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Abstract: Magnetic materials with strong spin-lattice coupling are a powerful set of 

candidates for multifunctional applications because of their multiferroic, magnetocaloric 

(MCE), magnetostrictive and magnetoresistive effects. In these materials there is a strong 

competition between two states (where a state comprises an atomic and an associated 

magnetic structure) that leads to the occurrence of phase transitions under subtle variations 

of external parameters, such as temperature, magnetic field and hydrostatic pressure. In this 

review a general method combining detailed magnetic measurements/analysis and first 
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principles calculations with the purpose of estimating the phase transition temperature is 

presented with the help of two examples (Gd5Si2Ge2 and Tb5Si2Ge2). It is demonstrated 

that such method is an important tool for a deeper understanding of the (de)coupled nature 

of each phase transition in the materials belonging to the R5(Si,Ge)4 family and most possibly 

can be applied to other systems. The exotic Griffiths-like phase in the framework of the 

R5(SixGe1-x)4 compounds is reviewed and its generalization as a requisite for strong phase 

competitions systems that present large magneto-responsive properties is proposed. 

Keywords: entropy; phase transitions; magnetocaloric effect 

PACS Codes: 65.40.gd; 75.30.Kz; 75.30.Sg 

 

1. Introduction 

Back in the 1980s, the simultaneous discovery of the “ozone hole” in the stratosphere and of the 

influence of the emission of CFC gases, widely used in every refrigeration system at that time, in the 

thinning of the ozone layer triggered the search for alternative refrigeration technologies in order to 

replace the gas-compression technology [1]. The thermoelectric and thermomagnetic technologies are 

ahead in this race. Here only the latter one will be discussed and in particular the nature of the effect 

behind this technology—the magnetocaloric effect (MCE). The MCE was first observed in the 1840s, 

when Joule observed a temperature variation in a sample of pure iron as it was subjected to a magnetic 

field change [2]. It was understood on the basis of thermodynamics by Weiss and Piccard in 1917 [2]. 

At that time it became clear that the MCE is a phenomenon occurring in all magnetic materials when 

subjected to magnetic field variations, originating from the energy/entropy exchange between the 

magnetic and atomic lattice reservoirs. Through the fundamental Maxwell relations, the MCE can be 

expressed as the adiabatic temperature (ΔTad) and the isothermal magnetic entropy ( m
isoS ) variation 

that a magnetic material undergoes when varying an external magnetic field [3]: 
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where T is the temperature of the material, ΔH = H1 − H0 is the magnetic field variation, C is the heat 

capacity and M the magnetization. Hence, in order to maximize ΔT and ΔS, one important parameter 

to consider is the magnetization variation as a function of temperature: this means that the MCE 

reaches its maximum at the magnetic transition temperatures (the Curie temperature TC, or the Néel 

temperature TN) for all magnetic materials and consequently the operational temperature range of each 

material is delimited by a small interval close to its magnetic transition temperature. Furthermore, the 

MCE maximization depends strongly on the value of the magnetization derivative with respect to 

temperature ∂M/∂T, which is specific for each material and depends on the order of the associated 

phase transition. 
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Still in the 1930s, Giauque understood that he could make use of the large magnetization change at 

low temperatures of a paramagnetic salt (particularly gadolinium sulphate) to reach sub-Kelvin 

temperatures for the first time [4] and for a long time magnetic refrigeration was only considered for 

low temperature applications. Forty years later, in 1973, Brown [5] used gadolinium (which has a TC 

around 295 K) to design a magnetic refrigerator capable of operating at room temperature [6,7]. However, 

the real drive towards room temperature magnetic refrigeration occurred with the aforementioned events 

during the 1980s [1]. Finally, in 1997, Pecharsky and Gschneidner discovered the reversible giant 

magnetocaloric effect (GMCE) in the compound Gd5Si2Ge2 [8], renewing the optimism in this technology 

and attracting the attention of materials scientists from different areas to its study. They indirectly measured 

an entropy change of 18 J Kg−1 K−1 at 278 K for a field change of 0–5 T [8]. Later, Morellon and  

co-workers [9] discovered that the origin of such a giant effect is the simultaneous magnetic and 

structural (magnetostructural) transition that Gd5Si2Ge2 undergoes at 278 K and that can also be 

triggered by the application of a magnetic field. The magnetostructural transition ensures a first-order 

nature of the magnetic transition and it is the reason for the giant ∂M/∂T value and consequently for the 

maximization of ΔSm. Moreover, since a magnetostructural transition occurs, it is important to consider the 

additional entropy change contribution due to the structural transition, ΔSstr [10]. Since ΔSm accounts for 

the purely magnetic driven processes, the total entropy variation is: ΔSt = ΔSm + ΔSstr. Because of the 

reasons mentioned above it became clear that first-order magnetostructural transitions are a 

requirement for the GMCE, and very rapidly several materials were found that fulfill this requirement, 

such as NiMnGa [11]; NiMnInCo [12]; MnCoGeB [13], MnFePGe [14] and MnAs [15]. There are other 

materials presenting GMCE, that do not exhibit any structural transition (in the sense that their symmetry 

group does not change), yet still undergo large simultaneous changes in their unit cell volume and in their 

magnetization, as for instance La(FeSi)13 [16], La(FeSi)13H [17] and LaCaMnO3 [18]. It was found that 

materials undergoing magnetostructural/magnetovolume transitions provide other giant magneto-

responsive properties with technological interest besides the giant magnetocaloric effect, such as giant 

magnetostriction [19] and magnetoresistance [20]. It is important to remark that for these materials the 

magnetostriction is not a consequence of the reorientation of magnetic domains, as in the classical 

sense of magnetostriction, but instead it is a result of the structural transition induced by a magnetic 

field, which gives rise to sharp changes in the lattice parameters and consequently to macroscopic 

shape and/or volume changes of the material. 

Thus, magnetostructural transitions have been attracting an increasing number of scientists, from 

both experimental and theoretical backgrounds, due to the multifunctionality arising from these effects. 

In systems exhibiting magnetostructural transitions there is a strong competition between the magnetic 

and crystallographic degrees of freedom involved in the transition, which is very sensitive to extrinsic 

parameters—such as temperature, magnetic field, pressure—and intrinsic properties—disorder (chemical 

and strain) and microstructure [1,21–24]. It is very difficult to theoretically predict the influence of 

intrinsic properties, but the effect of external parameters, such as magnetic field and temperature, can 

be predicted. In 2006, Paudyal and co-workers [25] developed a pioneering work based on the 

fundamental thermodynamic equations and on results from first principles calculations, which allowed 

the theoretical estimation of the temperature dependencies of several magnetic properties (including 

the MCE) of the Gd5Si2Ge2 compound. They were able to plot the free energies of both structures in 

competition as a function of temperature and from the behavior of these curves they were able to 



Entropy 2014, 16 3816 

 

 

estimate whether there is a magnetostructural transition, as well as the temperature at which it occurs. 

Recently, the same approach was extended to the Tb5(Si,Ge)4 system allowing a better understanding 

on the (de)coupled nature of the magnetic and structural transitions [26,27]. Moreover, first principles 

calculations have also shown to be a fundamental tool to understand the correlation between electronic 

and magnetic interactions within the unit cell of the R5(Si,Ge)4compounds [26,28]. 

It is noteworthy that whether there is a magnetostructural transition or not is a critical feature both 

from the scientific point of view, in order to understand the origins of such large magnetic responses 

such as the magnetocaloric, magnetoresistive and magnetostrictive effects, but also technologically, 

since the occurrence of a magnetostructural transition promotes a giant enhancement on the magnitude 

of all these effects and specially the MCE. This statement is very patent in the Gschneidner and  

co-workers report were they show that ΔSstr can account for more than half of the total entropy 

variation for applied magnetic fields below 2 T in Gd5(Si,Ge)4 compounds and its contribution can be 

even higher for other compounds. This means that for materials where no magnetostructural transition 

is observed, in principle it should be possible to greatly optimize their MCE through the strengthening 

of their magnetic and structural coupling. Simultaneously, it also means that for materials where a 

magnetostructural transition is observed, the path to optimize their MCE should not be focused in 

increasing their magnetic and structural coupling. 

In this review we will focus on the nature of a first order magnetic transition from the point of view 

of a competition between two crystallographic phases. The thermodynamic framework will be 

introduced in combination with first principles calculations. Afterwards we will discuss the importance 

of knowing the magnetic transition temperatures of both phases involved and a general method to 

estimate their values through simple experimental measurements. The practical cases of Gd5Si2Ge2 and 

Tb5Si2Ge2 will be presented to explain the (de)coupling of the magnetic and structural phase transitions in 

both compounds. By incorporating the aforementioned external parameters, the plots of the free energy 

as a function of temperature will be presented and the effect of an applied magnetic field will be 

discussed. Finally, the correlation between this phase competition and one exotic phenomenon—the 

Griffiths-like phase—will also be discussed and presented as a fingerprint of systems with strong 

competition between phases. 

2. Thermodynamics of First Order Phase Transitions 

2.1. General Approach 

According to the Ehrenfest classification, a first order phase transition must exhibit a discontinuity 

in the entropy variation and in the order parameter which arises from a crossover between two free 

energies, resulting in two distinct states: a low temperature (LT) and a high temperature (HT) state. It 

is the change between these two states that leads to the discontinuity of the entropy and the 

maximization of the entropy variation, leading to a giant magnetocaloric effect in the case of magnetic 

materials. Besides temperature, it is crucial that the application/removal of the external parameters 

(pressure, magnetic field, etc.) can be made near the phase transition region to be able to modify the 

system. To understand this process thermodynamically, let us consider the free energy for a simple 

magnetic material [25]: 
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where σ is the reduced magnetization, the first term (Ulattice) is the non-magnetic internal energy at  

T = 0 K, the second term is the interaction energy between a localized magnetic moment J and the 

applied magnetic field H (Zeeman term), the third one is the magnetic ion-ion exchange interaction 

energy and the last two terms are the entropic contributions (magnetic and lattice, respectively) to the 

system’s free energy.  

With the help of first principles calculations, one can estimate the free energy of any structure and, 

in particular, of any two structures (say 1 and 2) involved in a structural transition 1→2 (where 1 and 2 

correspond to the HT and LT magnetization states, respectively): ΔF = F[1] − F[2]. This will be equal 

to the difference between the Ulattice of both structures at T = 0 K and H = 0 T, which are estimated 

from first principles calculations. Considering the mean field theory, the magnetic entropy per 

magnetic ion (SM) for a general J can be estimated from:  
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where 1
JB is the inverse Brillouin function. The magnetic equation of state (σ(T,H)) can be obtained 

by finding the zero of the derivative of Equation (3) with respect to σ [leading to σ = σ(T,H)], which 

corresponds to the condition of minimum free energy. This minimum free energy is then given by 

Fmin(T,H) = F(T, σ(T,H)). From Equation (3) one can see that the free energy difference between 

structures 1 and 2 arises from a) the non-magnetic contribution (Flattice= Ulattice − TSlattice) and b) from 

the exchange and magnetic entropy terms (2nd, 3rd and 4th terms in Equation (3)), given the 

hypothetically different TC of the two structures. Therefore it becomes critically important to know the 

TC of each structure involved in order to be able to plot the free energies of both structures as a 

function of temperature. Such a plot will allow one to understand whether or not there is a structural 

transition occurring and, if so, at what temperature it should occur. The first obstacle in this 
approximation is the determination of the magnetic ordering temperatures ( 1

CT  and 2
CT ) of both 

structures involved in a phase transition.  

2.2. How to Inspect the “Hidden” Magnetic Ordering Temperatures 

In standard materials exhibiting second-order magnetic transitions, their magnetic long range 

ordering sets in at a temperature that can be easily assessed by measuring their magnetization as a 

function of temperature at constant magnetic field, analysing its derivative and signalling the 

temperature at which a maximum/minimum occurs. Unfortunately, such a simple approach is not 

appropriate in systems presenting magnetostructural transitions, since in these systems the structural 

transition occurs somewhere in between TC
1 and TC

2, i.e., TC
1 < TS < TC

2. Let us consider the M(T) 

measurement on cooling of such an ideal system. Starting with a low magnetization value associated 

with the paramagnetic state of structure 1, there will be no significant changes on M(T) when cooling 

through TC
2. Then, when T = TS, a sharp increase towards a much higher magnetization value will be 
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observed, which is already associated with the ferromagnetic behavior of structure 2. While continuing 

on cooling down the system, no major change will be observed in the M(T) curve, not even when 

crossing the lower Curie temperature of structure 1, TC
1, because the system is already transformed 

into the structure 2. In conclusion, the TC
1 and TC

2 will be invisible to the M(T) measurement and that 

is why we have to figure out an alternative method to estimate TC
1 and TC

2. 

In order to be direct and clear, two practical examples will be considered. Both are materials 

presenting giant magnetocaloric effect: Gd5Si2Ge2—with a simultaneous magnetic and structural 

transition—and Tb5Si2Ge2—presenting non-simultaneous magnetic and structural transitions. 

Particularly for these two materials, the structures 1 and 2 mentioned above correspond to the 

monoclinic (M) and orthorhombic [O(I)] structures, whereas the two magnetic states considered are 

paramagnetic (PM) and ferromagnetic (FM). The remaining relevant information is summarized  

in Table 1. 

Table 1. Relevant information about Tb5Si2Ge2 and Gd5Si2Ge2 compounds. 

 Tb5Si2Ge2 Gd5Si2Ge2 

Simultaneous transition × √ 
Structure 1/2 M/O(I) M/O(I) 

Curie temperatures, Tc (K) 112/200 [27,29] 208/305 [25,27] 
Structural transition temperature, TS(K) 95 [29] 270 [30,31] 

Although these compounds were already thoroughly studied [8,23,32,33], in order to exemplify the 

broad range of application of this procedure, we will only take into account the fact that both materials 

undergo structural transitions under temperature and/or magnetic field changes. We will also assume 

that for both structures involved, the FM state is the most stable at low temperatures. Hence, with these 

assumptions, there are four different possible states: [M;PMM], [M;FMM], [O(I);PMO(I)] and 

[O(I);FMO(I)] at any temperature and field value. Now, let us consider that the temperature of the 

material (Tb5Si2Ge2 or Gd5Si2Ge2) is slightly above its structural transition temperature TS, where the 

material stabilizes at its [M;PMM] state. At this temperature it is possible to induce the 

magnetostructural transition, i.e., the transition from the [M;PMM] state to the [O(I);FMO(I)] state 

through the application of a strong enough magnetic field (critical field, HC). Hence, for high magnetic 

fields (H > HC) it is possible to inspect the magnetic behavior of the O(I) structure, even at T > TS.  

In fact, as expected, the critical field HC depends on the temperature of the material and  

conversely the structural transition temperature TS depends on the applied magnetic field intensity: 

TS(H) ≠ TS ≡ TS(H = 0). Experimentally, such behavior can be more clearly understood in the 

isothermal magnetization curves as a function of applied field for several different temperatures (below 

and above TS). Two clearly distinct types of curves will be obtained: for T < TS isotherms, a typical 

FM steep increase in the magnetization up to the saturation field is observed, whereas for T > TS the 

magnetization exhibits two regimes: a low magnetization (LM) state at low fields undergoes a sharp 

metamagnetic transition into a high magnetization (HM) state at H > HC as a consequence of the very 

different magnetic susceptibilities of structures M and O(I). The data are then represented in the form 

of Arrott plots [34]—H/M as a function of M2-, as can be seen in Figures 1a,b for Gd5Si2Ge2 and 
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Tb5Si2Ge2, respectively. This representation is based on the Landau theory of phase transitions and 

follows from the magnetic state equation [34]: 

2)( BMTT
M

H
C   (5)

Figure 1. Arrott plots for Gd5Si2Ge2 (a) in the temperature range 77–350 K; Inset: T = 300 K, 

and for Tb5Si2Ge2 (b) in the temperature range of 77–305 K; Inset: T = 124 K. 

 

From this expression one recognizes that when plotting the data in the H/M vs. M2 representation, 

linear curves are expected, intercepting the positive y-axis when T > TC (in the PM state) and the 

positive x-axis when T < TC (in the FM state). In this representation, the critical isotherm (T = TC) is a 

straight line that goes through the origin. The intercept with the positive y-axis, α(T-TC), is the inverse 

susceptibility χ−1(T). Let us consider the Gd5Si2Ge2 case. As can be seen in Figure 1a, the curves in the 

green region exhibit two different linear regimes. This is a signature that they belong to the  

TS(H) > T >TS(H = 0) temperature range, where the magnetic field applied is able to induce the 

structural transition [M,PMM]→[O(I),FMO(I)]. M has lower magnetic susceptibility (smoother slope) 

than the O(I) structure (steeper slope) (inset of Figure 1a). Now, the squared spontaneous 

magnetization   IOM S
2  of the O(I) structure (or HM state) can be estimated as the interception of the 

linear extrapolation of the high field magnetization data with the abscissa axis at a fixed temperature. 

In the white region—T < Ts temperature range—only one linear regime is observed because the system 

is already in the [O(I), FMO(I)] state. By following the same procedure, the   IOM S
2  values at lower 

temperatures are estimated. By combining the   IOM S
2  values obtained for T < TS and for T > TS, it 

is possible to plot 2
sM  [O(I)] as a function of temperature as depicted in Figure 2a (blue dots). 

Simultaneously, the inverse paramagnetic susceptibility of the M structure (LM state) can also be 

determined from the low field isothermal curves (T > Ts) and their intercept with the positive y-axis, 

yielding χ−1[M](T), which is also displayed in Figure 2a) (red dots). Finally, by fitting the 2
sM

[O(I)](T) and the χ−1[M](T) curves with Brillouin and linear functions, respectively, it is possible to 

estimate the Curie temperatures of both M and O(I) phases. In this example the fits result in the 

following critical temperatures for O(I) and M structures: )(IO
CT  ~ 308 K and M

CT  ~ 251 K, in 

accordance with previous results [25,27,35,36] 
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The Arrott plots for Tb5Si2Ge2 are shown in Figure 1b. As in the Gd5Si2Ge2 plots, the green area 

highlights the temperature range where the magnetic field is able to induce the M to O(I) phase 

transition. At T = 124 K (inset of Figure 1b), the behavior of the curves signals the magnetostructural 

transition from the LM [M, PMM] to the HM [O(I), FMO(I)] state. Following the same procedure as in 

the Gd5Si2Ge2 case, the data analysis allows extracting the temperature dependence of both the inverse 

paramagnetic susceptibility of the M structure (red dots in Figure 2b) and the spontaneous 

magnetization of the O(I) structure (blue dots in Figure 2b). Again, by fitting these data, the extracted 

values are: )(IO
CT  ~ 200 K and M

CT  ~ 112 K, where the latter one is coincident with the TC ~ 112 K 

obtained from the maximum derivative of the experimentally measured M(T) curves [29].  

Figure 2. Spontaneous magnetization (blue dots) and reciprocal susceptibility (red dots) 

curves of: (a) Gd5Si2Ge2 and (b) Tb5Si2Ge2, obtained from the Arrott plots. The dark green 

dotted lines are the Brillouin fits to the spontaneous magnetization of the O(I) structure for 

each compound which enable the estimation of their TC: )(IO
CT  = 308 K for Gd5Si2Ge2 and 

)(IO
CT  = 200 K for Tb5Si2Ge2. The red dashed lines are the linear fits to the reciprocal 

susceptibility data, which allowed estimating the TC
M for each compound: M

CT  = 251 K for 

Gd5Si2Ge2 and M
CT  = 112 K for Tb5Si2Ge2, whereas the purple dotted lines represent the 

Brillouin curves assuming the obtained M
CT . The gray zones represent the FM regions and 

their boundaries (represented by the light-green curves) schematically represent the 

experimentally measured M(T) curves. Insets: temperature dependence of the critical 

magnetic fields (HC(T)) obtained from the maximum of dM/dH. 

In summary, the general procedure to extract the “hidden” magnetic ordering temperatures of 

structures 1 and 2 is as follows: 

(1) Measure the magnetization as a function of magnetic field for several temperatures in the range 

where TS is expected (a broader interval will provide more points and hence more accurate fits), 

ensuring that for some isotherms the field is strong enough to induce the metamagnetic transition; 

(2) Replot the data in the Arrott form (H/M as a function of M2) and identify the two different 

linear regimes associated with LM (1) and HM (2) states for T > TS; 
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(3) Perform linear fits to these two different regimes and estimate their interceptions with the 

positive y-axis (for the LM state) and with the positive x-axis (for the HM state) in order to 

extract, respectively, the inverse susceptibility of the LM (1) state—χ−1(LM)—and the squared 

spontaneous magnetization of the HM (2) phase—M2
S (HM).; 

(4) Plot χ−1(1) and 2
sM  (2) as a function of temperature; 

(5) Through linear and Brillouin fits to these curves, the magnetic ordering temperatures of both 1 

and 2 structures are extracted. 

To the best of our knowledge, this procedure has only been applied to the R5(Si,Ge)4 family of 

compounds. However, it could be useful for studying several other materials displaying magnetic  

field-induced structural transitions, hence with extremely sensitive magneto-responsive properties that 

are attractive for technological applications. Examples of such materials are the multifunctional 

magnetic shape memory alloy Ni55Mn20Ga25 [11], the MnNiFeGe family [12], MnCoGeB [13], 

MnFePGe [14], and the materials undergoing giant volume changes within the same crystallographic 

structure: La-Fe-Si [16] and LaCaMnO3 [18]. 

2.3. Free Energy Crossings of Real Systems 

Once the TC of both structures is estimated from the Arrott plots using the method described above, 

their free energies can be calculated as a function of temperature. Then, the temperature at which the 

free energy curves of both structures intersect will define the structural transition temperature TS. As a 

first approximation, we neglect the lattice entropy term and consider the magnetic contribution to the 

free energy in Equation (3), as well as the result of first principles calculations that yields 
latticelattice UKTF  )0(min  (the first term in Equation (3)). In order to normalize the energy range to zero, 

the value of the free energy at 0 K of structure 2 is subtracted from the free energy latticeFmin  of both 

structures, resulting in:      2)0(2,1)(2,1)( minminmin KTFTFTF lattice  . Let us start with a zero 

magnetic field, meaning that the second term in Equation 3 is also zero. The temperature dependence 

of the magnetic free energies ΔFmin[1] and ΔFmin[2] (that start at zero because of the subtraction 

mentioned above) are represented for the two examples Gd5Si2Ge2 and Tb5Si2Ge2 in Figures 3a,b, 

respectively. We recall that structure 1 corresponds to the monoclinic (M) crystallographic phase and 

structure 2 corresponds to orthorhombic O(I) phase. The first principles calculations were performed 

using Wien2K code, via the augmented plane wave method with local orbitals (APW + lo) and using 

the local spin-density approximation method allowing a correct estimation of the free energies of the 

M and O(I) phase at T = 0 K. 
It can be clearly seen that in both cases there is an intersection of the ΔFmin[O(I)] and ΔFmin[M] 

curves at a temperature T = TS, i.e., the structural transition temperature for each system. In the 

Gd5Si2Ge2 case (Figure 3a), TS ~ 265 K lies right between the two magnetic transition temperatures, 

TC
M < TS < TC°(I), which means that upon cooling the system undergoes simultaneously a  

magnetic—paramagnetic to ferromagnetic [PMM]→[FMO(I)]—and a structural transition from a 

monoclinic to an orthorhombic O(I) structure [M]→[O(I)]. It is worth noting that, magnetically, the 

system goes from the monoclinic paramagnetic state to the orthorhombic ferromagnetic state, i.e., there 

is a large discontinuity on both the atomic and lattice parameters and the magnetization values and 

these two transitions are coupled, meaning that a magnetostructural transition [M, PMM]→[O(I), 
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FMO(I)] takes place. In the case of Tb5Si2Ge2, TS < TC
M < TC

O(I), meaning that on cooling the system 

first undergoes the [PMM]→[FMM] magnetic transition at TC
M ~ 112 K, closely followed by the 

M→O(I) structural transition a few kelvins below, at TS ~ 95 K, i.e., the two transitions are decoupled. 

In contrast with Gd5Si2Ge2, here the magnetic transition is from the PM to the FM state of the 

monoclinic structure. The TS values estimated with this theoretical model corroborate the values 

obtained from experimental measurements (particularly X-ray diffraction as a function of temperature) 

for these two compounds [29,30]. This demonstrates that such theoretical procedure can predict 

structural transition temperatures and their coupled/decoupled nature. As mentioned in the introduction 

section, this information is of key importance, since it allows evaluating the potential of the material 

regarding the optimization of its MCE. In particular, from the results of the two cases presented here it 

becomes clear that: (1) the MCE in Tb5Si2Ge2 can still be greatly increased, whereas (2) Gd5Si2Ge2 

MCE cannot be improved much further by the further enhancement of its magnetic and structural 

coupling. Two of the most common ways to enhance this coupling is by applying pressure and by 

alloying. So far, our predictions have been confirmed by several works: concerning: (1), an MCE 

enhancement of more than 40% was reported by promoting the fully coupled magnetic and structural 

transitions, both by alloying with Fe [37] and by applying pressure [24], whereas regarding (2),  

the MCE was not improved (in fact it was smaller) when the same alloying and pressure were  

applied [38,39]. 

Figure 3. Free energy as a function of temperature considering the magnetic entropy and 

the first principles calculations (Ulattice) for both M and O(I) structures in the (a) Gd5Si2Ge2 

and (b) Tb5Si2Ge2 materials. TS is defined as the temperature at which the crossing 

ΔFmin[M] = ΔFmin[O(I)] occurs. 

 

The )(IO
CS

M
C TTT   scenario, or more generally TC

1 < TS < TC
2, is more attractive from the 

magnetic entropy change maximization point of view. As previously discussed by Liu [40], Pecharsky, 

Gschneidner and co-workers [21,41], the magnetic entropy change peak ( mSmax ) will be higher for 

systems where simultaneously 12
CCC TTT   is maximized and TS is just slightly above 1

CT . In this 

scenario, the magnetization will jump (ΔM) from a nearly zero value to almost the maximum value of 

the magnetization of structure 2 (ΔM will be proportional to the difference SCCS TTT  2 ), hence 

maximizing the ∂M/∂T at TS and consequently the mSmax . 
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Now, let us turn on the magnetic field. As can be seen in Equation (3), the second term ( HgJ ) is 

always positive, but it is preceded by a minus sign. Therefore, the effect of a non-zero magnetic field is 

to lower the free energy. However, due to the different TC on each crystal structure (that critically 

influence the magnetization σ(TC)), the free energy of the structure with higher TC (O(I), in both 

materials) decreases more rapidly than the one with lower TC (M). In this way the application of a 

magnetic field tends to increase the temperature at which the free energy crossover occurs—i.e., where 

ΔFmin[O(I)] = ΔFmin[M]—as can be confirmed in Figure 4. Therefore, the structural transition 

temperature TS(H) is increased. This was confirmed experimentally and a linear dependence of the 

critical magnetic field as a function of temperature HC(T) was observed, as shown in the insets of 

Figure 2a,b. 

Figure 4. (a) Schematic free energy of M and O(I) structures as a function of temperature 

for the zero (upper pair of curves) and non-zero (lower pair of curves) magnetic field;  

(b) Lattice contribution to the free energy of M and O(I) structures of Gd5Si2Ge2 compound 

as a function of temperature. 

 

So far, the effect of Flattice = TSlattice was still not considered in this analysis. To analyze the 

contribution of the entropic lattice term, the Debye approximation is used. The entropy per ion is given 

by the following expression [40]: 
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where Θ is the (cut-off) Debye temperature. From this expression one can infer that the high temperature 

phase entropic contribution to the lattice free energy (−TSlattice) is lower for the structure with the lower Θ. 

In fact, the Debye temperature for the M phase is lower than of the O(I) phase. This can be confirmed 

from the relation 





 





V

V
IO

M

1
)(

, where  is the Grüneisen parameter (typically around 10 for 

Gd5Si2Ge2) and 
V

V
is the relative volume increase when the system goes through a O(I) to M structural 

change (typically ~1%). An estimation of ΘM considering the experimentally detected velocity of 
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sound in Gd5Si2Ge2 resulted in ΘM ~ 250 K [42] and consequently 







 



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V

V

M
IO

1

)( ~ 278 K. The 

lower Θ for the M phase was also experimentally confirmed in the case of Y5(SixGe1-x)4 system [43]. 

Furthermore, with the estimated Θ for each structure of Gd5Si2Ge2 (Θ
M and ΘO(I)) it is possible to plot 

the lattice contribution from each structure to the free energy. This is displayed in Figure 4b. It can be 

seen in this figure that at high temperature the entropic lattice contribution also tends to stabilize the M 

phase, as shown for the Y5(SixGe1-x)4 system in [44]. Therefore it is clear, at least for these two 

examples, that including the lattice contribution (Flattice = TSlattice) will not drastically affect the 

temperature dependence of the total free energy of each structure and, consequently, the main findings 

about the (de)coupled transition temperature discussed above. 
However, the entropy change associated with the structural transition (ΔSstr) cannot be ignored, as it 

plays a major role on the total entropy variation (ΔST) of the majority of the systems undergoing 

magnetic field-induced structural transitions. As Pecharsky and Gschneidner [41] noticed, the lattice 

contribution to the total entropy change, ΔSstr, varies from system to system because it depends on the 

entropy differences between both the initial and final structures. They also show that ΔSstr is 

proportional to the volume difference between the two structures. Two examples are given: ΔSstr is 

around 50% of ΔST for the Gd5Si2.09Ge1.91 compound and about 93% of ΔST for MnCoGeB0.2 under a 

magnetic field change of 5 T [41]. Furthermore, whereas the magnetic entropy change ( mSmax ) 

increases with H2/3 [45], the relation between ΔSstr and H is harder to unveil. However, for these two 

systems a magnetic field change of 5 T is enough to complete the structural transition and hence ΔSstr 

reaches its saturation value. 

3. Is the Griffiths-like Phase a Requisite for a Giant Magnetocaloric Effect? 

Together with the strong magneto-responsive properties, magnetic materials presenting strong 

coupling between structural and magnetic properties exhibit other exotic effects, such as the 

appearance of Griffiths-like phases. After the model proposed by Griffiths in the 1960s, the presence 

of Griffiths-like phases in several real materials has been recently reported [46]. In his model, Griffiths 

came upon with a diluted Ising ferromagnetic system with a well-defined magnetic ordering 

temperature TC which was obviously lower than the magnetic ordering temperature of the undiluted (or 

pure) ferromagnetic system (TG), i.e., TC < TG. He was able to show that for TC < T < TG it was 

possible that the reciprocal magnetic susceptibility of the system could deviate from its expected 

Curie-Weiss linear behavior. In fact, this deviation would start, on cooling, exactly at TG, as if the 

diluted system somehow “remembered” that its magnetic ordering temperature was TG “before” it 

became diluted [33]. Therefore, the concept of a Griffiths phase, also named Griffiths singularity, is 

based on the emergence of a new magnetic system within the paramagnetic matrix state, which 

evidences ferromagnetic short-range ordering [46–48]. Although these short-range clusters would not 

reveal themselves in the typical M(T) curves, they would be responsible for slight deviations from the 

linear behavior of the reciprocal magnetic susceptibility as a function of temperature.  
In the past few years several R5T4 compounds (R = rare earth: Gd, Tb, Dy, and Ho; T = group 14 

elements) have shown a Griffiths-like behavior [33,48–50]. Such phenomenon was firstly reported in 
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the Tb5Si2Ge2 compound, when it was associated with the experimentally observed deviation from the 

expected linearity (from Curie-Weiss law) of the 1 (T) curve in the paramagnetic region, T > TC [33].  

Later, different works, reported by Ouyang, Tian, Pereira and co-workers identified the Griffiths-like 

phase in other compounds of the R5T4 family [23,48–50]. All these compounds presented anomalies 

featuring their reciprocal susceptibility curve: a “stair-like” behavior occurring in an intermediate 

temperature region, TC < T < TG. Later on, our group has completed the phase diagrams of the 

R5(SixGe1-x) (R = Gd, Tb, Dy and Ho) compounds with their corresponding Griffiths-like phase [50]. It 

was observed that despite the different main temperatures along their composition for each R 

compound (TG, TC and TN), the phase diagrams were very similar in shape and two main conclusions 

could immediately be drawn: (1) the Griffiths singularity behavior appears only in the M and O(II) 

phases for compositions below a characteristic Si concentration that was defined as xp and (2) the O(II) 

structure is stabilized when the ratio GNC TT /, is ~ 0.5, regardless of the rare-earth element. The 

third and more general conclusion was reached when these diagrams were replotted as τ as a function 

of (x-xp) and the collapse of all four phase diagrams into a single curve was observed, as represented in 

Figure 5. The physical mechanism behind the appearance of the Griffiths-like phase is the same, 

regardless of the rare-earth element, and it is deeply associated with the Si/Ge ratio. In fact, the Ge 

substitution of Si makes a perfect analogy for the original undiluted/diluted system Griffiths idealized, 

i.e., when no Ge is present or its concentration is such that x > xp (xp will be defined below), the 

system stabilizes in the O(I) structure where all interslab bonds are formed. A good review on the 

particular structural features of this system is given by Miller [1]. In the O(I) structure there is a strong 

and collinear ferromagnetic state with the highest TC for each phase diagram—the system can be 

thought of as undiluted/pure. When the Ge substitution leads to a Si critical concentration (xp is 

defined as this Si concentration value) the interslab bonds start to break (it is hypothesized that it is 

when x = xp that the Ge atoms start substituting Si atoms at the interslab sites) and the O(II) or M 

structures become the most stable structures, with a simultaneous decrease in TC. In these conditions 

the system can be thought of as diluted. It is well-known from previous studies that the magnetism in 

these compounds exists from the competition of ferromagnetic (within each slab) and antiferromagnetic 

interactions (mostly between slabs). More accurately, at the interslab region, the main magnetic 

exchange mechanism is the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange. The RKKY magnetic 

exchange energy parameter JRKKY is a Bessel function which starts at a positive value (ferromagnetic 

interaction) but decays fast with increasing distance between the atomic moments, crossing zero and 

becoming negative (antiferromagnetic interaction) at a critical distance. Therefore, when Ge starts 

replacing Si at the interslab sites (at xp), and since it has a higher atomic radius, it promotes an increase 

in the distance between consecutive slabs. Because of the RKKY interaction, this leads to a decrease of 

the magnetic exchange energy and consequently to decrease in TC. When a critical Ge concentration 

limit, xC, is reached, the RKKY interaction becomes negative and hence the AFM state becomes the 

most stable one. The xC is the ferromagnetic percolation limit for these diluted systems, below which it 

is not possible to achieve long range ferromagnetic order. Finally, the complete analogy with the 

Griffiths diluted ferromagnetic system is schematized in Figure 5b.  

With this set of comprehensive works the extent of the Griffiths-like behavior on the R5(Si,Ge)4 

compounds is shown, highlighting their magnetic nature as that of a diluted ferromagnetic system 

where the Ge substitution is the dilution mechanism—and hence demonstrating why the R5(Si,Ge)4 are 
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an ideal case study for the Griffiths phase phenomenon. In addition it was found that in all the R5(Si,Ge)4 

materials presenting a Griffiths-like phase [Gd5(Si,Ge)4; Tb5(Si,Ge)4; Dy5(Si,Ge)4 and Ho5(Si,Ge)4], 

TG is systematically equal to the TC of the O(I) phase. This has led to the conclusion that in the 

R5(Si,Ge)4 compounds, the low temperature phase can easily be assessed through simple measurements 

of magnetization as a function of temperature at constant magnetic field. In summary, it can be stated 

that that the R5(Si,Ge)4 compounds exhibiting Griffiths-like phase are most likely to present strong 

competition between two phases and consequently the Griffiths-like phase constitutes a fingerprint for 

strong magneto-responsive properties in this family of compounds. In fact, a rapid review of the 

literature allows us to identify several other strongly-responsive magnetic materials, such as transition 

metal oxides (particularly manganites [51,52], cuprates [52] and ACr2X4 spinels [53]) which exhibit 

colossal magnetoresistance and magnetoelasticity [54], magnetic semiconductors [55] and giant 

magnetocaloric compounds [33], all of which exhibit the Griffiths-like phase. This outcome allows us 

to suggest that the Griffiths-like phase can be a consequence of the strong correlation between magnetic 

and atomic lattices and of the strong competition between states in other materials beside the R5(Si,Ge)4 

compounds. However, further investigation should be done in order to confirm this suggestion.  

Figure 5. (a) Universal x,T phase diagram of the R5(SixGe1-x)4 compounds with R = Gd 

(triangles), Tb (squares), Dy (circles), and Ho (hexagons); (b) Adapted T vs. (x − xp) phase 

diagram of a dilute FM system for the R5(SixGe1−x)4 system [50]. 
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4. Conclusions 

In summary, in this work we have demonstrated the importance of the strong competition between 

phases on the origin of several giant magneto-responsive effects, particularly the magnetocaloric 

effect. Such competition is responsible for an additional contribution to the entropy change that can be 

studied thoroughly through a combination of detailed measurement/analysis of the materials magnetic 

properties and first principles calculations. A method to analyze the Arrott plots in order to extract the 

hidden magnetic ordering temperatures is reviewed and generalized. Such parameters are shown to be 

crucial as inputs for the simple model of the free energy as a function of temperature and for a deeper 

understanding on the nature of the (de)coupled magnetic and structural phase transitions. Practical 

examples are given, namely by explaining the coupling of magnetic and structural transitions in 

Gd5Si2Ge2 or their decoupling in the Tb5Si2Ge2 case. Finally, the Griffiths-like phases are reviewed  

in the R5(Si,Ge)4 families and a correlation between their universal phase diagram and the large  

magneto-responsive properties is discussed. 
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