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8 Abstract This paper presents an ultra low power differ-

9 ential voltage-to-frequency converter (dVFC) suitable to be

10 used as a part of a multisensory interface in portable

11 applications. The proposed dVFC has been designed in 1.2-

12 V 0.18-lm CMOS technology, and it works properly over

13 the whole differential input range (0.6 ± 0.6 V) providing

14 an output frequency range of 0.0–0.9 MHz. The system has

15 been tested for temperature variations from -40 to

16 ?120 �C and supply voltage variations of up to 30 %,

17 being the maximum linearity error in the worse case of

18 0.017 %. Simulations against common mode voltage

19 variations show a deviation in the output frequency of

20 0.4 %. This dVFC has power consumption below 60 lW,

21 and it includes an enable terminal that sets the system in a

22 sleep mode (180 nW) while no conversion is request. The

23 dVFC occupies an active area of 250 lm 9 150 lm.

24

25 Keywords CMOS mixed integrated circuits �

26 Low-voltage low-power � Sensor interface �

27 Voltage-to-frequency converter

281 Introduction

29At present, the use of wireless sensor networks (WSN) is

30continuously growing. Therefore, the development of smart

31sensors has increased due to the need for the sensor signal

32to be compatible with digital signal processors. A smart

33sensor includes, besides the sensing device, the interface so

34that the output is a digital signal related to the measured

35magnitude. Thus, due to the large amount of sensors

36involved in these networks, the use of low-cost analog

37sensors along with a programmable interface is the pre-

38ferred choice if cost reduction becomes a priority. The

39interface has to be capable of adapting every sensor output

40to the input digital port requirements of the microcontroller

41(lC) embedded in each sensing node.

42The simplest interface consists of an analog-to-digital

43converter (ADC) preceded by a programmable voltage

44adapter that adjusts the sensor output range to the ADC

45input range by means of gain and offset controls. However,

46in embedded microcontroller measurement systems, such

47as WSN, the use of voltage-to-frequency converters (VFC),

48also known as quasi-digital converters, have risen as a

49highly suitable alternative to the standard analog-to-digital

50conversion due to its advantages: the quasi-digital fre-

51quency signal offers high noise immunity and can straight

52interface the microcontroller, which next performs the final

53digitalization using its internal timers [1].

54There are several types of VFCs, being the charge balance

55and the multivibrator the most common approaches.

56Although the charge balance VFC is more accurate than its

57multivibrator based counterpart, the former is also more

58complex and it demandsmorepower than the latter [2],which

59provides sufficient accuracy to be used with low cost sensors

60used inWSNs. Therefore, recently reported low-voltage low-

61power CMOSVFCs aremainly based on an input voltage-to-
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62 current converter (VIC) followed by a multivibrator based

63 current-to-frequency converter (IFC) and they operate in

64 single-input mode [3, 4]. However, for certain sensor con-

65 ditioning applications, such as the widely used Wheatstone

66 bridge, or for noise rejection, differential signal processing

67 would be desirable. Previous approaches to design CMOS

68 differential VCFs also employ a VIC followed by an IFC

69 approach, being the input differential VIC based on a dif-

70 ferential amplifier with voltage controlled gain [5], an

71 instrumentation amplifier [6] or a second generation current

72 conveyor [7]. However, they present serious limitations in

73 terms of input operating range, power consumption or

74 important temperature dependence. Preliminary designs of

75 the structure that is going to be introduced in this paper have

76 beenpresented by the authors at two recent conferences [8, 9].

77 In addition, the proposed dVFC is a simplified and revisited

78 version of the VFC presented at another conference [10],

79 advancing towards ultra low-power consumption. Thus, in

80 this final design, the biasing circuit has been improved to

81 showa temperature independent behavior and a global enable

82 has been included to set the system into an extremely low-

83 power state while no measure is done. Further, to reduce

84 power, OTAs are the simplest ones and the power manage-

85 ment made in the control circuit has been corrected.

86 Therefore, the goal of this paper is the design and

87 complete verification of a novel CMOS differential VFC

88 fulfilling the following major requirements to fit WSN

89 applications: low-voltage, compatible with the single-cell

90 batteries used in the WSN market; low-power, in order to

91 optimize battery life; rail-to-rail operation, since taking

92 advantage of the full VDD range results in enhanced reso-

93 lution in the subsequent digitalization; the output levels

94 have to be compatible with the lC logic levels and the

95 output range must fit typical low-power lC clock fre-

96 quencies (4 MHz). Finally, it is desirable that the VFC has

97 temperature compensation and supply regulation to main-

98 tain constant sensitivity. Section 2 explains the proposed

99 rail-to-rail temperature and supply independent differential

100 VFC. Section 3 reports the main results obtained for a 1.2-

101 V 0.18-lm CMOS implementation and conclusions are

102 drawn in Sect. 4.

103 2 Differential voltage-to-frequency converter

104 2.1 Operation principle

105 The proposed differential voltage-to-frequency converter

106 (Fig. 1) consists of a differential voltage-to-current converter

107 (dVIC) followed by a bidirectional current integrator driven

108 by a voltage window comparator (VWC) control circuit.

109 The input dVIC [Fig. 2(a)], as it will be explained

110 thoroughly in Sect. 2.2, transforms the input signals

111Vin? = VCM ? Vd/2 and Vin- = VCM - Vd/2 into signals

112VA = VCM ? Vd/4 and VB = VCM - Vd/4 at nodes A and

113B, respectively. Note that the differential input voltages

114Vin? - Vin- = Vd must be positive. Therefore a sign cir-

115cuit (explained in Sect. 2.6) can be required. Voltages VA

116and VB generate across resistor RS the current signal

117Id = Vd/2RS, which is next directly replicated through

118transistors T3 and T4 with a scaling factor given by K:1.

119The scaled current Id/K alternately charges and dis-

120charges a grounded capacitor C between the stable limits

121VL and VH of a VWC. The comparison results VCL, VCH are

122driven to a simple NAND-based RS flip-flop, which grants

123a stable output signal and provides the switching signals

124SDW and SUP that drive the gates of cascode transistors T3C

125and T4C, thus determining the direction of the current in the

126bidirectional current integrator. In this way, a repeated loop

127is built with a frequency of oscillation given by:

f0 ¼
Id=K

2C VH � VLð Þ
¼

1

2C VH � VLð Þ

Vd

2KRS

ð1Þ

129129
1302.2 Differential voltage-to-current converter

131The rail-to-rail dVIC is shown in Fig. 2(a). OTAVF1 and

132OTAVF2 are feedback voltage attenuation OTAs [11],

133which do not act as voltage followers but attenuate the

134input signal to keep transistors T1 - T1C and T2 - T2C in

135saturation region over the complete input range, so that the

136output current mirroring does not restrict the V–I operating

137range. To achieve this, let us focus on OTAVF1, whose

138complete scheme is shown in Fig. 2(b). Between the main

139OTA1 non-inverting input –at a voltage Vin? due to neg-

140ative feedback– and node A, an attenuator is introduced,

141implemented using a non-inverting amplifier stage formed

142by OTAaux1 - TA1, an input resistor R1 biased at V1 and

143feedback resistor R2. By means of a straightforward anal-

144ysis, the voltage at node A is

VA ¼
R2V1 þ R1Vinþ

R1 þ R2

ð2Þ

146146The voltage level V1 is fixed to VCM and resistors are set

147to R1 = R2, so that VA = VCM ? (Vd/4). Similarly, for

148OTAVF2, again selecting the auxiliary voltage level

149V2 = VCM and input and feedback resistors R3 = R4, the

150voltage at node B is

VB ¼
R4V2 þ R3Vin�

R3 þ R4

ð3Þ

152152This results in a fully symmetric structure, which

153maintains at nodes A and B the common mode voltage

154VCM while the differential voltage Vd is halved. Therefore,

155the voltage across resistor RS is (VA- VB) = (Vd/2), and

156thus, a current Id = Vd/2RS is generated.
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Fig. 1 Block diagram of the

proposed differential VFC

Fig. 2 Schematics of

a proposed dVFC and

b OTAVF1
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157 As the input of both OTAs in OTAVF1 swing between

158 VCM and VDD, they are made up using the simple NMOS

159 input stage OTA shown in Fig. 3, to reduce both, the area

160 and the power consumption. In the same way, as the input of

161 both OTAs in OTAVF2 swing between GND and VCM, they

162 are made up of a simple PMOS input stage OTA, formed by

163 the counterpart of the structure shown in Fig. 3. The resistor

164 that makes the voltage-to-current conversion, RS, is set to

165 RS = 40 kX and R1 = R2 = R3 = R4 = 25 kX, as a trade-

166 off between power and area consumptions.

167 All OTAs work in the subthreshold region over all the

168 input range to reduce power consumption, and they have a

169 compensation network (a conventional RC - CC network,

170 not shown) to guarantee the system stability, while

171 avoiding peaks in the closed-loop frequency response and

172 underdamped oscillations [12].

173 2.3 Current integrator and control circuit

174 The generated current Id is driven through transistors T1

175 and T2, and replicated through transistors T3 and T4 with a

176 scaling factor K:1, being K = 20/3, in order to optimize the

177 power consumption, while obtaining a suitable sensitivity

178 in the dVFC. Cascode transistors are used to improve the

179 current copy, but also because they work as the switching

180 elements controlling the direction of the current: let us

181 assume that the outputs of the VWC are S1 = ’10 and S2 =

182 ’00, so that the switching signals that drive the gate of the

183 cascode transistors T3C and T4C are SUP = VREF and

184 SDW = GND respectively. Thus, transistor T3C is ON and

185 T4C is OFF, so that the current charges the capacitor C until

186 the voltage Vcap reaches the comparison limit VH. At that

187 moment, the output of the upper comparator changes to ‘00,

188 what makes the VWC output signals change, being S1 =

189 ’0’ and S2 = ’1’, and the switching signals SUP = VDD and

190 SDW = VREF, setting transistor T3C in OFF and transistor

191T4C in ON. Thus, the current discharges the capacitor until

192it reaches the lower limit VL, starting again the charging

193phase. For both the NMOS and PMOS cascode transistors

194the gate voltage is set to VREF = 0.4 V for simplicity. The

195integrating capacitor is set to C = 3.125 pF.

196The VWC is made up of two high-speed continuous-

197time simple differential pairs followed by inverters, shown

198in Fig. 4, and a NAND-based RS flip-flop. Transistors of

199the VWC employ minimal length to optimize speed.

200Comparison limits are set to VL = 0.4 V and VH = 0.8 V

201to keep transistors T3 and T4 working in the saturation

202region.

203Therefore, taking into account the chosen values, the

204output frequency in Eq. (1) is now given by

f0 MHzð Þ ¼ 0:75Vd Vð Þ ð4Þ

2062062072.4 VDD and temperature dependence

208Insensitivity to power supply variations is always desired,

209but it is even more important in battery operated systems,

210where the supply voltage continuously decreases. Thus, a

211simple solution to generate the bias current that reduces the

212power supply sensitivity is a conventional beta-multiplier

213referenced self-biasing circuit, shown in Fig. 5, that is used

214to set IB = 0.5 lA [13]. Taking into account that all tran-

215sistors work in subthreshold region, the current IB is given

216by

IB ¼
nVT

R
ln a ð5Þ

218218where n is the emission coefficient, VT is the thermal

219voltage (26 mV at room temperature) and a = 6 is the

220scaling factor between M4 and M5.

221Note that (5) is, in first order, power supply independent.

222With respect to temperature, IB presents a positive variation

223due to the thermal coefficients of VT and n. This variation

224can be compensated if the resistor R = 115.6 kX is

225implemented featuring the same positive variation. The

226temperature variation of a resistor is given by

RðTÞ ¼ R0 1þ TC1 T � 25ð Þ þ TC2 T � 25ð Þ2
� �

ð6Þ

228228where R0 is the resistor value at room temperature and TC1

229and TC2 the first and second order temperature coefficients,

230respectively. Thus, R is made up with the serial connection

231of two resistors A and B with different thermal coefficients,

232being the composite resistor thermal coefficients given by

TCi ¼ TCi;A b= 1þ bð Þð Þ þ TCi;B 1= 1þ bð Þð Þ ð6Þ

234234where b = R0,A/R0,B is the ratio of resistances at room

235temperature [14], being i = 1, 2 the order of the temper-

236ature coefficient. The composite resistor is made up with a

237NWELL (TC1 = 2.504 9 10-3 �C-1,Fig. 3 Schematics of the NMOS OTA
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238 TC2 = 8.566 9 10-6 �C-2) and a P? nonsalicide diffu-

239 sion (PND) (TC1 = 1.184 9 10-3 �C-1, TC2 = 7.310 9

240 10-7 �C-2) resistors, being their ratio b = 20/17, and

241 TC1 = 1.791 9 10-3 �C-1, TC2 = 4.355 9 10-6 �C-2

242 the composite thermal coefficients, that compensate the

243 temperature variation of VT and n.

244 The VWC comparison limits, VH and VL, can be

245 obtained from the generated IB as shown in Fig. 5, being

246 VL = 8IBRL and VH = 8IB2RL. Therefore, to achieve VDD

247 and T independent comparison limits, the resistors RL are

248 implemented with the serial connection of two resistors, RP

249 and RN with opposite temperature coefficients [9]. This is

250 achieved by implementing RN with a high resistive poly-

251 silicon (HRP) layer (TC1 = -8.34 9 10-4 �C-1, TC2 =

252 1.30 9 10-6 �C-2) and RP with PND, being their ratio that

253 immunizes the resistor against temperature variations b =

254 1.5, and the final thermal coefficients TC1 = -2.68 9

25510-5 �C-1, TC2 = 9.08 9 10-7 �C-2. To generate VH =

2560.8 V and VL = 0.4 V, the resistor R = 100 kX as a

257compromise between area and power consumption, and it

258is implemented with RP = 60 kX and RN = 40 kX.

259With VH and VL supply and temperature independent,

260the remaining temperature dependence of the circuit is

261mainly due to resistor RS. Therefore, it is implemented in

262the same way as RL (RPND = 16 kX, RHRP = 24 kX).

263This temperature compensation seems to be highly

264process dependent. However, the value of ten composite

265resistors (RPND ? RHRP) have been measured by using a

2664-wires technique, obtaining a 0.13 % dispersion between

267measured resistors with a maximum deviation of 4.1 %

268with respect to its nominal value, which shows that there is

269a need of a gain calibration in a fabricated dVFC. The

270composite resistors were next tested against temperature

271variations, varying less than 1.6 % over all the temperature

272range (-40, ?120 �C), which proves that the adopted

273temperature compensation technique is correct. If this

274technique is desired to be migrated to a different process/

275technology, the ratio b among two resistors with different

276temperature coefficients should be recalculated to obtain a

277composite resistor that exhibits final first and second order

278temperature coefficients that minimize the temperature

279dependence.

280Note that R1, R2, R3 and R4 do not need to be temper-

281ature compensated neither have accurate specified values

282because as long as they are well matched their ratio will

283remain constant. Therefore they are implemented using a

284HRP layer to optimize area.

2852.5 Power consumption considerations

286Power consumption is a key parameter in battery operated

287systems. Therefore, a power reduction technique based on

288the alternate operation of the comparators is introduced by

Fig. 4 Schematics of the

comparators forming the VWC

Fig. 5 Schematics of the b-multiplier reference circuit
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289 adding transmission gates (as shown in Fig. 4): in the

290 charging phase, the only comparator working is the high

291 comparator whereas in the discharging phase, the only one

292 that works is the low comparator.

293 In addition, an enable terminal has been included to set

294 the VFC into a low-power mode with 180 nW power dis-

295 sipation most of the time, waking up just to perform the

296 calibration, frequency measurements and digital conver-

297 sions, then returning to the sleep mode. The enable acts

298 mainly in the b-multiplier reference circuit to no generate

299 the biasing current and the comparison limits, but it also

300 acts in the first inverter of each of the comparators con-

301 forming the VWC, fixing the digital state of each of the

302 remaining inverters.

303 2.6 Sign circuit

304 In order to assure the proper operation of the circuit, a sign

305 circuit can be required. It is implementedbymeans of a rail-to-

306 rail comparator and transistors acting as switches, as shown in

307 Fig. 6. The comparator is made up with an open-loop OTA

308 equal to the one in Fig. 3 but with two complementary dif-

309 ferential input amplifier stages in parallel to achieve rail-to-

310 rail performance, followed by inverters. When Vin1[Vin2,

311 VC = VDD : ’1’ and VCN = GND : ’0’, so that T5 and T7

312 are ON and T6 and T8 are OFF; therefore, Vin? = Vin1,

313 Vin- = Vin2. Conversely, when Vin1\Vin2, Vin? = Vin2 and

314 Vin- = Vin1.

315 3 Post-layout results

316 Figure 7 shows the layout of the proposed dVFC, designed

317 in a low-cost 0.18 lm CMOS technology from UMC with

318 a single supply of 1.2 V. Power consumption is below

319 60 lW (180 nW in power down) and the active area is

320 250 lm 9 150 lm, dominated by the b-multiplier circuit

321 and the capacitors.

322 Figure 8(a) shows the variation of the normalized IB and

323 VH-VL over the (-40, ?120 �C) temperature range: IB
324 varies 52.5 pA/ �C while VH-VL varies 29.4 lV/ �C.

325 Figure 8(b) shows the variation of the normalized IB and

326 VH-VL over a 1.0-1.4 V supply voltage range. In this case

327 IB varies 4.5 nA/V and VH-VL 11.3 mV/V.

328There are some errors that define the dVFC linearity: the

329gain or sensitivity error is the deviation in slope of the

330actual dVFC from the ideal one; the offset error, which is a

331constant frequency added to the output frequency, com-

332puted as (f0,sim (Vin,min) - f0,the (Vin,min)), expressed in Hz

333where f0,sim is the simulated value and the theoretical value

334f0,the is given from Eq. (4); the relative error, without offset

335and gain calibration, computed as (f0,sim- f0,the)/f0,the; and

336the main parameter, since it will define the maximum

337achievable number of bits in the frequency-to-code con-

338version, is the linearity error, which is calculated as the

339deviation of a straight line passing through the experimental

340VFC points. As with most precision circuitry, through

341adequate calibration processes gain and offset errors can be

342trimmed by the user in the microcontroller. However, this

343does not happen with the linearity error, which is inherent to

344each VFC topology. The linearity error can be thus con-

345sidered a fundamental parameter, and the smaller the line-

346arity error, the better the VFC. The offset errors are mainly

347due to mismatching in the OTAs differential pairs as well as

348to a non-ideal current copy across T1 - T3, T2 - T4. Gain

349errors are mainly due to deviations in the charging capacitor

350C, in the resistors RS that converts the differential input

351voltage into a current and in the resistors RL that provides

352the comparison limits VH and VL of the VWC, and it is also

353due to mismatching in the differential pairs of the com-

354parators forming the VWC. Therefore, a calibration with

355two points can be made in the microcontroller to obtain the

356experimental gain and offset of the dVFC, thus being able to

357establish the Vin - f0 relationship accurately.

Fig. 6 Schematics of the sign circuit

Fig. 7 Layout of the proposed dVFC
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358 At room temperature, with the nominal supply of 1.2 V

359 and a common mode voltage of VCM = VDD/2 = 0.6 V the

360 output frequency varies linearly between 0.0 and 0.9 MHz

361 with a gain error of 2.9 %, an offset error of 2.8 kHz, a

362 maximum relative error of 4.1 %, and a linearity error of

363 0.002 % for an input range of (0.6 ± 0.6 V).

364 Figure 9(a) shows the output frequency f0 over the input

365 range at different temperatures, from -40 to ?120 �C, and

366 Fig. 9(b) shows f0 over the input range for different supply

367 voltages, being VCM = VDD/2.

368 Over all the (-40, ?120 �C) temperature range, the

369 maximum gain error is 4.5 %, the maximum offset error is

370 3.1 kHz, the maximum relative error is 8.7 %, and the lin-

371 earity error remains below 0.014 %. When the system is

372 simulated for 30 % supply voltage variations (1.2 ± 0.2 V),

373 the input range varies accordingly; however, the errors

374 remain bounded: the maximum gain error is 6.1 %, the

375 maximum offset error is 3.8 kHz, the maximum relative

376 error is 8.9 %, and the linearity error remains below

377 0.005 %. In the worst case (VDD = 1 V, T = -40 �C) the

378 linearity error remains below 0.017 %.

379 The system has also been tested against VCM = 0.6 ±

380 0.3 V variations at the nominal VDD = 1.2 V supply volt-

381 age. The frequency remains nearly constant with a maxi-

382 mum variation of 0.4 % with respect to the frequency at

383 VCM = 0.6 V.

384 A Monte Carlo analysis has been carried out varying in

385 3r the process and mismatch foundry models in order to

386 see the effect of mismatching. For 20 iterations, and over

387 different single and differential input voltages, the varia-

388 tion on the output frequency is on average 3 %, mainly due

389 to variations on the generated current across RS.

390 The main performances of the proposed dVFC are

391 compared in Table 1 with the few dVFCs encountered in

392 the literature [5, 6]: exhibit a rather limited input range,

393 larger errors, higher power consumption and they operate

394 at higher supply voltages. The proposed dVFC is based on

395a preliminary design previously reported by the authors

396[10], however the newer and depurated version of dVFC

397exhibits a lower power consumption as well as a reduced

398area because: (i) it uses OTAs with single differential pairs

399instead of rail-to-rail OTAs, (ii) due to the common mode

400voltage at nodes V1 and V2, the current across feedback

Fig. 8 Normalized IB and VH-VL over a (-40, ?120 �C) temperature range and b (1.0, 1.4 V) supply range

Fig. 9 Output frequency vs. differential input voltage for a (-40,

?120 �C) temperature range and b (1.0, 1.4 V) supply range
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401 resistors R1, R2, R3 and R4 is halved, (iii) the charging and

402 discharging currents are obtained directly from the V–I

403 converter without using current mirrors. In addition, this

404 dVFC keeps the common mode voltage VCM, therefore

405 maintaining the same operating conditions for the OTAs.

406 As a conclusion, the proposed dVFC offers high perfor-

407 mance characteristics with a compact design.

408 4 Conclusions

409 A simple compact 1.2-V 0.18-lm CMOS differential

410 voltage-to-frequency converter has been presented showing

411 improved characteristics over the state-of-the-art convert-

412 ers for low-power sensor interface electronics. This rail-to-

413 rail dVFC exhibits low temperature and supply sensitivity,

414 featuring competitive performances with other low-voltage

415 low-power counterparts. The sensitivity and start frequency

416 can be easily tuned.

417
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Table 1 Comparison of dVFCs

Parameter [7], 2010 [6], 2011 This study

Technology Commercial

devices

0.18 lm

CMOS

0.18 lm

CMOS

Supply voltage (V) ±5 1.8 1.2

Sensitivity

(kHz/V)

75 861 750

Input range 0.2 V diff 1.2 V diff Full range

(0.0 ± 0.1 V) (1.2 ± 0.6 V) (0.6 ± 0.6 V)

Relative error (%) \51 – 10.42

Linearity error (%) – 0.41 0.0142

Power

consumption

(lW)

– 375 60

1 Nominal
2 For 30 % VDD variation and (-40, ?120 �C) temperature range
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