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Abstract 

This paper presents a new kinematic model, a parameter identification procedure and a sensitivity analysis 

of a laser tracker having the beam source in the rotating head. This model obtains the kinematic parameters 

by the coordinate transformation between successive reference systems following the Denavit-Hartenberg 

method. One of the disadvantages of laser tracker systems is that the end-user cannot know when the laser 

tracker is working in a suitable way or when it needs an error correction. The ASME B89.4.19 Standard 

provides some ranging tests to evaluate the laser tracker performance but these tests take a lot of time and 

require specialized equipment. Another problem is that the end-user cannot apply the manufacturer’s model 

because he cannot measure physical errors. In this paper, first the laser tracker kinematic model has been 

developed and validated with a generator of synthetic measurements using different meshes with synthetic 

reflector coordinates and known error parameters. Second, the laser tracker has been calibrated with 

experimental data using the measurements obtained by a coordinate measuring machine as nominal values 

for different strategies, increasing considerably the laser tracker accuracy. Finally, a sensitivity analysis of 

the length measurement system tests is presented to recommend the more suitable positions to perform the 

calibration procedure. 

Keywords: Laser tracker, modelling, kinematic parameter identification, synthetic generator, sensitivity 

analysis 

1. Introduction 

There has been a rapid development in recent years of long-range dimensional 

metrology systems for the verification of large-scale pieces, such as those in the 

aeronautic, spatial or naval sectors. The interest in laser trackers (LTs) has been 

increasing because of their advantages in terms of accuracy, portability, flexibility (wide 

range of angles and distances in measurement), high speed in data acquisition, reliability 

[1, 2], automatic target tracking and high sampling rate [3]. Applications of LTs are very 

wide. For example, in [4], authors calibrate a robot using a LT to acquire measurements, 

increasing considerably the robot accuracy, and in [5], volumetric verification of machine 
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tools is performed using LTs. In [6], the accuracy of an arm based on parallel 

mechanisms is evaluated by means of a laser tracking coordinate measuring system. 

Other studies show the use of LTs to calibrate systems such as the calibration of a 

Stewart platform [7] or the calibration of an articulated arm coordinate measuring 

machine [8]. A LT is used in the measuring and the adjusting of the workbench for SAR 

antenna in [9]. An optical surface in a telescope is measured in [10], obtaining high 

accuracy. LT technology can also be used for monitoring structure movement [11] and in 

analysis of deformations of industrial elements [12]. In [13], a LT is used to calibrate a 

coordinate measuring machine (CMM). The method is validated using a ball plate 

measurement.  

Although the use of this technology is increasing due to its important advantages, the 

mechanical assembly generates misalignments, offsets, eccentricities and non-linearities, 

which cause errors in the measured coordinates. LT manufactures have developed 

software to correct this type of errors. One of the problems that appears while measuring 

with a LT is that some of these errors, such as those related to angular scale errors, are 

considered as constants and the end-user cannot update them. LT head presents radial/tilt 

motion as the head spins about the vertical axis, resulting in errors in the measured range 

[14]. One of the disadvantages of these tracking measurement systems is that the end-user 

cannot know when the LT is performing a measurement properly or when it needs a new 

calibration. Moreover, there is no a standard calibration procedure. 

The ASME B89.4.19 Standard provides some ranging tests, length measurement 

system tests and two-face system tests that can be performed to analyse the performance 

of the LT. In [15], the authors studied the relationship between geometric misalignments 

of these systems and performance evaluation tests recommended in the B89.4.19 standard 

[16], and proposed some new gauge object placement scenarios to improve sensitivity for 

length measurement system tests. 

However, these tests do not give information about the individual error sources, and 

only provide information related to the suitable or unsuitable LT performance with 

respect to these standards. Moreover, these tests take a lot of time and require very 

specialized equipment. To know the individual error sources, a calibration procedure 

should be performed. 

The kinematic model establishes mathematical relations and obtains non-linear 

equations that relate the joint variables with the position and orientation of the end-

effector [17]. One of the most widely used kinematic methods for modelling a 

mechanism is the well-known Denavit-Hartenberg (D-H) method [18], which uses four 

parameters to model the coordinate transformation between successive reference systems 

[19-21]. Some studies [22, 23] present methods to obtain a complete, equivalence and 

proportional model to solve some limitations of this method that appear in those 

mechanisms with two consecutive parallel joint axes. For each revolute joint, four 

parameters must be considered, two linear and two rotary, applied about the non-colinear 

axes before and perpendicular to the translational joint axes [24]. 
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The calibration procedure allows us to identify the kinematic parameters in order to 

improve the model accuracy [25], thus obtaining correction models to establish 

corrections in the measurement results and to quantify the effects of the influence of the 

variables in the final measurement.  

The objective function to minimize in the identification procedure can be formulated 

in terms of a non-linear least-squares problem and it is usually defined as the quadratic 

difference of the error obtained between the measured value and the value computed for 

the kinematic model. The increment value established for parameters will depend on the 

optimization method chosen and must be defined for each iteration [26]. Numerical 

optimization techniques are usually used to minimize the error. The Levenberg-Marquart 

(L-M) [27] method presents lower computational cost, providing a solution closer to the 

optimum solution for the set of parameters considered, thus is one of the most widely 

used techniques to solve the numerical optimization algorithm.  

There are few studies to calibrate a LT. In [28], the authors calibrated the azimuth 

angle encoder by using a rotary table torque motor to turn the platform with the LT, 

remaining the LT locked on to the target mirror. The LTs body moves with the platform 

while the LT head remains stationary. Thus, a new horizontal angle reading is compared 

to the rotary table encoder reading. Self-calibration methods have been used for laser 

tracking systems. In [29-31], this method is used to calibrate a LT by restricting 

retroreflector motion to an arbitrarily surface of constraints plane. 

Calibration based on networks measurements consists of determining the kinematic 

model parameters by measuring a set of fix target locations from multiple locations of the 

LT. The model can be used to correct the error of the raw LT data. One of the advantages 

of a calibration based on network measurements is that no specialist equipment is needed. 

Besides, the time required to calibrate the LT decreases considerably in comparison with 

the time required to carry out the performance tests recommended by the ASME 

B89.4.19 Standard. 

The aim of this work is, first, to develop a new kinematic model that allows us to 

perform the calibration procedure in an easy and fast way without needing specialist 

equipment, and second, to present a sensitivity analysis of the length measurement 

system tests to recommend the more suitable positions to perform the calibration 

procedure based on network measurements. 

2. Laser Tracker Principle 

A LT is a large-scale measuring instrument. This system measures relative distances, 

by means of a laser interferometer, and azimuth and elevation angles of a beam-steering 

mirror using optical encoders. The interferometer measurements are obtained relative to 

the starting point. Moreover, this beam must track the positions of a retro-reflector. A 

beam splitter mounted on a high precision universal joint deflects the beam and hits the 

retro-reflector. The LT beam hits the center point of the retro-reflector and is reflected 
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parallel by means of three perpendicularly oriented plane mirrors of the retro-reflector. 

When there is no relative movement between the LT head and the retro-reflector, there is 

no parallel displacement between the emitted and the reflected beam. However, when the 

retro-reflector starts moving, there is a displacement of the reflected laser beam, since, in 

this case, the laser beam does not hit the center point of the retro-reflector. Then the LT 

moves to face the retro-reflector. 

The LT measures the position of the target in Spherical coordinates. The 

interferometer measures the distance, d, and the horizontal and vertical encoders provide 

the azimuth and elevation angles, θ and , respectively, as shown in Figure 1. 

 

 

Fig.1. LT kinematics. 

 

There are different mechanical constructions in the manufacturing of a LT. We can 

divide them in two main groups: LT having the laser source in the rotating head and LT 

having a beam steering mirror with source mounted on the standing axis. A third group of 

laser systems having a rotating prism mirror that steers the beam to the target can be 

considered. 

In this work, we are going to study the first group, LT having the laser source in the 

rotating head, developing a new kinematic model and a calibration procedure. 

3. Kinematic model 

This section presents a new kinematic model that will allow us to perform the 

calibration procedure in an easy and fast way without needing specialist equipment. 

The kinematic model of a LT can be developed by means of the D-H [18] method. 

This method models the coordinate transformation between successive reference systems 

[32], using four parameters (distances di, ai, and angles θi, αi). The homogenous 

transformation matrix between frame i and i-1 depends on these four parameters as 

shown in Equation 1. 
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This LT can be modelled as an open kinematic chain that consists of two rotary joints 

and a linear joint. Figure 2 shows the reference systems used in the LT modelling. 

 

 

Fig 2. Reference systems used in the LT modelling. 

 

Table 1 shows the D-H parameters of the kinematic model. 

Table 1: D-H parameters. 

i αi (º) a i (mm) d i (mm) θi (º) 

1
 

-90 0 0 θ 

2
 

90 0 0 -90 

3
 

0 0 d -90 

 

The system obtained to express the reference frame 3 (reflector location) in the 

reference frame 0 (origin of the LT) in terms of θ,  and d is shown by Equations 2, 3, 4 

and 5: 

0 0 1 2
3 1 2 3T A A A                     (2) 

0
1

cos( 90) 0 sin( 90) 0

sin( 90) 0 cos( 90) 0

0 1 0 0

0 0 0 1

A

 

 

   
  
 
  
 
 

              (3) 
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0 1 0 0
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A
d

 
 
 
 
 
 

                 (5) 

where ,  and d, are the angles and distance lectures of the angular encoders and of 

the linear interferometer of the LT.  

Initial parameters are kept constants and the effect of their possible variations in the 

optimization is included by means of the error matrices. 

It is not necessary to add an error parameter to consider the prove cero offset in the 

nominal model because the initial position coincides with the encoder reference marks. 

The LT has incremental encoders. Reference systems are chosen to satisfy that when the 

encoder of the first axis reads a value of cero, it is then aligned with axis X, and when the 

encoder of the second axis reads a value of cero, it is aligned with axis X1.  

The input information and the generated data will be presented in Cartesian 

coordinates.  

The transformation from Cartesian coordinates (X, Y, Z) to Spherical coordinates (, , 

d) has been performed taking into account Equations from 6 to 8: 

- Interferometer distance:  

2 2 2d X Y Z                                 (6) 

- Elevation angle:  

2 2 2
sin sin

Z Z
a a

dX Y Z


   
         

               (7) 

- Horizontal angle:  

tan2
Y

a
X


 

  
 

                             (8) 

The elevation angle range was obtained considering the LT working range between 

+77º and -60º. 

The transformation from Spherical coordinates (, , d) to Cartesian coordinates (X, Y, 

Z) is shown by Equations from 9 to 11: 

cos cosX d                       (9) 

cos sinY d                                  (10) 

sinZ d                    (11) 
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The axis of rotation revolves around an axis of the reference coordinate frame with 

radial errors δx and δy; an axial error δz; and tilt errors εx and εy. These errors can be 

function of the rotation angle θz.  

Errors are modelled by means of Equation 12 for rotary and linear axis [32] (see 

Figure 3). 

 

Fig 3. Errors about an axis of rotation. 
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 (12) 

In the same way, linear axes present linear and angular errors identified with 

parameters δx, δy, δz, εx, εy and εz (see Figure 4). 

 

Fig. 4. Errors in a single axis linear motion. 
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The system that provides the LT model considering the error matrices is calculated 

introducing error matrices in Equation 2. Equation 14 gives the result: 

0 0 0 1 1 2 2
3 1 1 2 2 3 3Re Re eT A rr A rr A T rr                   (14) 

This model presents 18 error parameters given by the vector V (Equation 15). This 

vector consists of the components X, Y and Z of the error parameters δ and ε for the 

azimuth angle, θ, elevation angle,  , and distance, d. 

[ , , , , , , , , , , , , , , , , , ]
d d d d d dX Y Z X Y Z X Y Z X Y Z X Y Z X Y ZV

                             
 (15) 

However, these parameters vary depending on the type of joint. These errors are 

function of the rotation angle in rotary joints. A model using periodic functions allows us 

to characterize these errors due to their periodic behaviour, as presented by Equations 

from 16 to 19. It can be noticed that the rotation error has both a constant component and 

some terms that depend on the rotation. The constant component can be considered as an 

offset of the encoder. The simulations performed show satisfactory results considering 

the second harmonic. εi and δi are error parameters for the coordinates X, Y and Z.  

1 2 3 4 5sin( ) sin(2 )i i i i i i                            (16) 

1 2 3 4 5sin( ) sin(2 )i i i i i i                            (17) 

1 2 3 4 5sin( ) sin(2 )i i i i i i                            (18) 

1 2 3 4 5sin( ) sin(2 )i i i i i i                            (19) 

The function that describes the parameter behaviour in linear joints shows that these 

errors depend on the distance d, as shown by Equations 20 and 21. This linear axis error 

can be modelled considering a polynomial. The variation of this type of error is smooth in 

its working range, and a second order polynomial is considered sufficient to model the 

behaviour of this error. 

2
1 2 3i i i id d                       (20) 

2
1 2 3i i i id d                       (21) 

Equations from 16 to 19 have 5 error parameters each one. Moreover, each equation is 

obtained for coordinates X, Y and Z, resulting in 60 error parameters. In the same way, 

Equations 20 and 21 are obtained for coordinates X, Y and Z, and every equation presents 

3 error parameters, resulting in 18 error parameters. Thus, the kinematic model has 78 

error parameters. 

4. Kinematic model validation 

To validate the kinematic model developed, two steps have been performed: 
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1) Synthetic measurements have been generated. In this step, nominal values of a 

mesh of reflectors and kinematic error parameters are known. Thus, we obtain 

the values that would measure the LT if it had the prefixed errors by means of 

the kinematic model developed. The objective of this phase is to generate 

synthetic points with a known error. 

2) Using the synthetic measurements obtained in point 1) and the nominal values 

of the mesh, error parameters are obtained through the kinematic model. These 

obtained errors are compared with the prefixed errors to validate the model 

developed. 

Next paragraphs describe these two phases. 

4.1. Obtaining synthetic measurements by means of the kinematic model 

A synthetic point generator consists of a set of algorithms that provide synthetic points 

throughout the LT workspace. This generator obtains synthetic measurements from the 

nominal values of a mesh of reflectors and known kinematic error parameters. The LT 

position and the position of the mesh with respect to the LT are also known parameters. 

To perform the simulation, three mesh points have been defined. 

1. A plane mesh.  

This mesh corresponds to a wall (a 2D mesh). For a constant value of X, Y 

varies from -10000 mm to 10000 mm with increments of 1420 mm, and Z 

varies from -1500 mm to 5500 mm with increments of 500 mm. 

2. A cubic mesh  

This simulation corresponds to a mesh having constant increments of 4000 

mm in the coordinates X, Y and Z, from -10000 mm to 10000 mm. 

3. A spherical mesh 

In this case, the mesh is generated in Spherical coordinates, covering the LT 

range -a horizontal angle of 360º, with increments of 33º, a vertical angle from 

+77º to -60º with increments of 20º and a distance from 1000 mm to 15000 

mm with increments of 3500 mm. 

Three typical geometries of 3D mesh have been chosen to perform a parameter 

identification based on distance errors. Constraints are given by the mesh definition. 

Some authors use geometry constraints to obtain the error parameters. However, we use 

Euclidean distances between reflectors. These distances are independent of the mesh 

geometry. 

Figure 5 illustrates the three mesh studied when every parameter has a value of 10 m 

for linear errors and 10 rad for rotational errors. The values introduced are close to real 

LT errors to better reflect a real situation while measuring with the LT. 
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These fix, nominal values are independent of the rotation and not present measurement 

noise. They are used to validate the model. Arrows represent the error with the 

magnification factor indicated in the figure title. 

 

 (a) 

 

      (b) 

 

(c) 
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Fig 5. Meshes used in the generation of data. a) Plane mesh (2D), b) Cubic mesh (3D), c) 

Spherical mesh (3D).  

The error matrix considers the 18 physical errors, (εi, δi), presented in section 3.1. by 

Equation 15, with a constant value of 10 m for linear errors and of 10 rad for rotary 

errors, as shown in Table 2.  

Table 2. Error initial values used in the synthetic measurement generation. 

 X (μrad) Y (μrad) Z (μrad) X (μm) Y (μm) Z (μm) 

θ 10 10 10 10 10 10 

 10 10 10 10 10 10 

d 10 10 10 10 10 10 

 

This process obtains the coordinates that would measure the laser tracker if it had the 

errors defined from the nominal coordinates of a mesh. Thus, an optimization procedure 

is necessary to obtain the measured coordinates. 

To do this, we defined the location of a set of reflectors with known nominal Cartesian 

coordinates (Xnom, Ynom, Znom). The Spherical nominal coordinates are given by (nom, 

nom, dnom). The objective is to obtain the Spherical coordinates for the reflector location 

that would measure a laser tracker having an error, (m, m, dm). These coordinates are 

different from the nominal Spherical coordinates because the laser tracker has an error. 

LT provides data in the LT reference system. Thus, meshes have been generated in the 

LT reference system. 

The azimuth and elevation angles and the distance are considered the identification 

parameters. Thus, the Spherical nominal coordinates of the reflectors are introduced in 

the kinematic model as initial values. The optimization procedure varies these three 

parameters in every iteration defined by the sub-index it, (it, it, dit), to obtain the angles 

and the distance that would measure the LT, (Xit_m, Yit_m, Z it_m), having an error, (εi, δi), 

for every point i of the mesh in every iteration. To obtain the mesh point coordinates 

affected by the LT errors, the objective function minimizes the Euclidean distance 

between the coordinates (Xnom, Ynom, Znom), and (Xit_m, Yit_m, Z it_m).  

Thus, Equation 22 gives the objective function introduced in the algorithm. 

2 2 2
_ _ _

1

( ) ( ) ( )
i i i i i i

n

it m nom it m nom it m nom
i

X X Y Y Z Z


               (22) 

where n is the number of points measured of the mesh. 

The optimization obtains the Spherical coordinates (m, m, dm) given by the values of 

(it, it, dit) in the last iteration. These Spherical coordinates are then transformed to 

Cartesian coordinates obtaining the Cartesian coordinates, (Xm, Ym, Zm), that would 

measure the LT having an error. This procedure is summarized in Figure 6. 
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Fig. 6. Synthetic measurements by the kinematic model using mesh nominal values and error 

parameters. 

4.2. Kinematic error parameter identification 

The following step to validate the model is to correct synthetic measurements obtained 

in subsection 4.1. The output of the identification is the error parameter vector. This 

vector, Vε, is set to cero before starting the calibration, and will be modified in every 

iteration. In this case, nominal coordinates of the mesh of reflectors, (Xnom, Ynom, Znom), 

and synthetic measurements, (Xm, Ym, Zm), are the known data. The kinematic model 

provides the Cartesian coordinates affected by the laser tracker error in the iteration it, 

(Xit_m, Yit_m, Zit_m), that minimize the objective function, shown by Equation 22 in every 

iteration. Figure 7 shows the procedure followed. 

The calibration procedure allows us to identify the model error parameters. These 

parameters should have a value equal to the error parameters introduced in the kinematic 

model in the synthetic measurement generation given by Table 2. The values of the 

kinematic model parameters are the nominal values presented in Table 1. 

Tables 3, 4 and 5, show the error parameters obtained in the parameter identification 

procedure for every mesh studied. To obtain a first approximation, errors defined by 

Equation 15 have been used, considering the first term of Equations from 16 to 21 in this 

simulation process and keeping the rest of parameters with a constant value of zero. 
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Fig. 7. Error parameters by the kinematic model using mesh nominal values and synthetic 

measurements. 

Table 3. Error values obtained for a plane mesh in the parameter identification procedure. 

 X (μrad) Y (μrad) Z (μrad) X (μm) Y (μm) Z (μm) 

θ 9.992 9.992 -15.727 -12.359 -13.593 0.000 

 9.976 40.307 53.778 10.136 1.340 8.150 

d 9.912 -33.814 0.000 10.033 11.619 9.947 

Table 4. Error values obtained for a cubic mesh in the parameter identification procedure. 

 X (μrad) Y (μrad) Z (μrad) X (μm) Y (μm) Z (μm) 

θ 9.997 10.001 -1.178 9.997 9.997 -0.024 

 9.998 -1.176 9.999 9.999 -0.037 -0.358 

d 0.000 0.000 0.000 -0.373 10.005 10.003 

Table 5. Error values obtained for a spherical mesh in the parameter identification procedure. 

 X (μrad) Y (μrad) Z (μrad) X (μm) Y (μm) Z (μm) 

θ 9.994 9.994 -5.101 10.001 9.977 0.000 

 9.986 -5.137 9.416 10.045 0.000 9.969 

d 9.966 10.574 0.000 10.011 9.969 10.018 

 

Most of the error parameters obtained are very similar to the initial parameters and 

some of them differ because different parameters can generate very similar errors by 

themselves or as combination of other parameters. Besides, the overall effect of some 
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parameters that are independent can be compensated in function of the captured points, 

that is to say, in function of the position that presents the LT axes in data acquisition 

process. 

Figure 8 shows the distances between nominal and measured positions, as obtained 

before by Equation 22. Sub-index ini represents initial values and sub-index res 

corresponds to residual values. 

 

Fig. 8. Identification procedure: initial and residual error. 

The residual error is very close to zero, as it was expected. This fact validates the 

developed model. 

The plane mesh presents lower errors than cubic and spherical mesh, and the 

magnitude order is the same in all the mesh studied. 

5. Experimental parameter identification 

5.1. Data acquisition 

Once the kinematic model has been validated by means of synthetic data, the same 

process is carried out using experimental data measured by the LT. 

The first step is data acquisition. To do this, 17 reflectors were located on a CMM, 

with an accuracy of ± 2 μm, as shown in Figure 9a. The LT was located in 5 positions 

(see Figure 9b). 

The reflectors were measured with the CMM. These measurements are considered the 

nominal measurements in the data acquisition step. 
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The LT then measured every reflector in every position, as shown in Figure 10, thus 

obtaining data measurements.  

 

 

(a)      (b) 

Fig. 9. Data acquisition procedure: a) Reflector positions located on a CMM, b) LT positions. 

 

Fig. 10. LT measurements. 

5.2. Identification procedure 

The aim of this process is to search for the values of the error parameters that 

minimize the measurement error. However, in this case, measurements are experimental. 

Figure 11 shows the procedure described. Reflector nominal coordinates are measured by 

the CMM, thus obtaining (Xnom, Ynom, Znom). The reflector Cartesian coordinates, (Xm, Ym, 

Zm), are then measured by the LT and transformed to Spherical coordinates (m, m, dm). 

The output of the kinematic model is the Cartesian coordinates that would measure the 

LT for the value of the parameters (εi, δi) in the iteration it, (Xit_m, Yit_m, Zit_m). The 

objective function minimizes the differences between all nominal distances given by 
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every pair of reflectors (measured by the CMM), dCMMi, and the same distances measured 

by every LT, dmik, for k LT positions.  

17 reflectors were used to cover in a regular way the CMM workspace. After 

analysing the possible capture angle for these reflectors, placed in fix positions, 5 LT 

positions were needed to cover it. 

The number of distances is a combination without repetition of n elements taken r at a 

time, as shown by Equation 23. 

,

!

!( )!
n r

n
C

r n r



                (23) 

The number of distances calculated for every position of the LT having 17 reflectors is 

136. Thus, the number of distances to optimize for the 5 positions is 680 distances. 

Equation 24 gives the objective function. 

,

1 1

( )
n r

ik i

C LT

m CMM
i k

d d
 

                 (24) 

where sub-index m is the measured distance obtained from the measurements of the LT, 

sub-index CMM is the measured distance obtained from the measurements of the CMM, 

sub-index i defines the distance to minimize, and k corresponds to the position of the LT.  

 

 

Fig. 11. Error parameters by the kinematic model using the reflector nominal coordinates 

measured by the CMM and the reflector coordinates measured by the LT. 
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The kinematic parameter identification is usually carried out by means of 

approximation procedures based on least-squares fitting. The optimization technique used 

to solve the numerical optimization algorithm was the Levenberg-Marquart (L-M) [27] 

method, due to its proven efficiency in non-linear systems [33]. 

As it was mentioned in the data acquisition step, 17 reflectors were measured locating 

the LT in 5 positions. To perform the optimization, different strategies have been carried 

out: 

a) The optimization is performed using the 17 reflectors and the 5 LTs. 

b) The optimization is performed using 14 reflectors and the 5 LTs. 3 reflectors are 

kept as test data. Thus, the model will be validated in positions different from 

those used in the identification process. 

c) The optimization is performed using 17 reflectors and 4 LT positions. 1 LT 

position is kept as verification data. 

The results obtained in every strategy followed are presented below. 

Figure 12 illustrates the LT position error calculated as the difference between the 

error before the identification procedure, E_ini, and the error after performing the 

kinematic parameter identification for the three strategies a), b) and c). Strategy a) 

provides the error E_res. The error obtained is given by E_4LT when the positions 

measured by 4 LT are used in the identification procedure and 1 LT measurements are 

kept as test positions for the parameter evaluation procedure. Finally, E_14_ref 

corresponds to the error when the measurements of 14 reflectors are used in the 

identification procedure and the measurements of 3 reflectors are kept as test positions. 5 

LT measurements are represented consecutively. The optimization that provides E_res 

was performed considering all measured points in the parameter identification. The points 

measured by L1 were kept as test positions in the parameter identification that gives 

E_4LT. Finally, the first thirty-five positions of each LT were kept as test positions in the 

parameter identification that provides E_14_ref. 

 

Fig. 12. Calibration results. 
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Table 6 shows the maximum and mean errors obtained considering all points, the 

calibration points and the test points for every strategy. 

The correction performed by means of the identification procedure decreases errors 

about a 62.50% using the strategy a), about a 57.47% using the strategy b) and 60.44% 

using the strategy c) with respect to initial errors. As it was expected, strategy a) presents 

the lower errors because all data have been included into the optimization. The difference 

between strategy a) and strategies b) and c) has a mean value of 1.54 μm and 0.74 μm for 

strategies b) and c), respectively, and a maximum value of 5.67 μm and 3.85 μm for 

strategies b) and c), respectively. These results verify that the identification procedure 

developed can be extrapolated to different positions within the LT workspace from those 

used in the identification procedure. Moreover, calibration results improve when some 

reflectors are kept as test positions with respect to decrease LT positions. 

 

Table 6. LT initial errors and LT errors for every strategy. 

 
 E_ini 

(μm) 

E_res 

(μm) 

E_4LT  

(μm) 

E_14_ref  

(μm) 

   
All 

points 

Calibration 

points 

Test 

points 

All 

points 

Calibration 

points 

Test 

points 

Maximum
 
42.057 19.935 20.446 20.446 14.394 19.981 19.981 11.342 

Mean
 18.785 7.045 7.989 7.391 9.973 7.430 7.490 7.152 

 

Figure 13 represents results after calibration to compare the strategies followed. 

 

 

Fig. 13. Comparison of calibration strategies. 
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6. Sensitivity analysis of the length measurement system tests 

Once the kinematic model developed has been validated, the following step will be to 

perform a sensitivity analysis of the length measurement system tests. 

The objectives of the sensitivity analysis are the following:  

- To help us to design measurement tests sensitive to error parameters, thus, 

defining the most suitable target position configuration to carry out the calibration 

procedure. This analysis obtains how every individual error affects the total error, 

showing how model errors affect the LT measurement. 

- To know the best possible positions to carry out experimental tests, thus, 

designing the configuration of network with fix points. This analysis obtains how 

reflector positions of tests affect in the error.  

The spherical mesh, shown in Figure 5c, is the mesh chosen for the sensitivity analysis 

because this mesh allows us to find out the correlation between parameters θ,  and d and 

the errors more clearly as it fits the LT working range. 

This analysis has been performed by studying the 18 error parameters from the 

kinematic model developed in subsection 3.1, -corresponding to the error matrices. To 

analyse the influence of every error considered in the global error, 18 simulations were 

carried out, setting up a value of 1 for every parameter and zero for the rest of parameters. 

Sensitivity represents the error in micrometers for 1 m of offset for linear errors and 1 

rad of tilt for rotational errors. 

The measurement error has been studied in every simulation in function of vertical 

angle (V), horizontal angle (H) and distances (R).  

Figure 14 represents the results obtained for every error parameter studied. This figure 

shows first, vertical angle variations between 77º and -60º, second, horizontal angle 

variations from 1º to 360º with increments of 12º, and finally, distance variations between 

1 m and 15 m with increments of 3.5 m. Divisions in X axis represent the measurement 

number. 480 measurements were performed, and every measurement presents different 

values of R, H and V. 

The results obtained shows that the error parameter εZR, corresponding to a rotation of 

the laser beam with respect to an axis in the beam direction, does not affect. There are 12 

errors, δXH, δYH, δZH, εZV, δXV, δYV, δZV, εXR, εYR, δXR, δYR, δZR, present a constant error 

proportional to the error parameter. And there are 5 errors that depend on both the 

distance of the LT to the reflectors and the azimuth and elevation angles. The simulation 

has been carried out considering 5 areas. As can be seen, in area 1 (corresponding to 

distance R=1 m), the last 5 parameters vary from 0 to 1 m, in area 2, (corresponding to 

distance R=4.5 m), the last 5 parameters vary from 0 to 4.5 m, etc. This findings verify 

that the 5 parameter values vary from 0 to R m/m. To study the behaviour of these 5 

parameters, the number of points has been increased, with increments of 9.78º for vertical 

angles and of 12º for horizontal angles. Figure 15 represents only half period (π/2) 

because the error presents a cyclic behaviour, with a cycle π, in the azimuth angle. 
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This analysis shows that the positions presenting high sensitivity to error parameters 

are those that correspond to elevation angles with minimum (-60º), zero value (0º) and  

maximum (77º). Moreover, the errors caused by rotary errors in X and Y of the horizontal 

angle are also sensitive to this same rotation. Tests should be configured setting up 

directions in which points are more sensitive to errors.  

 

Fig. 14. Sensitivity analysis of the length measurement system tests. H≡θ, V≡φ, R≡d. 
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Fig. 15. Errors presenting dependence on θ and  for a constant distance of 1 m. 

7. Conclusions. 

A LT user can know the LT behaviour after calibrating the LT. However, he cannot 

know if the LT works properly after a while or if a calibration should be carried out. 

Moreover, the tests recommended by standards to validate the LT behaviour require 

specialized equipment and take a lot of time. 

A new kinematic model for a LT having the beam source in the rotating head has been 

developed. This model considers that errors depend on joints. The kinematic model 

behaviour has been validated, generating synthetic measurements for a known nominal 

reflector coordinates and error parameters, thus, obtaining the values that would measure 

the LT if it had the prefixed errors. Measurements have then been corrected by 

identifying error parameters, thus, obtaining error parameters by means of the kinematic 

model. The comparison of the prefixed initial error parameters and the error values 

obtained allows us to validate the kinematic model developed. 

All these verifications have been made for different meshes, obtaining that the 

spherical mesh is the one that allows us to analyse the correlation between parameters θ, 

 and d and the errors more clearly.  

An experimental calibration has then been performed, measuring the reflectors with both 

a CMM that provides nominal values and a LT located in different positions. To do this, 

different strategies have been followed, keeping different measurements as test positions. 

The parameter identification performed allows us to reduce the LT error about a 62%. 

Results show that the different strategies analyzed provide a calibration that can be 

extrapolated to different positions from those used in the identification procedure within 

the LT workspace. Moreover, calibration results improve when some reflectors are kept 

as test positions with respect to decrease LT positions. 

Finally, a sensitivity analysis of the length measurement system tests has been 

performed. This analysis shows the dependence on elevation and azimuth angles and on 

distances of every error parameter. Moreover, the analysis indicates those positions with 

more sensitivity, given by maximum, minimum and zero vertical angle, setting up the 

bases for the most suitable test configurations for the calibration procedure. 

The LT verification method developed allows us to know in an easy and fast way if 

the LT measures correctly, obtaining the LT errors without requiring standards and 

accurate equipment. 
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HIGHLIGHTS 

- Development of a kinematic model of a Laser Tracker 

- Development of a synthetic generator to validate the kinematic model 

- Calibration of a Laser Tracker to improve the system accuracy 

- Sensitivity analysis of the length measurement system tests 

- More suitable positions to perform the calibration procedure 


