
Numerical methods for non conservative
perturbations of conservative problems

M.P. Laburta1, J.I. Montijano1, L. Rández1 and M. Calvo1 ∗

September 4, 2014

1 IUMA – Departamento de Matemática Aplicada
Universidad de Zaragoza. 50009-Zaragoza, Spain.

email: laburta,monti,randez,calvo@unizar.es

Abstract

In this paper the numerical integration of non conservative per-
turbations of differential systems that possess a first integral, as for
example slowly dissipative Hamiltonian systems, is considered. Nu-
merical methods that are able to reproduce appropriately the evolu-
tion of the first integral are proposed. These algorithms are based on
a combination of standard numerical integration methods and certain
projection techniques. Some conditions under which known conserva-
tive methods reproduce that desirable evolution in the invariant are
analyzed. Finally, some numerical experiments in which we compare
the behaviour of the new proposed methods, the averaged vector field
method AVF proposed by Quispel and McLaren and standard RK
methods of orders 3 and 5 are presented. The results confirm the the-
ory and show a good qualitative and quantitative performance of the
new projection methods.

AMS subject classification: 65L05, 65L06.

Keywords: initial value problems, numerical geometric integration,
projection methods, dissipative systems, non conservative perturbed
systems, explicit Runge–Kutta methods.

∗This work was supported by D.G.I. project MTM2010-21630-C02.

1

1 Introduction

The dynamics of many mechanical systems as well as that of many other real
life problems is often described by autonomous Hamiltonian systems. For
these problems the Hamiltonian function, usually the energy of the system,
is a constant of motion, and in the last decades there have been a lot of
researches [2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 19, 20] to develop numerical
integrators that are able to provide numerical approximations to the solution
preserving the Hamiltonian, or any other invariant, along the integration.

In other cases, the energy of such system does not remain exactly constant
due to the effect of external non-conservative forces, but its variation is small.
Let us think for example about the effect of the friction in mechanical systems
or else the air drag in the motion of artificial satellites. In the numerical
simulation of these systems it is of great importance that the energy variation
be properly reproduced by the numerical integrator [21, 22, 23], and this point
is the main object of this paper.

We consider N dimensional autonomous systems of ordinary differential
equations

z′(t) = f(z(t)), (1)

with f : D ⊆ RN → RN , having a scalar first integral H(z), H : D̂ ⊆ RN →
R, D̂ ⊆ D, that is, ∇H(z) · f(z) = 0 for all z ∈ D̂. We also consider a
perturbed problem

y′(t) = f(y(t)) + εg(y(t)), (2)

where ε is a small positive parameter and g(y) is a vector function of moderate
size compared to the function f(y) in a neighbourhood of the solution y(t).

According to this, the variation of the scalar function H(y) along the
solution of (2) is governed by its derivative

d

dt
H(y(t)) = ∇H(y(t)) ·

[
f(y(t)) + εg(y(t))

]
= ε∇H(y(t)) · g(y(t)). (3)

We will assume that the function α(y) := ∇H(y) · g(y) is bounded by a
positive function u(t) in a neighbourhood of the solution y(t), that is, for
each t

|α(y)| ≤ u(t), for all y ∈ B(y(t), δ), (4)

where B(y(t), δ) = {y ∈ RN | ‖y − y(t)‖ ≤ δ}.
The above condition implies that

|H(y(t))−H(y(t0))| ≤ ε

∫ t

t0

u(s)ds = εv(t) (5)

so H(y(t)) is not constant but its variation is small whenever ε is small. Note
that since the solution y(t) depends on ε, the function α(y(t)) also depends

2

on ε. In the assumption (4) we are implicitly imposing that, for each t,
α(y(t)) is bounded when ε→ 0.

It is natural to ask under which conditions a numerical integrator pro-
vides approximations yn satisfying a similar condition on the evolution of the
function H, that is

|H(yn)−H(y0)| ≤ εvh(tn) (6)

with vh(t) a positive function close to v(t).
The above property is of great importance for example when we are inter-

ested in obtaining the time t = t∗ for which the first integral, let us say the
energy, of the system attains a certain level H = H∗, that is, H(y(t∗)) = H∗.
If the system is solved numerically, and we obtain an approximated solution
yh(t), we will search for the time t̂ such that H(yh(t̂)) = H∗. The error t∗− t̂
can be much smaller if the method satisfies condition (6). Note that by the
mean value theorem

0 = H(y(t∗))−H(yh(t̂)) =H(y(t∗))−H(y(t̂)) +H(y(t̂))−H(yh(t̂))

=εα(y(ξ))(t∗ − t̂) +H(y(t̂))−H(yh(t̂))

for some ξ between t̂ and t∗. Therefore

t∗ − t̂ =
H(yh(t̂))−H(y(t̂))

εα(y(ξ))
(7)

which means that the error t∗− t̂ can be large, for small ε, unless H(yh(t̂))−
H(y(t̂)) is small. Since for a method with order p this quantity is of order
O(hp), this can be accomplished by taking the step size h small enough to
compensate the ε factor in the denominator. However, if condition (6) is
satisfied, H(yh(t̂))−H(y(t̂)) is also of the order of O(ε) and the error t∗ − t̂
will be of the order of O(hp) independently of the value of ε, assumed that
|α(y(t))| is lower bounded by some non small value.

Observe that (6) is not satisfied for arbitrary small ε by all numerical
methods. Let us suppose, for example, the scalar linear complex equation

y′ = iωy − εy,

whose solution is y(t) = y0e
(−ε+iω)t. For ε = 0, the problem has the first

integral H(y(t)) = H(y0) where H(y) = ȳy = |y|2, whereas for any ε > 0,
H(y(t)) = e−2εtH(y0) is a slowly decreasing function. Clearly g(y) = −y and
α(y) = −2|y|2, therefore, |α(y(t))| = 2|y0|2e−2εt is not small unless t is larger
than 1/ε. Note that this equation satisfies (4) with u(t) ≤ 2(|y0| + δ)2 and
therefore v(t) ≤ 2(|y0|+ δ)2t. This means that, for t ≤ 1/ε, the first integral
varies as εt.

If we integrate this problem with explicit Euler’s method with step size
h, we obtain y1 = (1 + hiω − hε)y0. Consequently

H(y1)−H(y0) = (h2ω2 − 2hε+ h2ε2)H(y0),

3

which does not tend to zero when ε→ 0 and therefore this method does not
satisfy (6). Moreover H(y1) − H(y(h)) = H(y0)((hω)2 − (hε)2 + O(h3ε3))
does not tend to zero when ε→ 0.

In general, for any method of order p applied to this problem we will get
H(yn)−H(y0) = O(hp)+O(hε), and only for methods with special properties
the term O(hp) will vanish. For example, if we integrate the problem with the
implicit midpoint rule, we obtain y1 = y0(1+hiω/2−hε/2)/(1−hiω/2+hε/2),
giving

H(y1)−H(y0) =
−2hε

(1 + hε/2)2 + (hω/2)2
H(y0),

which tends to zero when ε → 0 independently of the step size h. It will
be shown in section 3 that (6) is satisfied for this method and moreover
H(yn)−H(y(tn)) = O(εh2) so that the error in (7) can be small for reasonable
values of h independently of the value of ε.

For simplicity, we have supposed that the perturbation term g(y) is au-
tonomous. However, with appropriate modifications, the results are also valid
if a term g(y, t) is considered instead, whenever the bound (4) is satisfied.

The paper is organized as follows: In Section 2 we present the new meth-
ods, based on certain projection techniques, and prove that property (6) is
satisfied, seeing also that this condition has some benefits in the error of
the function H. In Section 3 we show that (6) holds for other conservative
methods under some non restrictive conditions on the method. Finally, in
Section 4 we present some numerical experiments confirming the results in
previous sections.

2 Projection methods for perturbed conser-

vative systems

Projection methods have already been considered as a proper tool to obtain
numerical approximations that preserve the invariants when considering con-
servative problems. These techniques can also be useful for non conservative
problems that are perturbations of conservative ones. They have already
been proved to be useful for example to preserve the monotonicity of Lya-
punov functions [8, 15], or to preserve dissipation for dissipative systems [11],
and we are proposing here the same type of algorithms based on projection
to solve problems that possess a function H(y) that has a slow variation
in a neighbourhood of the solution y(t). The main idea is to obtain first
an approximation Hn+1 to the value of the function at the next grid point
H(y(tn+1)) and then to project the numerical approximation onto the mani-
fold H(y) = Hn+1. Thus, we propose the following Projection Runge–Kutta
(PRK) algorithm:

Algorithm PRK

4

• First we compute a numerical approximation ỹn+1 to y(tn+1) by means
of a standard (non preserving) method, such as a Runge–Kutta scheme.
We also compute a (piecewise) continuous extension yh(t) provided by
it.

• We take a quadrature formula (b̄i, c̄i), i = 1, . . . , k in [0, 1] with coeffi-
cients b̄i positive and nodes in [0, 1]. For example, a Gaussian formula.

• We compute an approximation Hn+1 to the value H(y(tn+1)) by inte-
grating (3):

Hn+1 = H(yn) + h

k∑
i=1

b̄i∇H(yh(tn + c̄ih)) · (f + εg)(yh(tn + c̄ih))

= H(yn) + εh
k∑
i=1

b̄iα(yh(tn + c̄ih))

(8)

• We compute the new approximation yn+1 by projecting ỹn+1 onto Hn+1

along a direction of projection wn:

yn+1 = ỹn+1 + λnwn,

where λn is a real parameter which, once determined the direction
vector wn, will be calculated so that yn+1 satisfies

H(yn+1) = H(ỹn+1 + λnwn) = Hn+1. (9)

The direction vector must satisfy certain conditions as shown in [6].
In [9], it has been studied the way wn can be chosen to maximize the
dispersion order of the projected approximation.

Remark 2.1. The PRK algorithm can be applied to any differential system
y′(t) = w(y(t)) for which there exists a function H(y) that varies slowly in
a neighbourhood of the solution, that is, |∇H(y) · w(y)| ≤ ε∗ is small. Note
that we can always decompose w(y) = f(y) + g̃(y) with f(y) orthogonal to
∇H(y), and consequently |∇H(y) ·w(y)| = |∇H(y) · g̃(y)| ≤ ε∗ will be small.
Then, we can write y′ = f(y) + εg(y) with g(y) = g̃(y)/ε∗. For ε = ε∗ we
recover the original system.

We will see next that, in particular, the proposed algorithm satisfies the
condition (6).

Theorem 2.1. i) The numerical solution provided by the algorithm PRK
satisfies

|H(yn+1)−H(y0)| ≤ εvh(tn+1)

5

with

vh(tn+1) = h

n∑
j=0

k∑
i=1

b̄iu(tj + c̄ih), (10)

u(t) being the bound in (4).

ii) If the continuous method used in the algorithm PRK has order ≥ p−1,
the quadrature formula has order ≥ p and α(y) := ∇H(y) · g(y) is a
Lipschitz continuous function, then the projected solution satisfies

H(yn+1)−H(y(tn+1; tn, yn)) = O(εhp+1),

where y(t; tn, yn) represents the local solution of (2) that satisfies y(tn) =
yn.

Proof. From (8) and (9) it is clear that

H(yn+1)−H(y0) = hε
n∑
j=0

k∑
i=1

b̄iα(yh(tj + c̄ih))

Assuming that the step size is small enough to ensure that the numerical
approximation yh(tj + c̄ih) belongs to the neighbourhood B(y(tj + c̄ih), δ),
part i) has been proved.

On the other hand, it is clear from (3) that

H(y(t+ h)) = H(y(t)) + ε

∫ t+h

t

α(y(s))ds.

By construction

H(yn+1) = H(yn) + εh

k∑
i=1

b̄iα(yh(tn + c̄ih))

= H(yn) + ε

∫ tn+h

tn

α(y(s; tn, yn))ds

+ ε

(
−
∫ tn+h

tn

α(y(s; tn, yn))ds+

∫ tn+h

tn

α(yh(s))ds

)
+ ε

(
−
∫ tn+h

tn

α(yh(s))ds+ h

k∑
i=1

b̄iα(yh(tn + c̄ih))

)
.

Item ii) follows immediately from the order properties of the continuous
method and the quadrature formula and from the Lipschitz condition for
α(y).

6

Computational cost of the algorithm

The PRK algorithm amounts some additional computational cost at each
step to compute the integral and to project the solution onto the manifold
H(y) = Hn+1.

• A continuous extension yh(t) (at least of order p−1) at k points tn+ c̄ih
must be evaluated. This requires at most one additional evaluation of
the vector field f + εg for p ≤ 5.

• The function α(y) must be evaluated at k points. Note that if we use
a Gaussian quadrature formula, it is enough to take k ' p/2 to get the
appropriate order.

• The equation (9) must be solved for λn. Since the equation is scalar,
a simple method like the secant one can be used, and since its solution
is close to zero, the convergence is usually extremely fast. In practice,
the projection process amounts an average of two evaluations of the
function H(y) per step.

In conclusion, if the computational effort required to evaluate the functions
α(y) and H(y), which have vector argument but scalar result, is smaller
than the one for the vector field, which has vector argument and result, the
additional cost will be small. If the evaluations of those two functions have
a cost greater than the one for the vector field, the additional cost can be
important. Nevertheless, if we are interested for example in computing, with
an error Tol, the time for which the first integral attains certain level H∗,
with the standard method we should integrate the problem with an error
tolerance ε Tol. If the method used has order p, this would mean that we
must take about (1/ε)1/p times the number of steps, and therefore we are
increasing the computational cost by this factor. For small ε this can be
large and the PRK algorithm will be advantageous even if it requires certain
additional cost.

In Theorem 2.1, which is the main result of this section, we have seen
that the PRK algorithm satisfies the property (6). Next, we will see that,
under some assumptions on the function u(t), the function vh(t) is close to
the continuous one v(t).

Theorem 2.2. If the positive function u(t) in (4) is a polynomial of degree
≤ q and the PRK algorithm uses a quadrature formula with degree of precision
at least q, the projected solution provided by the PRK algorithm satisfies

|H(yn+1)−H(y0)| ≤ εv(tn+1).

Proof. It is immediate by the definition of degree of precision.

7

Lemma 2.1. Let u(t) be a positive C1 function such that |u′(t)| ≤ λu(t) for
all t ≥ t0 and some positive λ. Then, for all h < 2/λ

h max
σ∈[t,t+h]

u(σ) ≤ 1

1− hλ/2

∫ t+h

t

u(s)ds, ∀t ≥ t0.

Proof. Let t̂ be such that maxσ∈[t,t+h] u(σ) = u(t̂). Since u(t) is C1, for
s ∈ [t, t+ h] we have

max
σ∈[t,t+h]

u(σ)− u(s) = u′(ξ)(t̂− s) ≤ λ max
σ∈[t,t+h]

u(σ)|t̂− s|

where ξ ∈ (t, t+ h). Then

h max
σ∈[t,t+h]

u(σ)−
∫ t+h

t

u(s)ds =

∫ t+h

t

(
max

σ∈[t,t+h]
u(σ)− u(s)

)
ds

≤ λ max
σ∈[t,t+h]

u(σ)

∫ t+h

t

|t̂− s|ds

≤ h2λ

2
max

σ∈[t,t+h]
u(σ)

and consequently,

(1− hλ/2)h max
σ∈[t,t+h]

u(σ) ≤
∫ t+h

t

u(s)ds.

Theorem 2.3. If the positive function u(t) in (4) is C1 and satisfies |u′(t)| ≤
λu(t) for all t ≥ t0 and some positive λ, then for all h < 2/λ the projected
solution provided by the PRK algorithm satisfies

|H(yn+1)−H(y0)| ≤ εvh(tn+1),

where vh(tn+1) given in (10) satisfies

vh(tn+1) ≤
1

1− hλ/2

∫ tn+1

t0

u(s)ds =
1

1− hλ/2
v(tn+1).

Proof. From the value of vh(tn+1) in (10)

vh(tn+1) ≤ h

n∑
j=0

k∑
i=1

b̄i max
σ∈[tj ,tj+h]

u(σ) = h

n∑
j=0

max
σ∈[tj ,tj+h]

u(σ)

8

and using Lemma 2.1, for all h < 2/λ we have

vh(tn+1) ≤
n∑
j=0

1

1− hλ/2

∫ tj+h

tj

u(s)ds =
1

1− hλ/2

∫ tn+1

t0

u(s)ds.

Theorem 2.3 covers the case of functions u(t) whose variation (increasing
or decreasing) is at most exponential. The next theorem intends to cover the
case of functions that decrease even faster than an exponential.

Theorem 2.4. If the function u(t) in (4) satisfies u(t) ≤ 1/(t+β)γ for some
β > −t0 and γ > 1 then the function vh(tn) given in (10) is bounded for all
n.

Proof. First, let us note that the function r(t) = 1/(t + β)γ has a bounded
integral, ∫ ∞

t0

r(s)ds <∞.

On the other hand, r(t) satisfies the conditions in Lemma 2.1 with λ =
γ/(β + t0), which implies that

vh(tn) ≤ h
n−1∑
j=0

max
σ∈[tj ,tj+h]

u(σ) ≤ h
n−1∑
j=0

max
σ∈[tj ,tj+h]

r(σ)

≤ 1

1− hλ/2

∫ tn

t0

r(s)ds <
1

1− hλ/2

∫ ∞
t0

r(s)ds <∞.

3 Conservative methods for perturbed con-

servative systems

Let us consider now conservative methods, that is, methods for whichH(zn) =
H(z0) when they integrate conservative problems (1). We will see that, un-
der some natural assumptions, they present also a good behaviour when they
are applied to non-conservative perturbations of conservative systems. Let us
consider again a differential system (2) and denote by φf (y, h) the flow map
of a numerical method applied to a differential system with vector field f ,
starting from the point y, advancing a step h. If the method is conservative
for the system (1), we will obtain a numerical approximation z1 = φf (y0, h)
that satisfies H(z1) = H(y0).

9

Here, we will assume that for each t ≥ 0, ∇H(y) and g(y) are bounded
by positive functions in the neighbourhood B(y(t), δ), i.e.

‖∇H(y)‖ ≤ µ(t), ‖g(y)‖ ≤ η(t), for all y ∈ B(y(t), δ). (11)

In addition to this, we define the functions

Mδ(y) = max
ŷ∈B(y,δ)

‖∇H(ŷ)‖, Kδ(y) = max
ŷ∈B(y,δ)

‖g(ŷ)‖.

Recall that by the nonlinear variation of constants formula, the exact
solutions of (2) and (1) with the same initial condition satisfy

‖y(t)− z(t)‖ ≤ εtK(y0, t)

for all t ∈ [0, tmax] with some bounded function K.
In the next theorem we will show that under a similar assumption for the

numerical method, bounds on the variations of the energy can be established.

Theorem 3.1. Let φf (y, h) be the flow map of a conservative method on the
vector field f . If for all y and small enough h

‖φf+εg(y, h)− φf (y, h)‖ ≤ LKδ(y)hε (12)

for some δ depending on h and some L = L(y), then

|H(yn+1)−H(yn)| ≤ εhLMδ(yn)Kδ(yn). (13)

In addition, if the method has order p, then

H(yn+1)−H(y(tn+1; tn, yn)) = O(εhp+1).

Proof. Since the method is conservative on f , zn+1 = φf (yn, h) satisfies
H(zn+1) = H(yn). On the other hand, assuming that the step size is small
enough so that yn+1 and zn+1 belong to the neighbourhood B(yn, δ)

H(yn+1)−H(zn+1) =

∫ 1

0

∇H(syn+1 + (1− s)zn+1)ds · (yn+1 − zn+1),

and by using (13)

‖yn+1 − zn+1‖ = ‖φf+εg(yn, h)− φf (yn, h)‖ ≤ LhεKδ(yn).

Further

|H(yn+1)−H(y(tn+h; tn, yn))| ≤ |H(yn+1)−H(yn)|+|H(yn)−H(y(tn+h; tn, yn))|

10

but since

|H(yn)−H(y(tn + h; tn, yn))| =ε
∫ tn+1

tn

|∇H(y(s; tn, yn)) · g(y(s; tn, yn))| ds

≤εhMδ(yn)Kδ(yn) = O(hε)

then
|H(yn+1)−H(y(tn + h; tn, yn))| = O(hε).

On the other side, by the order p of the method, it is also O(hp+1). This
implies that it is O(εhp+1).

Theorem 3.2. Let φf (y, h) a conservative method on the vector field f sat-
isfying (12) applied to a system (2) satisfying (11). Then

|H(yn+1)−H(y0)| ≤ εvh(tn+1)

with

vh(tn+1) = hL
n∑
j=0

µ(tj)η(tj). (14)

Proof. First, using Theorem 3.1

|H(yn+1)−H(y0)| ≤|H(yn+1)−H(yn)|+ |H(yn)−H(y0)|

≤εhLMδ(yn)Kδ(yn) + |H(yn)−H(y0)|

≤εhL
n∑
j=0

Mδ(yj)Kδ(yj).

Taking stepsizes and δ in such a way that B(yj, δ) ⊆ B(y(tj), δ),

|H(yn+1)−H(y0)| ≤ εhL
n∑
j=0

µ(tj)η(tj).

By following analogous reasonings to the ones developed for Theorems
2.3 and 2.4, the next results can be proved.

Theorem 3.3. Let φf (y, h) a conservative method on the vector field f satis-
fying (12). If the function µ(t)η(t) is C1 and satisfies |(µ(t)η(t))′| ≤ λµ(t)η(t)
for all t ≥ t0, and some positive λ, then for all h < 2/λ the numerical solution
satisfies

|H(yn+1)−H(y0)| ≤ εvh(tn+1),

where vh(tn+1) given in (14) satisfies

vh(tn+1) ≤
L

1− hλ/2

∫ tn+1

t0

µ(s)η(s)ds.

11

Theorem 3.4. Let φf (y, h) a conservative method on the vector field f sat-
isfying (12). If the function µ(t)η(t) ≤ 1/(t + β)γ for some β > −t0 and
γ > 1 then the function vh(tn) given in (14) is bounded for all n.

Next, we will see that condition (12) is a natural condition that is satisfied
by most relevant one step methods.

Proposition 3.1. For small enough step size h, a Runge–Kutta method sat-
isfies condition (12) for any differential system (1), (2) with f Lipschitz
continuous.

Proof. In compact form, a Runge–Kutta applied to both differential systems
reads

Z = y0 ⊗ e+ h(A⊗ I)F (Z)

z1 = φf (y0, h) = y0 + h(b⊗ I)TF (Z)

and
Y = y0 ⊗ e+ h(A⊗ I)(F (Y) + εG(Y))

y1 = φf+εg(y0, h) = y0 + h(b⊗ I)T (F (Y) + εG(Y)).

Therefore

‖Y−Z‖ ≤ h‖A‖‖F (Y)−F (Z)‖+hε‖G(Y)‖‖A‖ ≤ hl‖A‖‖Y−Z‖+hε‖G(Y)‖‖A‖

and

‖Y − Z‖ ≤ ‖A‖
1− hl‖A‖

hε‖G(Y)‖

where l is the Lipschitz constant of f . Consequently, for h small enough,
Yi ∈ B(y0, δ) and

‖y1 − z1‖ ≤ ‖b‖
hl‖A‖

1− hl‖A‖
hεKδ(y0) + hε‖b‖Kδ(y0)

and condition (12) is satisfied with L =
‖b‖

1− hl‖A‖
.

Proposition 3.2. For small enough step size h, the averaged vector field
method (AVF) [26],[10] satisfies condition (12) for any differential system
(1), (2) with f Lipschitz continuous.

Proof. The AVF method applied to both differential systems reads

z1 = φf (y0, h) = y0 + h

∫ 1

0

f(sz1 + (1− s)y0)ds

and

y1 = φf+εg(y0, h) = y0 + h

∫ 1

0

[
f(sy1 + (1− s)y0) + εg(sy1 + (1− s)y0)

]
ds.

12

Therefore, for h such that y1 ∈ B(y0, δ)

‖y1 − z1‖ ≤ hl‖y1 − z1‖
∫ 1

0

s ds+ hεKδ(y0)

and

‖y1 − z1‖ ≤ hε
2

2− hl
Kδ(y0).

4 Numerical experiments

In this section we are going to present some numerical results to show the
behaviour of the methods studied in the previous sections applied to some
perturbed non-conservative problems. They refer to both qualitative and
quantitative aspects of the numerical solution. All the figures, except the
phase diagrams, have been represented in a log-log scale.

All the numerical methods have been implemented with variable step size.
They are the following:

• BS32 is the 4-stage explicit embedded RK pair of order 3(2) derived
by Bogacki and Shampine in [1] and implemented in MATLAB [27].
The control of the step size has been done by estimating the local error
with the difference between the 3rd and 2nd order numerical solutions
provided by that pair [17, II.4].

• pBS32 represents the projection method obtained in Section 2 accord-
ing to the Algorithm PRK. The 3rd-order Bogacki–Shampine method
described before has been used as standard method, and we have com-
puted the dense output in each step with the corresponding Hermite
interpolant of order 3, which does not need additional function eval-
uations over the pair BS32. This projection method pBS32 also uses
the quadrature Gaussian formula with 2 nodes in [0, 1]. According to
the theory developed in [9], we have chosen a simple way of getting the
direction vector wn = ŷn+1− ỹn+1, where ỹn+1 is the numerical solution
provided by the 3rd-order Bogacki–Shampine method, and ŷn+1 repre-

sents the embedded RK with coefficients b̂2 = 0.33, b̂3 = 4
9
b̂2 + 8

27
and

b̂1 = 1− b̂2 − b̂3.

• AVF denotes the “averaged vector field” method of order 2 derived by
Quispel and McLaren in [26, Section 2]. When this method is applied
to an autonomous differential system y′ = f(y), the equation that
advances one step of size h from yn is given by:

yn+1 = yn + h

∫ 1

0

f((1− ξ)yn + ξyn+1) dξ, n = 0, 1, 2, (15)

13

It preserves energy for all canonical Hamiltonian vector fields. Estima-
tions of the local error have been done by local extrapolation [17, II.4].
In the numerical experiments we have denoted by AVF(G4), AVF(G6)
and AVF(G10), the method (15) that approximates its definite integral
by using Gaussian quadrature formulas of orders 4, 6 and 10, respec-
tively, in the interval [0, 1]. Functional iteration up to round off error
has been used to find the numerical solutions of this implicit method.

• DP54 is the well known 7-stage explicit embedded RK pair of order 5(4)
due to Dormand and Prince [14]. It is also implemented in MATLAB
[27]. The local error has been estimated by subtracting the 5th and
4th order numerical solutions provided by this pair [17, II.4].

• pDP54 denotes the projection method obtained by following the Algo-
rithm PRK, where the 5th order formula of DP54 has been taken as
the basic method. The dense output is provided by the only fourth
order interpolant that uses only the first six stages of that pair (see e.g.
[25]), and we have considered the quadrature Gaussian formula with 3
nodes in [0, 1]. By following analogous ideas to those developed in [9] to
obtain a direction vector wn which gives rise to projected methods with
low dispersion and dissipation errors, we have taken wn = ŷn+1− ỹn+1,
where ỹn+1 is the numerical solution provided by the fifth-order method
by Dormand and Prince, and ŷn+1 represents the embedded RK with
coefficients:

b̂1 = 0.1, b̂2 = 1,

b̂3 = −0.768953928405587, b̂4 = 1.15647677385114,

b̂5 = −0.767249955009483, b̂6 = 0.279727109563926.

Our first test problem is Kepler’s problem with atmospheric drag terms,
given by:

y′′1 = −y1
r3
− ε exp(−(r − 0.5)) y′1

√
(y′1)

2 + (y′2)
2

y′′2 = −y2
r3
− ε exp(−(r − 0.5)) y′2

√
(y′1)

2 + (y′2)
2

(16)

where r =
√
y21 + y22. It is a simplified version of a model of the dynamics

of an artificial satellite taking into account the effect of the air drag (see e.g.
[24]).

For the numerical experiments we have taken ε = 10−4, eccentricity e =
0.7, and initial conditions

y1(0) = 1− e, y2(0) = 0, y′1(0) = 0, y′2(0) =
√

(1 + e)/(1− e).

The integrations have been carried out for t ∈ [0, 245].

14

As it is well known, the Hamiltonian for the Kepler problem is given by
[16, section I.2]:

H(y, y′) = −1/r + ((y′1)
2 + (y′2)

2)/2.

Then, for this problem α(y) = ∇H(y)g(y) = − exp(−r+0.5)((y′1)
2+(y′2)

2)3/2.
It can be numerically verified that, e.g. for t < 1000, the solution satisfies
0.4 < ((y′1)

2 + (y′2)
2)1/2 < 2.4, 0.25 < r < 1.7 and 0.02 ≤ |α(y(t))| ≤ 19 for

all ε ∈ [0, 10−4]. The maximum values correspond precisely to the maximum
value of the parameter ε = 10−4. In fact, |α(y(t))| is an almost periodic
function that takes values from 0.02 to 19 along each 2π-period. Therefore,
the energy decreases in average almost linearly on t with slope about 1.7ε,
as it is shown in Figure 1. The factor 1.7 is approximately the integral
−(1/2π)

∫ t+2π

t
α(y(s))ds. On the other hand, |dα(y(t))/dt|/|α(y(t))| < 3 for

all t ≤ 1000, which means that u(t) satisfies the conditions of Theorem 2.3
with λ ' 3.

The left plot in Figure 1 shows the evolution of the energy H with time
t for BS32, pBS32, AVF(G4) and AVF(G6) for error tolerance atol = rtol =
10−3. The best results correspond to the projection method pBS32, followed
by the conservative method AVF, whereas the standard one BS32 shows a
much greater deviation from the real evolution of the energy. Let us men-
tion that, for this tolerance, AVF gives rise to slightly better results when
its definite integral is approximated by the 6th-order than by the 4h-order
Gaussian quadrature formula, but they do not improve if the order of the
quadrature formula is increased. The right plot in Figure 1 displays the error
in H against time t for those methods.

0 50 100 150 200 250
−0.545

−0.54

−0.535

−0.53

−0.525

−0.52

−0.515

−0.51

−0.505

−0.5

Perturbed Kepler, e=0.7, tol=10−3

t

H
(t

)

Exact
BS32
pBS32
AVF(G4)
AVF(G6)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03
Perturbed Kepler, e=0.7, tol=10−3

t
n

|H
(y

(t
n))

−H
(y

n)|

BS32
pBS32
AVF(G6)
AVF(G4)

Figure 1: perturbed Kepler’s problem (16): energy H (left) and error in H
(right) against t, for methods BS32, pBS32, AVF(G4) and AVF(G6)

Observe that the Kepler energy is a monotone decreasing function with
t. This monotonicity is preserved by pBS32 and AVF methods, whereas the
numerical energy for standard method BS32 presents a wrong behaviour.

15

We are now interested in comparing the performance of the methods by
computing the time t∗ for which the energy of the system changes its value
a 10%, that is, it attains the value H(y(t∗)) = H∗ with H∗ = 1.1H(y0).
This level of energy is attained for t∗ = 3.2202927214245 × 102. We have
also computed the values t̂ for which H(yh(t̂)) = H∗, where yh(t) represents
the numerical solution, for error tolerances from 10−3 to 10−8. In Table 1
we present those values t̂, the errors t∗ − t̂ and also the errors in H and
the global errors at each t̂, for BS32 (top) and pBS32 (bottom). Observe
that, for each error tolerance, the errors t∗ − t̂ are smaller for pBS32 than
for the standard method BS32, in agreement with (7). Errors in the energy
and global errors are also smaller for the projected method than for the
standard one. The method BS32 never attains the H∗-value for tolerance
10−3 since the numerical energy, after having a correct decreasing behaviour
at the beginning, then it is an increasing function of time, as it is already
made out in Figure 1.

It is remarkable in this table that the errors in the energy for BS23 are
much smaller than the global errors. This is the reason why BS23 does not
give errors in the energy 1/ε larger than pBS23. In any case this factor is at
least 14, which makes pBS23 more efficient than BS23 in this aspect.

In Figure 2 the phase portraits for BS32, pBS32 and AVF(G4) are shown
for error tolerance 10−3. The numerical solutions are represented by points
over the exact flow, in solid line, which has been computed by highly ac-
curate numerical integration. It can be seen that the best behaviour corre-
sponds to the new projection method pBS32. Even though the AVF method
can provide a good approximation of the energy, it does not exhibit a good
qualitative behaviour, and similar results are obtained if we approximate its
integral in (15) with a quadrature formula of higher order. Naturally, as
the error tolerance becomes smaller, the figures in the phase space are more
precise.

Figure 3 shows the error in the energy H against the perturbation param-
eter ε at the final point of the integration interval. According to Theorem 2.1,
that error must grow linearly with ε for pBS32, and this same kind of growth
is expected for AVF taking into account Theorem 3.1 and Proposition 3.2.
The method pBS32 behaves according to the theory, as it can be easily seen
by comparing its graph with the dashed reference straight line with slope
1. Regarding the AVF method, to exhibit the correct behaviour it is crucial
the way the integral is approximated. We have displayed the results for the
numerical methods resulting from approximating the integral in (15) by the
Gaussian quadrature formulas in [0,1] of orders 4, 6 and 10. The larger the
order of the quadrature formula is, the more patent the expected behaviour
is when ε → 0. As expected, the error in H for the standard method BS32
does not decrease as ε does, since it is not an energy-preserving method.

16

Table 1: perturbed Kepler (16): time t̂ for which the energy obtained using
BS32 (top) and pBS32 (bottom) has been reduced in a 10%, together with
error t∗ − t̂, energy-error at t̂ and global error at t̂

BS32

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 – – – –

10−4 3.5633999633776e+002 -3.4311e+001 5.5655e−003 3.3123e+000

10−5 3.2728260303980e+002 -5.2533e+000 7.1248e−004 1.7931e+000

10−6 3.2213356821941e+002 -1.0430e−001 4.7818e−005 5.9265e−002

10−7 3.2203814782742e+002 -8.8757e−003 5.1014e−006 7.9495e−003

10−8 3.2203014789989e+002 -8.7576e−004 5.1375e−007 8.1722e−004

pBS32

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 3.1023343442311e+002 1.1796e+001 2.5103e−003 2.8259e+000

10−4 3.2168673878424e+002 3.4253e−001 4.3564e−004 9.5638e−001

10−5 3.2197379433294e+002 5.5478e−002 3.7838e−005 5.4911e−002

10−6 3.2202314859085e+002 6.1236e−003 3.6579e−006 4.6196e−003

10−7 3.2202865146906e+002 6.2067e−004 3.6552e−007 4.5369e−004

10−8 3.2202920993397e+002 6.2208e−005 3.6582e−008 4.5291e−005

Our second test problem comes from a semi-discretization of the per-
turbed one-dimensional wave equation where the velocity is taken equal to
1, given by:

∂2u

∂t2
=
∂2u

∂x2
− ε ∂u

∂t
, 0 < x < L, t > 0,

with the boundary conditions u(0, t) = 0, u(L, t) = 0. After using 4th-order
central finite differences for the space derivative, we get the linear ODE
system

y′′ = − 1

12∆x2
A y − ε y′, (17)

where y(t) = (y1(t), . . . , yM(t))T , with yi(t) ≈ u(xi, t), xi = i∆x the grid-
points in the space interval [0, L], ∆x = L/(M + 1) the space-step, and A

17

−2 −1.5 −1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Perturbed Kepler, e=0.7, tol=10−3, t∈ [0,245]

y
1

y 2

Exact
BS32

−2 −1.5 −1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Perturbed Kepler, e=0.7, tol=10−3, t∈ [0,245]

y
1

y 2

Exact
pBS32

−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Perturbed Kepler, e=0.7, tol=10−3, t∈ [0,245]

y
1

y 2 Exact
AVF(G4)

Figure 2: perturbed Kepler’s problem (16): phase portraits, t ∈ [0, 245], for
methods BS32 (left top), pBS32 (right top) and AVF(G4) (bottom)

the symmetric pentadiagonal M ×M matrix given by

A =



30 −16 1
−16 30 −16 1

1 −16 30 −16 1
. . .

. . .

1 −16 30


.

We have taken for this problem ε = 10−3 as perturbation parameter, L = 320,
∆x = 1/4, and t ∈ [0, 300] as integration time interval. Let us note that the
dimension of the first-order system equivalent to (17) is 2M = 2558. The
following initial conditions have been considered

yi(0) = e−(xi−10)
2

, y′i(0) = 2(xi − 10)e−(xi−10)
2

, i = 1, . . . ,M.

18

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Perturbed Kepler, e=0.7, tol=10−3, t∈ [0,245]

ε

|e
rr

or
 in

 H
|

BS32
pBS32
AVF(G4)
AVF(G6)
AVF(G10)
slope 1

Figure 3: perturbed Kepler’s problem (16): error in H against ε, for methods
BS32, pBS32, AVF(G4), AVF(G6) and AVF(G10), and reference straight line
with slope 1

A first integral for the un-damped semi-discretized wave equation is

H(y, y′) =
1

24∆x2
yTA y +

1

2
y′
T
y′,

which is in fact its Hamiltonian function. The function α(y, y′) = ∇H(y, y′) ·
g(y, y′) is given by

α(y, y′) = −y′Ty′.
It can be numerically verified that α(y) is a decreasing function along

the solution y(t) ranging from 5.013 at t = 0 to 3.712 at t = 300. Moreover,
|dα(y(t))/dt|/|α(y(t))| < 0.0031 for all t ≤ 300, that means that u(t) satisfies
the conditions of Theorem 2.3 with λ ' 5×10−3. The energy in an increasing
function of t and is upper bounded by H(y0) + 5.013 ε t and lower bounded
by H(y0) + 3.7 ε t, as it is shown in Figure 4.

Figure 4 shows the evolution with time of the energy for error tolerance
10−3. The picture on the left corresponds to the methods BS32, pBS32 and
AVF(G4), whereas the one on the right corresponds to DP54 and its pro-
jection pDP54. The qualitative behaviour of the numerical energy is correct
for all those methods unless for DP54, in the sense that it is a monotone
decreasing function of t. The methods that produce closer values of H to
those corresponding to the exact solution are the projection methods pBS32
and pDP54 and the conservative method AVF(G4). In fact in both pictures
there is not distinction between the graphs for the exact energy and the
numerical energy corresponding to those three methods. Clearly, standard
methods give much worse results. Pictures in Figure 5 show the error in H as
a function of time for the methods with order 2 and 3 at the top, and for the
5th-order methods at the bottom. These pictures make clear the superior
performance of the projected and conservative methods over the standard

19

ones. The one on the right at the top allows us to compare the results be-
tween pBS32 and AVF(G4), which were indistinguishable in previous graphs,
and it shows that the projection method pBS32 behaves slightly better than
the conservative method AVF(G4).

0 50 100 150 200 250 300
1.5

2

2.5

3

3.5

4

4.5

5

5.5
Perturbed wave, tol=10−3

t

H
(t

)

Exact
BS32
pBS32
AVF(G4)

0 50 100 150 200 250 300
3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

Perturbed wave, tol=10−3

t

H
(t

)
DP54
Exact
pDP54

Figure 4: perturbed wave (17): energy H against t, for methods BS32, pBS32
and AVF(G4) (left), and methods DP54 and pDP54 (right)

Next, we include Table 2 to show the performance of the standard method
BS32 and its projection pBS32, when we look for the time t̂ for which the
numerical energy attains a prefixed level H∗, as well as the error in H and the
global error at t̂. More precisely, for this problem we have taken H∗ as the
75% of the initial energy of the system. The time t∗ such that H(y(t∗)) = H∗

has turned out to be t∗ = 2.8768232264606 × 102. As it can be seen, the
errors t∗− t̂ are much smaller for the projected method than for the standard
one and, additionally, they agree with the error tolerance imposed in the
numerical integration. For each error tolerance, the error in the energy at
the corresponding t̂ is also quite smaller for pBS32 than for BS32. The global
errors are of the same order of magnitude for both methods, slightly smaller
for the projected method.

Table 3 shows the same type of information for DP54 and its projection
pDP54, and analogous comments can be done. In this table there are no
results for the largest tolerance because there is no such a time t̂ since, as it
can be appreciated on the right plot in Figure 4, the numerical energy corre-
sponding to DP54, in spite of having a correct performance at the beginning,
later on it presents a wrong increasing behaviour.

For this second problem the error in the first integral is of the same order
of magnitude as the global error in both methods, BS23 and DP54, whereas
it is much more smaller for pBS23 and pDP45, by a factor smaller than ε, as
predicted by the theory.

20

0 50 100 150 200 250 300
0

0.5

1

1.5

2
Perturbed wave, tol=10−3

t
n

|H
(y

(t
n))

−H
(y

n)|

BS32
pBS32
AVF(G4)

0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

−3 Perturbed wave, tol=10−3

t
n

|H
(y

(t
n))

−H
(y

n)|

pBS32
AVF(G4)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Perturbed wave, tol=10−3

t
n

|H
(y

(t
n))

−H
(y

n)|

DP54
pDP54

Figure 5: perturbed wave (17): error in H against t, for methods BS32,
pBS32 and AVF(G4) (left top), methods pBS32 and AVF(G4) (right top),
and methods DP54 and pDP54 (bottom)

In Figure 6 the error in the Hamiltonian at the end of the integration
interval is represented as a function of ε for error tolerance 10−3. That error
grows linearly for the projection methods pBS32 and pDP54, and also for
AVF(G4), as expected according Theorem 2.1 and Theorem 3.1, respectively.
In relation with the averaged vector field method, it must be taken into
account that, in order to be a conservative method, its definite integral should
be exactly calculated. In fact, it is what happens for this problem because the
4th-order Gaussian quadrature formula is exact for it. The error in energy
for the standard methods remain practically constant when ε→ 0.

Finally, in order to see the additional computational cost required by the
PRK method with respect to the standard method, we study the efficiency of
the proposed methods computing the global error at the end of the integration
interval and representing it against the CPU time, in seconds, used in the
integration. The results obtained using error tolerances from 10−4 to 10−11

are collected in Figure 7. The new method pBS32 employs about 2.5 times
more CPU time than the standard one, and the time required by pDP54

21

Table 2: perturbed wave (17): time t̂ for which the energy obtained using
BS32 (top) and pBS32 (bottom) has been reduced in a 25%, together with
error t∗ − t̂, energy-error at t̂ and global error at t̂

BS32

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 7.9176408362816e+001 2.0851e+002 8.7142e−001 4.4513e−001

10−4 2.1631309599391e+002 7.1369e+001 2.7806e−001 1.4874e−001

10−5 2.7770087979013e+002 9.9814e+000 3.7706e−002 2.0788e−002

10−6 2.8663495502923e+002 1.0474e+000 3.9389e−003 2.1809e−003

10−7 2.8757700109253e+002 1.0532e−001 3.9590e−004 2.1926e−004

10−8 2.8767178340487e+002 1.0539e−002 3.9615e−005 2.1940e−005

pBS32

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 2.8771391324466e+002 -3.1591e−002 1.1874e−004 6.6320e−001

10−4 2.8768451278965e+002 -2.1901e−003 8.2322e−006 1.0309e−001

10−5 2.8768246709044e+002 -1.4444e−004 5.4293e−007 1.1454e−002

10−6 2.8768232811620e+002 -5.4701e−006 2.0561e−008 1.1624e−003

10−7 2.8768232283167e+002 -1.8561e−007 6.9766e−010 1.1646e−004

10−8 2.8768232266350e+002 -1.7440e−008 6.5568e−011 1.1649e−005

is double the time for DP54. This is the price we must pay to get a more
accurate value of the Hamiltonian, independent of the small parameter ε.
On the contrary, for the same error tolerance, the projected methods give a
slightly smaller global error than the corresponding standard ones, divided
approximately by 1.9 for pBS32 and 1.25 for pDP54. Recall that the high
CPU time required by AVF(G4) is due, not only to the iterations of the own
method, but also to those required by the extrapolation technique. In any
case, to get small global errors is not the aim of this work.

5 Conclusions

We have considered first-order autonomous differential systems which are
systems possessing a scalar first integral weakly perturbed. For these sys-

22

Table 3: perturbed wave (17): time t̂ for which the energy obtained using
DP54 (top) and pDP54 (bottom) has been reduced in a 25%, together with
error t∗ − t̂, energy-error at t̂ and global error at t̂.

DP54

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 – – – –

10−4 2.8624180729865e+002 1.4405e+000 5.4185e−003 8.8184e−002

10−5 2.8693750393298e+002 7.4482e−001 2.8006e−003 3.5398e−003

10−6 2.8759566169643e+002 8.6661e−002 3.2575e−004 3.3912e−004

10−7 2.8767316752039e+002 9.1551e−003 3.4412e−005 3.3236e−005

10−8 2.8768138898087e+002 9.3367e−004 3.5094e−006 3.2954e−006

pDP54

tol t̂ t∗ − t̂ |H(y(t̂))−H∗| ||y(t̂)− yh(t̂)||
10−3 2.8767107854237e+002 1.1244e−002 4.2264e−005 4.0743e−001

10−4 2.8768177850769e+002 5.4414e−004 2.0453e−006 9.1319e−002

10−5 2.8768223805316e+002 8.4593e−005 3.1796e−007 3.2037e−003

10−6 2.8768233521131e+002 -1.2565e−005 4.7230e−008 2.8382e−004

10−7 2.8768232211774e+002 5.2832e−007 1.9858e−009 2.7038e−005

10−8 2.8768232269738e+002 -5.1321e−008 1.9292e−010 2.6510e−006

tems, we have proposed numerical methods that are able to reproduce ac-
curately the time evolution of the first integral in the approximate solution.
Thus, we propose a projection technique that requires a standard Runge–
Kutta (RK) method provided with dense output, also needing a quadrature
formula with positive coefficients. We prove that these projection methods
produce numerical approximations which give rise to the desirable evolution
in the invariant. Moreover, we prove that, under some natural assumptions,
conservative methods also have a good behaviour when they are applied
to those perturbed systems. Numerical experiments have been carried out
by using projection methods based on the 3rd-order Bogacki–Shampine RK
method, as well as the 5th-order Dormand and Prince method, comparing
them with the standard ones and also with the averaged vector field (con-
servative) method. These numerical results verify the theory and show the
superior qualitative behaviour of the new projection method. They also show
that the projected methods do not require much additional computational
effort, and are therefore very efficient when accurate numerical first integral

23

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
−15

10
−10

10
−5

10
0

10
5

Perturbed wave, tol=10−3, t∈ [0,300]

ε

|e
rr

or
 in

 H
|

BS32
pBS32
AVF(G4)
slope 1
DP54
pDP54

Figure 6: perturbed wave (17): error in H against ε, for methods BS32,
pBS32, AVF(G4), DP54 and pDP54, and reference straight line with slope 1

10
0

10
1

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Perturbed wave, t∈ [0,300]

CPU time

||g
lo

ba
l e

rr
or

||

BS32
pBS32
AVF(G4)
DP54
pDP54

Figure 7: perturbed wave (17): global error against CPU time, for methods
BS32, pBS32, AVF(G4), DP54 and pDP54

is needed.

Acknowledgements

The authors thank the anonymous referees for their very useful comments
and suggestions that helped to improve greatly the paper.

References

[1] P. Bogacki, L.F. Shampine, A 3(2) pair of Runge–Kutta formulas, Appl. Math.
Lett. 2 (1989), no. 4, 321–325.

24

[2] L. Brugnano, F. Iavernaro, Line Integral Methods which preserve all invari-
ants of conservative problems, J. Comput. Appl. Math. 236 (2012), no. 16,
3905–3919.

[3] L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian BVMs (HBVMs): a
family of ”drift-free” methods for integrating polynomial Hamiltonian sys-
tems, AIP Conf. Proc. 1168 (2009) 715–718.

[4] L. Brugnano, F. Iavernaro, D. Trigiante, A simple framework for the derivation
and analysis of effective classes of one-step methods for ODEs, Appl. Math.
Comput. 218 (2012) 8475–8485.

[5] L. Brugnano, M. Calvo, J.I. Montijano, L. Rández, Energy-preserving meth-
ods for Poisson systems, J. Comput. Appl. Math. 236 (2012), no. 16, 3890–
3904.

[6] M. Calvo, D. Hernández–Abreu, J.I. Montijano, L. Rández, On the preserva-
tion of invariants by explicit Runge–Kutta methods, SIAM J. Sci. Comput.
28 (2006), no. 3, 868–885.

[7] M. Calvo, M.P. Laburta, J.I. Montijano, L. Rández, Approximate preser-
vation of quadratic first integrals by explicit Runge–Kutta methods, Adv.
Comput. Math. 32 (2010), no. 3, 255–274.

[8] M. Calvo, M.P. Laburta, J.I. Montijano, L. Rández, Projection methods pre-
serving Lyapunov functions, BIT Numer. Math. 50 (2010) 223–241.

[9] M. Calvo, M.P. Laburta, J.I. Montijano, L. Rández, Runge–Kutta projection
methods with low dispersion and dissipation errors, Adv. Comput. Math., in
press.

[10] E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel,
W.M. Wright, Energy-preserving Runge–Kutta methods, M2AN Math.
Model. Numer. Anal. 43 (2009) 645–649.

[11] E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O’Neale,
B. Owren, G.R.W. Quispel, Preserving energy resp. dissipation in numeri-
cal PDEs using the “Average Vector Field” method, J. Comput. Phys. 231
(2012), no. 20, 6770–6789.

[12] D. Cohen, E. Hairer, Linear energy-preserving integrators for Poisson systems,
BIT Numer. Math. 51 (2011), no. 1, 91–101.

[13] M. Dahlby, B. Owren, T. Yaguchi, Preserving multiple first integrals by dis-
crete gradients, Technical report, Norwegian University of Science and Tech-
nology, Trondheim, Numerics no. 11/2010, (arXiv:1011.0478v4).

25

[14] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, J.
Comp. Appl. Math. 6 (1980) 19–26.

[15] V. Grimm, G.R.W. Quispel, Geometric integration methods that preserve
Lyapunov functions, BIT 45 (2005) 709–723.

[16] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure
Preserving algorithms for Ordinary Differential Equations, Springer-Verlag,
Berlin, 2002.

[17] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations
I, Nonstiff Problems, Second Revised Edition, Springer-Verlag, Berlin, 1993.

[18] E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal.
Ind. Appl. Math. 5 (2010), no. 1-2, 73–84.

[19] F. Iavernaro, B. Pace, s-Stage Trapezoidal Methods for the Conservation of
Hamiltonian Functions of Polynomial Type, AIP Conf. Proc. 936 (2007) 603–
606.

[20] F. Iavernaro, D. Trigiante, High-order Symmetric Schemes for the Energy
Conservation of Polynomial Hamiltonian Problems, J. Numer. Anal. Ind.
Appl. Math. 4 (2009), no. 1-2, 87–101.

[21] R.I. McLachlan, G.R.W. Quispel, What kinds of dynamics are there? Lie
pseudogroups, dynamical systems and geometric integration, Nonlinearity 14
(2001) 1689–1705.

[22] R.I. McLachlan, G.R.W. Quispel, Geometric integrators for ODEs, J. Phys.
A 39 (2006), no. 19, 5251–5285.

[23] K. Modin, G. Söderlind, Geometric integration of Hamiltonian systems per-
turbed by Rayleigh damping, BIT 51 (2011) 977–1077.

[24] O. Montenbruck, E. Gil, Satellite Orbits: Models, Methods, and Applications,
Springer, Berlin, 2001.

[25] B. Owren, M. Zennaro, Continuous explicit Runge-Kutta methods, Computa-
tional ordinary differential equations (London, 1989) Inst. Math. Appl. Conf.
Ser. New Ser. 39, Oxford Univ. Press, New York, 1992, pp. 97–105.

[26] G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical
integration method J. Phys. A: Math. Theor. 41 (2008) 045206 (7 pp.).

[27] L.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Com-
put. 8 (1997), no. 1, 1–22 .

26

