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An asteroid impact at the end of the Cretaceous caused mass
extinction, but extinction mechanisms are not well-understood.
The collapse of sea surface to sea floor carbon isotope gradients
has been interpreted as reflecting a global collapse of primary
productivity (Strangelove Ocean) or export productivity (Living
Ocean), which caused mass extinction higher in the marine food
chain. Phytoplankton-dependent benthic foraminifera on the
deep-sea floor, however, did not suffer significant extinction, sug-
gesting that export productivity persisted at a level sufficient
to support their populations. We compare benthic foraminiferal
records with benthic and bulk stable carbon isotope records from
the Pacific, Southeast Atlantic, and Southern Oceans. We conclude
that end-Cretaceous decrease in export productivity was moder-
ate, regional, and insufficient to explain marine mass extinction.
A transient episode of surface ocean acidification may have been
the main cause of extinction of calcifying plankton and ammonites,
and recovery of productivity may have been as fast in the oceans
as on land.

carbon cycle ∣ Cretaceous/Paleogene boundary ∣ pelagic ecosystems ∣
cysts ∣ inhibition of photosynthesis

At the Cretaceous/Paleogene (K∕Pg) boundary (∼65.5 Ma) a
large asteroid impacted the Yucatan Peninsula (Mexico),

triggering severe but selective extinctions (1). Proposed causes
of mass extinction resulting from the impact at different time-
scales include global darkness due to emission of dust and aero-
sols, ozone destruction, global cooling or warming, and ocean
acidification (1–3). Light levels sufficiently low to prevent photo-
synthesis for longer than the life cycle of oceanic phytoplankton
(weeks to months), have commonly been seen as the prime cause
of collapse of oceanic primary productivity and the subsequent
mass extinction at higher levels of the marine food chain (e.g.,
ammonites, large predatory fish, mosasaurs) (2). A collapse in
oceanic surface-bottom gradient in carbon isotope values (i.e.,
the difference in carbon isotope values in shells of benthic and
planktic organisms) persisted for hundreds of thousands to a
few million years (4–6), and has been interpreted as reflecting
global collapse of primary productivity (Strangelove Ocean) (4)
or export productivity (Living Ocean) (5, 6). Recovery of oceanic
productivity was argued to have been much slower in the oceans
than on land (7). Neither deep-sea benthic foraminifera nor
deep-sea benthic ostracodes, however, suffered significant extinc-
tion (8–11), although these depend upon phytoplankton for their
food (12) and should have suffered severe extinction if their food
supply had been cut off for 105 to 106 years (13).

There is considerable evidence that there was no long-term,
global collapse of primary productivity (5). Extinction in calcar-
eous nannoplankton was severe, although geographically variable
(14) and followed by low-diversity blooms. Extinction in other
photosynthesizers, such as the related noncalcifying haptophytes
(15), which may have been dominant photosynthesizers (16), the
siliceous diatoms (17, 18), and the organic-walled and calcareous
dinoflagellates (19, 20) was much less severe (21). Algal biomar-

kers indicate a rapid recovery of primary productivity (22). At
least regionally, dinoflagellates (19, 20) and heterotroph and mix-
otroph plankton such as planktic foraminifera (23) and radiolar-
ians (17) flourished after the K∕Pg extinction, and benthic
foraminifera indicated a high food flux (9) (Fig. 1). Postextinction
planktic foraminiferal and nannoplankton assemblages indicate
eutrophic conditions, with oligotrophic assemblages evolving
later (24).

According to ecological theory, one would expect productivity
in terms of biomass (though not biodiversity) to recover as soon
as environmentally possible after the asteroid impact, probably
with large opportunistic blooms reflecting nutrient availability
and environmental instability (5). The collapse in vertical δ13C
gradient has been argued to represent only a slight increase (from
90 to 95%) in the fraction of total organic production reminer-
alized in the upper 200 m of the oceans (5), but others invoked
catastrophic decline of the organic flux to the sea floor (6). A
regionally variable, moderate decrease in export productivity
agrees with deep-sea benthic foraminiferal evidence (9, 25)
(Fig. 1) and geochemical export productivity proxies (26), but
a global collapse of export productivity for several millions of
years (4) is in strong disagreement with foraminiferal and geo-
chemical evidence.

We attempt to reconcile records of benthic foraminiferal
assemblage change with bulk carbon isotope records (reflecting
calcification by calcareous nannoplankton in the upper few
hundred meters of the ocean, e.g., ref. 27) and bottom (benthic
foraminiferal) records obtained on the same samples from four
sites (Fig. 1).

Results and Discussion
Bulk δ13C values increased in the latest 200 kyr of the Cretaceous
(Fig. 2), reaching a maximum just before the K∕Pg boundary
(65.5 Ma). All sites show a sharp decrease in bulk carbonate
δ13C values at the boundary as reported earlier (1, 3–7), but
the pattern of change varies geographically. Across the K∕Pg
boundary, benthic foraminiferal δ13C values show an increase
of about 0.8‰ at all sites, with Southeast Atlantic and Southern
Ocean values reaching maximum values (∼2.25‰), higher than
Pacific samples. The gradient between benthic and planktic va-
lues collapsed, at some locations even reversed (Fig. 3, Fig. 4).

The benthic faunal records also show geographically different
patterns (Table S1, Table S2), with Pacific sites characterized by a
sharp peak in benthic foraminiferal accumulation rates (BFARs)
(Fig. 3) and high percentages of infaunal taxa in the earliest
Paleocene (Fig. 4). Southern Ocean site 690 shows relatively little
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difference in BFAR, with overall declining values of infaunal taxa.
Southeast Atlantic site 1262 shows declining values in both
proxies, with a further decline about 400 kyr after the boundary
(Fig. 3, Fig. 4). In general, the benthic foraminiferal patterns
agree with biogenic Ba records (26). There is thus disagreement
between benthic foraminiferal and geochemical proxies and
stable isotope records from the same samples: Where the vertical
carbon isotope gradient collapsed (suggesting decreased export
productivity), benthic foraminifera and biogenic Ba records
either show little change (Southeast Atlantic, Southern Ocean),
or an increase (Pacific).

It has been argued that benthic foraminifera survived because
they are adapted to food-starved environments (4). We argue that
it is precisely because the deep-sea is food starved that food sup-
ply is the most important ecologically limiting variable (12), and a
long-term global collapse of the food supply would have caused
massive extinction. We argue that the collapsed carbon isotope
gradient (∼500 kyr, Fig. 2) does not reflect a severe global col-
lapse in export productivity. Extinction of fecal pellet producing
zooplankton does not have to lead to a collapse in export produc-
tivity: Flocs of organic matter (marine snow) are transported to
the sea floor more efficiently in the absence of zooplankton (28),
because zooplankton’s activity disaggregates these particles.

The bulk carbon isotope records probably represent complex,
multiple signals (29). The rapid and sharp decrease coincident
with the K∕Pg boundary may well represent a moderate decrease
in export productivity (5). Another part of the decrease reflects
the extinction of the carriers of the isotopic record, calcareous
nannoplankton, rather than a change in δ13C of dissolved inor-

ganic carbon (DIC) in the oceans (29). Benthic δ13C records
are based on the same species throughout, but the bulk records
before and after extinction are measured on different compo-
nents because of the mass extinction of pelagic calcifiers (Fig. 2)
(1, 5, 6, 14). Postextinction values in part show the isotopically
light signature of calcareous dinocysts (Table S3), similar to
the isotopic signature of the living Thoracosphaera heimi (30).
Small biserial and triserial planktic foraminifera are abundant
after the boundary and their fragments contribute to the bulk sig-
nal, and generally have a light isotopic signature, as does the liv-
ing triserial planktic Gallitellia vivans (31). Planktic foraminiferal
δ13C values declined because smaller forms are generally isoto-
pically lighter because of metabolic effects, and postextinction,
nonsymbiont bearing species were isotopically lighter than preex-
tinction symbiont bearers (32). In addition, the effect of the
solubility pump on δ13C of DIC, working in the opposite way
as the biological pump, became more pronounced during de-
creased export productivity (33). Finally, the long-term (several
105 years) bulk carbon isotope record is influenced by orbital
scale variability (34), in part linked to hyperthermal events with
associated carbon isotope excursions, one of which might have
occurred about 250 kyr after the K∕Pg boundary (35), coeval with
the minimum bulk value at site 1262 (Fig. 2). A discussion of hy-
perthermal events and variability in long-term δ13C records is out-
side the range of this paper, but we conclude that the bulk carbon
isotopic record cannot be explained by the effect of the K∕Pg ex-
tinction on vertical gradients in DIC only.

What caused the marine mass extinction if we are correct
in our argument that severe collapse in productivity (in terms
of biomass) did not occur? Noncalcifying phytoplankton (dino-
flagellates, diatoms, haptophytes) did not suffer severe faunal
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Fig. 2. Bulk (A) and benthic foraminiferal (B) carbon isotope records across
the K∕Pg boundary at sites in the Pacific, Southeast Atlantic, and Southern
Ocean. See Fig. 1 for location.
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Fig. 1. Location map and changes in benthic foraminiferal diversity and in-
faunal morphogroups across the K∕Pg boundary. Location of sections and
drill sites discussed in the text. (A) Yellow circles indicate a decrease in food
flux to the sea floor as estimated from benthic foraminiferal evidence, black
circles an increase, and half black circles indicate no significant change. See SI
Materials and Methods for construction of map. (B) Blue squares show the
decrease in diversity from uppermost Maastrichtian (Cretaceous) to lower-
most Danian (Paleogene) for locations shown in A, red triangles show the
change in the percentage infaunal taxa, a productivity indicator; data sources
are given in SI Materials and Methods.
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turnover, suggesting that darkness may have contributed, but may
not have been the most important cause of extinction, in agree-
ment with arguments that not sufficient fine dust was generated
by the impact to cause prolonged, severe darkness (36). Patterns
of nannoplankton extinction as well as changes in the benthic for-
aminiferal assemblages confirm that phytoplankton extinction
may have been less severe at high southern latitudes (14, 24)
(Figs. 1, 3, and 4), possibly because the impact occurred during
southern hemisphere winter when photosynthesizers would have
been hibernating because of seasonal darkness. Changes in over-
all composition of oceanic phytoplankton, due in part to the ex-
tinction of calcareous nannoplankton and replacement by other
photosynthesizers, could have severely affected higher levels of
the food chain, even if primary productivity was high (37).

We speculate that rapid ocean acidification could have been a
major causal factor (2, 3). Acidification probably was not caused
by high atmospheric CO2 levels (38), but nitric acid may have
been generated by N2-oxidation due to heating of the atmosphere
by the impactor (with N-deposition contributing to nutrients for
blooms), and sulfuric acid by an impact on gypsum-containing se-
diment (1, 3). Fragile, thin-walled foraminifera in the clay interval
deposited during about 10,000 y following the extinction are
preserved in pristine condition, but this observation does not pre-
clude a transient (months to years) event of severe acidification of
surface waters. A severe but short, rapidly buffered period of
acidification of surface waters may well explain the extreme se-
verity of extinction of short-lived, open-ocean unicellular calci-
fiers (1–6, 14), and possibly Caribbean rudists (39). There is
insufficient evidence that the extinction of planktic foraminifera
and calcareous nannoplankton was caused by their lack of resting
cysts: non-cyst-forming groups such as radiolarians (17) and non-
calcifying haptophytes (15) survived as well. Calcifying dinoflagel-
lates survived and bloomed after the extinction (19, 20), but their

modern relatives have noncalcifying life stages. Hermatypic cor-
als did not suffer extreme extinction (40), but these organisms
could have survived short-term, ocean acidification (41), which
was rapidly buffered in shallow waters.

Transient severe acidification could have been a factor in the
differential extinction of ammonites and nautiloids. Both groups
form aragonitic shells, but the planktivorous ammonites lived
within the uppermost few hundred meters of the oceans, whereas
nautiloids live deeper and form large lecitrophic eggs in protec-
tive egg capsules (42), in contrast to the small floating egg masses
of ammonites. Nautiloids would therefore have been less affected
by acidification. Extinction of such an important group of large
invertebrates may have reverberated through the food chain, spe-
cifically affecting top-level predators such as large, active fish (43)
and mosasaurs. Removal of the top-predators in its turn may have
had cascading effects on the lower levels of the food chain (44).
Calcifying organisms in coastal waters, from which living planktic
foraminifera and nannoplankton evolved after the extinction,
may have been protected from the short-term surface water acid-
ification if the coastal regions became eutrophic (45), because of
destruction of flora and resulting increase in nutrient-rich runoff.

Finally, rapid acidification could have been a cause of de-
creased export productivity in some regions because of its effects
on the pelagic calcifiers, leading to increased remineralization
(5), and thus to low oxygen conditions in eutrophic regions (46),
as, e.g., observed in the Danish K∕Pg sections (3, 19, 22).

The rapid onset of the acidification event due to an impact
(more rapid than even anthropogenic acidification) may have led
to a transient, severe acidification of the surface ocean followed
by rapid buffering, but leading to the massive extinction of the
short-lived pelagic calcifyers while providing for the survival of
deep-sea benthos including ostracodes (10). This pattern of
extinction contrasts with the much slower acidification at the
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end of the Paleocene, when deep-sea benthos suffered severe
extinction but calcifying plankton survived (47).

We conclude that it was not a collapse of primary or export
productivity that caused the marine mass extinction after the as-
teroid impact at the K∕Pg boundary. The oceans may have been
relatively eutrophic, supporting plankton blooms while oceanic
productivity in terms of biomass, but not in terms of diversity,
recovered rapidly, as proposed for terrestrial productivity (7, 48).
Mass extinction in the oceans may have been caused mainly by a
transient period of extreme acidification of the surface oceans.
Study of the effects of the end-Cretaceous extinction thus may
assist in evaluation of the effects of extreme and rapid acidifica-
tion, having more severe effects on calcifying plankton in the
surface waters and less on deep-sea benthos than slower acidifi-
cation.

Materials and Methods
Samples were provided by the integrated Ocean Drilling Program. Sediments
were dried, then soaked in warm water with detergent, and wet-sieved over
a 63-μm sieve. Benthic foraminifera were picked from the >63-μm size frac-
tion, with taxonomy and assignment to infaunal and epifaunal groups and
calculation of BFAR according to refs. 9, 12, and 25 (SI Materials andMethods,
Table S1, Table S2). We use the percentage of infaunal taxa and the BFAR as
independent proxies for food flux to the sea floor (12, 25) (SI Materials and
Methods). Isotope analyses were performed at the University of Santa Cruz,
Yale University, and the University of Michigan, and age models were devel-
oped following ref. 34 (SI Materials and Methods, Table S3).
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