);
87 while checksum > 255
88 checksum = checksum - 256;
89 end
90 checksum = uint8(checksum);
91 message(9) = checksum;
92 fwrite(obj.port, message);
93

94 end
95

96 function steps = getEncoderSteps(obj)
97

98 message = uint8([1 6 250 0 0 0 0 0 1]);
99 fwrite(obj.port, message);

100 msgback = fread(obj.port);
101 steps = decryption(msgback);
102

103 end
104

105 function setVelocityRamp(obj,value)
106
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107 if value == 0
108 message = uint8([1 5 146 0 0 0 0 0 152]);
109 else
110 message = uint8([1 5 146 0 0 0 0 1 153]);
111 end
112 fwrite(obj.port, message);
113

114 end
115

116 function velocityRamp = getVelocityRamp(obj)
117

118 message = uint8([1 6 146 0 0 0 0 0 153]);
119 fwrite(obj.port, message);
120 msgback = fread(obj.port);
121 velocityRamp = decryption(msgback);
122

123 end
124

125 function setHallSensorInvert(obj, value)
126

127 if value == 0
128 message = uint8([1 5 254 0 0 0 0 0 4]);
129 else
130 message = uint8([1 5 254 0 0 0 0 1 5]);
131 end
132 fwrite(obj.port, message);
133

134 end
135

136 function hallSensorInvert = getHallSensorInvert(obj)
137

138 message = uint8([1 6 254 0 0 0 0 0 5]);
139 fwrite(obj.port, message);
140 msgback = fread(obj.port);
141 hallSensorInvert = decryption(msgback);
142

143 end
144

145 function setMotorPoles(obj, value)
146

147 binvalue = dec2bin(value,32);
148 value1 = uint8(bin2dec(binvalue(1:8)));
149 value2 = uint8(bin2dec(binvalue(9:16)));
150 value3 = uint8(bin2dec(binvalue(17:24)));
151 value4 = uint8(bin2dec(binvalue(25:32)));
152 message = [uint8([1 5 253 0]) value1 value2 value3 ...

value4 0];
153 checksum = sum(message);
154 while checksum > 255
155 checksum = checksum - 256;
156 end
157 checksum = uint8(checksum);
158 message(9) = checksum;
159 fwrite(obj.port, message);
160

161 end
162
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163 function poles = getMotorPoles(obj)
164

165 message = uint8([1 6 253 0 0 0 0 0 4]);
166 fwrite(obj.port, message);
167 msgback = fread(obj.port);
168 poles = decryption(msgback);
169

170 end
171

172 function setMotorCurrentP(obj, value)
173

174 binvalue = dec2bin(value,32);
175 value1 = uint8(bin2dec(binvalue(1:8)));
176 value2 = uint8(bin2dec(binvalue(9:16)));
177 value3 = uint8(bin2dec(binvalue(17:24)));
178 value4 = uint8(bin2dec(binvalue(25:32)));
179 message = [uint8([1 5 172 0]) value1 value2 value3 ...

value4 0];
180 checksum = sum(message);
181 while checksum > 255
182 checksum = checksum - 256;
183 end
184 checksum = uint8(checksum);
185 message(9) = checksum;
186 fwrite(obj.port, message);
187

188 end
189

190 function currentP = getMotorCurrentP(obj)
191

192 message = uint8([1 6 172 0 0 0 0 0 179]);
193 fwrite(obj.port, message);
194 msgback = fread(obj.port);
195 currentP = decryption(msgback);
196

197 end
198

199 function setMotorCurrentI(obj, value)
200

201 binvalue = dec2bin(value,32);
202 value1 = uint8(bin2dec(binvalue(1:8)));
203 value2 = uint8(bin2dec(binvalue(9:16)));
204 value3 = uint8(bin2dec(binvalue(17:24)));
205 value4 = uint8(bin2dec(binvalue(25:32)));
206 message = [uint8([1 5 173 0]) value1 value2 value3 ...

value4 0];
207 checksum = sum(message);
208 while checksum > 255
209 checksum = checksum - 256;
210 end
211 checksum = uint8(checksum);
212 message(9) = checksum;
213 fwrite(obj.port, message);
214

215 end
216

217 function currentI = getMotorCurrentI(obj)
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218

219 message = uint8([1 6 173 0 0 0 0 0 180]);
220 fwrite(obj.port, message);
221 msgback = fread(obj.port);
222 currentI = decryption(msgback);
223

224 end
225

226 function setMotorSpeedP(obj, value)
227

228 binvalue = dec2bin(value,32);
229 value1 = uint8(bin2dec(binvalue(1:8)));
230 value2 = uint8(bin2dec(binvalue(9:16)));
231 value3 = uint8(bin2dec(binvalue(17:24)));
232 value4 = uint8(bin2dec(binvalue(25:32)));
233 message = [uint8([1 5 234 0]) value1 value2 value3 ...

value4 0];
234 checksum = sum(message);
235 while checksum > 255
236 checksum = checksum - 256;
237 end
238 checksum = uint8(checksum);
239 message(9) = checksum;
240 fwrite(obj.port, message);
241

242 end
243

244 function speedP = getMotorSpeedP(obj)
245

246 message = uint8([1 6 234 0 0 0 0 0 241]);
247 fwrite(obj.port, message);
248 msgback = fread(obj.port);
249 speedP = decryption(msgback);
250

251 end
252

253 function setMotorSpeedI(obj, value)
254

255 binvalue = dec2bin(value,32);
256 value1 = uint8(bin2dec(binvalue(1:8)));
257 value2 = uint8(bin2dec(binvalue(9:16)));
258 value3 = uint8(bin2dec(binvalue(17:24)));
259 value4 = uint8(bin2dec(binvalue(25:32)));
260 message = [uint8([1 5 235 0]) value1 value2 value3 ...

value4 0];
261 checksum = sum(message);
262 while checksum > 255
263 checksum = checksum - 256;
264 end
265 checksum = uint8(checksum);
266 message(9) = checksum;
267 fwrite(obj.port, message);
268

269 end
270

271 function speedI = getMotorSpeedI(obj)
272
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273 message = uint8([1 6 235 0 0 0 0 0 242]);
274 fwrite(obj.port, message);
275 msgback = fread(obj.port);
276 speedI = decryption(msgback);
277

278 end
279

280 function setMotorMaxCurrent(obj, value)
281

282 binvalue = dec2bin(value,32);
283 value1 = uint8(bin2dec(binvalue(1:8)));
284 value2 = uint8(bin2dec(binvalue(9:16)));
285 value3 = uint8(bin2dec(binvalue(17:24)));
286 value4 = uint8(bin2dec(binvalue(25:32)));
287 message = [uint8([1 5 6 0]) value1 value2 value3 ...

value4 0];
288 checksum = sum(message);
289 while checksum > 255
290 checksum = checksum - 256;
291 end
292 checksum = uint8(checksum);
293 message(9) = checksum;
294 fwrite(obj.port, message);
295

296 end
297

298 function maxCurrent = getMotorMaxCurrent(obj)
299

300 message = uint8([1 6 6 0 0 0 0 0 13]);
301 fwrite(obj.port, message);
302 msgback = fread(obj.port);
303 maxCurrent = decryption(msgback);
304

305 end
306

307 function setMotorCurrent(obj, value)
308

309 if value < 0
310 value = 4294967296 + value;
311 end
312 binvalue = dec2bin(value,32);
313 value1 = uint8(bin2dec(binvalue(1:8)));
314 value2 = uint8(bin2dec(binvalue(9:16)));
315 value3 = uint8(bin2dec(binvalue(17:24)));
316 value4 = uint8(bin2dec(binvalue(25:32)));
317 message = [uint8([1 5 155 0]) value1 value2 value3 ...

value4 0];
318 checksum = sum(message);
319 while checksum > 255
320 checksum = checksum - 256;
321 end
322 checksum = uint8(checksum);
323 message(9) = checksum;
324 fwrite(obj.port, message);
325

326 end
327
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328 function current = getMotorCurrent(obj)
329

330 message = uint8([1 6 150 0 0 0 0 0 157]);
331 fwrite(obj.port, message);
332 msgback = fread(obj.port);
333 current = decryption(msgback);
334 if current > 2147483647
335 current = current - 4294967296;
336 end
337 end
338

339 function rotateLeft(obj, value)
340

341 binvalue = dec2bin(value,32);
342 value1 = uint8(bin2dec(binvalue(1:8)));
343 value2 = uint8(bin2dec(binvalue(9:16)));
344 value3 = uint8(bin2dec(binvalue(17:24)));
345 value4 = uint8(bin2dec(binvalue(25:32)));
346 message = [uint8([1 2 0 0]) value1 value2 value3 ...

value4 0];
347 checksum = sum(message);
348 while checksum > 255
349 checksum = checksum - 256;
350 end
351 checksum = uint8(checksum);
352 message(9) = checksum;
353 fwrite(obj.port, message);
354

355 end
356

357 function rotateRight(obj, value)
358

359 binvalue = dec2bin(value,32);
360 value1 = uint8(bin2dec(binvalue(1:8)));
361 value2 = uint8(bin2dec(binvalue(9:16)));
362 value3 = uint8(bin2dec(binvalue(17:24)));
363 value4 = uint8(bin2dec(binvalue(25:32)));
364 message = [uint8([1 1 0 0]) value1 value2 value3 ...

value4 0];
365 checksum = sum(message);
366 while checksum > 255
367 checksum = checksum - 256;
368 end
369 checksum = uint8(checksum);
370 message(9) = checksum;
371 fwrite(obj.port, message);
372

373 end
374

375 function setMotorSpeed(obj, value)
376

377 if value < 0
378 value = 4294967296 + value;
379 end
380 binvalue = dec2bin(value,32);
381 value1 = uint8(bin2dec(binvalue(1:8)));
382 value2 = uint8(bin2dec(binvalue(9:16)));
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383 value3 = uint8(bin2dec(binvalue(17:24)));
384 value4 = uint8(bin2dec(binvalue(25:32)));
385 message = [uint8([1 5 2 0]) value1 value2 value3 ...

value4 0];
386 checksum = sum(message);
387 while checksum > 255
388 checksum = checksum - 256;
389 end
390 checksum = uint8(checksum);
391 message(9) = checksum;
392 fwrite(obj.port, message);
393

394 end
395

396 function speed = getMotorSpeed(obj)
397

398 message = uint8([1 6 3 0 0 0 0 0 10]);
399 fwrite(obj.port, message);
400 msgback = fread(obj.port);
401 speed = decryption(msgback);
402 if speed > 2147483647
403 speed = speed - 4294967296;
404 end
405

406 end
407

408 function position = getMotorPosition(obj)
409

410 message = uint8([1 6 1 0 0 0 0 0 8]);
411 fwrite(obj.port, message);
412 msgback = fread(obj.port);
413 position = decryption(msgback);
414 if position > 2147483647
415 position = position - 4294967296;
416 end
417

418 end
419

420 function stopMotor(obj)
421

422 message = uint8([1 3 0 0 0 0 0 0 4]);
423 fwrite(obj.port, message);
424

425 end
426

427 end
428

429 end
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B Simulink model scheme

Figure 10: Simulink model of the Furuta pendulum and its different control
strategies
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[1] J. Aracil and F. Gordillo, “El péndulo invertido: un desaf́ıo para el control
no lineal,” RIAII, vol. 2, no. 2, pp. 8–19, 2005.

[2] J. A. Acosta, “Furuta’s Pendulum: A Conservative Nonlinear Model for
Theory and Practise,” Mathematical Problems in Engineering, 2010.

[3] Y. Su, D. Sun, and B. Duan, “Design of an enhanced nonlinear PID con-
troller,” Mechatronics, vol. 15, no. 8, pp. 1005–1024, 2005.

[4] V. I. Utkin, “Sliding mode control,” Variable structure systems: from prin-
ciples to implementation, vol. 66, p. 1, 2004.

[5] F. R. Garces, V. M. Becerra, C. Kambhampati, and K. Warwick, Strategies
for feedback linearisation: a dynamic neural network approach. Springer
Science & Business Media, 2012.

[6] M. S. Sadeghi, B. Safarinejadian, and A. Farughian, “Parallel distributed
compensator design of tank level control based on fuzzy takagi–sugeno
model,” Applied Soft Computing, vol. 21, pp. 280–285, 2014.

[7] P. Grof and Y. Yam, “Furuta pendulum–a tensor product model-based
design approach case study,” in Systems, Man, and Cybernetics (SMC),
2015 IEEE International Conference on, pp. 2620–2625, IEEE, 2015.

[8] P. Galambos and P. Baranyi, “TP model transformation: A systematic
modelling framework to handle internal time delays in control systems,”
Asian Journal of Control, vol. 17, no. 2, pp. 486–496, 2015.

[9] B. S. Cazzolato and Z. Prime, “On the dynamics of the furuta pendulum,”
Journal of Control Science and Engineering, vol. 2011, p. 3, 2011.

[10] J. Acosta, J. Aracil, and F. Gordillo, “Estudio comparativo de diferentes
estrategias de control para el péndulo de furuta,” XXI Jornadas de Au-
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