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Abstract

We have studied theoretically the possibility of ultra-fast manipulation of a single electron spin

in 2D semiconductor quantum dots, by means of high-frequency time-dependent electric fields.

The electron spin degree of freedom is excited through spin-orbit coupling, and the procedure may

be enhanced by the presence of a static magnetic field. We use quantum optimal control theory to

tailor the temporal profile of the electric field in order to achieve the most effective manipulation.

The scheme predicts significant control over spin operations in times of the order of picoseconds –

an ultrafast time scale that permits to avoid the effects of decoherence if this scheme is to be used

as a tool for quantum information processing.
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I. INTRODUCTION

Quantum dots are nanoscopic artificial structures, somehow created within solid state

devices, that contain a small number of charge carriers (electrons or holes), and display

quantum behaviour in the same manner that atoms or molecules do [1]. Nowadays it is

relatively easy to isolate even one single electron. The precise control over charge and

currents on quantum dots was soon achieved and demonstrated, whereas the experimental

techniques to measure and manipulate the spins followed later on [2]. These developments

have contributed to the growth of the field of spintronics [3], which consists of the control

and manipulation of the spin degrees of freedom in solid state devices.

Among the many foreseen applications of quantum dot based spintronics is quantum

information processing: the spin of a single electron is the most typical example of a two-

level system, and this fact soon suggested the possibility of using single-electron quantum

dots as a physical realization of a qubit [4]. One of the reasons for this to be conceivable

is the long decoherence times observed for the spin degree of freedom in common quantum

dots [5, 6] (other reason is the realization, at least at the level of proof-of-principle, of

the DeVincenzo’s criteria [7]). This decoherence time is to be compared with the time

required for an operation, i.e. the typical time used to change the state of the system in

a controlled manner, with an external field. It is therefore essential to have a means to

produce very fast operation times, specially since fault-tolerant operations require multiple

possible manipulations within the coherence time.

In order to induce a spin flip in these systems, one can of course use a time-dependent

magnetic field, oscillating at the Zeeman transition frequency; the Rabi oscillations will

eventually induce full transitions from one state to another. This procedure is called “elec-

tron spin resonance” (ESR). However, this method is not particularly fast, and moreover it

is not easy to produce and localize these magnetic fields individually on each quantum dot.

Recently, the alternative use of electric fields has also been proposed and demonstrated [8–

12], since these can indirectly couple to the spin, for example through spin-orbit coupling.

An electric field may be produced locally on chip through appropriate gates, or one may

attempt optical manipulation via a THz laser pulse, which has the advantage of a very high

frequency, and therefore promise very fast spin rotations.

In this work we will focus on this second option, the optical manipulation of spins –
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or, in any case, the use of high frequency electric fields, whatever its origin. The action

of THz optical fields on quantum dots, and its coupling to the spin degree of freedom

thorough spin-orbit coupling, has already been theoretically investigated for example by

Jiang et al. [13] In this work, we inquire into how fast can a single spin in a quantum dot

rotate when manipulated with a THz electric field, through the indirect coupling facilitated

by the spin-orbit interaction. We will not limit the allowed external fields to quasi-mono-

chromatic laser pulses (that are typically tuned to some resonant frequency), but rather

consider the possibility of shaping the temporal shape of the pulse, in order to find a path

that produces the transition in a faster way than following Rabi’s oscillations. In order to

find the shape that produces the optimal result, we will use quantum optimal control theory

(QOCT) [14, 15]. This theory provides a set of techniques to find the best external fields

that, acting on a quantum system, produce the evolution that is optimal in a certain sense

defined by the user.

We have implemented QOCT in the real-space, real-time, electronic structure code

octopus [16–18]. This code focuses on the time-dependent many-electron problem, based on

time-dependent density-functional theory [19, 20], although in this case this feature is not

necessary since we deal with a single-electron problem. This implementation of QOCT has

already been employed in recent years to study dynamics of 2D quantum dots and rings in

the presence of THz laser fields [21–23]. By including in the model a spin-orbit coupling term

(in this case, we have chosen the Rashba term [24], although this choice is not important

for the conclusions that follow), we have learned what are the typical transition velocities

that one may expect when manipulating the spin of a single electron quantum dot with this

kind of electric fields.

The goal has been to construct optimal laser pulses that drive a single-electron spin from

a given initial orientation in the Bloch sphere to any other target spin orientation. Within

QOCT, such physical goals have to be mathematically formalized with the definition of

a “target function” that determines the degree of success achieved for the task that is

pursued. In this work we have considered two possible target definitions: The first one

corresponds to the projection into some pre-defined spin orientation: the control is exerted

on the orientation of spin without specifying a priori which stationary states are involved.

The second target corresponds to the transition from the ground state, which is known

to have a dominant spin in one particular direction, to an excited eigenstate that has a
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dominant spin in an approximately opposite direction.

II. THEORY

We consider the quantum dots fabricated on top of the two-dimensional electron gas

(2DEG) that can be locked at the interface of a semiconductor heterostructure. The most

common case is perhaps that of the GaAs/AlGaAs heterostructure, and therefore we will

consider this material in the following. The AlGaAs layer is usually doped with Si, which

results in the liberation of free electrons, that accumulate at the GaAs/AlGaAs interface, and

are trapped in a thin (around 10 nm) layer. The electronic system can then be considered to

occupy a thin potential well in the direction perpendicular to the interface plane (hereafter,

the z-direction). This thinness (to be compared to the Fermi wave length of the electrons,

large due to the low electronic density) is the reason for the 2D character of the system, as

the electrons can be considered to occupy only the lowest subband – at the low temperature

that are necessary for these experiments to take place. Once the 2DEG is thus created, one

may further constrain electrons in the xy plane, by placing gates (metal electrodes) on top

of the semiconductor, and controlling their voltages.

The electronic islands created in this manner (the quantum dots) can then be modeled

by considering an effective mass approximation in 2D, and assuming simple and smooth

confining potentials in the xy plane - typically, as we will do below, of parabolic form. In

addition, one may have an external magnetic field, a time-dependent external electric field

(originated by the variation of the potential applied on the gates, or by a laser source), and,

as we will crucially consider in this work, one or more spin-orbit coupling (SOC) terms.

There are various forms of SOC that can be present in this kind of zincblende materials.

The bulk crystal lacks inversion symmetry, which leads to the Dresselhaus term [25], and

in addition the heterojunction produces a structural inversion asymmetry along the growth

direction that results in the Rashba term [24]. The strength of the Rashba effect can in fact

be tailored with the application of external electric fields applied in parallel to the growth

direction. Because of this tunability, we have chosen to work exclusively with this Rashba

term, which is in many circumstances the dominant one [26, 27]. However, the qualitative

conclusions that we will draw out do not depend on this choice: these SOC terms couple to

the external electric fields in a similar manner.
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After all these considerations, the system can be modeled, in the absence of external

time-dependent electric pulses, with the following static effective Hamiltonian:

Ĥ0 =
h̄2

2m∗

(
−i∇− e

h̄
A(r̂)

)2

+Vc(r̂)+α
[
σ̂ ×

(
−i∇− e

h̄
A(r̂)

)]
z
+
g∗

2
µB (σ̂ ×B)z . (1)

The first term corresponds to the electron kinetic energy, where m∗ is the electron effective

mass that we consider to be m∗ = 0.067me in a GaAs semiconductor medium (me is the

electron mass). The vector potential A(r̂) included in that term generates the static homo-

geneous magnetic field B = Bz, normal to the xy-plane where the system is confined. The

second term,

Vc(r̂) =
1

2
m∗h̄ω0

(
x̂2 + ŷ2

)
(2)

is the confinement potential. The third term correspond to the Rashba SOC, whereas the

fourth is the Zeeman term. In those expressions, σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli

matrices, α is the Rashba parameter that determines the SOC strength, g∗ is the effective

gyromagnetic factor (we will use g∗ = −0.44 for GaAs), and µB is the Bohr magneton.

For the confinement potential, we have used h̄ω0 = 1.8 meV, which is in the range of

the typical values in common experimental realizations of QDs. A rough corresponding

estimate of the QD lateral extension is approximately 2
√
h̄/m∗ω0 ≈ 50 nm, which also lies

within the typical range of sizes for lithographically etched and gate-confined QDs. In the

following, we will express all the quantities in effective atomic units, that relate to usual

atomic units (defined by setting e2 = me = h̄ = 1) in the following manner: a∗0 = a0 (m∗/κ),

H∗a = Ha (κ2/m∗), t∗0 = t0 (m∗/κ2), where a0, Ha and t0 are the usual atomic units of length,

energy, and time, respectively. The value of κ is 13.18 ε0 for GaAs.

In the presence of an external electric pulse, the previous Hamiltonian must be supple-

mented with a time-dependent term, and the system is governed by the time-dependent

Schrödinger’s equation during a time interval [0, T]:

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t) =

[
Ĥ0 − µ̂ε(t)

]
Ψ(r, t) , (3)

where the electron-field interaction assumes the dipole approximation in the length gauge,

being µ̂ = −er̂ the dipole operator. The time-dependent electric field, ε(t) = ε(t)π is

linearly polarized in some direction determined by the unit vector π, contained in the xy-

plane. The precise direction is in fact irrelevant due to the circular symmetry of the rest of

the Hamiltonian.
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The specification of ε(t), together with an initial value condition, determines the full

evolution of the system, via the propagation of Schrödinger’s equation. The questions that

we wish to answer are the following: is it possible, by fine-tuning the form of ε(t), to

manipulate at will the spin state of the system in a controllable manner? How fast can this

manipulation be performed, as a function of the characteristics of the system – the SOC

strength, the presence and magnitude of the external static magnetic field, etc.?

Optimal control is a suitable tool to address this type of questions, reformulating them

into the following problem: given a target, defined as the maximization of a functional of the

final state of the system (or of its evolution), what is the time-dependent control function

that best accomplishes it? In our case, the target must obviously be related to the spin

state of the system, whereas the control function is the time-dependent electric field ε(t).

The set of possible control functions is the search space for the optimization algorithm. In

practice, the control function must be discretized in order to proceed with the numerical

computations: a set of parameters u1, . . . , uM ≡ u determines the shape of the function:

ε(t) = ε[u](t), and therefore the domain of the parameters u is the effective search space.

Regarding the target, it is typically defined through the expectation value of some oper-

ator Ô, i.e. it is a functional of the final state of the system with the form:

F [Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 . (4)

Since the parameters u determine the shape of the control function, which in turns deter-

mines the evolution of the system, u → Ψ[u], the problem is reduced to the maximization

of a function of u:

G[u] = F [Ψ[u]] = 〈Ψ[u](T )|Ô|Ψ[u](T )〉 . (5)

This maximization is greatly eased if we have a feasible scheme to compute the gradient of

this function, and this is provided by QOCT:

∇uG [u] = 2Im

∫ T

0

dt 〈χ [u] (t)| ∇uĤ[u](t) |Ψ [u] (t)〉 , (6)

Note that, given the structure of our Hamiltonian:

∇uĤ[u](t) = (r̂ · π)∇uε[u](t) (7)

Also note that a new auxiliary wave function χ[u](t) has appeared; it is defined as the

solution of:

i
∂

∂t
χ[u](r, t) = Ĥ†[u](t)χ[u](r, t) , and (8a)
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χ[u](r, T ) = ÔΨ[u](r, T ) . (8b)

These equations are similar to the equations for the true wave function Ψ[u], except for the

fact that the boundary condition (Eq. (8b)) is given at the final time t = T , which implies

that χ[u] must be propagated backwards. Therefore, the computation of the gradient of

G, that requires of both wave functions, is computed by first propagating Eq. (3) forward

in time and then Eq. (8a) backward. Finally, the maxima of G are found at the critical

points ∇uG = 0; in order to find these maxima we use the quasi-Newton method designed

by Broyden, Fletcher, Goldfarb and Shanno [58].

It remains to specify the target operator, and the parameterization of the control func-

tions. Regarding the former, we consider two types of targets:

Target A: The goal is to maximize the spin projection onto some direction ξ, i.e. the

operator Ô is defined as:

Ô = ξ · σ̂ = ξxσ̂x + ξyσ̂y + ξzσ̂z , (9)

For example, if ξz = 1, and ξx = ξy = 0 the goal is to maximize the z spin projection.

The functional F would therefore be defined as follows:

F [Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 =
∑

i=x,y,z

ξi〈Ψ(T )|σ̂i|Ψ(T )〉 , (10)

Target B: The goal is to populate some selected excited state Φf , that has the required

spin orientation. The target operator is then defined as the projection onto that state:

Ô = |Φf〉〈Φf | , (11)

In this case, the functional F is:

F [Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 = |〈Φf |Ψ(T )〉|2 . (12)

Finally, regarding the parametrization of the control function, we expand it first in a

Fourier series, and then we enforce several physical constraints: The zero-frequency compo-

nent is assumed to be zero (in order to ensure that the signal over the full propagation time

integrates to zero), and the sum of all the cosine coefficients is also set to zero (in order to
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FIG. 1: Energy levels of the parabolic QD versus the strength of the Rashba SOC, α, at (a) zero

magnetic field and (b) B = 0.5 T. We have labeled the energy levels in (a) as (n, |l|).

ensure that the field will starts and ends at zero). In addition, we enforce a fixed fluence

condition: ∫ T

0

dt ε2[u](t) = F0 . (13)

The idea is to find the optimal field within the set of fields with equal integrated intensity

– this is the physical meaning of the fluence. The set of parameters u is constructed by

considering first the coefficients of the Fourier expansion, and them enforcing the mentioned

constraints – for details, see Ref. [55].

III. NUMERICAL RESULTS AND ANALYSIS

A. Effect of Rashba SOC and magnetic field on the electronic structure

To start, we briefly review the effects of SOC on the eigenstates of the QD. In the

absence of this SOC, and of any magnetic field, the problem determined by the Hamiltonian
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FIG. 2: Fock-Darwin spectrum of the parabolic QD with (a) α = 0 and (b) α = 0.2 eVÅ.

of Eq. (1) is simply a 2D harmonic oscillator. Therefore, the eigenstates are characterized

by a principal quantum number n, that spans a degenerate subspace of states that differ

by their orbital quantum number l, and their spin orientation, s =↑, ↓. In presence of the

SOC, the picture changes: Fig. 1 shows the QD electronic energy levels as a function of

α at (a) B = 0 and (b) B = 0.5 T. In (a), the states are labeled by their (n, l) numbers,

which are still good quantum numbers. In this zero magnetic field case, the electronic levels

undergo an energy shift due to the SOC. This displacement is proportional to α2. The SOC

also lifts the degeneracy of the electronic states with the same orbital momenta (those with

equal |l|). The separation between these previously degenerate states is also proportional to

α2. Furthermore, at B = 0, the energy levels remain doubly degenerate in spin (Kramer’s

degeneracy).

When a magnetic field is present (B = 0.5 T [Fig. 1 (b)]), the usual Zeeman splitting

appears. But in addition to this, we can observe the effect of the SOC: an α-dependent spin

splitting. As we increase the Rashba SOC strength, this splitting gives raise to an approach

of energy levels with opposite magnetic moments. Note, however, that due to the SOC, the
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electronic states are no longer pure spin spin-up and spin-down states (in other words, s is

no more a good quantum number). Therefore, the labeling s =↑, ↓ in Figs. 1(a) and 1(b)

must be understood only in terms of the spin-branches of each electronic state.

Next, Fig. 2 shows the Fock-Darwin spectra without Rashba SOC and with α = 0.2 eVÅ.

It is clear in Fig. 2(b) that the SOC affects the dependence of the electronic states with the

magnetic field in comparison with Fig. 2(a), lifting spin degeneracy even at vanishingly small

magnetic field. In addition, new crossings of several of the energy levels at low magnetic

field regime appears, as well as anti-crossings at higher magnetic field strengths. These anti-

crossings occur between neighbouring quantum levels with opposite magnetic moments [57].

In the following sections, we will analyze the optimization calculations. As described

above, these optimizations are iterative algorithms, and must depart from an initial electric

pulse. In all the cases discussed below, we start considering a “reference” pulse of the form:

εref(t) = ε0 cos (ω0t) cos

(
π

2

2t− T
T

)
(14)

The peak amplitude ε0 is always set to 0.1 kV/cm (∼ 0.29 e.a.u.). Nevertheless, in order to

study the effect of initial conditions on the optimization, on each case we have performed

four optimization runs starting from four different (random) initial laser pulses, with the

fluence [Eq. (13)] obtained from the reference pulse and being preserved by the optimization

procedure. The results shown below correspond to the best outcomes. The pulse lengths,

given by T , will be given in units of π/ω0 ∼ 1.15 ps. The pulses are then represented in

a Fourier series, with the constraints discussed above. One of them must obviously be the

establishemnt of a cut-off frequency. For all the cases concerning target type A, this cut-off

frequency has been set to ωcut-off = 20 (2π/T ), which implies 38 degrees of freedom (the

number of parameters). For target B, we have worked with ωcut-off = 10 (2π/T ) (18 degrees

of freedom).

In the ground state, the expectation value of σz is positive (if no magnetic field is present,

the ground state is two-fold degenerate in spin, and then we choose the branch with positive

〈σz〉). The goal that we want to achieve is to reverse this spin component. For that purpose,

when using a target of type A, we set ξz = −1, and ξx = ξy = 0. For target B, we chose an

eigenstate, Φf , whose 〈σz〉 component has opposite sign to that of the ground state, Φi.
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FIG. 3: (Color on-line) Average spin components (in units of h̄) as a function of time for two

optimized laser pulses of different lengths, π/ω0 ∼ 1.15 ps and 2π/ω0 ∼ 2.3 ps. We have considered

two Rashba SOC strengths: α = 0.05 eVÅ (Figs. (a) and (b)) and α = 0.15 eVÅ (Figs. (c) and

(d)).

B. Target A: spin rotation at zero magnetic field

Fig. 3 shows the time evolution of the average spin components for two optimized laser

pulse lengths: the left panels 3(a) and 3(c) display shorter pulses (T = π/ω0), and the right

panels correspond to double pulse lengths. On the other hand, the top panels 3(a) and 3(b)

correspond to a weaker SOC strength, α = 0.05 eVÅ, whereas the bottom panels 3(c) and

3(d) correspond to a stronger α = 0.15 eVÅ. If we compare the shorter pulses first ((a)

and (c)) it becomes evident how the increased strength of the Rashba SOC results in a spin

orientation closer to the target at the end of the pulse – yet this optimization is still not

significant. An increase in the pulse lengths, however, results in a very good final outcome

even for α = 0.05 eVÅ. In fact, as it can be seen in Fig. 3(d), note that the component 〈σz〉

oscillates close to −1/2 even before the end of the pulse. This tells us that, for that value
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FIG. 4: (Color on-line) Optimal laser pulses corresponding to Fig. 3.

of the SOC strength, an even shorter laser pulse duration would suffice to reach a good 〈σz〉

value.

In Fig. 4 we show the optimal laser pulses that produce the results of Fig. 3. Note the

very different aspect of the fields needed to optimize the shorter and longer pulses – the

latter having a more complex structure. We also display in the inset of each figure the

power spectrum of the pulses. The optimal pulses obtained with weaker and stronger SOC

do not differ significantly in shape, both in real time and in the frequency domain.

C. Target A: spin rotation at non-zero magnetic field

We now consider laser pulse optimizations in the presence of an external magnetic field

of B = 0.5 T. Fig. 5 shows the results for a pulse of length π/ω0 and four different Rashba

SOC strengths. The external magnetic field competes now with the “effective” magnetic

field associated to the Rashba SOC and forces the ground state to have a 〈σz〉 closer to 1/2.

This is evident by looking at the value of 〈σz〉 at the initial time in the figure, compared

12



0 1
- 0 . 5 0

- 0 . 2 5

0 . 0 0

0 . 2 5

0 . 5 0 α  =  0 . 2  e V �α  =  0 . 1 5  e V �α  =  0 . 1  e V �
 〈σx 〉  〈σy 〉  〈σz 〉 

〈σ
x,y

,z〉

α  =  0 . 0 5  e V �

( a )                  ( b )                 ( c )                 ( d )
0 1

 t i m e  [ π/ ω0 ]

 

0 1

 

0 1

 

FIG. 5: (Color on-line) Average spin components as a function of time for an optimized laser pulse

of length π/ω0, with B = 0.5 T and four Rashba SOC strengths: (a) α = 0.05 eVÅ, (b) α = 0.1

eVÅ, (c) α = 0.15 eVÅ and (d) α = 0.2 eVÅ
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FIG. 6: (Color on-line) Optimized laser pulses corresponding to Fig. 5.

with the initial values of the previous section. We can also observe that increasing the

Rashba SOC allows to improve the spin rotation, getting a result very close to the target

for α = 0.20 eVÅ. Note that, due to the presence of the magnetic field, the starting point is

farther from the target, compared to the cases with zero magnetic field, which means that
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FIG. 7: (Color on-line) Average spin components as a function of time for an optimized laser pulse

of length π/ω0, with B = 0.5 T and four Rashba SOC strengths: (a) α = 0.05 eVÅ, (b) α = 0.1

eVÅ, (c) α = 0.15 eVÅ and (d) α = 0.2 eVÅ.

the spin state must perform a longer path. Fig. 6 shows the optimal pulses associated to

Fig. 5. They are qualitatively similar to those shown in Fig. 4.

Let us now consider pulse lengths of 2π/ω0 (Fig. 7). In this case, notice that the op-

timization algorithm is capable of finding pulses that reach the target with smaller SOC

strengths than those required with shorter pulses. Regarding the optimal pulses (Fig. 8),

note that these look very different to the shorter pulses of length π/ω0. One can see how the

increase of the SOC strength produces an apparent increase in the number of oscillations of

the pulse envelope. In the inset of this figure, note how this increase of the SOC strength

results in a splitting of the initial single band into two separate bands. The lower frequency

band is associated with the oscillations of the envelope and moves to higher frequency than

the initial band as we increase the strength of the SOC.

Finally, Fig. 9 shows the expectation value of σz, at the end of the pulse, as a function of

α for the two pulse lengths considered. Here it becomes evident how the increase of pulse

length allows for a better result. It is also evident that one may get a faster spin-flip through

the tuning (increase) of the Rashba SOC.
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FIG. 8: (Color on-line) Optimized laser pulses corresponding to Fig. 7.

D. Target B: spin rotation at non-zero magnetic field

We now describe the results obtained when using a target of type B. We have chosen to

maximize the transition between the two spin branches of the ground state, i.e., E0,0,↑ →

E0,0,↓ (in the following, the figures will label these two states as i = 0 and i = 1, respectively).

This transition is only allowed when the two branches are split by the effect of a magnetic

field, and therefore, for this calculation, we have set the magnetic field and Rashba SOC

strengths as 0.5 T and 0.2 eVÅ, respectively. The cutoff frequency, set in this case as

10 (2π/ω0), is well above the resonant frequency associated with this transition, ω0→1.

Fig. 10(a) shows the time evolution of the occupation of the first 12 eigenstates of the QD

in response to an optimized laser field of length 60 (π/ω0). The occupation of state i = 1

reaches a maximum occupancy of ∼ 0.98 at the end of the pulse, and the occupation of the

ground state decays to zero quickly. During the course of the pulse, the global occupation

of those 12 first eigenstates decays almost to zero several times, indicating that in these

time intervals the electron is occupying higher energy states. Below, Fig. 10(b) shows the

time evolution of 〈σx〉, 〈σy〉 and 〈σz〉. As expected, the final spin orientation of the electron

agrees almost completely with the expectation values of the spin components in state i = 1.

Fig. 10(c) shows the associated optimal laser field. It is important to remember that, in
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FIG. 9: Expectation value of the z-component of the spin at t = T as a function of Rashba SOC

strength for two laser pulse lengths.

the case of target B, we attempt a state-to-state transition of frequency ω0→1, indicated by

a vertical thick gray line in the inset of Fig. 10(c). In general, despite the random random

character of the initial guess field of the search, the optimal pulse is characterized by the

presence of a wide distribution of frequencies around ω0→1.

This is of course not surprising. However, the optimal pulse is not merely a quasi mono-

chromatic pulse with the transition frequency. We have in fact attempted the optimization

by starting from these type of pulses, finding that the optimization alters that starting point

by adding the necessary extra frequencies to obtain a significantly better result. These runs

(not shown here), provided better solutions than the runs started from purely random pulses.

Finally, we note that the complexity of the transition process found by the QOCT procedure

is also evidenced from the population of many eigenstates during the evolution, far from the

two-state model that is used to explain Rabi oscillations. This population of “auxiliary”

states is of course also present when using target A, a fact to be expected since the states in

these case are not “controlled”. Indeed, when using target A even the final state is composed

of a superposition of a large number of eigenstates.
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FIG. 10: (Color on-line) (a) Occupation of the 12 first eigenstates as a function of time, (b) average

spin components as a function of time and (c) Optimized laser pulse. The length of the pulse is

60 (π/ω0), B = 0.5 T and α = 0.2 eVÅ. The inset in (c) shows the power spectrum in frequency of

the optimized laser pulse.

IV. CONCLUSIONS

We have theoretically demonstrated the possibility of manipulating the electronic spin

in a semiconductor QD, by means of ultrashort laser pulses, making use of the spin-orbit

coupling. We have explored the time scales necessary to perform spin transformations,

making use of optimized laser pulse shapes, found with the help of quantum optimal control

theory. These time scales depend on the strength of the spin-orbit coupling, and of the

presence or absence of an external magnetic field, helpful to fix a value for the initial spin

orientation.

The search for an optimal pulse, within QOCT, can be done in multiple ways, and the first

choice to make is the design of a target functional. We have shown results for two types of

targets. In the first type, the functional only depends on the spin projection value, without

placing explicit restrictions on the number of the QD eigenstates which can participate in

the representation of the final state. The results show full spin rotations in about 1 or 2

ps, depending on the value of the spin-orbit coupling. In the second type of target, the
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spin control is achieved indirectly through the control of a particular transition between the

ground state and an excited state which has the desired spin orientation. In this case, if the

target transition involves one of the lowest excited states, the pulse length must be at least

an order of magnitude greater than those used in the case of the first target.

In conclusion, our simulations support the idea of ultrafast manipulations of electronic

spin in 2D quantum dots, by means of the electric fields of THz laser pulses, using spin-orbit

coupling to transform the electric signal into a spin rotation.
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