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Treatment of complex [Cp2TiCl2] with the lithium salt of 2-

hydroxypyridine afforded complex [Cp2Ti(Opy)2] (1), while the 

same synthetic strategy applied to the analogous zirconium 

compound [Cp2ZrCl2] did not worked. However, the use of the 

metallocene [Cptt
2ZrMe2] with protic ligands allowed directing the 

reactivity towards protonation of the methyl groups attached to 

zirconium. To check this approach we reacted [Cptt
2ZrMe2] with 

methanol affording complex [Cptt
2ZrMe(OMe)] (2), which was 

characterized in situ by NMR techniques. In the same line, the 

reaction of [Cptt
2ZrMe2] with 2-hydroxypyridine gave complex 

[Cptt
2Zr(Me)(Opy)] (3); forcing the conditions of this reaction did 

not lead to the expected complex [Cptt
2Zr(Opy)2], most probably 

due to the steric hindrance exerted by the bulky cyclopentadienyl 

ligands.  

Further reactions of complex 3 with ligands having acidic 

protons also led to the recovery of the starting complex. 

However, when shifting to the bifunctional ligand 2,6-

dimercaptopyridine (py(SH)2) a double protonation of the 

methyl ligands in [Cptt
2ZrMe2] occurred, allowing the isolation 

of mononuclear complex [Cptt
2Zr(S,S,N-pyS2)] (4), upon 

evolution of methane. The molecular structure of complex 4 has 

been determined by X-ray methods, showing the zirconium 

atom in a highly distorted trigonal bipyramidal geometry; 

structural parameters indicate a conventional Zr-N bond, but 

rather weak Zr-S interactions. 
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Introduction 

The synthesis and study of early-late heterobimetallic 
complexes (ELBH) have been the subject of an intense 
research. The chemical behaviour of complexes having 
metallic centers of distinct electronic properties located at 
close distances could lead to unusual reactivity patterns both 
in stoichiometric and catalytic processes.

[1]
 The combination 

in the same system of early metals, considered as electron-
poor Lewis acid compounds, and basic late metals suggests 
the possibility of a cooperative reactivity among them,

[2]
 and 

also novel modes of intermetallic interactions.
[3]

  

Rational synthetic strategies towards ELBH complexes 
mainly rely on the preparation of designed metalloligands 
based on early or late metals, which may induce the 
coordination of electronic disparate metallic complexes. In 

this context, the use of early transition metal metallocenes 
bearing donor atoms around their coordination environment 
susceptible to coordinate to late metal fragments has 
allowed the characterization of an important number of 
ELHB complexes based on thiolate,

[4]
 phosphane

[5]
 and 

bifunctional
[6]

 early metal-based metalloligands. In this line, 
hydrosulfido transition metal complexes have proven to be 
efficient precursors for the preparation of sulfido-bridged 
homo- and heterometallic ELBH clusters.

[7]
 As a matter of 

fact, hydrosulfido metallocene early-metal based complexes 
have been successfully used as metalloligands towards late 
metallic fragments.

[8]
 In particular, we have reported the 

compounds [Cp2Ti(SH)2] and [Cp
tt

2Zr(SH)2] (Cp
tt
 = 

5
-1,3-

di-tert-butylcyclpentadienyl) as very efficient precursors for 
the preparation of d

0
-d

8
 ELBH complexes through additive 

deprotonation processes with mono- and dinuclear rhodium 
and iridium compounds having protonable ligands.

[9]
 This 

synthetic approach has led to the formation of 
heterotrinuclear complexes with triangular [MM´2] (M = Ti, 
M´ = Rh, Ir;

[10]
 M = Zr, M´ = Rh, Ir)

[11]
 cores capped with 

two sulfido ligands, and also to rare complexes with [TiM3] 
(M = Rh, Ir) cores with incomplete cubane structures,

[12]
 and 

[Ti2Rh4] oxo-sulfido clusters, with a double-fused cubane 
tetrametallic core.

[13]
  

On the other hand, early transition metal metallocenes 

have also been successfully assembled into homometallic 
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molecular squares because of their usually distorted tetrahe-

dral geometry.
[14]

 However, only a few early-late heterobi-

metallic macrocycles containing early metallocenes and late 

transition metals have been described. An illustration of this 

statement is based on the tetranuclear Ti/Pt macrocycles,
[15]

 

formed through the assembly of bis(pyridine-4-

carboxylate)titanocene moieties, but also titanocene or zir-

conocene halide complexes bearing phophanealkylcyclopen-

tadienyl ligands have been assembled to form tetranuclear 

M/Rh (M = Ti, Zr) metallomacrocycles.
[16]

 In this context, 

we have also shown the usefulness of flexible early metallo-

diphosphines for the synthesis of a series of d
0
-d

8
 early-late 

heterobimetallic M/Ir (M = Ti, Zr) tetranuclear 16-

membered metallomacrocycles.
[17]

 

In our search towards the preparation potential early metal 

based metalloligands adapted for the construction of ELBH 

complexes,
[11b, 17]

 herein we report on the synthesis and 

characterization of a series of titanium and zirconium mon-

onuclear complexes having functionalized pyridine ligands 

containing N-C-X (X = O, S) framework.  

Results and Discussion 

Treatment of complex [Cp2TiCl2] with the salt LipyO, 
generated in situ by deprotonation of pyOH (pyOH = 2-
hydroxypyridine) with 

n
BuLi at 0 

o
C in thf afforded complex 

[Cp2Ti(Opy)2] (1), which was isolated as a yellow solid with 
moderate yield (30%) (Scheme 1). The yield of the reaction 
increases when using a weaker base such as triethylamine. 
In this case, the reaction is slower and consequently it needs 
prolonged reaction time (16h). However, although the yield 
is higher (70%) recrystallization is required in order to get 
an analytically pure sample. Complex 1 is soluble in 
dichloromethane, chloroform and toluene and it is highly 
unstable towards air and humidity. 

 

Scheme 1. Synthesis of complex [Cp2Ti(Opy)2] (1). 

The 
1
H NMR spectrum of 1 in CDCl3 showed four 

separated multiplets (8.15, 7.48, 6.70, and 6.60 ppm) of 
relative intensities of 2H in the aromatic region 
corresponding to the protons of the pyO

–
 ligand, which 

confirmed the chemical equivalence of the two pyridine 
ligands in the molecule, while the cyclopentadienyl ligand 
was observed at 6.41 ppm as a singlet. The micro-analytical 
data obtained for complex 1 agreed with the proposed 
formulation. On the other hand, the mass spectrum of 1 
showed a peak at m/z: 301 whose isotopic distribution 
matched with the molecular ion [CpTi(Opy)2]

+
, and several 

peaks corresponding to the sequential loss of the 
cyclopentadienyl and pyridine ligands. The existence of a 
symmetry element that relates both the Cp and the 2-
pyridonate ligands in the molecule indicates that both pyO

–
 

ligands are coordinated through the same donor atom. The 

presence of an oxophilic titanium center suggests that both 
2-pyridonate ligands should be coordinated through the 
oxygen atom, which is the most reasonable stereochemistry 
if one takes into account that this is the less congested 
coordination mode of the pyridine ligands. 

The synthetic strategy shown in Scheme 1 is not operative 
for the zirconium complex [Cp2ZrCl2]. In this case, 
independently of the nature of the base used, mixtures of 
species are obtained, as confirmed by NMR spectroscopy. 
However, the change of the nature of the cyclopentadienyl 
ring allowed us preparing discrete zirconium complexes 
with bifunctional pyridine ligands. In particular, we have 
used  1,3-ditertbutylcyclopentadieny ligands, which contains 
two 

t
Bu groups that exert a considerable steric effect, which 

in turn release electronic density to the metal center. 
Surprisingly, the reaction of the in situ generated salt LipyO 
with complex [Cp

tt
2ZrCl2] does not work, a situation that 

can be explained considering the steric hindrance of the two 
t
Bu groups at the cyclopentadienyl rings, which could 
complicate the metathetical reaction. 

An alternative and very attractive synthetic strategy is 
based on compound [Cp

tt
2ZrMe2] as starting complex, since 

it contains two methyl groups that in principle can be 
protonated with ligands bearing acidic protons. One can 
expect that after protonation and release of methane, the 
coordination vacant sites should be occupied by the pyO

–
 

ligands. An additional advantage of this synthetic protocol is 
that the byproduct formed is a gas, which is easily removed 
and it avoids the separation of LiCl salts. To check the 
consistency of this approach we treated complex 
[Cp

tt
2ZrMe2] with an excess of methanol in sealed NMR 

tube. While at room temperature no changes were observed, 
at 60 

o
C slow evolution of methane was observed along with 

the clean and quantitative formation of the new compound, 
further characterized as complex [Cp

tt
2ZrMe(OMe)] (2) by 

NMR techniques (Scheme 2). The 
1
H and 

13
C{

1
H} NMR 

spectra of complex 2 are in agreement with the expected Cs 
symmetry, since both cyclopentadienyl ligands were 
chemically equivalent; additionally, the methyl and methoxo 
fragments were observed at 0.01 and 3.64 ppm in the 

1
H 

NMR spectra, and at 19.3 and 61.3 ppm in the 
13

C{
1
H} 

NMR spectra, respectively. Having succeeded in the 
aforementioned transformation, we decided to apply this 
strategy with the pyOH ligand. 

In this way, the reaction of [Cp
tt

2ZrMe2] with pyOH in a 
1:2 molar ratio produced the evolution of methane and the 
formation of a pale yellow solution. Monitoring of the 
reaction by NMR spectroscopy showed the formation of a 
new compound and the presence of unreacted pyOH. 
Forcing the reaction conditions (90 

o
C) did not lead to the 

completion of the process, since free pyOH is always 
observed. However, reaction of [Cp

tt
2ZrMe2] with pyOH in 

an 1:1 molar ratio in en toluene at 85 ºC led to the clean and 
quantitative formation of complex [Cp

tt
2Zr(Me)(Opy)] (3), 

isolated as an oil which solidified after two days standing at 
4 

o
C (Scheme 2). Complex 3 is soluble in toluene, thf and 

acetone and partially soluble in diethyl ether. The mass 
spectrum of 3 showed two peaks at m/z: 538 and 443 
corresponding to the molecular ions [Cp2

tt
Zr(Opy)]

+
 and 

[Cp2
tt
Zr]

+
 respectively, whose isotopic distributions nicely 

matched with the theoretical values. 
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Scheme 2. Synthesis of complexes [Cptt
2ZrMe(OMe)] (2) and 

[Cptt
2ZrMe(Opy)] (3). 

The 
1
H NMR spectrum of 3 in C6D6 at room temperature 

showed four distinct multiplets with relative intensities of 
one proton at 8.04, 7.13, 6.33 y 6.28 ppm respectively, 
which corresponded to the protons of the pyO

–
 ligand, while 

the resonances for the Cp
tt
 rings were observed as pseudo 

triplets at 6.42 ppm (JH–H = 2.52 Hz), 6.00 ppm (JH–H = 2.98 
Hz) y 5.80 ppm (JH–H = 2.75 Hz). The pattern of signals 
observed in the 

1
H NMR spectrum of 3 indicated the 

chemical equivalence of both cyclopentadienyl ligands, 
which are related by a symmetry plane that contains the 
methyl group and the pyridine ligand. The 

t
Bu fragments of 

the cyclopentadienyl rings were observed as two sharp 
singlets at 1.30 and 1.40 ppm. The methyl group attached to 
zirconium appeared as a singlet at 0.75 ppm. The 

13
C{

1
H} 

spectrum of 3 in C6D6 is also in agreement with the structure 
proposed in Scheme 2. The carbon atom bonded to both 
nitrogen and oxygen atoms of the pyridine ligand was 
observed deshielded, at 172.3 ppm, while that bonded to 
nitrogen appeared at 156.7 ppm; the rest of the carbon atoms 
from the pyO

–
 ligand were located at 139.4, 112.8 and 112.4 

ppm. Concerning the Cp
tt
 ligands, two signals at 138.6 and 

138.4 ppm were assigned to the carbons of the aromatic 
rings attached to the tert-butyl groups, and three additional 
resonances at 114.4, 103.6 and 102.6 ppm corresponded to 
the remaining carbon atoms from the cyclopentadienyl rings. 
The 

t
Bu substituents were observed at 33.7 and 33.3 ppm for 

the quaternary carbon atoms, and two additional intense 
resonances at 31.4 and 31.3 ppm. Finally, the methyl group 
was observed at 27.3 ppm.  

In order to further functionalize complex 3 we attempted 
the protonation of the methyl ligand with selected ligands 
bearing acidic protons, such as the phosphanes PPh2CH2OH 
and PPh2CH2CH2SH and the thiol compound 2-
mercaptopyridine (pySH). Disappointingly no 
transformations were observed (NMR evidence), even 
working in refluxing toluene. The low reactivity of 
phosphane PPh2CH2OH could be explained by the low 
acidity of the hydroxylic proton. However, the acidity of 
compounds pySH and PPh2CH2CH2SH should be high 
enough to protonate the methyl group in 3, a situation that 
suggests that the lack of reactivity in the latter cases could 
be explained in terms of steric hindrance exerted by the two 
cyclopentadienyl derivatives.  

However, complex [Cp
tt

2ZrMe(Opy)] (3) does react with 
SH2(g). The monitoring of the reaction of 3 with SH2 (g) in 
C6D6 in a sealed NMR tube at room temperature showed 
total and clean conversion to a new compound, along with 
free pyOH. Characteristic resonances were observed at 6.51 
(t) y 5.71 (d) from the Cp

tt
 ligands, and a triplet at 2.50 ppm 

assigned to a SH functionality and a sharp singlet at 2.50 
ppm from the 

t
Bu groups. The NMR data fits with the 

known complex [Cp
tt

2Zr(SH)2], which has been confirmed 

through the comparison of a pure sample of the complex 
prepared by an established method.

[18]
  

In this line, the related zirconium complex [Cp
tt
Zr(Spy)2] 

having 2-pyridinethiol (pySH) ligands is not accessible from 
reaction of [Cp

tt
2ZrMe2] with pySH in a 1:2 molar ratio. 

Both compounds did not react at room temperature; forcing 
the reaction conditions by heating the reaction mixture led to 
a mixture of compounds difficult to identify and to separate. 
This reaction was carried out at different temperatures (40, 
60 and 90 ºC), and even changing the molar ration of the 
reactants no satisfactory results were obtained. We decided 
at this point shifting to the known 2,6-dimercaptopyridine 
(py(SH)2) compound;

[19]
 with the aim that the presence of 

two acidic protons
[20]

 could lead to a double deprotonation 
process induced by complex [Cp

tt
2ZrMe2].  

In this way, reaction of py(SH)2 with [Cp
tt

2ZrMe2] in a 1:1 
molar ratio in toluene allowed observing the evolution of 
methane, and afforded after work-up a yellow solid with 
excellent yield, whose elemental analytic data agreed with 
the formula [Cp

tt
2Zr(pyS2)]x. This compound is soluble in 

chlorinated solvents, thf and insoluble in nonpolar solvents 
such as hexane and pentane. The new complex has been 
fully characterized as [Cp

tt
2Zr(S,S,N-pyS2)] (4) (vide 

infra). The 
1
H RMN spectrum of 4 in CDCl3 showed a 

Cp
tt
:pyS2

2–
 ratio of 2:1. The cyclopentadienyl ligands were 

chemically equivalent, where the C–H protons of the Cp
tt
 

ligands were observed as a doublet at 5.99 ppm (4H) and a 
triplet at 7.07 ppm (2H) (Figure 1). On the other hand, the 
resonances from the pyridine ligand were detected as a 
doublet at 6.21 ppm (2H) and a triplet at 7.01 ppm (1H), the 
latter from the hydrogen atom bonded to the para position 
of the pyridinic ring. Finally, the 

t
Bu groups appeared as a 

singlet at 1.12 ppm. On the other hand, the 
13

C{
1
H} RMN 

spectrum of 4 showed both C–S carbon atoms from the 
pyS2

2–
 ligand at 172.7 ppm, and the three remaining carbons 

were found at 120.5 y 105.9 ppm. The Cp
tt
 ligands gave 

signals at the usual chemical shifts (see Experimental 
Section). The NMR data indicates that in complex 4 both 
Cp

tt
 ligands are related by a symmetry element. Furthermore, 

there exists a symmetry plane that bisects the two Cp
tt
 

ligands and relates both halves of the pyS2
2-

 ligand.  

While the elemental analysis of 4 fits nicely with the 
formula [Cp

tt
2Zr(pyS2)]n, the mass spectrum was not 

conclusive due to the observations of peaks difficult to 
assign; moreover, molecular weight calculations in solutions 
did not give any satisfactory information. Due to the rigidity 
of the 2,6-dimercaptopyridine ligand, one would expect the 
formation of a dinuclear structure in which two 2,6-
pyridinedithiolate ligands are bridging two “Cp

tt
2Zr” 

moieties through the sulfur donor atoms, whit a D2h 
symmetry. Since other structures are also compatible with 
the spectroscopic information available, we decided to study 
the molecular structure of 4 by X-ray methods. 

The molecular structure of complex [Cp
tt

2Zr(pyS2)] (4) 
has been determined by a X-ray diffraction study. Figure 1 
shows a molecular drawing of complex 4 and Table 1 
contains the most representative bond distances and bond 
angles. Complex 4 results to be mononuclear, with two Cp

tt
 

ligands bonded to the metal in their usual 
5
-coordination 

mode. The pyridine-2,6-thiolate ligand is coordinated 
through both sulfur atoms and the pyridine nitrogen atom. 
The coordination environment around zirconium can be 
described as a highly distorted trigonal bipyramid, in which 
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the axial sites are occupied by the two sulfur atoms and the 
equatorial plane is defined by pyridine nitrogen atom and 
the two centroids (T(1) and T(2)) of the aromatic rings. The 
biggest deviation from an ideal trigonal bipyramidal 
geometry is associated to the chelate coordination of the 2,6-
pyridinedithiolate ligand. In this way, the S(1)-Zr-S(2) angle, 
115.12(2)º, is quite small as a consequence of the intrinsic 
rigidity of the pyridine ligand. Within the equatorial plane, 
the T(1)-Zr-T(2) angle of 132.84(4)º deviates from the 
theoretical value (120

o
) most likely due to the steric needs 

generated by the presence of the bulky tert-butyl groups. 
The bond distances Zr–T(1) and Zr–T(2) are 2.2450(11) and 
2.2391(10) Å respectively, which are comparable to those 
observed in other zirconium(IV) complexes such as 
[Cp

tt
2Zr(SH)(OSO2CF3)] (2.237(4) and 2.239(5) Å)

[11b]
 or 

[Cp
tt

2ZrI2] (2.248 and 2.251 Å).
[21]

 The Zr–N bond distance, 
2.1642(19) Å, is similar to that found in zirconium 
complexes such as [(

t
Bu–NH–o–C6H4)2Zr(NMe2)Cl] 

(2.102(3) and 2.098(3) Å)
[22]

 or [HC{SiMe2N(2-
FC6H4)}3Zr(S2C)Fe(CO)2Cp] (2.060(8)-2.124(8) Å),

[23a]
 or 

[Cp2Zr(dipicolinato)] (2.199(2) Å).
[23b] 

However, the Zr–
S(1) (2.8319(7) Å) and Zr–S(2) (2.8685(6) Å) bond 
distances are significantly longer than those observed in the 
majority of mononuclear complexes of Zr(IV), which lie 
within the range 2.39-2.80 Å,

[24]
 although they are 

comparable with those found in complex 
[Cp*ZrCl2{Ph4P2N4S(SMe)}] (2.8010(6) and 2.919(6) 
Å).

[25]
 Therefore, while the Zr–N bond reflects a normal 

interaction, those formed between the zirconium and sulfur 
atoms seems to be rather weak.

 

 

Figure 1. Molecular structure of complex 4. 

On the other hand, the 2,6-pyridinedithiolate ligand is 
nearly planar, with sulfur deviations below 0.023(1) Å (for 
S(2)). The bond separations C(27)–S(1) (1.730(3) Å) and 
C(31)–S(2) (1.732(3) Å) are comparable to those observed 
in complex [Rh4(-pyS2)2(cod)4] (cod = 1,5-cyclooctadiene) 
in which both sulfur atoms are coordinated solely to a 
rhodium atom (C–S: 1.739(4) Å).

[20]
 However, the structural 

arrangement of the pyridinic ligand in complex 3 is very 
different, since in this case the three donor atoms are 
coordinated to one metal center. This disposition makes the 
N-C(31)-S(2) (108.24(18)º) and N-C(27)-S(1) (107.41(18)º) 
angles to be more acute then those corresponding to the 
tetranuclear rhodium complex mentioned above (119.8(3) 
and 117.0(3)º). These differences are specially relevant in 
the angles centered at the sulfur atoms, which are Zr-S(1)-

C(27) (78.32(9)º) and Zr-S(2)-C(31) (77.36(8)º), 
considerably smaller than those observed in the tetranuclear 
rhodium complex (116.1(1), 105.6(1) and 108.8(1)º). These 
values strongly indicate that in complex 4 there exists a high 
degree of tension due to the chelate coordination of the 
pyridinic ligand, and it suggests, in principle, that complex 4 
should be highly reactive, as the long Zr–S distances 
observed also indicate.  

Table 1. Selected bond distances (Å) and angles (o) of complex 4.* 

Zr–T(1) 2.2450 (11) N–C(31) 1.329 (3) 

Zr–T(2) 2.2391 (10) N–C(27) 1.339 (3) 

Zr–S(1) 2.8319 (7) C(27)–C(28) 1.391 (4) 

Zr–S(2) 2.8685 (6) C(28)–C(29) 1.377 (4) 

 

T(1)–Zr–T(2) 132.84 (4) Zr–S(1)–C(27) 78.30 (8) 

S(1)–Zr–T(1) 104.31 (3) Zr–S(2)–C(31) 77.38 (8) 

S(1)–Zr–T(2) 100.12 (3) C(31)–N–C(27) 126.4 (2) 

S(2)–Zr–T(1) 99.71 (3) N–C(27)–C(28) 117.4 (2) 

S(2)–Zr–T(2) 105.47 (3) C(29)–C(28)–C(27) 117.7 (3) 

N–Zr–T(1) 112.70 (6) C(28)–C(29)–C(30) 123.1 (3) 

N–Zr–T(2) 114.46 (6) C(29)–C(30)–C(31) 117.3 (3) 

S(1)–Zr–S(2) 115.12 (2) C(30)–C(31)–N 118.0 (2) 

* T(1) and T(2) represent the centroids of both Cptt ligands. 

The high yield synthesis of complex 4 allowed us 
attempting some reactivity with complexes based on late 
transition metals. In principle, the coordination mode of the 
pyridine ligand to zirconium in 4 could have an effect in its 
reactivity towards metallic fragments, since there are no 
coordination sites available. However, reactions with naked 
metallic ions could lead to a structural reorganization which 
could form metallomacrocycles, as it was reported earlier in 
the reaction of the tetranuclear [Rh4(-pyS2)2(cod)4]

[20]
 in its 

reaction with thallium salts, producing a metallomacrocycle 
in which the thallium center is coordinated through the 
nitrogen pyridine atoms.

[26]
 Disappointingly, the result of the 

reaction of 4 with TlPF6 (or TlCF3SO3) led to the isolation 
of insoluble solids, which were not further characterized. On 
the contrary, treatment of complex 4 with the solvate 
complex [Rh(cod)(Me2CO)][BF4] in a 1:1 molar ratio 
formed the aforementioned tetranuclear complex [Rh4(-
pyS2)2(cod)4], which was identified by comparison of their 
NMR spectra. Additionally, a fraction of colorless crystals 
were obtained as a sub-product. The 

1
H NMR spectrum of 

the crystals showed a pattern characteristic of the moiety 
“Cp

tt
2Zr”. Additionally, spectrometric measurements 

showed two intense peaks at m/z: 483 and 463 
corresponding to the molecular ions [Cp

tt
2ZrF2]

+
 and 

[Cp
tt

2ZrF]
+
, respectively, an information that indicates that 

the “Cp
tt

2Zr” fragments resulting from the ligand transfer to 
rhodium most probably abstract fluorine atoms from the 
BF4

–
 anion. 

The formation of ELHB complexes usually competes with 
transfer processes of ligands with intrinsic ability to act as 
bridges within late metal centres,

[27]
 a situation particularly 

observed in the case of thiolate-based ligands. As a matter of 
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fact, ligand transfer reactions from thiolate titanocene and 
zircocene complexes have been used to prepare the 
corresponding late transition metal thiolate complexes of 
Co,

[28]
 Rh,

[10a,29]
 Pd

[30]
 and Pt.

[31]
  

Conclusions 

We have prepared some mononuclear titanium and 
zirconium complexes functionalized with pyridine-based 
bifunctional ligands. The metathetical approach starting 
from [Cp2TiCl2] and pyO

–
 salts allowed preparing a titanium 

complex functionalized with two pyridonate ligands. On the 
other hand, the use of the zirconium complex [Cp

tt
2ZrMe2] 

allowed applying a different synthetic strategy based on the 
ability of the methyl groups to be protonated with acidic 
ligands. In this way, methanol and 2-hydroxopyridine 
protonated only one of the methyl groups in [Cp

tt
2ZrMe2] 

affording the corresponding alkoxo methyl complexes. The 
use of 2,6-dimercaptipyridine allowed protonating both 
methyl ligands in [Cp

tt
2ZrMe2] forming a mononuclear 

complex with the 2,6-pyridinedithiolate ligand exhibiting an 
unusual S,S,N tridentate coordination mode. 

Experimental Section 

All manipulations were performed under a dry argon atmosphere 

using Schlenk-tube techniques. Solvents were dried by standard 

methods and distilled under argon immediately prior to use. 

Carbon and hydrogen analyses were performed in a Perkin-Elmer 

2400 microanalyzer. Mass spectra were recorded in a VG Autospec 

double-focusing mass spectrometer operating in the FAB+ mode. 

Ions were produced with the standard Cs+ gun at ca. 30 kV; 3-

nitrobenzyl alcohol (NBA) was used as matrix. 1H, 13C{1H}, and 
31P{1H} spectra were recorded on Varian UNITY, Bruker ARX 

300, and Varian Gemini 300 spectrometers operating at 299.95, 

75.47 and 121.49 MHz; 300.13, 75.47 and 121.49 MHz; and 

300.08, 75.46 and 121.47 MHz, respectively. Chemical shifts are 

reported in ppm and referenced to Me4Si using the signal of the 

deuterated solvent (1H and 13C) as external references. Complex 

[Cptt
2ZrMe2]

[32] and compound py(SH)2
[19] were prepared 

according to published procedures. The compounds [Cp2MCl2] (M = 

Ti, Zr) were purchased from Aldrich and used as received. 

Preparation of [Cp2Ti(Opy)2] (1). Method (a): To a solution of 

pyOH (0.39 g, 4.02 mmol) in thf (20 mL), NEt3 (0.56 ml, 4.036 

mmol) was added via syringe. After stirring the solution for 5 min., 

solid [Cp2TiCl2] (0.50 g, 2.01 mmol) was added. The resulting 

mixture turned orange gradually and a white solid precipitated 

(HNEt3Cl). After 16 h of stirring, the orange solution was filtered 

through a cannula, and then the solvent was evaporated under 

vacuum, rendering an oily material. This was washed with hexanes, 

affording an orange solid, which was then vacuum-dried. Yield: 

0.52 g (70%). Method (b): To a solution of pyOH (0.17 g, 1.69 

mmol) in thf (10 mL) at 0 ºC, nBuLi (1.1 mL, 1.6 M in hexane, 

1.76 mmol) was added via syringe, forming a pale yellow solution. 

Further addition of solid of [Cp2TiCl2] (0.20 g, 0.80 mmol) formed 

a dark brown solution that was stirred for 2 h from which a yellow 

solid crystallized out. This was isolated by filtration, washed with 

diethyl ether and then vacuum-dried. Yield: 0.09 g (30%).  

 

 

 

 

 

 

 
1H NMR (C6D6, 293 K):  8.15 (m, 2H), 7.48 (m, 2H), 6.70 (m, 

2H), 6.60 (m, 2H) (pyO), 6.41 (s, 10H, Cptt). EI(+, CH2Cl2): m/z 

(%): 301 (M+–Cp, 24), 272 (M+–pyO, 42), 207 (M+–Cp–pyO, 75), 

142 (M+–2 Cp–pyO, 6), 113 (M+–Cptt–2 pyO, 6). Anal. Calcd for 

C20H18N2O2Ti: C, 65.58; H, 4.95; N, 7.65. Found: C, 65.49; H, 

4.82; N, 7.58. 

Preparation of [Cptt
2ZrMe(OMe)] (2). To a yellowish solution of 

[Cptt
2ZrMe2] (0.05 g, 0.11 mmol) in hexane (5 mL), CH3OH (93 

µL, 1.05 mmol, 10 equiv) was added via microsyringe. The 

solution was heated at 60 oC for 30 min to give a cloudy solution. 

The solvent was removed under vacuum to give a microcrystalline 

white powder. 

 

 

 

 

 

 
1H NMR (CDCl3, 293 K):  6.14 (t, 2H, JH–H = 2.4 Hz), 5.63 (t, 2H, 

JH–H = 2.7 Hz), 5.53 (t, 2H, JH–H = 2.4 Hz) (Cptt), 3.64 (s, 3H, OMe), 

1.19 (s, 18H, tBu), 1.18 (s, 18H, tBu), 0.01 (s, 3H, Me). 13C{1H} 

RMN (CDCl3, 293 K):  138.1, 137.0 (C1 and C3), 112.2 (C2), 

102.7, 100.8 (C4 and C5), 61.3 (OMe), 33.2, 32.7 (CMe3), 31.3, 

30.9 (CMe3), 19.3 (Zr–Me). 

Preparation of [Cptt
2ZrMe(Opy)] (3). Complex [Cptt

2ZrMe2] 

(0.20 g, 0.42 mmol) and pyOH (0.412 g, 0.420 mmol) were 

dissolved in toluene (15 mL) and the solution was transferred to a 

Kontes tube. The mixture was stirred for 5 h at 85 ºC and the 

resulting solution was allowed to reach room temperature. The 

solvent was removed under vacuum affording a colorless oil, 

which solidified after two days at 4 oC. Yield: 0.21 g (92%). 
 

 

 

 

 

 

 

 
1H NMR (C6D6, 293 K):  8.04 (m, 1H), 7.15 (m, 1 H), 6.42 (t, 2H, 

JH–H = 2.52 Hz), 6.33 (m, 1H), 6.28 (m, 1H), 6.00 (t, 2H, JH–H = 

2.98 Hz), 5.80 (t, 2H, JH–H = 2.75 Hz), 1.40 (s, 18H, tBu), 1.30 (s, 

18H, tBu), 0.75 (s, 3H, Me). 13C{1H} RMN (C6D6, 293 K):  172.3 

(s, N-C6-O), 146.7 (s, C10-N), 139.4 (s, CH pyO), 138.6, 138.4 (C1 

and C3), 112.8, 112.4 (s, CH pyO), 114.4, 103.6, 102.6 (C2, C4, C5), 

33.7, 33.3 (C(Me3)), 31.4, 31.3 (CMe3), 27.3 (s, Zr–Me). (FAB+, 

THF): m/z (%): 538 (M+–CH3, 17), 443 (M+–CH3–pyO, 35). 
Preparation of [Cptt

2Zr(pyS2)] (4). To a solution of complex 

[Cptt
2ZrMe2] (0.30 g, 0.63 mmol) in toluene (20 mL), solid 

py(SH)2 (0.09 g, 0.63 mmol) was added, giving a yellow solution 

which was stirred for 30 min. At this point the solvent was 

removed under vacuum yielding an oily residue. This was washed 

with hexane, which afforded a yellow solid which was isolated by 

filtration and then it was vacuum-dried. Yield: 0.30 g (82%). 
 

 

 

 

 

 

 
1H NMR (C6D6, 293 K):  7.07 (t, 2H, 4JH–H = 2.5 Hz, Cptt), 7.01 (t, 

1H, 3JH–H = 7.8 Hz, Hp pyS2), 6.21 (d, 2H, 3JH–H = 8.0 Hz, Ho pyS2), 
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5.99 (d, 4H, 4JH–H = 2.5 Hz, Cptt), 1.12 (s, 36H, tBu). 13C{1H} 

RMN (CDCl3, 293 K):  172.7 (s, C–S pyS2), 138.8 (s, Cptt), 120.5 

(s, pyS2), 115.5 (s, Cptt), 105.9 (s, pyS2), 104.2 (s, Cptt), 339 (s, 

CMe3), 31.1 (s, CMe3). Anal. Calcd for C31H45NS2Zr: C, 63.43; H, 

7.33; N, 2.39. Found: C, 63.28; H, 7.55; N, 2.28. 

 

Crystal Structure Determination of Complex [Cptt
2Zr(pyS2)] 

(4). Single crystals for the X-ray diffraction study were grown from 

a saturated solution of 4 in hexane at –15 oC. X-ray diffraction data 

were collected at 173(2) K with graphite monochromated Mo K 

radiation ( = 0.71073 Å), using narrow  rotation (0.3º) on a 

Bruker SMART APEX CCD diffractometer. Intensities were 

integrated and corrected for absorption effects with the SAINT-

PLUS program.33 The structure was solved by direct methods with 

SHELXS-97.34 Refinement, by full matrix least squares on F2, was 

performed with SHELXL-97.35 All atoms were refined first with 

isotropic and then with anisotropic displacement parameters. 

Hydrogen atoms were included from observed positions and 

refined as free isotropic atoms. 

Crystal data: C31H45NS2Zr, M = 587.02 g·mol-1; yellow irregular 

block, 0.366 × 0.275 × 0.250 mm3; monoclinic, P21/c; a = 

15.1041(12), b = 10.2311(8), c = 19.3472 (15) Å;  = 

99.1460(10)º; Z = 4; V = 2951.7(4) Å3; calc = 1.321 Mg·m-3;  = 

0.534 mm-1, min. and max. absorption correction factors 0.600 and 

0.906; 2max = 57.53º; 19016 collected reflections, 7009 unique 

(Rint = 0.039); number of data/restrains/parameters 7009/0/496; 

final GOF 0.921; R1 = 0.0397 (5366 reflections, I > 2(I)); wR2 = 

0.0777 for all data; largest difference peak 0.742 e/Å3. 

Crystallographic data (including structure factors) for the structure 

in this paper have been deposited with the Cambridge 

Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge 

CB21EZ, UK. Copies of the data can be obtained free of charge on 

quoting the depository number CCDC-1408667 (Fax: +44-1223-

336-033; e-mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam. 

ac.uk). 
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