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ABSTRACT 

Mixed matrix membranes (MMMs) prepared with 6FDA-DAM polymer using 

ordered mesoporous silica MCM-41 spheres (MSSs), Grignard surface functionalized 

MSSs (Mg-MSSs) and hollow zeolite spheres (HZSs) are studied to evaluate the effects 

of surface modification on performance. Performance near or above the so-called 

permeability-selectivity trade-off curve was achieved for the H2/CH4, CO2/N2, 

CO2/CH4 and O2/N2 systems. Two loadings (8 and 16 wt%) of MSSs were tested using 

both constant volume and Wicke-Kallenbach sweep gas permeation systems. Besides 

single gas H2, CO2, O2, N2 and CH4 tests, mixed gas (50/50 vol%) selectivities were 

obtained for H2/CH4, CO2/N2, CO2/CH4 and O2/N2 and found to show enhancements 

vs. single gases for CO2 including cases. Mg-MSS/6FDA-DAM was the best 

performing MMM with H2/CH4, CO2/N2, CO2/CH4 and O2/N2 separation selectivities 

of 21.8 (794 Barrer of H2), 24.4 (1214 Barrer of CO2), 31.5 (1245 Barrer of CO2) and 

4.3 (178 Barrer of O2), respectively. 
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INTRODUCTION 

Identification of an appropriate polymer matrix and suitable dispersed filler 

phase influence successful formation of mixed matrix membranes (MMMs)1 able to 

overcome the so-called Robeson upper bound trade-off curve for permeability and 

selectivity.2,3 Resistance to plasticization is required for many gas separation 

processes4,5 and functionalized fillers are attractive to achieve high performance with 

adequate plasticization resistance.6 

An aromatic polyimide, 6FDA-DAM used in this work has good thermal and 

chemical stabilities with attractive transport properties and processability in common 

solvents.7-12 The 6FDA-DAM shows better intrinsic performance for many gas 

separations versus polysulfone or polyimide Matrimid®, so it was a good choice for the 

current work.13 

Different fillers have been incorporated into polymer matrices, including ordered 

mesoporous silica,14-18 non-porous silica,5,19 carbon molecular sieves,20 carbon 

nanotubes,21 zeolites,22-24 and metal-organic frameworks (MOFs).25 Several reviews 

have considered performance of MMMs.1,6,26-29 These reviews highlight the importance 

of engineering the contact between the organic and inorganic phases, since non-ideal 

contact leads to undesirable MMM morphology and non-selective defects, which 

compromise the performance of the membrane.30,31 

In this work ordered mesoporous silica MCM-41 spheres (MSSs) were used as 

one of the fillers to improve the already attractive intrinsic properties of the 6FDA-

DAM polymer. Mesoporous materials possess sufficiently large pores (20–500 Å), 

which may allow penetration of polymer chains, thereby improving surface contact and 

dispersion. Since the discovery of the M41S family of mesoporous molecular sieves by 
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Kresge et al.32 these materials have received intensive research as catalysts, adsorbents, 

and membranes. Addition of silica particles to a polymer matrix may disrupt the 

polymer chain packing, leading to enhanced gas permeability.18 Reid et al.14 studied the 

influence of MCM-41 as additives in polysulfone matrices showing enhanced 

permeability behavior due to the large pore size of the filler, but with no change of 

selectivity. 

Various functionalization have been explored to improve surface contact in 

MMM application,16,23,33,34 Grignard treatment, developed by Shu and Husain23,34 was 

particularly useful for polyimides due to the formation of Mg(OH)2 nanostructures.24 

We expected that a Grignard modification of MSS particles may also be effective on the 

MSSs surface.17 

Moreover, using a MSSs starting material, a layer-by-layer surface procedure 

has been shown to produce hollow zeolite spheres (HZSs), with a silicalite-1 shell 

intergrown around a hollow interior.35 Herein, we study the addition of MSSs, Mg-

MSSs and HZSs fillers within the polymer 6FDA-DAM to form MMMs. The high 

performance 6FDA-DAM pure polymer was characterized for sorption and 

plasticization and to assess the effects of thermal annealing. Permeation tests of 

MSSs/6FDA-DAM MMMs using both constant volume and Wicke-Kallenbach sweep 

gas permeation set-ups are discussed. Results for single gases (H2, CO2, O2, N2 and 

CH4) as well as for binary gas mixtures (H2/CH4, CO2/N2, CO2/CH4 and O2/N2) are 

reported. 

EXPERIMENTAL SECTION 

Materials 
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Ordered mesoporous silica spheres (MSSs) were synthesized following 

experimental procedure described by Schulz-Ekloff et al.,36 with modifications to the 

synthesis gel by Navascues et al.37 Sodium metasilicate, Na2SiO3, Sigma-Aldrich, was 

used with cetyltrimethylammonium bromide surfactant, C19H42NBr, Sigma-Aldrich, to 

achieve a mesoporous structure with an initiator to enable colloidal aggregates 

formation (ethylacetate, CH3COOC2H5, Sigma-Aldrich). The molar composition was: 

1.5 Na2SiO3 : 1 CTABr : 361 H2O : 7.4 CH3COOC2H5. The resulting whitish sol 

dispersion, reflecting silica condensation, was kept in a closed polypropylene flask at 

room temperature for 5 h and then allowed to proceed at 90 ºC for 50 h in the same 

open flask, without stirring. The final product was washed several times in distilled 

water and ethanol, and then filtered. The structure-directing agent was removed and the 

mesoporous MSSs were created by calcining at 600 ºC for 8 h using heating and cooling 

rates of 0.5 ºC/min. 

MSSs were functionalized following the Grignard treatment (Mg-MSS), to 

modify the surface chemistry of the sieves, reducing the interaction solvent-sieve, to 

improve adherence to the polymer. The procedure contains: (i) crystal seeding, and (ii) 

crystal growth by Grignard quenching and sonication processes, as extensively 

described in the literature.23 However, for silicalite-1 (zeolite with the MFI-type 

structure but without Al content) the process was proved to be ineffective due to the 

lack of appropriate crystal seed, on which Mg(OH)2 nanostructures can grow.38 Then a 

previous dispersion step of 0.5 g of MSSs in a solution of NaCl 3 M was applied to 

produce adequate ionic exchange. In the second step, the recovered MSS particles by 

filtration were placed in a reaction flask containing a magnetic stir bar. The particles 

and the glassware were dried at 150 ºC overnight in a vacuum oven. Then 8 mL of 

toluene and 1.5 mL of methylmagnesium bromide, CH3MgBr (3.0 M solution in 
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diethylether, Sigma-Aldrich) were added into the sealed flask. The suspension was 

sonicated for 4 h and stirred during 12 h more under nitrogen before isopropanol was 

added drop by drop. To remove the residual solvents the resulting sol dispersion was 

centrifuged twice with isopropanol and then subjected to a series of sonication and 

centrifugation treatments (three 30 s periods of horn sonication with 2 min of repose 

and centrifugation upon dispersion with distilled water at 7000 rpm for 10 min) several 

times until the conductivity of the supernatant dropped below 30 µS/m. The final 

collected particles were dried overnight at 80 ºC. 

As described earlier, hollow zeolite spheres (HZSs) were created using silicalite-

1 seeds, of approx. 100 nm in size. The seed crystals were synthesized using a sol with 

the molar composition of 9 TPAOH : 25 SiO2 : 408 H2O : 100 EtOH13 which was 

autoclaved for 20 h at 100 ºC. To improve electrostatic interaction between the spheres 

and the seeds, an aqueous 0.5 M NaCl solution containing 2 mg of poly (diallyl di-

methyl ammonium chloride) (PDDA) was added to the dispersed MSSs, followed by 

washing and centrifuging. The resulting suspension was placed in contact with dilute 

NH4OH (pH= 9.5), and 0.25 wt% silicalite-1 seeds. Excess silicalite-1 seeds were 

removed by washing and a layer-by-layer seeding procedure was used to produce 

silicalite-1 monolayer coated in MSSs. Finally, silicalite-1 seeded MSSs were subjected 

to hydrothermal synthesis at 175 ºC for 12 h with the following molar composition: 

KOH : TPABr : 8 SiO2 : 2130 H2O [40] to convert the silica to zeolite silicalite-1. 

The polymer used in this work to prepare the MMMs was 6FDA-DAM (Tg= 325 

ºC, FFV= 0.19, density= 1.35 g/cm3, see Figure 1), which was synthesized as reported 

elsewhere.39 The monomers 6FDA (2,2-bis (3,4-carboxyphenyl) hexafluoropropane 

dianhydride, Sigma) and DAM (diaminomesitylene, Sigma) were purified by 



7 
 

sublimation and polymerized to give a Mw of 81,000, as described in previous work,24 

and used to form membranes. 

Preparation of 6FDA-DAM based MMMs 

MMMs with MSSs, Mg-MSSs and HZSs in 6FDA-DAM were fabricated at 8 

wt% and 16 wt% to study the effect of the filler loading. A 13% polymer dope was 

prepared with dried 6FDA-DAM and tetrahydrofuran (THF) as solvent and rolled on a 

mixer overnight to get a well dispersed solution. For polymer membranes, the dope was 

ready for the casting; however MMMs required the following further steps: (i) drying 

inorganic fillers at 180ºC overnight, (ii) dispersing the dried particles in an ultrasonic 

bath for 30 min with enough THF to achieve a non-agglomerated dispersion, (iii) 

adding 10% of the above mentioned dope for “priming” to produce low polymer/filler 

ratio in the solvent, (iv) rolling and horn sonicating to achieve a well dispersed mixture, 

(v) adding the remaining 90 % of the calculated dope, and (vi) rolling in the mixer 

overnight. 

The final solution was poured onto a glass flat plate (placed in a glove bag pre-

saturated with THF during 3 h) and a draw knife with appropriate clearance was used to 

achieve the desired thickness (40±10 µm). The dense membrane was formed by 

controlled solvent evaporation rate overnight, followed by thermal (180 or 270 ºC) and 

vacuum treatment for 24 h with slow heating/cooling rates to remove the remaining 

solvent. 

Characterization of fillers and membranes 

MSSs, Mg-MSSs, HZSs and the corresponding MMMs, were characterized by 

scanning electron microscope (SEM, JEOL JSM 6400, Jeol Corp., operating at 20 kV) 

coupled with an energy-dispersive X-ray spectroscopy (EDX). Polymer and MMMs 
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cross-section were prepared by freeze-fracturing after immersion in liquid N2. 

Transmission electron microscope (TEM) samples were embedded in EpofixTM cold-

setting resin (Electron Microscopy Sciences) with 15/2 volume parts of embedding 

resin/hardener and cured for 8 h at room temperature. The resultant pieces were cut at 

30-60 nm thickness using a RMC MT-XL ultramicrotome (RMC Products) with a 

Standard Ultraknife 45º, 3 mm diamond blade (Drukker Ultra-microtome knife, 

ElementsixTM). The sliced sections were stained in aqueous solution, placed on carbon 

copper grids and subsequently observed at 200 kV in a JEOL-2000 FXII TEM (Jeol 

Corp.). 

Powder and membranes were characterized by X-ray diffraction (XRD) using a 

D-Max Rigaku diffractometer with a copper anode and a graphite monochromator to 

select Cu-Kα radiation (λ= 1.5418 Å). Data were measured from 2θ = 2.5º to 40º in 

steps of 0.03º and t = 1 s/step. Low angle X-ray diffraction (LA-XRD) spectra of the 

fillers were recorded on a Philips X'Pert diffractometer (PANalytical B. V.) with Bragg-

Brentano geometry and Cu-Kα radiation. In this case 2θ was recorded from 0.6º to 8º. 

N2 adsorption-desorption isotherms and BET specific surface areas of the fillers were 

measured at 77K using a porosity analyzer (TriStar 3000, Micromeritics Instrument 

Corp.) after outgassing at 350 ºC for 8 h. The pore size distributions were calculated 

using the Barrett-Joyner-Halenda (BJH) model from the adsorption branches. 

Thermogravimetric analyses (TGA) were performed using a Mettler Toledo 

TGA/STDA 851e. Samples of 10 mg were placed in 70 µL alumina pans and heated in 

air flow up to 850 ºC at 10 ºC/min maintaining the final temperature for 1 h. 

High pressure sorption and permeability measurements of membranes 
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Sorption measurements of 6FDA-DAM based membranes were performed up to 

150 kPa using a pressure decay method described in detail elsewhere.40 

Permeation through a polymer is described by the solution-diffusion theory, 

where gases dissolve into the surface of the membrane at the high-pressure feed side, 

then diffuse through the polymer matrix because of a concentration gradient, and finally 

desorb at the low pressure permeate side. Two basic parameters are typically 

characterized: permeability and selectivity. Permeability (Pi) for component i, is 

defined as the penetrant flux, normalized by the thickness, l, and the partial pressure 

drop across the membrane, Δpi (Eq.1):  

i

i
i p

lFluxP
∆

=
·

      (Eq.1) 

P is usually given in Barrer unit (1 Barrer = 10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1). When 

the ideal permeabilities of each species are known in the material Eq.2 for ideal 

selectivity or permselectivity (αi/j) is used. αi/j for preferential permeating component i 

over component j is defined as the permeability ratio of the pure gases: i and j. 

 jiji PP / (ideal) =α      (Eq.2) 

In the case of mixed gas feeds where there may be competitive interactions between the 

permeating gases and the polymer, the real selectivity or separation factor is 

considered. In this case αi/j expresses the relative enrichment in the permeate stream 

with respect to the feed composition when a gas mixture is fed to the membrane system. 

The separation factor is calculated in Eq.3, being y and x the mole fraction of gas/vapor 

in permeate and feed sides of the membrane, respectively. 
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Pure and mixed-gas permeabilites for bare 6FDA-DAM polymer and MMMs 

were measured using two experimental procedures. The first method was a constant 

volume method for single gas permeation tests, described in detail elsewhere.41 The 

second method was a sweep (Wicke-Kallenbach) method42 for single gas or 

multicomponent gas mixtures to determine for H2/CH4, CO2/N2, CO2/CH4 and O2/N2 

binary mixtures. 

The same membranes were measured using the two set-ups under the same standard 

conditions for reproducibility purposes. For the constant volume method individual 

gases were fed at 35 ºC and ~200 kPa with a downstream at vacuum. In the Wicke-

Kallenbach method, both single and 50% binary mixtures were analyzed in a GC set-up 

described elsewhere.17 The feed enters into the membrane module placed in an oven at 

35 ºC (at 50 cm3(STP)/min)) at pressure of ~300 kPa, with the permeate side  at 

atmospheric pressure, which is swept with Ar (1 cm3(STP)/min, for H2/CH4 mixture) or 

He (5 cm3(STP)/min, for O2/N2, CO2/CH4 and CO2/N2 mixtures). Stream compositions 

were analyzed by an on-line gas micro-chromatograph (Agilent 3000A) equipped with 

TCD. In both type of set-ups permeabilities were obtained once the steady-state of the 

exit stream (permeate) was reached and the separation selectivities were calculated as 

the ratio of experimental permeabilities. In the case of the constant volume method the 

steady-state permeation flux is obtained from the gradient of pressure-time response 

while for Wicke-Kallenbach method once the exit stream of the membrane was 

stabilized, typically with times longer than 3h. Each type of membrane was fabricated 

and measured multiple times to provide reliable error estimates. 

RESULTS AND DISCUSSION 

Characterization of fillers and MMMs 
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Figure 2 shows SEM/TEM images of the three fillers considered in this work: 

MSSs, Mg-MSSs and HZSs, and their corresponding MMMs based on 6FDA-DAM 

polymer.  

Images 2a-b and 2d-e, corresponding to MSSs and Mg-MSSs based membranes, 

respectively, do not clearly show the Mg(OH)2 nanostructures but a certain roughness 

of the surface of the spheres. The TEM technique, however, revealed  individual 

particles with good contact without voids for MSS/6FDA-DAM MMM (Figure 2c). 

Excellent adhesion for a single Mg-MSS particle was observed in Figure 2f, where its 

external whisker-like structure promoted interfacial filler-polymer contact once 

embedded in the 6FDA-DAM polymer matrix. In addition, by EDX it was possible to 

analyze the Grignard treated sample obtaining an atomic percent of 6% for Mg (being 

the others oxygen and silicon: 72% and 22%, respectively). The calcined MSS, with 

non-surface modification, showed an atomic percent of about 75 % for oxygen and 25 

% for silicon. In both cases, the percent was calculated without accounting for the 

carbon, coming also from the 15 nm coating needed for EDX. By thermogravimetric 

analysis the weight loss of calcined MSSs (4.9 %) and Mg-MSSs (18.4 %) were 

obtained (see Figure S1 in the Supplementary Material). The difference among these 

values, 13.5 wt%, is related to the magnesium oxide layer created in the MSSs surface, 

being in a similar range as that obtained by Husain et al.43 by applying the Grignard 

treatment to zeolite SSZ-13. 

The second type of filler prepared from the ordered mesoporous silica MCM-41 

type structure, MSSs, was the hollow zeolite spheres (HZSs) (Figure 2g). This self-

bonded molecular sieve structure prepared by the layer-by-layer (LbL) procedure, 

followed by hydrothermal crystallization produced engineered particle surfaces based 

on silicalite-1.37 SEM and TEM analysis of more than 30 samples showed sphere 
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diameters of 3.1±0.6 µm for MSSs, which converted into HZSs of 4.3±0.7 µm during 

the hydrothermal synthesis. An 8 wt% filler loading showed good distribution of HZSs 

throughout the membrane (Figure 2h) and individual HZS particles checked by TEM 

(Figure 2i) show an interpenetrated zeolite-polymer composite with good interaction. 

The good interaction is promoted by: (i) the hydrophobic silicalite-1 surface, and (ii) 

small silicalite-1 surface crystals of about 200 nm in size. Similar features were noted 

for this filler embedded in PSF Udel® and PI Matrimid® MMMs.35 

The N2 adsorption-desorption isotherms of the MSSs and Mg-MSSs in Figure 3 

show type IV characteristic of mesoporous material, while the isotherms of HZSs show 

a combination of types I and IV. While MSSs show a bimodal pore structure with pores 

of 2.7 and 9 nm attributed to mesoporous and non-mesoporous MCM-41 phases, 

respectively (see Figure 3 inset), Mg-MSSs presented just a broad band from 2 to 10 nm 

indicating loss of porous narrow distribution, but not pore blocking. The specific 

adsorption isotherm for MSSs shows a BET area of 1023±9 m2/g, whereas Mg-MSSs 

gave a specific area of 696±2 m2/g. For the HZSs the bimodal pore size distribution is 

lost, with only a small broad distribution related to the nano-silicalite-1 with specific 

BET area and external surface of 390±2 m2/g and 108 ±10 m2/g, respectively. 

Low angle X-ray diffraction (LA-XRD) and X-ray diffraction (XRD) on the 

three fillers (Figure 4) show a broad peak in the 15-30º range for the MSSs and Mg-

MSSs, with a maximum around 23° corresponding to the amorphous band of silica. For 

the Mg-MSSs sample, a new peak appears at 34°, which could be related to the Mg 

hydroxides used in the modification of the MSSs by the Grignard method. In fact, Bae 

et al.38 did not found distinguishable peaks from Mg(OH)2 when applying the Grignard 

treatment to pure silica MFI particles except a broad peak at 38º. This can be due to the 

relatively low amount of Mg(OH)2 with low crystallinity because of small particle size. 



13 
 

 

The LA-XRD for MSSs and Mg-MSSs in Figure 5 show a strong peak at 2.4° 

and a weak peak at higher 2θ angles corresponded to the planes (100) and (110). These 

results suggest that the MSSs (Figure 4a) have hexagonal pores typical of MCM-4144 

with the first (100) peak at 2θ = 2.4° typical of d100 = 3.7 nm, based on Bragg's law. 

Moreover, the low angle Mg-MSSs results (Figure 4b) suggest the ordered MCM-41 

structure disappears during the Grignard treatment, leading to a disordered material, 

consistent with the previous N2 adsorption results. On the other hand the HZSs gave the 

characteristic zeolite silicalite-1 spectra. 

Figure 5 shows the diffractograms of the hybrid membranes prepared with 

MSSs, Mg-MSSs and HZSs. The spacing of the polymer chains for the pure 6FDA-

DAM membrane and the 8 wt% MSS/6FDA-DAM MMM were 5.6 and 5.5 Å, 

respectively. Previous studies also indicated a slight reduction in characteristic spacing 

due to addition of 16 wt% of ordered mesoporous silica particles.18 Nevertheless, Figure 

5 reveals a shift to higher 2·theta angles for 8 wt% Mg-MSS/6FDA-DAM (6.1 Å) and 8 

wt% HZS/6FDA-DAM (6.3 Å) MMMs, indicating that the whisker-like structure of 

Mg(OH)2 and the silicalite-1 crystals may favorably promote adhesion in a MMM.17 

First, because of enthalpic factors, from silanol groups on the silica/zeolite spheres to 

bridge the polymer chains through hydrogen bonding. Second, due to entropic factors 

favoring the interpenetration on the whiskered surface vs. contact on the featureless non 

whiskered surface. 

Gas permeation and sorption results 

Pure 6FDA-DAM membrane. Annealing temperature and plasticization pressure 
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The choice of the final drying/annealing temperature can stabilize a membrane 

against mild swelling-induced plasticization with some reduction in permeability by 

reducing excess free volume.45,46 Duthie et al.45 showed an increased CO2 pressure at 

the onset of plasticization from 1500-2200 kPa after annealing 6FDA-TMPDA at 250 

°C for 24 h, compared with standard drying (80 °C for 15 h and later 48 h under vacuum 

at 150 °C). In this work effects on permeation were studied using two annealing 

temperatures (180 ºC and 270 ºC) for pure 6FDA-DAM. Comparison to results by Kim 

et al.46 for 6FDA-DAM membranes treated at a temperature 15 ºC above the Tg and 

quickly cooling down is also included. Table 1 shows that annealing at lower 

temperatures provides higher O2, N2 and CO2 permeabilities with moderate losses in 

CO2/N2 and O2/N2 permselectivities. Comparing 180 °C vs. 270 ºC similar 

permeabilities were obtained with reductions of 3-10% in selectivity depending on the 

gas pairs, thus the lower annealing temperature was used for all 6FDA-DAM based 

membranes. 

Sorption measurements at 35 ºC for O2, N2, CH4 and CO2 in the bare 6FDA-

DAM polymer membrane are given in Figure 6a. Figure 6b presents the O2, N2, CO2 

and CH4 permeabilities of the pure 6FDA-DAM membrane annealed at 180 ºC  for feed 

pressures up to 3500 kPa (measured using the standard constant volume system at 35ºC 

with a vacuum downstream). Typical of most glassy polymers, the permeability 

decreases with increasing pressure due to saturation of excess unrelaxed volume in the 

glassy matrix for O2, N2 and CH4 without an upward inflection. On the other hand, 

after the initial drop in permeability for CO2 between 1000 and 2000 kPa, a minimum 

was reached at ~2000 kPa, similar to the reported by Damle et al.47 (50 ºC). To avoid 

plasticization issues at 35 ºC conditions far from plasticization were used. Specifically a 

feed pressure with 200 kPa and permeate at vacuum was used for the constant volume 
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system, while a feed pressure of 300 kPa with 100 kPa downstream was used for the 

Wicke-Kallenbach sweep gas method. 

Single and mixed-gas separation of MMMs based 6FDA-DAM 

A comparison of membrane performance of MMMs fabricated at the same filler 

loading (8 wt%) of MSSs, Mg-MSSs and HZSs are presented to illustrate properties of 

the three inorganic fillers (see Figure 7 and Table S1 in the Supplementary Material). 

Increases in permeability and selectivity were obtained for all the MMMs compared to 

the pure polymer. The membranes based on the Grignard modified MSSs worked best 

with H2/CH4, CO2/N2, CO2/CH4 and O2/N2 separation selectivities of 21.8 (794 Barrer 

of H2), 24.4 (1214 Barrer of CO2), 31.5 (1245 Barrer of CO2) and 4.3 (178 Barrer of 

O2), respectively. This was probably due to a better contact between the polymer chain 

coils and the rougher whiskered MSS surfaces. In fact, Figure 7 indicates that CO2 

containing mixtures showed the largest selectivity increases, possibly reflecting 

favorable CO2 interactions with the Mg(OH)2 surface whisker-like structures. The 

CO2/N2 binary mixture selectivity increased from 18.8 to 24.4, and that for CO2/CH4 

increased from 25.8 to 31.5 for MSSs and Mg-MSSs, respectively. Similarly, Shu et 

al.34 showed higher CO2/CH4 selectivities, compared with non-modified zeolite 4A-

based MMMs when using the same Grignard medication procedure, which exceeded the 

upper bound. These authors estimated whisker lengths of about 50 nm, similar to the 

hydrodynamic radii (32 nm) of the 6FDA-DAM coil diameter. They argued that 

similarity of the polymeric chain dimensions and whisker dimensions may promote 

polymer coil accommodation in the environment somewhat close to its own 

configuration, which provides improved adsorption. 
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The samples based on MSSs showed greater permeability increases vs. those 

based on HZSs. On the other hand, the HZSs-based samples provided higher 

selectivities in comparison with MSSs (see also Table S1). The same behavior was 

achieved when embedding these two fillers at 8 wt% loading in PSF and PI Matrimid® 

matrices.35 The highest selectivity for H2/CH4 was 180 with a PH2 of 38.4 Barrer for 

HZS/PI MMM, while PH2 of 46.9 Barrer together with a H2/CH4 selectivity of 164 was 

found for MSS/PI MMM. PCO2 of 12.6 Barrer (CO2/N2 selectivity 36.0) for MSS/PSF 

MMM and CO2/N2 selectivity of 41.7 (PCO2 of 7.2 Barrer) for HZS/PSF MMM were 

also found. Since both HZS and MSS particles are of approximately similar size, this 

improvement in selectivity for HZSs was attributed to the good bonding established 

between the external roughnesses of the hollow spheres composed of hundreds of 

silicalite-1 intergrown crystals.35 Regarding MSSs, penetration of polymer segments 

into the mesoporosity of the filler may create a selective corona. Such an effect could 

produce higher selectivities for the hybrid system than expected for Knudsen diffusion 

in empty pores larger than the kinetic diameter of the gases of interest. Indeed, 

interactions between the dense polymer matrix and the sieves in the hybrid membrane 

may provide selective channels for gas separation processes.14,16 Following such 

reasoning, Moaddeb et al.48 reported that 6FDA-IPDA thin films formed on ceramic 

substrates whose pores had been impregnated with silica particles exhibited improved 

O2/N2 separation properties (selectivity of 9.3 vs. 5.3 of the pure polymer). This 

behavior was also found for other polymers such as 6FDA-MDA, 6FDA-6FpDA, 

6FDA-6FmDA, PC and TMHFPSF, providing better gas transport properties on the 

polymer films in the proximity of the silica particles.48 In such cases, increases in O2/N2 

selectivity and O2 permeability were achieved beyond the upper bound limit for pure 

polymers.2 The higher selectivities were attributed to increased rigidity of polymer 



17 
 

matrix, with increases in the activation energy of diffusion due to adsorption of polymer 

to the surface of silica. Moreover, an increase in permeability resulted in disruption of 

polymer chain packing in the presence of the silica particles. Related reasoning was 

suggested for films containing ordered mesoporous silica and PSF to explain selective 

diffusivity, probably derived from hydrogen bonding with the OH-rich surface of the 

silica.14,17 

Based on the above success, MMMs with 16 wt% were also prepared. Figure 8 

shows the permeabilities and selectivities of the pure 6FDA-DAM membranes and 

MMMs containing 8 and 16 wt% of MSSs in 6FDA-DAM. The constant volume 

method was used for CO2, N2, CH4, and O2 single gases, and the Wicke-Kallenbach 

method was used for H2, CO2, N2, CH4 and O2 single gases and 50/50 vol% H2/CH4, 

CO2/N2, CO2/CH4 and O2/N2 binary mixtures. Typically a minimum of 2-3 different 

membranes were tested for each separation, and the average values (see Table S2 in the 

Supplementary material) gave standard deviation of the gas permeation measurements 

less than 5-10%. In general, the increased loading from 8 to 16 wt% provided a large 

increase in permeability (producing in some cases even a rise of two-fold) together with 

a significant increase in selectivity, as can be seen in detail in Table S2. 

Pure gas transport often overestimate separation performance compared to the 

actual mixture cases due to various non-ideal sorption and transport phenomena with 

highly sorbing feeds.49 In our case, however, measurements of single gas pairs and 

binary mixtures with the same Wicke-Kallenbach method showed minor differences in 

permeability and selectivity, and mixed gas permeabilities even gave more favorable 

selectivities in feeds containing carbon dioxide. Some successful CO2 competitive 

sorption may be responsible for this effect. For 16 wt% MSS/6FDA-DAM MMM the 

CO2/N2 mixed gas selectivity rose from 20.0 for pure gas feed to 23.7 in the 50 % 
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binary mixture. In the other separation containing carbon dioxide, CO2/CH4, selectivity 

also increased from 25.4 to 29.7 for the same membrane loading. Nevertheless, H2/CH4 

selectivities are very similar for single and mixed gases, from 19.8 to 21.7, as well as 

for O2/N2, which has values from 4.1 to 4.3. 

CONCLUSIONS 

Efficient MMMs based on MSSs and the 6FDA-DAM polymer were observed 

for H2, O2, N2, CO2, and CH4 single gas permeation. Good consistency was found 

using the constant volume or the Wicke-Kallenbach sweep gas approach. Permeabilities 

and selectivities from 50/50 vol% feed mixture measured for the H2/CH4, CO2/N2, 

CO2/CH4 and O2/N2 binary systems showed performance improvements being more 

relevant in the case of CO2 containing mixtures when compared with single gas 

experiments. Transport analysis showed post-casting annealing at 180 ºC produced 

good quality films. A study of permeability as a function of pressure indicated a CO2 

plasticization pressure at 2000 kPa for the pure polymer at 35 ºC. 

Enhancement of the gas separation performance over the pure polymer was 

found with all filler membranes, surpassing the Robeson´s upper bound for a fixed 

loading of 8wt%. Mg-MSS based membranes revealed the best performance linked to 

an improved interfacial filler-polymer contact with the 6FDA-DAM polymer due to the 

Mg(OH)2 nanostructure modification, also evidenced by SEM-EDX, TGA, XRD and 

N2 adsorption. Excellent adhesion was also found for HZS MMMs by TEM due to its 

continuous shell of silicalite-1 crystals. Evidence for altered segmental spacing (by 

XRD) for the 6FDA-DAM polymer chains suggested the possibility of hindered 

segmental motion in the region near the particle surface the MSSs. In addition, rising 

the MSSs loading from 8 to 16 wt% nearly doubled apparent permeability with a 
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considerable rise in selectivity. Still higher loadings of Mg-MSSs and HZSs in the 

6FDA-DAM polymer matrix may be expected. In general MMMs prepared from 

6FDA-DAM offered excellent permeabilities while those made of polymers vastly used 

such as polysulfone or polyimide presented slightly higher selectivities, so MMMs offer 

opportunities to tailor gas membrane properties beyond those of pure polymers. 
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Figure 1. Chemical structure of the 6FDA-DAM polyimide. 
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Figure 2. SEM images based of: a-c) MSSs [a) individual particle, b) 8 wt% 

MSS/6FDA:DAM MMM, and c) TEM image of an embedded particle], d-f) Mg-MSSs 

[d) individual particle, e) 8 wt% Mg-MSS/6FDA-DAM MMM, and f) inset of e)], and 

g-i) HZSs [g) individual particle, h) 8 wt% HZS/6FDA-DAM MMM, and i) TEM 

image of an embedded particle]. 
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Figure 3. Adsorption (dotted lines) and desorption (solid lines) N2 isotherm branches 

for: a) MSSs, b) Mg-MSSs and c) HZSs. In the inset pore BJH size distribution of the 

three fillers is plotted. 
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Figure 4. X-ray diffraction patterns of the powder materials: a) MSSs, b) Mg-MSSs, 

and c) HZSs. 
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Figure 5. X-ray diffraction patterns of 6FDA-DAM membrane and MMMs based on 

6FDA-DAM with 8 wt% loading of MSSs, Mg-MSSs and HZSs. 
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Figure 6. Sorbed gas concentration (a) and permeability (b) values as a function of 

absolute pressure for pure 6FDA-DAM membranes annealed at 180 ºC and tested at 

35ºC for O2, N2, CO2 and CH4 gases. Dashed lines are to guide the eyes. 
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Figure 7. Mixed gas permeabilities and selectivities of pure 6FDA-DAM and 8 wt% 

filler (MSS, Mg-MSS or HZS)/6FDA-DAM MMMs tested by Wicke-Kallenbach 

method for the binary mixtures (50/50 vol%): a) H2/CH4, b) O2/N2, c) CO2/N2, and d) 

CO2/CH4. Measurements done at 35 ºC and ΔP of 200 kPa. 
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Figure 8. Permeabilities and selectivities for a-b) pure 6FDA-DAM membrane, c-d) 8 

wt% MSS/6FDA-DAM MMMs and e-f) 16 wt% MSS/6FDA-DAM MMMs. Constant 

volume method (CV) used for CO2, N2, CH4 and O2 single gases. The Wicke-

Kallenbach method was used for H2, CO2, N2, CH4 and O2 single gases (WKsg) and 

for 50/50 vol% H2/CH4, CO2/N2, CO2/CH4 and O2/N2 mixed gases (WKmg). 

Measurements done at 35 ºC and ΔP of 200 kPa. 
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            Annealing T 

Gas 
180 ºC a 270 ºC a T (ºC) b 

P N2 (Barrer) 39.1 20.2 17 

P O2 (Barrer) 131 74.3 55 

P CO2 (Barrer) 653 348 - 

α O2\N2 3.3 3.6 3.3 

α CO2\N2 16.7 17.2 - 
a This work. 
b Kim et al.46 T (ºC) = Tg+15; (Tg = 372 ºC). 

 

Table 1. O2, N2, and CO2 individual permeability values and O2/N2 and CO2/N2 ideal 

selectivities corresponding to plain 6FDA-DAM membrane. 
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Figure S1. Thermogravimetrical analyses of MSSs (with template and calcined), Mg-

MSSs and HZSs. 
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Table S1. Mixed gas permeabilities and selectivities of pure 6FDA-DAM and 8 wt% filler (MSS, Mg-MSS or HZS)/6FDA-DAM MMMs tested 

by Wicke-Kallenbach method (gas chromatography with sweep gas) for the binary mixtures (50/50 vol%) H2/CH4, CO2/N2, CO2/CH4 and 

O2/N2. Tests at 35 ºC and ΔP of 200 kPa. 

Membranes 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

H2 CH4 H2/CH4 CO2 N2 CO2/N2 CO2 CH4 CO2/CH4 O2 N2 O2/N2 

6FDA:DAM 480 29.1 16.5 604 36.5 16.5 681 31.9 21.4 126 37.7 3.3 

8 wt% MSS/6FDA-DAM  686 34.2 20.0 860 45.6 18.8 949 36.7 25.8 188 49.1 3.8 

8 wt% Mg-MSS/6FDA-DAM 794 36.4 21.8 1214 49.8 24.4 1245 39.5 31.5 178 41.1 4.3 

8 wt% HZS/6FDA-DAM 541 21.3 25.4 700 25.8 27.1 712 22.9 31.1 136 30.6 4.4 
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Table S2. Results for pure 6FDA-DAM and MSS/6FDA-DAM MMMs (8 and 16 wt% loading). Tests at 35 ºC and ΔP of 200 kPa. 

a) Single gas permeabilities and permselectivities for CO2, N2, CH4 and O2 tested by constant volume method. 

Membranes 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

CO2 N2 CO2/N2 CO2 CH4 CO2/CH4 O2 N2 O2/N2 

6FDA:DAM 653 39.1 16.7 653 32.4 20.1 131 39.1 3.3 

8 wt% MSS/6FDA-DAM  843 48.6 17.3 843 40.5 20.8 165 48.6 3.4 

16 wt% MSS/6FDA-DAM 1080 56.0 19.3 1080 50.2 21.5 216 56.0 3.9 

 

b) Single gas permeabilities and permselectivities for H2, CO2, N2, CH4 and O2 tested by Wicke-Kallenbach method. 

Membranes 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

H2 CH4 H2/CH4 CO2 N2 CO2/N2 CO2 CH4 CO2/CH4 O2 N2 O2/N2 

6FDA:DAM 473 30.1 15.7 595 38.5 15.5 595 30.1 19.8 127 38.5 3.3 

8 wt% MSS/6FDA-DAM  676 34.1 19.8 835 49.9 16.7 8356 34.1 24.5 189 49.9 3.8 
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16 wt% MSS/6FDA-DAM 970 48.9 19.8 1244 62.3 20.0 1244 48.9 25.4 256 62.3 4.1 

 

c) Mixed gas permeabilities and selectivities for the binary mixtures (50/50 vol%) H2/CH4, CO2/N2, CO2/CH4 and O2/N2 tested by Wicke-

Kallenbach method. 

Membranes 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

Permeability 

[Barrer] 
Selectivity 

H2 CH4 H2/CH4 CO2 N2 CO2/ N2 CO2 CH4 CO2/ CH4 O2 N2 O2/N2 

6FDA:DAM 480 29.1 16.5 604 36.5 16.5 681 31.9 21.4 126 37.7 3.3 

8 wt% MSS/6FDA-DAM  686 34.2 20.0 860 45.6 18.8 949 36.7 25.8 188 49.1 3.8 

16 wt% MSS/6FDA-DAM 918 42.4 21.7 1386 58.4 23.7 1466 49.3 29.7 257 60.5 4.3 
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