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Abstract

This article presents a general framework to estimate the pointwise error of
linear partial differential equations. The error estimator is based on the varia-
tional multiscale theory, in which the error is decomposed in two components
according to the nature of the residuals: element interior residuals and inter-
element jumps. The relationship between the residuals (coarse scales) and
the error components (fine scales) is established, yielding to a very simple
model. In particular, the pointwise error is modeled as a linear combination
of bubble functions and Green’s functions. If residual-free bubbles and the
classical Green’s function are employed, the technology leads to an exact
explicit method for the pointwise error. If bubble functions and free-space
Green’s functions are employed, then a local projection problem must be
solved within each element and a global boundary integral equation must be
solved on the domain boundary. As a consequence, this gives a model for the
so-called fine-scale Green’s functions. The numerical error is studied for the
standard Galerkin and SUPG methods with application to the heat equa-
tion, the reaction-diffusion equation and the convection-diffusion equation.
Numerical results show that stabilized methods minimize the propagation of
pollution errors, which stay mostly locally.
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1. Introduction

Finite Element methods (FEM), together with other numerical methods,
are widely used owing to the increasing need of solving partial differential
equations applied to the scientific and the technological fields. Since the
beginning of the use of numerical methods, the analyst has wondered the
accuracy and the reliability of the results that are obtained. Therefore, much
effort has been dedicated to estimate the committed error in the simulations.
In this paper, we study the a posteriori pointwise error committed in FEM
of 2D transport equations.

An important point in analyzing the error is to know the relationship
between the error and the error sources. In the analysis of error estimation,
the error sources are identified with the residuals, namely the internal residual
inside the elements and the inter-element residuals defined on the element
boundaries. Due to the character of the FEM solution, several types of
residuals arise. In this paper, the error estimation is decomposed in two
components according to the different residuals. A challenge that is tackled
is to establish the connection between the different residuals and the error
components.

The error estimation is based on the variational multiscale method (VMS),
which consists in decomposing the variational form in coarse scales and fine
scales. We identify the coarse scales with the FEM solution and fine scales
with the error. The VMS theory has been used previously in the error esti-
mation field [4, 19, 22, 20, 21]. The present error estimate is classified as a
residual-based error estimation since the residuals of the coarse scales are em-
ployed to estimate the error. There are many works about this type of error
estimator. In turn, this error estimation can be divided according in subdo-
main residual methods and element residual methods. The former estimator
employs a patch of elements to estimate the error. For elliptic equations, a
general overview can be shown in the papers [38, 15, 43, 37, 39, 34, 42, 33].
On the other hand, the element residual estimators only require the infor-
mation inside the element and the element boundary to obtain a local error
estimate. They usually require to introduce equilibrated residual methods
to obtain a well-posed problem. In this field, we can remark the following
authors [2, 30, 31, 7, 3, 1].

Several studies have been made about a posteriori pointwise error previ-
ously. Nochetto and Dari et al. [35, 14] developed bounds for the pointwise
error in elliptic equations. An important work was made by Prudhomme et al.
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[40] where quantities of interest are employed to determine the pointwise er-
ror solving the dual problem in one-dimensional cases. Recently, Irisarri and
Hauke [29] developed an a posteriori pointwise error estimation for elliptic
problems with application to 2nd and 4th-order ODEs making use of fine-scale
Green’s functions [27]. In previous papers [28], we have analyzed the point-
wise error for the 1D transport equation. Following the same philosophy, the
present manuscript extends the methodology to 2D problems which involves
a greater complexity to characterize the error, especially, the error pollution.
Bounds for the error pollution, measured in the energy norm, have been an-
alyzed in works of Babuška [6, 8] et al. and Oden et al. [36]. They study the
influence of the pollution on local elementwise error estimation making use of
Green’s functions. If residual-free bubbles and the problem classical Green’s
function are employed, the technology leads to an exact explicit method for
the pointwise error. In practice, however, they can be substituted by bubble
functions and free-space Green’s functions, in which case, a local projection
problem must be solved within each element and a global boundary integral
equation, on the boundary domain. As a consequence, this provides a model
for the so-called fine-scale Green’s functions [24, 26] which, basically, are the
Green’s function that arises from the fine-scale space. The error is analyzed
for the heat equation, the reaction-diffusion equation and the convection-
diffusion equation for solutions obtained by the standard Galerkin method
and a stabilized method.

The paper is organized as follows: in Section 2, the general variational
multiscale framework is analyzed, in which the kinds of residuals are pre-
sented. The error estimation formulation is set in Section 3, in which the
methodology to estimate the two components of the error is established. In
Section 4, numerical examples are shown to corroborate the theoretical for-
mulation. Finally, the last section is devoted to conclusions.

2. Variational Multiscale formulation

In this section, the background of the error estimator is presented. The
error estimator is based on the VMS theory, in which the test and trial
functions are decomposed into fine and coarse scales. This methodology
has been extensively applied in the literature to analyze stabilized methods
[24, 26] and to estimate the error [18, 19, 20, 21, 22, 32, 34, 29, 28] to estimate
the error in elasticity and in fluid mechanics.
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In this paper, we focus on the a posteriori pointwise error estimation
for 2D transport equations. Next, the general methodology to estimate the
pointwise error is exposed, and then it is particularized for each differential
equation.

Let us express a partial differential equation as





Lu = f in Ω
u = g on Γg

Bu = h on Γh

(1)

where L is a generic differential operator. In this work, we consider the
following equations:

i. Heat equation: Lu = −κ∆u

ii. Reaction-diffusion equation: Lu = −κ∆u+ su

iii. Convection-diffusion equation: Lu = −κ∆u+ a · ∇u

where κ, s and a are the diffusion, the reaction and the convection coeffi-
cient, respectively. For the reaction diffusion equation we take κ > 0 and
s > 0. The B = κ∇u ·n operator arises from integration by parts of the dif-
ferential operator, L, and it acts on the Neumann boundary; g is the value of
the Dirichlet boundary condition and h determines the Neumann boundary
condition. Let S and V be the standard Sobolev spaces for the trial and the
test function, respectively,

S = {u ∈ H1(Ω) | u = g on Γg} (2a)

V = {v ∈ H1(Ω) | v = 0 on Γg} (2b)

The variational formulation of Eq. (1) is: Find u ∈ S such that

a(w, u) = (w, f) + (w, h)Γh
∀w ∈ V (3)

where a(·, ·) is the bilinear form, (·, ·) the L2(Ω) inner product and (·, ·)Γh
the

L2(Γh) inner product on Γh. The FEM consists in meshing the domain, Ω,

into nel non-overlapping elements with domain Ωe. Let Ω̃ and Γ̃ denote the
union of element interiors, Ωe, and inter-element boundaries, Γe, respectively,

Ω̃ =

nel⋃

e=1

Ωe Γ̃ =

nel⋃

e=1

Γe\Γ (4)
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We define the finite spaces Sh ⊂ S and Vh ⊂ V for the trial FEM solution
and weighting functions, respectively,

Sh = {uh ∈ H1(Ω) | uh|Ωe ∈ Pk, uh|Γg
= g, ∀Ωe ∈ Ω̃}

Vh = {wh ∈ H1(Ω) | wh|Ωe ∈ Pk, wh|Γg
= 0, ∀Ωe ∈ Ω̃}

(5)

where Pk denotes the space of polynomials of degree k. Thus, the standard
Galerkin method reads:

Find uh ∈ Sh such that

a(wh, uh) = (wh, f) + (wh, h)Γh
∀wh ∈ Vh (6)

For the convection-diffusion problem, the numerical solution can be un-
stable when convection is dominant. A typical method to stabilize the FEM
solution is the streamline upwind Petrov-Galerkin (SUPG) method [13]. It
consists in introducing a stabilizing term in the Galerkin formulation. Ac-
cordingly, the SUPG method reads: Find uh ∈ Sh such that

aSUPG(wh, uh) = a(wh, uh) + aτ (wh; uh, f) = (wh, f) + (wh, h)Γh
∀wh ∈ Vh

(7)
The stabilizing term aτ (·; ·, ·) is

aτ (wh; uh, f) =
∑

Ωe∈Ω̃

aeτ (wh; uh, f) (8)

where aeτ (wh; uh, f) =
(
a · ∇wh, τ

e(Luh − f)
)
Ωe and τ e = min

( h

2|a|
,
h2

12κ

)
.

The value h is a measure of the element length.

Remark 1. It is worth noting that the origin of stabilized methods lays
on the VMS. Taking the standard Galerkin formulation, the stabilized term,
aτ (·; ·, ·), represents the effect of the fine scales on the coarse scales. However,
in this paper the aim is to estimate the numerical error, irrespective of the
employed method. Therefore, both the standard Galerkin and the SUPG
solutions are considered coarse scales in our analysis.

Next, the VMS theory is introduced in order to study the error. Basically,
it consists in decomposing the solution and test functions into resolved and
unresolved scales,

u = ū+ u′ ū ∈ S̄, u′ ∈ S ′

w = w̄ + w′ w̄ ∈ V̄ , w′ ∈ V ′ (9)
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In our VMS analysis, we identify the coarse scales with the finite element
solution and the fine scales with the error, and thereby, ū is identified with
the numerical solution, obtained by Galerkin or SUPG methods. Therefore,
the coarse scales for the test functions are S̄ ≡ Sh, and for the test functions,
V̄ ≡ Vh. On the other hand, S ′ and V ′ are infinite dimensional spaces. They
are defined such that S = S̄ ⊕ S ′ and V = V̄ ⊕ V ′.

Because of bilinearity, the variational form can be split into coarse scales
and fine scales

a(w̄, ū) + a(w̄, u′) = (w̄, f) + (w̄, h)Γh
∀w̄ ∈ V̄ (10a)

a(w′, ū) + a(w′, u′) = (w′, f) + (w′, h)Γh
∀w′ ∈ V ′ (10b)

Eq. (10a) refers to the coarse scales whereas Eq. (10b) applies to the fine
scales. Thus, in order to study the fine scales, we focus on Eq. (10b). This
equation can be stated as

a(w′, u′) = −(w′,Lū− f)Ω̃ − (w′, [[Bū]])Γ̃ − (w′,Bū− h)Γh
(11)

The jump term, [[·]], represents the difference of the fluxes on both sides of
the element boundaries. In this paper, see Fig. 1, the jump term is defined
as in [25]

[[q · n]] = q
+ · n+ + q

− · n− (12)

It is worth noting that the terms on the RHS of Eq. (11) represent the
three error sources: the internal residuals, the inter-element residuals and
the Neumann boundary condition residual.

Figure 1: Notation to define the jump across element interfaces.

Remark 2. To analyze the error, the VMS theory based on the Galerkin
variational form is employed regardless of the numerical method to compute
ū.
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3. A posteriori error estimation analysis

The strategy that is followed to estimate the error consists of decomposing
the error in two components according to the nature of the residuals that
appear in Eq. (11):

u′(x) = u′bub(x) + u′poll(x) (13)

The two terms of the decomposition are as follows.

• The internal residual error, u′bub, is related to the local internal residual
inside the elements, Lū− f . Thus, it has a local character. This error
component is modeled by bubble functions defined within the elements.

• The inter-element error, u′poll, represents the pollution error, i.e, the
error contribution that appears in an element whose error source is
outside the element. This error term arises from three terms:

i. Jumps of the solution on the element boundaries, [[Bū]]

ii. Jumps of the local internal residual error, [[Bu′bub]]

iii. The difference between Bū and the prescribed value on the Neu-
mann boundary, h.

Both components are described in detail in the following subsections. The
two-step error estimation has been made beforehand in some works. Huerta
and Dı́ez [15, 23] solve a first error component on each element making an
h discretization on a homogeneous Dirichlet elemental problem instead of a
p discretization that we have carried out. Then, the flux jump is taken into
account solving local problems that contain the element boundaries using an
h discretization again. In [23] the pollution error is estimated projecting over
the FEM space.

3.1. Local internal residual error, u′bub
The error component u′bub is generated by the internal residual Lū − f

inside each element. The link of the residual with the error can be carried
out following the work of Hughes and Sangalli [27], using fine-scale Green’s
functions [29, 28, 22, 18].

Appendix A explains in more detail how to determine u′bub. With this
methodology, the error term u′bub can be obtained exactly through the residual-
free bubble function concept. However, due to the high computational cost
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to obtain the residual-free bubbles, we have decided to model u′bub by means
of bubble functions instead of residual-free bubble functions.

Therefore, the second method to estimate u′bub, which is employed in this
paper, uses classic bubble functions in combination with the fine-scale varia-
tional form (11) that stems from the multiscale decomposition. The strategy
that is followed is to subdivide the problem in each element considering that
the internal residual error is zero on the boundary elements. Thus, the ap-
propriate space to look for the internal residual error is

S ′
bub = {w′ ∈ H1(Ω) | w′ = 0 on ∂Ωe} (14)

Recalling the fine-scale variational form (11), the internal residual problem
is set as: Find u′bub ∈ S ′

bub such that

a(w′
bub, u

′
bub) = (w′

bub, f −Lū) ∀w′
bub ∈ S ′

bub (15)

Due to the definition of S ′
bub, the terms in Eq. (11) belonging to the element

boundaries vanish. Eq. (15) must be discretized selecting a finite subspace
of Sh

bub ⊂ S ′
bub. The way of obtaining a numerical solution of u′bub is solving

the following discrete problem:
Find u′bub ∈ Sh

bub such that

a(w′
bub, u

′
bub) = (w′

bub, f −Lū) ∀w′
bub ∈ Sh

bub (16)

Both the trial functions and the test functions live in the same subspace
Sh
bub, composed of polynomial bubble functions. Therefore, the internal resid-

ual error is established as a linear combination of these bubble functions
bi(x),

u′bub(x) =

nbub∑

i=1

cbi bi(x) (17)

with nbub being the number of bubble functions which are chosen and cbi
unknown constants to be determined.

The selected bubble functions are defined in the reference element for
quadrilaterals and triangles. The first bubble function, b1(x), is the simplest
polynomial that fulfills to be zero on the element boundary. The successive
bubbles are built adding the monomials of the Pascal triangle with center in
the barycenter of the element, ce = (ξe, ηe).
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For quadrilaterals: The reference element is: Ωref = {(ξ, η) : −1 ≤ ξ ≤
1 : −1 ≤ η ≤ 1} and ce = (0, 0)

b1(ξ, η) = (1− ξ2)(1− η2)
b2(ξ, η) = (1− ξ2)ξ(1− η2)
b3(ξ, η) = (1− ξ2)η(1− η2)
b4(ξ, η) = (1− ξ2)ξ · η(1− η2)
b5(ξ, η) = (1− ξ2)ξ2(1− η2)
b6(ξ, η) = (1− ξ2)η2(1− η2)

...

(18)

For triangles: The reference element is: Ωref = {(ξ, η) : 0 ≤ ξ ≤ 1; 0 ≤
η ≤ 1− ξ} and ce = (ξb, ηb) = (1/3, 1/3)

b1(ξ, η) = 27ξη(1− ξ − η)
b2(ξ, η) = 27ξη(1− ξ − η)(ξ − ξb)
b3(ξ, η) = 27ξη(1− ξ − η)(η − ηb)
b4(ξ, η) = 27ξη(1− ξ − η)(η − ηb)(ξ − ξb)
b5(ξ, η) = 27ξη(1− ξ − η)(ξ − ξb)

2

b6(ξ, η) = 27ξη(1− ξ − η)(η − ηb)
2

...

(19)

3.2. The inter-element error, u′poll
The error term u′poll takes into account the error that is produced by the

lack of continuity on the element boundaries. Since the problem is linear, we
can split the differential equation as

Lu = Lu′ + Lū = f in Ω̃ (20)

Therefore, if the error is decomposed as u′ = u′bub + u′poll,

Lu′poll = f − Lū− Lu′bub in Ω̃ (21)

In case that u′bub is calculated using residual-free bubbles, [11, 12], then

Lu′bub = f − Lū on Ω̃, which implies that Lu′poll = 0 on Ω̃. On the other

hand, if u′bub is approximated by bubble functions, then Lu′poll ≈ 0 on Ω̃.
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As a consequence, the error pollution mainly stems from the inter-element
jumps. Thus, the inter-element error problem can be set as





Lu′poll = 0 in Ω \ Γ̃

Lu′poll = −([[Bū]] + [[Bu′bub]])δΓ̃ on Γ̃
u′poll = 0 on Γg

Bu′poll = h− Bū− Bu′bub on Γh

(22)

As in the 1D case [28], the inter-element error can be calculated as a
function of free-space Green’s functions, gF (x,xi), or fundamental solutions.
We now multiply the two first Eqs. of (22) by the free-space Green’s function,
gF , and integrate over the domain, Ω,






∫

Ω

Lu′pollg
F (x,y) dΩy = 0 in Ω \ Γ̃

∫

Ω

Lu′pollg
F (x,y) dΩy = −

∫

Γ̃

gF (x,y)([[Bū]] + [[Bu′bub]]) dΓy on Γ̃

(23)
Integrating by parts twice the LHS of Eqs. (23) such that,

∫

Ω

Lu′poll(y)g
F (x,y) dΩy =

∫

Ω

u′poll(y)L
∗gF (x,y) dΩy

+

∫

∂Ω

u′poll(y)Byg
F (x,y) dΓy

−

∫

∂Ω

gF (x,y)Byu
′
poll(y) dΓy

(24)

where L∗ is the adjoint differential operator. Taking advantage that L∗gF (x,y) =
δ(x,y), the first integral of the RHS of Eq.(24) becomes

∫

Ω

u′poll(y)L
∗gF (x,y) dΩy = u′poll(x) (25)

Then,

∫

Ω

Lu′pollg
F (x,y) dΩy = u′poll(x) +

∫

∂Ω

u′poll(y)Byg
F (x,y) dΓy

−

∫

∂Ω

gF (x,y)Byu
′
poll(y) dΓy

(26)
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Therefore, Eq. (23) becomes

u′poll(x) = −

∫

Γ̃

gF (x,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

∫

∂Ω

gF (x,y)Byu
′
poll(y) dΓy −

∫

∂Ω

u′poll(y)Byg
F (x,y) dΓy

for all x ∈ Ω

(27)

The first addend of the RHS in Eq. (27) takes into consideration the error
due to the jumps of the fluxes of the FEM solution and u′bub on the element
boundaries. The second and the third addends contain information of u′poll
and its derivatives on the boundaries.

The representation formula (27) gives the pollution error in the interior
of the domain Ω. In case we evaluate this expression on the boundary, a
boundary integral equation (BIE) arises, which is set as:

cu′poll(x0) = −

∫

Γ̃

gF (x0,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

∫

∂Ω

gF (x0,y)Byu
′
poll(y) dΓy −

∫

∂Ω

u′poll(y)Byg
F (x0,y) dΓy

for all x0 ∈ ∂Ω
(28)

The constant c takes different values according to the smoothness of the
boundary where x0 is sited. If the boundary is smooth, c = 1

2
(see BEM

bibliography, for instance [9, 10]). The value of c for a corner is c = θ
2π
,

where θ is the internal angle of the corner in radians. The unknowns in Eq.
(28) are Byu

′
poll on Γg and u′poll on Γh.

The boundary integral equation, expressed in Eq. (28), is solved apply-
ing Boundary Element Method (BEM) concepts [9, 10]. There are several
methodologies to tackle the BEM. We consider two methodologies according
to the problem boundary conditions.

Remark 3. Eq. (28) could have been expressed as a function of the classic
Green’s function. In this case, this equation would give explicitly u′poll(x).
However, due to the difficulty to obtain the classic Green’s function for each
problem and domain, we present a method based on free-space Green’s func-
tions, which requires solving a small boundary problem.

11



3.2.1. Treatment of problems with Dirichlet boundary conditions

The way of treating the contour integral in Eq. (28) on Dirichlet boundary
conditions is simplified by the fact that we know that u′poll = 0 on the whole
Dirichlet boundary,

0 = −

∫

Γ̃

gF (x0,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

∫

∂Ω

gF (x0,y)Byu
′
poll(y) dΓy for all x0 ∈ ∂Ω

(29)

The only unknown in Eq. (29) is the derivative of u′poll, Byu
′
poll, on the

boundary which plays the role of a density function χ(y) that has to satisfy
the homogeneous Dirichlet boundary condition,

∫

∂Ω

gF (x0,y)χ(y) dΓy =

∫

Γ̃

gF (x0,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy

for all x0 ∈ ∂Ω
(30)

In this problem, the delta-delta collocation method can be employed to en-
force Eq. (30) at a set of N points uniformly spaced on the boundary called
xb,i for i = 1, ..., N . Thus, for each point i the following equation is imposed,

N∑

j=1

gF (xb,i,xb,j)χb,j =

∫

Γ̃

gF (xb,i,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy (31)

where χb,j are the unknown weights to be determined.
Finally, once the coefficients χb,j are known, u′poll on the domain is ob-

tained as

u′poll(x) = −

∫

Γ̃

gF (x,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

N∑

j=1

gF (x,xb,j)χb,j for all x ∈ Ω

(32)

3.2.2. Treatment of problems with Neumann and Dirichlet boundary condi-

tions

Compared to problems with only Dirichlet boundary conditions, now the
main difference to face is the singular integral that appears with the deriva-
tive of the Green’s function in the BIE and the steep change in the type
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of boundary conditions from Dirichlet to Neumann. For this reason, the
collocation delta-delta method is not convenient to handle the singularities.
Thus, a more elaborated method is invoked

Calling q′poll = Bu′poll, the inter-element error, u′poll and its flux along the
boundary are approximated as

u′poll(x) =

N∑

i=1

u′poll,iψi(x) for i = 1, ..., N

q′poll(x) =
N∑

i=1

q′poll,iψi(x) for i = 1, ..., N

(33)

where N are the number of boundary elements and with u′poll,i and q′poll,i
being the unknown coefficients and ψi(x) the approximation basis functions.
In this work, ψi(x) are considered constants, which simplify and reduce the
computational effort. Now, we introduce Eq. (33) and discretize Eq. (28) in
N elements along the boundary

cu′poll,i = −

∫

Γ̃

gF (x0,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

N∑

j=1

q′poll,j

(∫

∂Ω

gF (x0,y)ψj dΓ

)
−

N∑

j=1

u′poll,j

(∫

∂Ω

Byg
F (x0,y)ψj dΓ

)

for j = 1, ..., N
(34)

where the only unknowns are u′poll,j on Γh and q′poll,j on Γg. On the Dirichlet
boundary, we know that u′poll = 0 and q′poll is unknown. On the other hand,
on the Neumann boundary, the unknown is u′poll and the flux q′poll is

q′poll = h− Bū(x0)− Bu′bub(x0)
for x0 ∈ Γh

(35)

It is worth noting that at any boundary point there is only one unknown to
be determined. Therefore, we form a system of equations evaluating (34) for
i = 1, ..., N .

Once the components u′poll,j and q′poll,j for j = 1, ..., N are known, the
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inter-element error can be evaluated at any point x ∈ Ω using Eq. (36)

u′poll(x) = −

∫

Γ̃

gF (x,y)
(
[[Bū]](y) + [[Bu′bub]](y)

)
dΓy+

N∑

j=1

q′poll,j

(∫

∂Ω

gF (x,y)ψj dΓ

)
−

N∑

j=1

u′poll,j

(∫

∂Ω

∂gF (x,y)

∂ny

ψj dΓ

)

for x ∈ Ω
(36)

For the numerical examples, the first integral that appears on the RHS both
in Eq. (36) and in Eq. (32) is carried out with a uniform discretization on
each boundary element using one-point Gauss quadrature rule. On the other
hand, the BEM with constant elements or the collocation method that are
employed to solve the BIE provides first order for the measure of the pointwise
error. This convergence rate is corroborated in the numerical examples.

Remark 4. The extension to 3D problems does not imply more conceptual
complexity since the same steps as in this paper must be followed. In 3D
problems, the internal residual error, u′bub, is composed of elemental bubbles
that are zero on the faces of the elements. On the other hand, the discon-
tinuity of the shape function derivatives must be considered on the faces of
the elements instead of on the element edges that we have seen in 2D.

Remark 5. Taking advantage of the pointwise error estimation, adaptive
refinement meshes can be made. An example of a mesh refinement process
is carried out later.

4. Numerical results

In order to validate the proposed error estimator, we present several ex-
amples with application to the heat equation, the reaction-diffusion equation
and the convection-diffusion equation.

4.1. Heat equation

The differential equation for the heat equation is





−κ∆u = f in Ω
u = g on Γg

κ∇u · n = h on Γh
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In this case, Bu = κ∇u · n. It is well-known that the free-space Green’s
function or the fundamental solution is

gF (x,xi) = −
1

2πκ
ln

(√
(x− xi)2

)
(37)

where xi are the coordinates of the unit source point.

4.1.1. Heat equation with Dirichlet boundary conditions

A domain Ω = (0, 1)× (0, 1) with homogeneous Dirichlet boundary con-
dition except on the upper edge where a triangular temperature distribution
is applied: 0◦C at (0,0), 10◦C at (0.5,0) and 0◦C at (1,0). The source term
is zero, f = 0. Two kind of meshes are analyzed:

• 4× 4 bilinear quadrilateral elements

• 16 linear triangle elements

We begin with the 4×4 bilinear quadrilateral elements. The numerical
and the reference solution are depicted in Fig. 2. The reference solution
is considered close to the exact one and it is obtained using a fine mesh of
100×100 elements.

(a) Reference solution (b) FEM solution

Figure 2: Heat equation. Dirichlet problem. Reference and FEM solution.

This problem has the particular characteristic that the residual Lū − f
is zero since f = 0 and Lū = 0. Therefore, the internal residual error is zero

15



and the error is uniquely expressed by the inter-element residual error. As we
have a problem with Dirichlet boundary conditions on the whole boundary,
Eq. (31) is employed discretizing the boundary with 10 constant elements on
each edge of the FEM elements located on the boundary. Therefore, in this
case, we employed 160 constant BEM elements along the domain boundary.
Once the coefficients ψb,i are determined, the error term u′poll is recovered via
Eq. (32).

Figs. 3 and 4 represent the reference error and the predicted error in
2D and 3D graphics. It can be appreciated that the predicted error and the
reference error are very similar.

(a) Reference error (b) Estimated error

Figure 3: Heat equation. Dirichlet problem. Reference and estimated error.

For triangular elements, the internal residual is again zero, Lū − f = 0.
Thus, the pointwise error can be determined by the same methodology as
with the bilinear quadrilateral, using Eq. (32).

Fig. 5 depicts the mesh that has been employed for the FEM solution.
The reference and the estimated error are shown in Fig. 6 and are practically
identical.

In order to check the rate of convergence of the estimated pointwise error,
we plot a log-log graphic in Fig. 7, in which the committed error in the
computation of the FEM error is analyzed. Specifically, it represents the
error at the center of a element as a function of the discretization size, h, of
the element boundaries and domain boundary. In this example, we take the
point (0.375,0.625). We recall that the collocation method is used to solve
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(a) Reference error (b) Estimated error

Figure 4: Heat equation. Dirichlet problem. Reference and estimated error in 3D.

Figure 5: Mesh based on linear triangles.

the BIE and one-point Gauss quadrature is applied to the contour integrals
on the element boundaries. It can be observed that first order convergence
rates are provided as it is expected according to convergence theory.

4.1.2. Heat equation with Dirichlet and Neumann boundary conditions

A domain Ω = (0, 1) × (0, 1) with f = 0, and homogeneous Dirichlet
boundary conditions except on the upper edge where there is a Neumann
boundary condition in the interval (0.25, 0.75). Fig. 8 depicts the problem
with the corresponding boundary conditions.

The strong form of the problem is
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(a) Reference error (b) Estimated error

Figure 6: Heat equation. Dirichlet problem and linear triangles. Reference and estimated
error.
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Figure 7: Convergence rate of the pointwise error estimation at (0.375,0.625)





−κ∆u = 0 in Ω
u = 0 on Γg1

u = 10 on Γg2

u = 10− 10y on Γg3

κ∇u · n = 0 on Γh

where Γg = Γg1

⋃
Γg2

⋃
Γg3 is the Dirichlet boundary and Γh is the Neumann
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Figure 8: Heat equation. Problem with Neumann and Dirichlet boundary conditions.

boundary. Γh, Γg1 and Γg2 are defined as

Γh = {(x, 1); 0.25 < x < 0.75}
Γg2 = {(x, 1); 0 ≤ x ≤ 0.25}
Γg3 = {(0, y); 0 ≤ y < 1}
Γg1 = {(x, y) ∈ Γ\(Γg1

⋃
Γg2

⋃
Γh)}

(38)

The coarse mesh is made of 4×4 bilinear quadrilateral elements. The nu-
merical solution is depicted in Fig. 9 together with the reference solution.

As in the latter case, there is no internal residual in this problem and the
only error component is u′poll. The great difference between this problem and
the previous one is that now the error is not zero on the whole boundary due
to the Neumann boundary condition.

For estimating the pollution error, the BIE is solved discretizing the
boundary as is expressed in Eq. (34), The boundary has been discretized
with 160 constant BEM elements.

Fig. 10 represents the error estimation in 3D representation. It can be
observed that the error is sharp on the singularities around the Neumann
boundary condition, especially, at the point of encounter between Neumann
and Dirichlet boundary conditions. Fig. 11 depicts also the predicted error
and the reference one.
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(a) Reference solution (b) FEM solution

Figure 9: Heat equation. Reference and FEM solution with Neumann and Dirichlet
boundary conditions.

(a) Reference error (b) Estimated error

Figure 10: Heat equation. Reference and estimated error with Neumann and Dirichlet
boundary conditions in 3D view.

4.2. The reaction-diffusion equation

The reaction-diffusion equation is





−κ∆u + su = f in Ω
u = g on Γg

κ∇u · n = h on Γh

(39)
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(a) Reference error (b) Estimated error

Figure 11: Heat equation. Reference and estimated error with Neumann and Dirichlet
boundary conditions.

where κ and s are the diffusion and the reaction coefficients, respectively.
The free-space Green’s function for the reaction-diffusion equation is de-

fined as [41],

gF (x, y; ξ, η) =
1

2πκ
K0(λrr) (40)

where K0 denotes the modified Bessel function of the second kind, r2 =
(ξ − x)2 + (η − y)2 and λ2r = s/κ

The proposed reaction-diffusion problem consists of a domain Ω = (0, 1)×
(0, 1) and homogeneous Dirichlet boundary condition. The source term is
f = 1 and the coefficients of the equation are κ = 1 and s = 10. Two kind
of meshes are considered:

• 4× 4 bilinear quadrilateral elements

• 16 linear triangle elements

The reference solution has been obtained with a fine mesh made of 100×
100 elements. Fig. 12 represents both the reference and the FEM solution.

As described in Section 3, the error estimation is decomposed in internal
residual error and inter-element error.
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(a) Reference solution (b) FEM solution

Figure 12: Reaction-diffusion equation. Reference and FEM solution for quadrilaterals.

4.2.1. Internal residual error, u′bub
The internal residual error comes from the internal residuals and is lo-

cated inside each element. This error component, u′bub, is expressed by a
combination of bubble functions that satisfies Eq. (16) in each element.

Fig. 13 represents the internal residual error, u′bub, selecting up to the
bubble b3(x) of Eq. (18) and (19) for quadrilaterals and triangles, respec-
tively. In this case, the internal residual is sū − f since bilinear or linear
elements are employed, and therefore, −κ∆ū = 0.

4.2.2. Inter-element error, u′poll
As for the inter-element error, we have to take into account both the

jump on the boundary element due to the lack of continuity of the FEM
solution and the internal residual error, u′bub. The inter-element error, u′poll,
is depicted Fig. 14 in 2D and 3D views. The BIE is solved discretizing with
160 constant BEM elements placed uniformly on the domain boundary.

Summing the internal residual error, u′bub, and the inter-element residual
error, u′poll, the pointwise error estimation is observed in Fig. 15 where it is
compared with the reference one.

For triangle elements, we have selected the mesh represented in Fig. 16a.
The FEM solution is depicted in Fig. 16b. The error estimation is obtained
following the same steps as with quadrilaterals. Fig. 17 shows the reference
and the estimated error.
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(a) 2D view (b) 3D view

Figure 13: Reaction-diffusion equation. Internal residual error for quadrilaterals.

(a) 2D view (b) 3D view

Figure 14: Reaction-diffusion equation. Inter-element error for quadrilaterals.

4.3. Convection-diffusion equation

The convection-diffusion problem is expressed as






−κ∆u+ a · ∇u = f in Ω
u = g on Γg

κ∇u · n = h on Γh

(41)

where k and a = (ax, ay) are the diffusive and convection coefficients, respec-
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(a) Reference error (b) Estimated error

Figure 15: Reaction-diffusion equation. Reference and estimated error for quadrilaterals.

(a) Mesh (b) FEM solution

Figure 16: Reaction-diffusion equation. Mesh and numerical solution for triangles.

tively.
The process to estimate the error is the same as has been explained. The

internal residual error is estimated via Eq. (15) particularized to convection-
diffusion equation. The free-space Green’s functions for convection-diffusion
equation is defined as [41],

gF (x, y; ξ, η) =
1

2πκ
exp

(
bx(ξ − x) + by(η − y)

2κ

)
K0(λar) (42)
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(a) Reference error (b) Estimated error

Figure 17: Reaction-diffusion equation. Reference and estimated error for triangles.

where K0 denotes the modified Bessel function of the second kind, r2 =
(ξ − x)2 + (η − y)2 and λ2a = (b2x + b2y)/(2ε)

2.
The problem for the convection-diffusion equation is a domain Ω = (0, 1)×

(0, 1) with κ = 0.03 and an oblique advection a = (1, 1). The source term is
f = 1. The reference solution has been obtained with a fine mesh made of
100×100 elements. The error estimation is analyzed both using the standard
Galerkin and the SUPG method.

4.3.1. Error estimation for the standard Galerkin method

Fig. 18 represents both the reference and the FEM solution for the stan-
dard Galerkin using a coarse mesh of 4× 4 bilinear elements. The numerical
solution is unstable and spurious oscillations appear along the domain.

For this equation and using bilinear quadrilaterals, the internal residual
source is f−a·∇ū obtained by Eq. (16). The error term u′bub is approximated
with bubbles up to b6(x), solving Eq. (16). It is represented in Fig. 19.

For the inter-element error we have to consider the jump on the element
interfaces of the numerical solution and the internal residual error. Also, in
order to satisfy the boundary conditions we solve the BIE via the collocation
method. Fig. 20 shows the inter-element error. As we have only Dirichlet
boundary conditions, the collocation method is applied to solve the BIE.
As in the previous examples, 160 constant BEM elements are posed on the
domain boundary spaced uniformly.
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(a) Reference solution (b) FEM solution

Figure 18: Convection-diffusion equation. Reference and FEM solution.

(a) 2D view (b) 3D view

Figure 19: Convection-diffusion equation. Internal residual error, u′

bub.

The total error is obtained summing both u′bub and u′poll. Both the refer-
ence and the estimated error are very similar as can be seen in Fig. 21, even
in this case in which the FEM solution is unstable.

4.3.2. Error estimation for the SUPG method

The SUPG solution [13] is obtained via Eq. (7) with a 8 × 8 mesh with
bilinear quadrilaterals. Now, the numerical solution is stable in contrast with
the Galerkin solution, see Fig. 22.
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(a) 2D view (b) 3D view

Figure 20: Convection-diffusion equation. Inter-element error, u′

poll.

(a) Reference error (b) Estimated error

Figure 21: Convection-diffusion equation. Reference and estimated error.

Once the SUPG solution is obtained, the stabilized solution is identified
with the coarse scales, ū. Both terms of the error estimation are computed
following the same steps as the latter case. Fig. 23 depicts the internal resid-
ual error, u′bub, and the inter-element error, u′poll. Summing both components
the error estimation is achieved.

The error estimation and the reference error are represented in Fig. 24
and they are very similar. Since the SUPG solution is a stable solution, the
error is practically zero in almost all the domain except in the boundary
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Figure 22: Convection-diffusion equation. SUPG solution.

(a) u′

bub (b) u′

poll

Figure 23: Convection-diffusion equation. Internal residual error and inter-element error
for κ = 0.03 and a = (1, 1) with f = 1 and SUPG solution

layer.

Remark 6. It can be appreciated that the SUPG error pollution has a local
character. This feature can be exploited to develop feasible VMS explicit
error estimators [20, 21].

5. Adaptive refinement mesh using the error estimation

Once the error estimation is obtained, this information can be used in an
adaptive mesh refinement process. The convergence theory establishes that
the error scales with the size of the element as [5],
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(a) Reference error (b) Estimated error

Figure 24: Convection-diffusion equation. Reference and estimated error for κ = 0.03 and
a = (1, 1) with f = 1 and SUPG solution

‖u′‖L∞(Ω) ≈ C · hk+1 (43)

where C is independent of the element size, h, and provided that the solution
is sufficiently smooth. For linear or bilinear elements employed, Eq. (44)
reads,

‖u′‖L∞(Ω) ≈ C · h2 (44)

Adaptive mesh refinement can be carried out controlling the maximum
error. To do it, we can evaluate the error at the center of the element and/or
at the center of the edges and/or at the nodes. These points are called control
points.

The refinement is an iterative process. To define the refinement strategy
[17], in each iteration we have to decide the new element size as a function
of :

i The estimated error at the element control points

ii The tolerance error, which is introduced by the user

iii The current size of the element

Thus, according to convergence theory, the new element size is defined as
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h2new
h2old

=
‖u′tol‖L∞(Ωe)

‖u′old‖L∞(Ωe)
(45)

where hnew and hold are the new and old element sizes, respectively. u′old and
u′tol are the estimated error and the desired error. The norm ‖ · ‖L∞(Ωe) is the
maximum error measured in absolute value at the control point belonging to
the Ωe. The refinement process has been performed with GiD software [16].

For the SUPG simulation that we have seen previously in Section 4.3, we
have refined the mesh taking an initial 4× 4 quadrilateral mesh.

We set an error tolerance, ‖u′tol‖L∞(Ωe) = 0.05. In Table 1, the number
of elements, nels, the number of nodes nnp and the pointwise error are shown
for the four iterations that have been made to obtain the final mesh with the
desired pointwise error.

nels nnp ‖u′‖L∞

Iteration 1(*) 16 25 3.509e-1
Iteration 2 110 132 1.658e-1
Iteration 3 363 405 7.832e-2
Iteration 4 854 922 4.974e-2

(*)Uniform 4× 4 mesh

Table 1: Maximum pointwise error in each iteration.

The initial and refined meshes are represented in Fig. 25.

(a) Initial mesh (b) Final mesh

Figure 25: Refine mesh for SUPG method with κ = 0.03, ax = 1 and ay = 1.
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6. Conclusions

In this work, a methodology to obtain a posteriori the pointwise error
based on the variational multiscale theory in combination with bubble func-
tions and Green’s functions has been presented. According to the nature
of the error sources, the finite element error has been split into two compo-
nents, u′bub and u

′
poll. In particular, the error component u′bub is related to the

element internal residuals and has been modeled as a combination of bub-
ble functions. The error component u′poll is connected to the inter-element
residuals (jumps) and the Neumann boundary conditions and it is computed
making use of the fundamental solution or free-space Green’s functions.

If residual-free bubbles and the problem Green’s functions are employed,
the formulation leads to an exact explicit method. However, in practice
residual-free bubbles and classical Green’s functions have complex analytical
expressions or are hard to obtain. In this case, they can be substituted
by bubble functions and free-space Green’s functions, respectively. Then,
the element interior residual must be projected into the bubble function
space within each element and a global boundary integral equation must
be solved to match the boundary conditions of the Green’s functions. This
study suggests that the fine-scale Green’s functions can be decomposed into
a combination of bubble functions and Green’s functions along the element
boundaries.

The theoretical formulation has been tested with numerical examples ap-
plied to the heat equation, the reaction-diffusion equation and the convection-
diffusion equation. The error has been analyzed for the standard Galerkin
and SUPG methods. The numerical results show that the estimated error
and the reference error are practically identical, demonstrating a good con-
nection between the error sources and the error itself. Also, the numerical
tests have shown that for stabilized methods the pollution error is confined
within a local region, explaining the success of explicit residual-based VMS
error estimators.

As an application, adaptive mesh refinements have been performed achiev-
ing meshes in which the users can control the pointwise error of the FEM
solution.
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Appendix A. Internal residual error obtained by fine-scale Green’s
functions

The internal residual error can be computed as

u′bub(x) = −

∫

Ω̃

g′(x,y)(Lū− f)(y) dΩ (A.1)

The fine-scale Green’s function, g′(x,y), can be considered as the classic
Green’s functions in which the coarse scales are removed. Hughes and San-
galli obtained the general expression for the fine-scale Green’s function

G ′ = G − GPT (PGPT )−1PG (A.2)

where G is the classical Green’s function operator which represents the inverse
of the differential operator, L−1. P is an orthogonal projector, P : S → S̄
such that Pv = v̄ and Pv′ = 0 ∀v′ ∈ S ′.

The suitable projector to obtain the fine-scale Green’s function is the one
associated with H1-seminorm. For the heat equation, the H1-projection is
the same as the Galerkin projection.

Fig. A.26 shows the fine-scale Green’s function for a 5 × 5 mesh. It is
observed that g′(x,y) is mostly local and is different from zero on the element
boundary.

(a) g(x,y) (b) g′(x,y)

Figure A.26: Heat equation. Green’s function and fine-scale Green’s function for y =
(0.5, 0.5) in a 5× 5 mesh.
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On the element boundary, Green’s functions, g(x,y), are defined such
that they are zero on the element boundary. These functions are called
element Green’s functions ge(x,y) since their support is an element.

Thus, the error can be approximated as

u′bub(x) = −

∫

Ωe

ge(x,y)(Lū− f)(y) dΩ (A.3)

Then, the internal residual error, u′bub, can be estimated by the same way
as in 1D problems [28] via residual-free bubbles. Approximating by Taylor
series and neglecting the second order terms

u′bub(x) ≈ u′bub(ci) +∇u′bub(x)|x=ci
· (x− ci)

= b0(x)(f − Lū)(ci) + bey1(x)
d(f − Lū)

dy1

∣∣∣∣
y=ci

+ bey2(x)
d(f − Lū)

dy2

∣∣∣∣
y=ci

(A.4)
with x = (x1, x2) and y = (y1, y2) and ci represent the coordinates of the
element centroid. The residual-free bubble functions are defined as

be(x) =

∫

Ωe

ge(x,y)dΩy

bey1(x) =

∫

Ωe

ge(x,y)(y1 − ci,1)dΩy

bey2(x) =

∫

Ωe

ge(x,y)(y2 − ci,2)dΩy

(A.5)
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[6] Babuška, I., Strouboulis, T., Gangaraj, S., Upadhyay, C.: Pollution
error in the h-version of the finite element method and the local quality
of the recovered derivatives. Computer Methods in Applied Mechanics
and Engineering 140(1), 1–37 (1997)
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