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Optimal control of high-harmonic generation by intense few-cycle pulses
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At the core of attosecond science lies the ability to generate laser pulses of subfemtosecond duration. In
tabletop devices the process relies on high-harmonic generation, where a major challenge is to obtain high
yields and high cutoff energies required for the generation of attosecond pulses. We develop a computational
method that can simultaneously resolve these issues by optimizing the driving pulses using quantum optimal
control theory. Our target functional, an integral over the harmonic yield over a desired energy range, leads
to a remarkable cutoff extension and yield enhancement for a one-dimensional model H atom. The physical
enhancement process is shown to be twofold: the cutoff extension is of classical origin, whereas the yield
enhancement arises from increased tunneling probability. The scheme is directly applicable to more realistic
models and, within straightforward refinements, also to experimental verification.
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The revolution of attosecond science, i.e., monitoring and
controlling the dynamics of electrons in their native time scale,
relies on the generation of laser pulses with duration of a
few dozen attoseconds [1]. Such pulses can be generated by
using large-scale free-electron laser facilities [2] or in tabletop
devices using high-harmonic generation (HHG), an ultrafast
frequency conversion process [1]. Using tabletop devices,
however, comes with a price: the generated attosecond pulses
are often too long and they suffer from low intensity [1].

A high-harmonic spectrum has an energy range of nearly
constant intensity (plateau), which ends in a distinctive
cutoff [3]. Attosecond pulses are formed from the harmonics
on the plateau [1]. Hence, the low amplitude of the pulses is
due to low harmonic yield and the pulse duration is determined
by the cutoff energy (the higher the energy, the shorter the
pulse) [1]. The objectives of increasing the yield and reducing
the pulse duration can be addressed by temporal shaping of the
driving pulse—already experimentally realizable either with
multicolor fields or with more sophisticated techniques [4].
Yet a crucial question remains unanswered: how to find the
optimal shape of the driving pulse to enhance HHG.

Numerous previous studies have tackled the issues of cutoff
and yield; for a recent review see, e.g., Refs. [5,6]. The main
scheme behind the cutoff extension has been using two-color
laser fields [7,8] or chirped pulses [9–11], but also steepening
of the carrier wave [12] or even using a sawtooth pulse
should extend the cutoff [13]. In addition, combined temporal
and spatial synthesis of the driving field has been shown to
extend the cutoff [14]. A previous study based on quantum
optimal control theory (QOCT), for example, demonstrated
some cutoff extension, albeit with a low yield, by maximizing
the ground-state occupation at the end of the pulse [15].
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Yield increase of the plateau has been accomplished, e.g.,
by two-color fields [16–21] and also by using a mixture of two
target gases [22]. In a separate work [23], some of the authors
of the present work addressed the selective enhancement of
harmonic peaks; selective harmonic enhancement has been
studied using QOCT also in Ref. [24], and experimentally, e.g.,
in Ref. [25]. Recently also the attosecond pulse generation has
been optimized using genetic algorithms [26].

In this paper, we provide an efficient computational method
to simultaneously enhance both the yield and the cutoff energy
of the harmonic plateau by optimizing the driving pulses with
QOCT [27–29]. The optimal pulses are found by maximizing
the target functional, an integral over the harmonic yield over
a desired energy range. Surprisingly, the enhancements are
achieved with fixed-fluence pulses; i.e., the search is performed
over the set of pulses with equal duration and fixed fluence
(integrated intensity). We examine in detail the physical origin
behind the enhancement, which is found to be of classical
nature to a significant extent.

To demonstrate our method, we use one-dimensional hydro-
gen with the soft-Coulomb potential [30] V(x) = −1/

√
x2+1

as our model system and the laser-electron interaction is
calculated in the dipole approximation. The harmonic spectra
are calculated from the Fourier transform of the dipole accel-
eration d̈(ω) as S(ω) = |d̈(ω)|2/ω2 as suggested in Ref. [31].
Unless otherwise specified, Hartree atomic units (a.u.) are used
throughout the paper, i.e., � = qe = me = 1/(4πε0) = 1. The
time-evolution operator is calculated using the exponential
midpoint rule [32] with the Lanczos algorithm [33] for the
operator exponential; during time propagation we also use
imaginary absorbing boundaries. We use box sizes of 4000–
6000, grid spacings of 0.2–0.3, and time steps of 0.03–0.05;
the parameters have been checked to ensure full convergence.
Most of the calculations—including QOCT discussed
below—are done in length gauge using the OCTOPUS code [34].

In QOCT one solves for a laser pulse ε(t) that maximizes
a target functional J1[ε]. To optimize the harmonic spectrum,
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we have implemented a target of the form

J1[ε] =
∫ ωb

ωa

|d̈[ε](ω)|2 dω, (1)

where [ωa,ωb] is the frequency range for the desired en-
hancement of the HHG spectrum. The field ε is represented
by a set of parameters, and maximization of the functional
defined in Eq. (1) amounts to a function maximization for
those parameters. We have used both a gradient-free algorithm
(NEWUOA [35]) and the gradient-based Broyden-Fletcher-
Goldfarb-Shannon (BFGS) algorithm [36] (the expression for
the gradient is supplied by the QOCT). As we will see, both
algorithms provide similar enhancements in the harmonic
spectrum. The optimized pulses are constrained by (i) a finite
number of frequencies with the maximum frequency ωmax,
(ii) a fixed pulse length, and (iii) a fixed fluence which is set
to that of a single-frequency reference pulse, whose shape is
shown in the figures below. For each set of pulse constraints,
we begin the optimization from several (5–10) random initial
pulses and report here the best result; it is important to note
that QOCT always converges into a local maximum in the
parameter space.

First we apply the NEWUOA algorithm to optimize a laser
pulse for HHG in the target interval ω ∈ [1.3,4] a.u. The pulse
length is fixed to T = 1104 (26.7 fs) and the carrier frequency
of the reference pulse is ω = 0.0569 a.u. (wavelength λ ≈
800 nm corresponding to the typical range of Ti:sapphire
lasers), which we choose to keep as the maximum allowed
frequency of the optimized pulse to prevent the formation
of complicated pulses with high-frequency components. The
peak intensity of the reference pulse is 6 × 1013 W/cm2, and
the fluence is kept constant in the optimization. The reference
and optimized pulses are shown in Fig. 1(a) as red (light
gray) and blue (dark gray) lines, respectively. The optimized
harmonic spectrum in Fig. 1(b) completely fulfills the desired
target, and in addition to the cutoff extension, the yield is also
increased by several orders of magnitude.

Next we comment on the two most obvious characteristics
of the optimized pulse in Fig. 1(a). First, it is important
to note that the high-intensity half cycle in the beginning
is not responsible for the significant increase in the HHG
yield and cutoff. If this part were later in the pulse, the
cutoff would be at ω ≈ 2.5 a.u. A similar effect is seen
if, e.g., the last low-intensity peak is missing. Second, as
shown in the inset of Fig. 1(a), the optimized pulse contains
lower-frequency components. Indeed, the standard theoretical
HHG considerations predict that lower frequencies should lead
to higher cutoff energy due to higher ponderomotive energy.
However, merely using low-frequency single-color pulses
produces very low yields. It is the shaped multifrequency
pulses that produce both the large cutoff and high intensities.
Furthermore, in the case of HHG resulting from pulses that
have a single carrier frequency, the harmonic peaks are equally
separated by twice the carrier frequency. In the case of
optimized pulses, however, we find no connection between
the frequency components in the pulse and the HHG peak
separations. This is expected in view of the complexity of the
optimized pulse in the time-frequency plane, even though we
applied rather simple pulse constraints as explained above.
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FIG. 1. (Color online) Optimization results for the HHG spec-
trum with the target range ω ∈ [1.3,4] a.u. The pulse length is
T = 1104 a.u. and the frequency of the reference pulse is ω = 0.0569
a.u., equal to the maximum frequency in the optimization. The fluence
is kept constant. (a) Optimized [red (light gray)] and reference [blue
(dark gray)] pulses and their frequencies (inset). (b) High-harmonic
spectra for optimized [red (light gray)] and reference [blue (dark
gray)] pulses. The target range is shown with vertical dashed lines.
(c) Quantum-mechanical time-dependent harmonic spectrum in log
scale [color (gray scale)] and return energies calculated from the
semiclassical model (solid line). Spurious branches from a uniform
tunneling rate are shown with dashed lines (see text).

The emission process is further demonstrated in Fig. 1(c),
where the color (gray scale) image shows the time-frequency
map of the quantum dipole acceleration, d̈(t,ω). The time-
frequency map is calculated as a discrete short-time Fourier
transform (STFT) [37] using the Blackman window func-
tion [38]. In essence, the time axis is split into multiple
overlapping windows, and the dipole acceleration is Fourier
transformed in each window. Finally, we plot the quantity
S(t,ω) = |d̈(t,ω)|2/ω2 in log scale in analog with the harmonic
yield; here t corresponds to the middle of each time window of
the STFTs. S(t,ω) essentially describes HHG in time. Bicubic
interpolation is used for slight visual improvements. The cutoff
extension up to ω � 2.5 a.u. occurs throughout the pulse as it
is the effect of the high-intensity peak. The full extension up to
ω = 4 a.u., however, occurs only at the end of the pulse. This
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clarifies the above-mentioned fact that the complete structure
of the optimized pulse is important.

Next we examine the physical origin of the cutoff extension
in more detail by employing semiclassical simulations. An
ensemble of classical trajectories is propagated with initial
times t0 distributed according to either a uniform tunnel-
ing rate w(t0) ∼ 1 or exponential tunneling rate w(t0) ∼
exp{−[2(2Ip)3/2]/[3|ε(t0)|]} [39–41], where Ip = 0.669 a.u.
is the ionization potential of our system. At the tunnel exit
obtained from the classical turning point equation V (x) +
Fx(t)x = −Ip, the velocity is set to zero and the electron is
propagated classically. Upon return of the tunneled electron to
the origin, a photon is emitted with frequency corresponding
to the kinetic energy of the electron; also later returns are
recorded and taken into account. Note that in contrast to
the three-step (simple man) model [42], where the electron
starts from the origin and moves in the laser field only, the
electron in our model starts at the tunnel exit and moves in the
combined force field of the laser and the atomic potential. It
should be noted that in contrast to our semiclassical simulation
taking the atomic potential into account, the three-step model
underestimates the cutoff energy. For the parameters of Fig. 2
the cutoff calculated from the three-step model corresponds
to 3.2 a.u. (compare to 4.2 a.u. predicted by semiclassical
simulations with binding potential shown in Fig. 2).

The return energy maps of the semiclassical model as a
function of the return time (solid curves) are compared with
the time-dependent harmonic spectrum in Fig. 1(c). Due to
the pulse shape, the electron can return only once to the
origin. With uniform tunneling distribution, the semiclassical
model exhibits a few spurious branches (dashed black curves),
which are suppressed when using the exponential tunneling
rate. The remarkable agreement between the semiclassical
and quantum descriptions highlights the classical origin of
the cutoff extension.

In Fig. 2(a) we show a BFGS-optimized pulse [red (light
gray)] with the same reference pulse [blue (dark gray)]
as in Fig. 1. The target range is now ω ∈ [1,5] a.u., i.e.,
considerably larger than in the previous case. Despite a slightly
more complicated temporal shape of the optimized pulse, the
resulting HHG spectrum [Fig. 2(b)] is similar to the first case.
Now, however, the optimized pulse allows multiple returns of
the electron to the origin as shown in Fig. 2(c) when using an
exponential tunneling rate. Not all of the quantum-mechanical
harmonic emissions can be found in the semiclassical model
with exponential tunneling distribution. They are, however,
allowed by the semiclassical model and visible when using
a uniform tunneling rate. Therefore, the semiclassical picture
does agree with the quantum description, but the exponential
tunneling distribution does not produce all tunneling events.

Next we double the pulse length while keeping the peak
intensity of the reference pulse, the maximum frequency, and
the target HHG range the same (note that the fluence is also
doubled). The BFGS-optimized pulse of Fig. 3(a) now leads to
complete extension of the cutoff all the way up to ω = 5 a.u., as
demonstrated in Fig. 3(b). This is likely due to higher fluence
and more freedom in the shaping of the longer pulse.

The effect of late returns [see, e.g., Fig. 2(c)] can be
analyzed in the semiclassical picture. The harmonic spectrum
can be calculated as a histogram of the electron energies
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FIG. 2. (Color online) Same as Fig. 1 but for an extended
target range (up to ω = 5 a.u.) and for the gradient-based BFGS
optimization algorithm. In (c), energies of an electron calculated
from the semiclassical model upon its first, second, third, and fourth
return to the origin are shown with black, blue (medium gray), white,
and cyan (light gray) curves, respectively.
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FIG. 3. (Color online) Same as Figs. 2(a) and 2(b) but for a longer
pulse with T = 2209 a.u. (53.5 fs).
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upon return to the origin with weights from the exponential
tunneling rate (see above). The resulting spectra demonstrate
varying contributions of late returns between different pulses.
Even in the case of pulse of Fig. 2(a), where late returns are
evident, their contributions to the spectra in the semiclassical
models are minimal. In contrast, for the optimal pulse of Fig. 3,
also the second return plays an important role in enhanced
HHG.

The yield increase can be attributed to the increased tunnel-
ing probability compared to the reference pulses. Indeed, the
yield increase of comparable, albeit slightly larger, magnitude
can be found when using single-frequency pulses with the
same maximum amplitude as in the optimized pulses, but
the extension of the cutoff does not reach the optimized
results. Sensitivity of HHG to the pulse amplitude has been
previously reported in, e.g., Refs. [18,43]. The sensitivity is
also obvious from the analytic factorization of the HHG rates in
Ref. [44]. We emphasize that the yield increase of the presented
optimized HHG arises from an increased tunneling rate, not
from resonances as, e.g., in Ref. [16]: in our case a minimum
of seven-photon absorption would be required, which is highly
unlikely.

Finally, we verify which stationary states are involved in
the enhanced HHG process. For this purpose, we solve the
time-dependent Schrödinger equation in momentum space
and velocity gauge by expanding the state in terms of the
eigenstates of the field-free Hamiltonian [45]. Note that the
occupations are gauge dependent. We find that approximately
four lowest bound states are essential for the enhanced HHG,
but ten are required for (nearly) full convergence of the spec-
trum; the numbers are similar for reference pulses. However,
in the optimized HHG much of the electron density reaches
high-energy continuum states, whereas for the reference pulse
the electron occupation is mostly in the bound states and in
the low-energy continuum (see Fig. 4).

To summarize, we have developed an optimal-control
scheme to simultaneously enhance both the yield and the
cutoff energy of HHG. Our target functional, an integral
over the harmonic yield in a desired energy range, leads to
a significant increase in the HHG yield and cutoff energy
within two different optimization algorithms. Furthermore, we
have shown through semiclassical studies that the extension
of the cutoff is of classical origin. Instead, the increase
in the harmonic yield is found to be due to increased
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FIG. 4. (Color online) Occupations (log scale) of stationary
states in velocity gauge for the reference (gray bulb-shaped structures
at the bottom) and optimized (colored structures elsewhere) pulse of
Fig. 1.

tunneling probability arising from increased peak amplitudes,
while the fluence is kept constant in the optimization. We note
that in higher-dimensional models, the harmonic yield will be
affected by transversal spreading of the electron wave packet.
However, our preliminary results (not shown here) demon-
strate even the one-dimensional-optimized pulses provide
qualitatively similar cutoff extension and no significant loss of
yield also when applied to a two-dimensional model; we expect
a similar tendency also for three dimensions. In addition, by
doing the optimization within the same dimensionality, there
can be additional degrees of freedom in the pulse regarding,
e.g., polarization, number of frequency components, and pulse
sources, which will help counter the issue of wave packet
spreading.

We leave the detailed analysis of realistic pulse constraints
to three-dimensional and many-electron models, where such
analysis will be more relevant. With such refinements, we
expect our method to be usable also in experimental applica-
tions, which can have direct implications in the development of
efficient, flexible, and tunable light-emitting tabletop devices.
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