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Abstract

Hodographs for the Kepler problem are circles. This fact, known since almost two
centuries ago, still provides the simplest path to derive the Kepler first law. Through
Feynman ‘lost lecture’, this derivation has now reached to a wider audience. Here we
look again at Feynman’s approach to this problem as well as at the recently suggested
modification by van Haandel and Heckman (vHH), with two aims in view, both of
which extend the scope of the approach.

First we review the geometric constructions of the Feynman and vHH approaches
(that prove the existence of elliptic orbits without making use of integral calculus or
differential equations) and then we extend the geometric approach to cover also the
hyperbolic orbits (corresponding to E > 0). In the second part we analyse the properties
of the director circles of the conics, which are used to simplify the approach and we
relate with the properties of the hodographs and with the Laplace-Runge-Lenz vector,
the constant of motion specific to the Kepler problem. Finally, we briefly discuss the
generalisation of the geometric method to the Kepler problem in configuration spaces
of constant curvature, i.e. in the sphere and the hyperbolic plane.
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1 Introduction

The Kepler problem, i.e., the motion of a particle under a inverse square law, has been a

true landmark in physics. Since antiquity the general assumption was that planets moved

in circles, an idea shared by Copernicus himself. However, Kepler, analysing a long series

of astronomical observations found a very small anomaly in the motion of Mars, and that

was the starting point for his discovery that the planet orbits were ellipses. However, there

is some historical irony in the fact that a circle is still the exact solution of a related view

of the problem, when any Kepler motion is seen not in the ordinary configuration space,

but in the ‘velocity space’.

When a point particle moves, its velocity vector, which is tangent to the orbit, changes

in direction as well as in modulus. We might imagine this vector translated in the naive

manner to a fixed point. Then, as the particle moves along its orbit, the tip of the velocity

vector traces a curve in velocity space that Hamilton called ‘hodograph’ of the motion, to

be denoted here by H. In Hamilton’s own words [1]:

. . . the curve which is the locus of the ends of the straight lines so drawn may be called the

hodograph of the body, or of its motion, by a combination of the two Greek words, oδoζ, a

way, and γραφω, to write or describe; because the vector of this hodograph, which may also

be said to be the vector of velocity of the body, and which is always parallel to the tangent

at the corresponding point of the orbit, marks out or indicates at once the direction of the

momentary path or way in which the body is moving, and the rapidity with which the body,

at that moment, is moving in that path or way.

The statement of the circularity of Kepler hodographs is an outstanding example of

the rediscovery of a wheel (as pointed out in [2]); its first statement can be traced back to

the 1840’s independently to Möbius [3] and Hamilton [1], to be later rediscovered several

times by many authors including Feynman. By putting this property at the outset one can

obtain a complete solution for the shape of the orbits with a minimum of additional work.

Thus, the common idea to deal with the Kepler motion in all these ‘indirect’ approaches

is to start by a proof of the circular character of hodographs and afterwards to derive the

conic nature of Kepler orbits.

For an historical view of this question we refer to a paper by Derbes [2] which also gives

a very complete discussion of the problem in the language of classical Euclidean geometry,

including the contribution to this very problem of outstanding figures as J.C. Maxwell [4].

The historical constructions are extended in this paper even to parabolic orbits (see also

the paper [5]).

The hodograph circular character for the Kepler problem is closely related to the exis-

tence of an specifically Keplerian constant of motion which which is an exceptional property

of the central potential with radial dependence 1/r. From a purely historic viewpoint, this

vector can be traced back to the beginning of XVIII century, with J. Hermann and J.

Bernoulli (see two notes by Goldstein [6, 7]), being later rediscovered independently sev-

eral times. The connection with the circular character of the hodograph seems to be due to

Hamilton [1]; from a modern viewpoint all these distinguished properties are linked to the

superintegrability of the Kepler problem (for a moderately advanced discussion, see [8]).

In a recent paper [9], van Haandel and Heckman (hereafter vHH) have pushed this

‘Feynman’s construction’ a further step, providing a fully elementary proof of the elliptic
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nature of the (bounded) Kepler orbits. In the form presented by vHH, this applies only

for non degenerate (angular momentum L 6= 0) elliptical orbits (with E < 0, and thus

bounded). In this paper we first prove that a quite similar construction is also valid for the

unbounded E > 0 hyperbolic orbits. This requires some restatement of the vHH results,

along which some circles, the director circles of the Kepler orbit as a conic, appear. When

the role of these circles is properly recognised, the vHH derivation can be streamlined and

presented in a way more clear than the original and simpler than the Feynman one.

This is the plan of this paper: A short introductory section serves to state the problem

and to set notation so as to make the paper self-contained. A brief description of both

the Feynman and the vHH approaches for elliptic orbits foolows; a particular Euclidean

circle underlies both approaches. Then we discuss a reformulation of the vHH approach,

where the basic properties of this Euclidean circle are as clearly stated as possible. Once

the real geometric role played by this circle has been identified, the extension to hyperbolic

orbits can be performed easily (we refer to [11] for some complementary details). This

new, slightly different, construction is streamlined in the next Section. The ‘reverse part’,

which goes from the hodograph to the configuration space orbit is also fully characterised

and studied; it turns out to be a bit simpler than Feynman and vHH construction.

All this will cover only the Euclidean Kepler problem. In the last section we briefly

indicate how the ‘Kepler’ problem in constant curvature spaces, i.e., on the sphere and

on the hyperbolic plane, can be approached and solved following precisely the pattern

described case in the previous section. The essential point in this connection is to deal

with the momenta, instead of dealing with the velocities. Neither the Feynman one nor

the vHH approach seem to allow such a direct extension.

2 Problem statement and some notations

The motion of a particle of mass m in Euclidean space under a general conservative force

field derived from a potential F(r) = −∇V(r) has the total energy E as a constant of

motion. Units for mass will be chosen so that m = 1; after this choice the momentum p

can be assimilated to the velocity vector v = ṙ.

When the force field is central (from a centre O), angular momentum L = r × p is

also conserved so the orbit is contained in a plane through O (perpendicular to L) and,

if Cartesian coordinates are chosen so that L = (0, 0, L), then the motion is restricted to

the plane z = 0. From the point of view of this plane, L appears as an scalar, which may

be either positive or negative. Constancy of L is related to the law of areas r2φ̇ = L and

leads to the second Kepler law, which holds for motion under any central potential.

The Kepler problem refers to the motion in Euclidean space of a particle of mass m

under the central force field

F(r) = − k

r2

(r

r

)
(1)

(centre placed at the origin O), or equivalently, under the potential V (r) = −k/r, k > 0.

The main results for this problem are embodied in the Kepler laws, whose first mathe-

matical derivation was done by Newton in the Principia [12] (see also [13]). The first law

was stated by Kepler as the planet’s orbits are ellipses with a focus at the centre of force.

Actually not only ellipses, but also parabolas and one of the branches of a hyperbola (with

a focus at the origin) may also appear as orbits for an attractive central force with a 1/r2
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dependence, and the general Kepler first law can be restated as saying that the Kepler

orbits are conics with a focus at the origin.

The constructions to be discussed in this paper are made within synthetical geometry,

and we freely use the usual conventions: in Euclidean plane points are denoted by capital

letters O,P and symbols as OP will denote either the line through points O and P or the

segment OP seen as an (affine) vector, i.e., a vector at O whose tip is at P : the modulus

|OP | of this vector is the Euclidean distance between points O and P (see also [2]).

2.1 The focus/directrix characterisation of Euclidean conics

There are three types of (non-degenerate) conics in the Euclidean plane: two generic types,

ellipses and hyperbolas and one non-generic type, parabolas. The two generic types, i.e.,

ellipses (resp. hyperbolas) are geometrically characterised by the property

The sum (resp. the difference) of the distances from any point on the curve to

two fixed points, called foci, is a constant;

this property is behind the well known ‘gardener’ construction of ellipses. For parabolas,

one of these foci goes to infinity, so the previous characterisation degenerates, and must

be replaced by another property, as, for example

The distances from any point on the parabola to a fixed line D called directrix

line and to a fixed point O, called focus, are equal.

This characterising property can also be generalised to include ellipses and hyperbolas, as

we will see next.

It turns out that the two foci of conics appearing in the Kepler problem plays different

roles, and from the start we adapt our notation to this asymmetry: the two foci of the

ellipses and hyperbolas will be denoted O and I, and the single focus of parabolas as O.

Ellipses and hyperbolas degenerate to parabolas when the second focus I goes to infinity.

An interesting but less known alternative characterisation also exists for ellipses and

hyperbolas, which is based on a pair focus-directrix. For these two generic types of conics

the directrix is not a straight line, but a circle called director circle. Thus ellipses (resp.

hyperbolas) can be characterised geometrically by the property

The distances from any point on the ellipse (resp. hyperbola) to a fixed circle,

DO and to a fixed point O are equal.

The two generic types of conics corresponds to the relative position of DO and O: for an

ellipse (resp. a hyperbola) the point O is inside (resp. outside) the circle DO.

There is not a fully standard naming for several circles associated to a conic, and

therefore some confusion may follow. We stick here to the naming used by Sommerville,

[14] where director circle applies (for ellipses and hyperbolas) to a circle with centre at a

focus, radius 2a and with the property that the points on the conic are equidistant from

the other focus and from the director circle D.

Another circle is the orthoptic circle[15], which is defined as the set of points where

two perpendicular tangents to the conic meet; it is easy to prove that for ellipses and for

hyperbolas this set of points is also a circle. The name orthoptic refers to the fact that,

when viewed from any point on this circle, the ellipse spans visually the interior of a right
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angle and the hyperbola spans part of the exterior of a right angle. For parabolas, the set

of points with this property degenerates to a straight line and turns out to coincide with

the directrix, which partly explains why this circle is sometimes called the director circle;

as indicated before we are not following this usage.

Ellipses and hyperbolas have two foci, and therefore two director circles, denoted DI

(resp. DO) which refer respectively to the circle with centre at the focus O (resp. I(, radius

2a and with the property that the points on the conic are equidistant from the focus O

(resp. I) and from the corresponding director circle DO (resp. DI).

Figure 1: Director circles for ellipses and hyperbolas.

The equivalence of the ‘gardener’ characterisation and the one based in the focus-

director circle pair is clear. For ellipses and hyperbolas the two director circles DO and DI

have its centers at the ‘other’ focus I, O, and radius equal to the major axis 2a. A central

symmetry in the ellipse or hyperbola centre swaps the two focus and the two director

circles. The non-generic type of conics, parabolas, have no centre and the radii of the

two director circles, that must be equal, are infinite. In this case, (i) the focus I goes to

infinity, and with it the director circle DI (with centre at O) goes also to infinity; and (ii)

the director circle DO has centre at infinity, and appears as a straight line, which is the

parabola directrix D.

Another basic property of Euclidean circles should be mentioned. Let a circle C and a

fixed point P be given in the plane. Consider all straight lines in that plane through P .

• If P is interior to C all these lines will intersect C in two (real) points.

• If the point P is exterior to C, then there will be two real tangent straight lines to C
through P , and all straight lines within the wedge limited by the two tangents will

intersect C in two real points.

In all these cases, if d1 and d2 denote the (oriented) distances from P to the two

intersection points along a particular straight line, then the product d1d2 turns out to be

independent of the chosen straight line. This value is called the ‘power of the point P

relative to the circle C. This power is negative if the point P is inside C (then d1, d2 have

opposite orientations) and is positive if P is outside C. A proof is easily constructed and

we leave it to the reader.
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2.2 Some non-standard 2d vector calculus

In a 2D plane, there is a canonical way to associate to any vector w another vector denoted
∗w (to be understood as a single symbol). This possibility is specific for a 2D plane and

does not happen in the 3D space, where the ‘similar’ construction, the vector product,

requires to start from two vectors. The vector ∗w is defined to be the (unique) vector in

this plane orthogonal to w, with the same modulus as w and such that the pair (w, ∗w)

is positively oriented. The vector ∗w is obtained from w by a rotation in the plane by an

angle +π/2, and component-wise, ∗wj = εijw
i (with sum in the repeated index i), i.e., if

w = (w1, w2), then ∗w = (−w2, w1). We now state two properties which are easy to check:

a) ∗(∗w) = −w.

b) If L is a vector perpendicular to this plane, then the vector product L × w can be

expressed in terms of the modulus L of L and of ∗w, as L×w = L ∗w.

In the natural identification (x, y) ≡ x + i y of the Euclidean plane R2 with C, the

operator w→ ∗w corresponds to multiplication by the complex unit i.

3 The geometric approach to the Kepler first law

3.1 Feynman approach for elliptic orbits

In 1964, Feynman delivered a lecture on ‘The motion of planets around the sun’ which was

not included in the published ‘Lectures on Physics’. Feynman’s notes for this lecture were

eventually found, and then published and commented by Goodstein and Goodstein in 1996

[16]. In his peculiar style, Feynman gave an elementary derivation of Kepler first law by

focussing attention in the hodograph. Such derivation starts by unveiling (rediscovering) a

curious property: the Kepler hodographs have an exact circular character, but this circle

is not centred in the origin of velocity space (see e.g. [17, 18, 19, 20, 21, 22, 23]).

The publication of the ‘Lost Lecture’ has made this approach to the Kepler problem

more widely known than before, although, as Counihan points out in [24], this geometric

approach was probably more in line with the background of XIX century mathematical

physicists than it is nowadays.

This procedure of studying the Kepler motion reduces to a minimum the resort to

calculus or to differential equations. All the ‘hodograph first’ approaches to solve Kepler

problem (Feynman’s included) require to establish first the circular nature of the Kepler

hodograph. Some resort—more or less concealed— to solving a differential equation is

required here. The standard way is to write the Newton laws for the motion x(t) in a

central field of forces with an 1/r2 radial dependence and look for the differential equation

satisfied for the velocity ẋ(t) (see e.g. Milnor [25], where one can find a careful discussion).

Newton had to solve this problem by a geometrical argument involving a kind of dis-

cretisation of the problem, considering positions at equispaced times t, t+ ∆t, t+ 2∆t, . . . ,

and, as it is well known, this leads to a complicated description.

But since Hamilton we know that this non-linear problem can be transformed to a

linear one if we change the time t by the angle φ as the independent variable and we then

enforce the law of areas. The function ẋ(φ) which gives the velocity in terms of the angle φ

satisfies a linear equation whose solutions are immediately seen to be circles in the velocity
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space. Feynman solved this step by making a kind of discretisation similar to the one by

Newton, but involving equispaced angular positions φ, φ + ∆φ, φ + 2∆φ, . . . on the orbit.

This provides some kind of discrete analogous of the linear equation satisfied by ẋ(φ), and

leads in the limit ∆φ → 0 to the circular character of the hodograph. Once this fact has

been established, Kepler first law follows in a simple and purely algebraic way.

Of course, it remains to describe the relation among the hodograph and the orbit. We

need a construction which applied to the hodograph would allow us to recover the orbit.

In the Feynman lecture, even if rather informally presented, this is accomplished through

a sequence of three transformations, whose essential part is to rotate the hodograph by

−π/2 around the origin O. All the necessary details will be given in the following sections,

after dealing with another recent construction, due to van Haandel and Heckman.

3.2 van Haandel–Heckman approach for elliptic orbits

Van Haandel and Heckman [9] introduced a modification in the Feynman approach which

reverses the standard ‘hodograph approach’, and even avoids the need to draw on a dif-

ferential equation, thus providing a good way to present the problem to beginners. They

compare their derivation with the one devised by Feynman and put both into perspective

against the original Newton derivation. This comparison makes sense because all three

derivations are framed in the language of synthetical Euclidean geometry.

The geometric construction they propose has many elements in common with the previ-

ous ones (Maxwell, Feynman, . . . ) but they look at the problem from a different perspective

which leads much more directly to two essential insights in the problem: the conic nature

of the orbits and the existence of an ‘exceptional’ Keplerian constant of motion I. It is

worth to emphasise that the derivation is purely algebraic, and at no stage a resort to a

differential equation should be done (in contrast to Feynman approach).

The standard Laplace-Runge-Lenz (LRL) vector A is known to point from the force

centre to the perihelion, along the orbit major axis, with modulus k e; otherwise A lacks

any geometrical interpretation. On the contrary, the constant vector I which follows from

this approach is a a rescaling of the standard LRL vector A by a factor 1/E, I = A/E and

admits a nice and direct geometrical interpretation: both for elliptic and hyperbolic orbits

it goes from the force centre, which is one focus of the orbit, to the ‘second’ or ‘empty’ focus

(it degenerates to an infinite modulus vector along the conic axis for parabolic orbits).

We start by recalling the elementary proof of Kepler first law as proposed by Van

Haandel and Heckman in [9]. Consider Kepler orbits with L 6= 0 and E < 0 (we already

know they are Kepler ellipses, but assume at this point that we do not know this).

As a consequence of energy conservation, motion in configuration space (or in the plane

of motion) is confined to the interior of a circle D, centred at the origin and with radius

k/(−E). Outside this circle the kinetical energy would be negative, and thus this exterior

region is forbidden for classical motion. This circle D plays an important role (but as

we shall see later, this role is not exactly as the boundary of energetically allowed region,

though this is the way van Haandel–Heckman presented the construction).

Let be r the position vector of a point P on a given orbit, lP denote the tangent line to

the orbit at P , v the velocity of the particle at P and p the linear momentum vector, which

we will imagine as attached to the origin O, i.e., the vector p is the result of transporting

the vector mv to the origin O (recall we are assuming m = 1).

The geometric construction will proceed in two steps.
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Figure 2: The van Haandel-Heckman construction: E < 0 Kepler orbits are ellipses

1. First, extend the radius vector OP ≡ r of P (with the potential centre O as origin)

until it meets the circle D at I ′. This can be seen as the result of scaling by a factor

(k/−E)(1/r), which sends the vector OP ≡ r to a new vector with a modulus equal

to (k/−E)(1/r)r = (k/−E), so this vector tip I ′ lies on the circle D.

2. Now consider the image I of I ′ under reflection with respect to the line lP .

This construction could be done for any bounded E < 0 motion in any bounding

arbitrary central potential; as P moves along the orbit, the point I ′ moves on D and one

might expect the point I to move as well. This is the case for motions in other central

fields, but Kepler motion is exceptional in this respect, and we have the following result:

Theorem 1 When P moves along a E < 0 Kepler orbit and the point I ′ determined by

the previous construction moves on the circle D, then the point I stays fixed.

In other words, I turns out to be independent of the choice of the point P on the orbit.

As we shall see, this geometric ‘timeless’ construction, displayed in Figure 2, will reflect

the existence of a constant of motion specific to the Kepler potential.

Before sketching the proof of the Theorem itself, notice that in the figure, the Kepler

orbit has been already displayed as an ellipse. Actually, the elliptic nature of the orbits

immediately follows as a consequence of the previous theorem:

Corollary 1 (Kepler first law for elliptic orbits). The Kepler orbit with total energy

E < 0 is an ellipse, with a focus at the origin O, the other focus at I, and major axis 2a

equal to the radius k/(−E) of the circle D.

Proof: OP and PI ′ are on the same line, hence |OP |+ |PI ′| = k/(−E). The reflection

in the line lP is an Euclidean isometry, so |PI| = |PI ′|, and then |OP |+ |PI| = k/(−E),

so the sum of distances from P to the fixed points O and I do not change when P moves

on the orbit, and it is equal to the radius of the circle D. This agrees with the ‘gardener’

geometric definition of an ellipse with foci O and I.

We return to the proof of the theorem which boils down to two stages:
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1. Express the vector I ≡ OI in terms of the instantaneous state variables of the particle

at P (i.e., position r and velocity v or momentum p).

2. Compute its time derivative and use the Newton’s equations for the Kepler potential

to check that I is indeed a constant of motion.

As I = OI = OI ′ − II ′, the first step can be carried out by evaluating the vectors OI ′

and II ′. I ′ lies on the circle D and then OI ′ = k
−E

r
r , which immediately leads to

PI ′ = OI ′ −OP =
k

−E
r

r
− r =

(
k

−E
1

r
− 1

)
r, (2)

and using that by conservation of energy we have E = p2

2 −
k
r , we get

PI ′ =
p2

−2E
r. (3)

Now, to compute II ′, we first note that p × L/pL is a unit vector perpendicular to

both p and L (which are also mutually perpendicular), so it has the direction of II ′. The

length MI ′ is the projection of the vector PI ′ over the line II ′, and it can be computed

as the scalar product p×L
pL ·

p2

−2E r. By using the cyclic symmetry of triple product, we get

p× L · r = r× p · L = L2 = L2, and hence we finally have for II ′ and I

II ′ =
p× L

−E
=
L

E
∗p, I =

k

−E
r

r
− p× L

−E
. (4)

In order to check that I is actually a constant of motion we can introduce

A := E I = p× L− k r

r
, (5)

and as E itself is a constant of motion, the second step reduces to checking that A is also

a constant of motion for the Kepler potential. Note that L̇ = 0 and that ṗ = F, then,

d

dt
A = F× L− k d

dt

(r

r

)
(6)

with F(r) = −(k/r2)(rr ) and a simple direct computation leads to Ȧ = 0. Of course, A is

but the standard Laplace-Runge-Lenz vector, the specific Kepler constant of motion.

As stressed by vHH, one merit of this approach is that the specifically Keplerian con-

stant of motion follows directly from the construction, so the only remaining task is to

check it is a constant, which is the easy part; on the contrary, in the standard approaches,

it is not so obvious to figure out the expression which turn out to be a constant of motion.

A direct consequence follows from formula (4): as p and L are perpendicular, we have

for the modulus of the affine vector II ′ the relation |II ′| = L
−E p, (notice that L and −E

are both positive). This relation, which will be essential for the relation among orbits and

hodographs, can be stated as follows:

Proposition 1 For Kepler orbits with E < 0, as P moves along the orbit, the Euclidean

length |II ′| is proportional to the modulus of the momentum p the particle has when it is

at P :

|II ′| = L

−E
p (7)
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In terms of the geometry of the ellipse, the minor semiaxis length is b = L/(2
√
−E),

so the coefficient L/(−E) in (7) admits an alternative expression as L/(−E) = 2b2/L.

Then we can sum up these results in two different but equivalent ways:

• In the direct construction, for any point P on the Kepler orbit, produce the radius

vector once it meets the circle D at I ′ and reflect with respect to the tangent line to

the orbit at P ; the reflected point I does not depend on P .

• In the reverse construction, choose any point I ′ on the circle D and consider the

bisector line of the segment II ′; this is the tangent to the orbit at some point P , and

when I ′ moves along D, the orbit is recovered as the envelope of the family of its

tangent lines; it is an ellipse with major axis length 2a, which can also be described

as the set of points equidistant to the fixed point O and the fixed circle D.

We recall that the circle D, was introduced by vHH as the boundary of the energetically

allowed region for an orbit with energy E < 0. But now we see from the previous discussion,

that the essential property of this circle is precisely to be a director circle DI of the ellipse

[14] (the director circle companion to the focus I).

3.3 Hyperbolic orbits

The geometric approach described in the previous subsection was only concerned with

elliptic orbits. The main point was the identification of the circle D as the director circle

of the orbit. We now extend the approach to the case E > 0.

Now mimic the previous construction for a hyperbolic Kepler orbit (L 6= 0 and E > 0):

1. First, at a point P on the orbit with tangent line lP , scale the radius vector r of P

by a factor k/(−E) · 1/r, (notice that for E > 0 this factor is negative). This brings

the point P to a new point I ′ which lies on some circle with center O and radius

k/|E|, still denoted D (now OI ′ has the opposite orientation to OP ). In other words,

extend the vector OP starting from O in the opposite sense to r until the rescaled

vector k/(−E) · r/r lies precisely on the circle D at a point I ′ (see Figure 3).

2. Now consider the image I of I ′ under reflection with respect to the line lP .

Now the main result follows:

As P moves on the orbit, the point I ′ moves on the circle D and the point I

stays fixed; from this the hyperbolic nature of the orbit follows.

(To be precise, I ′ moves only on an arc of D, displayed in continuous red; the remaining,

not displayed, part of the full circle would correspond to the other hyperbola branch, which

would be the orbit for the repulsive Kepler problem). The reflection of I ′ in the tangent

line lP gives a point I, which is outside the circle DI . The result now is that the point I

stays at a fixed position when P runs the whole Kepler orbit.

In other words, even in the cases where E > 0, the orbit is also a conic (here a hyperbola

branch) and the circle D is a director circle of the conic.
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Figure 3: The extension of the van Haandel-Heckman construction to prove that E > 0 Kepler
orbits are hyperbolas.

3.4 Generic orbits

Now we restate the vHH construction in a way which applies at the same time to both

elliptic and/or hyperbolic orbits.

Given a Kepler orbit with energy E 6= 0, for each point P on the orbit, scale the radius

vector of the point P with the factor (k/−E) · (1/r), and call I ′ the point so obtained,

which lies on the circle D with centre O and radius k/|E|. Now consider the image I of I ′

under reflection in the line lP which is the tangent to the orbit at P . What singles out the

Kepler motion in either the negative or the positive energy regimes is the following result:

Theorem 2 When P travels along a Kepler orbit with E 6= 0 under the Kepler central

potential V (r) = −k/r, and the point I ′ moves while lying on the circle D (whose centre

is O and whose radius is k/|E|), then the point I stays at a fixed position.

To check that I is indeed a constant of motion for any non-zero energy E requires a

computation which exactly mimic the one performed in the elliptic case. Now for both

elliptic and hyperbolic orbits, the relation between the constant vector I which appears

naturally in this approach and the standard Laplace-Runge-Lenz vector A is I = A/E.

The reflection with respect to the line lP is an Euclidean isometry and therefore, |PI| =
|PI ′|, while PO and PI ′ are on the same line by construction, but in the present E > 0

case there is a slight difference with the previous case: the segment PO is fully contained

in PI ′, instead of being two adjacent disjoint segments, so that along a positive energy

orbit, |OI ′| = |PI ′| − |PO| = |PI| − |PO| is a constant length, more precisely equal to

the radius 2a = k/|E| of the circle D; in this case the quantity which is constant along

the Kepler orbit is not the sum but the difference of the distances from a generic point

on the orbit P to the two fixed points O and I, and that condition is one of the classical

geometric definitions of a hyperbola. We have got:

Corollary 2 (Kepler first law for elliptic and hyperbolic orbits) An E 6= 0 Kepler orbit is

either an ellipse or a branch of a hyperbola, with a focus at the origin O and major axis

2a = k/|E|. The ‘other’ focus I is inside the circle D of radius 2a for E < 0 and outside

D for E > 0.
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Proposition 2 As P moves along an E 6= 0 Kepler orbit, the Euclidean length |I ′I| is

proportional to the modulus of the linear momentum p at P :

|II ′| = L

|E|
p =

2b2

L
p. (8)

Here b refers to minor axis length of the conic. The proof is identical to that of the

case E < 0 with very minor changes: for instance OM and IN lie on different sides to the

tangent, so here with ρI := IM, ρO := ON we have ρIρO = −b2 (b is the hyperbola minor

semiaxis length) independently of the choice of the tangent (or of the point P ).

The Laplace-Runge-Lenz vector A is a vector at O which points towards the periastron,

with modulus A = k e (e being the eccentricity). This is so for all the signs of the energy

(recall 0 < e < 1 for negative energy or e > 1 for positive energy). If now we translate

this to the new constant I = A/E, we have to discuss the two different generic situations

according as E < 0 or E > 0.

• In the E < 0 case, as E = −k/(2a), the vector I points towards the apoastron, and

its modulus is ke/(k/2a) = 2ae = 2f , so this computation confirms the result stated

earlier: the tip of I lies at the ellipse ‘empty’ focus which lie inside D as e < 1.

• In the hyperbolic case, as E = k/(2a), the vector I points towards the periastron,

and its modulus is again given by ke/(k/2a) = 2ae = 2f , so as stated before the tip

of I lies at the hyperbola ‘empty’ focus, which, as e > 1, lies outside the circle D.

Hence, in all cases, the constant vector I points from the origin to the empty focus

(and of course, for the parabolic orbits, the modulus of I goes to infinity). The essential

role the circle D plays in this construction is not to be the boundary of the energetically

allowed region (which for orbits with E > 0 would be the whole space) but instead to be

a director circle DI for the conic. We can sum up the results:

Theorem 3 (Circular character of the Kepler hodograph, [1]) The hodograph H of any

Kepler motion is a circle in ‘momentum space’, centred at the point ∗A/L and radius k/L.

We give a proof within the vHH line of argument. When E 6= 0, constancy of the vector

I =
k

−E
r

r
− L∗p

−E
=

1

E
A

implies

−∗p =
A

L
+
k

L

r

r
and p = ∗(−∗p) =

∗A

L
+
k

L

∗r

r
.

When P (i.e., r) moves along the Kepler orbit, this is the equation of a circle in the p

space, with centre and radius as stated.

The ‘offset’ in momentum space between the centre of H and the origin point p = 0 is

|∗A|/L = k e/L and for this reason the vector ∗A is called the ‘eccentricity vector’, because

the centre is offset from the origin by a fraction e of the hodograph radius. The linear

momentum space origin O ≡ p = 0 is thus inside H for E < 0 and outside H for E > 0; in

the latter case the actual hodograph is not the complete circle but only the arc of H lying

in the region p2 > 2E: in a hyperbolic motion the modulus of the momentum is always

larger than the modulus of the linear momentum when the particle is ‘at infinity’.
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This important result follows from the geometric construction, and the proof underlines

the close connection between constancy of A and circular character of the hodographs.

The standard proof, dating back to Hamilton (see e.g. [25]) derives this property from

a differential equation obtained from Newton laws by changing the time parameter t to the

polar angle φ. We have shown that even this step can be dispensed with, as in the vHH

approach this circular character of hodographs follows from the fact that I is actually a

constant of motion. Actually, this result requires to use the Newton’s equations of motion,

so the result does not come from nothing; the point to be stressed is that we must use

directly Newton’s equations, but we can completely bypass solving them in any form.

Figure 4: The hodograph for elliptic E < 0 and hyperbolic E > 0 Kepler orbits.

3.5 Parabolic orbits

The E = 0 parabolic case may be reached as a limit E → 0 from negative or from positive

E values. In both situations, D tends to a circle with centre at O and infinite radius. Thus

the original vHH construction degenerates for E = 0 unless a suitable modification is done

which allows to deal with this limit in a regular way. One can make a natural choice for this

radius so that in the parabolic case we get also a working construction (this is described

e.g., in the Derbes paper [2]; we will not discuss here this question any longer).

As the energy E itself disappears from the hodograph equation (which depends only on

A and L), the result whose proof has been given for E 6= 0 remains also valid for parabolic

orbits. In the E = 0 parabolic case the hodograph passes through the origin.
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4 Streamlining the geometric construction

Now we propose a variant of the vHH construction which at the end will simplify it. This

reformulation turns out to be equivalent to the previous one for the Euclidean Kepler

problem. But this reformulation has some additional interest, because it allows a direct

extension for the ‘curved’ Kepler problem in a configuration space of constant curvature,

either a sphere or a hyperbolic plane [8, 10, 26].

Figure 5: The ‘complete’ constructions for elliptic E < 0, Kepler orbits.

Figure 6: The ‘complete’ constructions for hyperbolic E > 0 Kepler orbits.

The conics obtained as orbits have not just one pair of matching ‘director circle – focus

point’ but actually two pairs. Further to the director circle D ≡ DI associated to the focus I

(which is the only director circle considered up to now), there is also another director circle

DO, ‘matching’ to the focus O and such that the conic is also the set of points equidistant

from DO and O. DO can be obtained from DI by a central reflection with respect to the
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conic centre, and thus DO is a circle centred at I and with radius 2a = k/|E|. In the

figures where both director circles are displayed, the circle DO is dashed.

Once we know that the generic E 6= 0 Kepler orbits are ellipses or hyperbolas, the

previously described construction can be extended by considering the central reflection

with respect to the centre of the conic. This maps the director circle DO onto DI . The

image of II ′ under this central reflection is OO′′, where O′′ is the second intersection point

of the line OO′ with DO. As a consequence of this relation, we may state:

Theorem 4 When P travels along a E 6= 0 Kepler orbit under the Kepler central potential

V (r) = −k/r, then the point O′′ lies on the director circle DO (whose centre is I), and the

Euclidean length |OO′′| is proportional to the modulus p of the linear momentum p:

|OO′′| = 2b2

L
p =

L

|E|
p (9)

This result is displayed in Figures 5 and 6, where II ′ is shown in magenta and its

image OO′′ under the central reflection, in red. Seen as affine vectors, II ′ = −OO′′ and

IO′′ = −OI ′. The orbit is in dark grey, the director circles in red and dashed red, and the

hodograph and the momentum vector are in blue. In all cases II ′ and OO′′ are related by a

central reflection with respect to the conic centre and their equal lengths are proportional

to the modulus of the linear momentum p. II ′ is orthogonal to the tangent line lP while

OO′′ is perpendicular to the linear momentum vector p.

4.1 Relation with the hodograph

The next interesting question is to describe the relation between the hodograph and the

orbit. Starting from the circular character of the hodograph, we need a construction which

applied to the hodograph (whose circular nature is appealing) would allow us to recover

the orbit. We mentioned how Feynman did this in a rather descriptive and informal way.

But now, using the setting provided by the vHH construction, we can describe precisely

what Feynman did with full detail through a sequence of three transformations:

i) A rotation by −π/2 around the origin O,

ii) A homothety around the origin with a scale factor L/(−E) and finally

iii) A translation by a vector I.

This sequence of transformations can be shown to apply the hodographH to the director

circle D and the linear momentum vector p to the vector II ′.

We can see that the reformulation of the previous section, which related E 6= 0 Kepler

motions along the orbit with those of an auxiliary point O′′ on the director circle DO,

allows us to describe this relationship in a simpler way. The important elements in this

construction are the rotation by a quarter of a turn, as used by Feynman [16] (but note

the opposite sign), and then a homothety; the ‘translation’ step appearing in the Feynman

lecture is no longer required, and the two remaining (and now commuting) steps are enough

to relate the hodograph to the director circle and then to the orbit.

Theorem 5 (Relation of Kepler hodograph with the configuration space orbit) The se-

quence of the two following transformations
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1) Rotation by +π/2 around the origin O,

2) Homotethy around the origin with a scale factor L/(−E),

applies the hodograph H to the director circle DO and the linear momentum vector p on

the vector OO′′. The Kepler orbit corresponding to the hodograph H is the envelope of the

perpendicular bisectors of the vectors OO′ when O′ moves along the director circle DO.

Or, alternatively, the Kepler orbit is the locus of points in configuration space which are

equidistant from the origin O and from the director circle DO.

Before giving the proof, it is worth insisting that the vHH and the Feynman approaches

allowed us to describe the configuration space orbit as the envelope of a family of lines,

which were the bisectors of the segments II ′, as the point I ′ moves along the director circle

D ≡ DI . But the new reformulation, while keeping a similar property (the configuration

space orbit is the envelope of the family of the bisectors of the segments OO′, as the point O′

moves along the director circle DO) allows us a more direct description of the configuration

space orbit: it is the set of points in configuration space which are equidistant from the

fixed point O (the centre of forces) and from the fixed circle DO.

Figure 7: The ‘minimal’ constructions for elliptic E < 0 Kepler orbits.

The proposition follows by direct computation: for any vector w in momentum plane,

the two steps make the transformations:

w 7−→ ∗w 7−→ L

−E
∗w. (10)

Under the composition of the two steps, a generic point on the hodograph p goes to

p 7−→ ∗p 7−→ L

−E
∗p =

A

E
− k

|E|
r

r
≡ OO′. (11)

Notice that OO′′ is automatically perpendicular to p; the hodograph centre ∗A/L goes to

1

L
∗A 7−→ − 1

L
A 7−→ 1

E
A, (12)

which means that under the two steps the hodograph becomes the director circle DO, with

radius k/|E| and centre at I. The origin of the linear momentum space, p = 0, stays fixed.
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Figure 8: The ‘minimal’ constructions for hyperbolic E > 0 Kepler orbits.

This is depicted in Figures 7 and 8, where the director circle DI and all their associate

elements have been removed because they are not actually relevant for this streamlined

construction. The orbit itself is in dark grey, the director circle DO in dashed red, and the

hodograph and the linear momentum vector are in blue. The relation between the director

circle DO and the hodograph, by a rotation of π/2 and a scaling with factor L/(−E) is

clearly displayed; the sign of this scaling factor depends on the sign of the energy.

This sequence of transformations can be shown to apply the hodographH to the director

circle D and the momentum p to the vector II ′. We now see that the reformulation of

the previous section, which related E 6= 0 Kepler motions along the orbit with those of

auxiliary points O′′ on the director circle DO, allows us to describe this relationship in an

even simpler way. The ‘translation’ step of Feynman lecture is no longer required, and

the two remaining (and now commuting) steps are enough to relate the hodograph to the

director circle and then to the orbit. The relevant elements in this construction are the

rotation by a quarter of a turn, as used by Feynman [16], and then a homothety.

The translation iii) in the Feynman relation among hodograph and orbit only serves to

map the director circle DO onto DI , and thus it is unnecessary. The ‘correct’ relation among

both director circles, swaping DO for DI and OO′′ for II ′ is not actually a translation, but

a central reflection with respect to the ellipse or hyperbola centre. As this can be suitably

decomposed as a product of a central reflection with respect to O and a translation with

vector OI, this is the reason for the opposite signs at stage 1) of Theorem 5, as compared

with the sign of the rotation angle −π/2 in the stage i) of the Feynman lecture.

5 A comment on the Kepler problem on curved spaces

The idea that the Kepler problem (and also the harmonic oscillator) can be correctly de-

fined on constant curvature spaces appears in a book of Riemannian geometry of 1905 by

Liebmann [27]; but it was Higgs [28] who studied this system with detail in 1979 (the study

of Higgs was limited to a spherical geometry but his approach can be extended, introduc-

ing the appropriate changes, to the hyperbolic space). Since then several authors have

studied the Kepler problem on curved spaces and have analysed the existence of dynami-
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cal symmetries leading to constants of motion that can be considered as the appropriate

generalisations of the Euclidean Laplace-Runge-Lenz vector. In addition, it has also been

proved, by introducing a modified version of the change u = 1/r, the existence of a curved

version of the well known Binet equation (see [10] and references therein).

At this point it seems natural to ask whether the Kepler problem on curved spaces

(of a constant curvature) can be analysed by the use of an approach similar to the one

presented in previous sections (that is, without integral calculus or differential equations).

At first sight, the answer seems to be negative. The hodograph (defined starting from

the velocity vectors) seems to involve an implicit transport of the velocity vector at each

point of the orbit to a common origin O. In a flat configuration space, parallel transport

is uniquely defined, no matter of which path is followed, and this makes irrelevant the

question about ‘where are these vectors applied’, either at each point on the orbit P or

in a common origin O. Thus, to try to extend a ‘velocity based hodograph approach’ to

a constant curvature configuration space might seem pointless, because the result of this

transport would depend on the path followed, and hence this ’velocity based hodograph’

itself seems to be not well defined. This is of course true.

But the point to be stressed is that the true hodograph should be based in the momenta

p rather than in the velocity. Indeed the paralell transport is an inessential element in the

construction which is only required if one starts with the velocity and not with the Noether

momenta P, as one should. In the construction presented in the previous paragraphs, the

most important vector is p, which is a vector at O (see Figures 2, 3, 4) and coincides with

the Noether moment. As the Euclidean parallel transport is path independent, this vector

at O coincides with the parallel transported of v along any path joining P to O. But in

a space of a constant curvature, while the result of some unqualified parallel transport of

the velocity vector to O would be undefined, the components of Noether momenta P are

still well defined, and they are, alike the components of the the other (conserved) Noether

momentum L, a vector at O. Nevertheless if in a constant curvature space everything is

written in terms of the associated momenta (which are naturally vectors in an auxiliary

space), it turns out that both Theorems 4 and 5 have a direct extension to this case.

Henceforth, the construction we have here described allows a quite direct extension to

the case of constant curvature configuration space. This will be discussed elsewhere.

6 Final comments

The Kepler problem is studied in all books of Classical Mechanics and it is solved by making

use of integral calculus and differential equations (e.g., Binet equation). Nevertheless the

Newton approach presented in the Principia was mainly related with the classical language

of Euclidean geometry. This property (that it can be solved by the use of a purely geometric

approach) is a specific property of the Kepler problem that distinguish it from all the

other problems with central forces. This simplicity is a consequence of the existence of

an additional constant of motion which is specifically Keplerian: the Laplace-Runge-Lenz

vector. In fact, the circular character of the Kepler hodograph, discovered and studied by

Hamilton, is just a consequence of the existence of this additional integral of motion.

In the first part of this paper we have reviewed and compared two geometric approaches

to the Kepler problem, which were originally devised for only dealing with elliptic orbits.

They are due to Feynman and to van Haandel-Eckman. Both fall into the broad class of
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‘hodograph approaches’ but the vHH one somehow reverses the usual logic in a way which

avoids the recourse to any differential equation, so making this approach accessible to a

wider audience. In particular, the vHH approach leads in a natural and purely algebraic

way to the specifically Keplerian constant of motion, the Laplace-Runge-Lenz vector.

Then taking this as starting point, we identify the important geometric role of some

circles (director circles) entering into these constructions. First, we show that both ap-

proaches can be suitably extended to cover, not only bounded elliptic orbits, but also open

hyperbolic ones. And second, by making use of the properties of these director circles, the

full analysis is streamlined, so that the final ’minimal’ description of the relationship of the

hodograph with the true orbit in configuration space is neater than in the previous ones.

The conic nature of the orbit follows from this approach in a purely algebraic way, and

this applies both to elliptic and hyperbolic orbits. In summary, this can be very suitable

for beginning students, as the Newton laws are simply used directly, but no explicit solving

of any differential equation is required.
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