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ABSTRACT 
 

Osteoarthritis is a global musculoskeletal disease, with no disease-modifying drugs, 

leaving only analgesia and ultimately surgery to reduce pain and disability, affecting up to 80% 

of people older than 65 years old. There are strong functional interactions among the cartilage, 

synovium, and subchondral bone, leading to cartilage damage when mechanical loading is 

excessive chronic or repetitive, by inducing the expression of proinflammatory cytokines, and 

matrix metalloproteinases. PAR2 has recently been identified as a novel upstream mediator of 

catabolic events in the osteoarthritic chondrocytes, where its expression is enhanced, but the 

mechanism by which it promotes osteoarthritis has yet to be clarified. This protein is activated 

through the cleavage of the N-terminal domain, which can be mimicked by addition of a 

SLIGKV external peptide and also inhibited by using antibodies that avoid the cleavage. Fluid 

shear stress onto cell culture has been previously reported as good model of osteoarthritic in 

vitro studies, inducing the expression of COX2 which through PGE2 produces an increase of 

proinflammatory cytokines and matrix metalloproteinases, and also the inhibition of PAR2 

signal transduction by decreasing PAR2 surface expression by a still unknown mechanism.  

 

To gain a deeper understanding of the role of PAR2 as one of the important factors in 

osteoarthritis, PAR2 protein levels and its location, as well as its gene expression and other 

important markers were studied in SW1353 chondrocyte-like cells in response to the different 

types and intensities of fluid shear stress. Results could suggest a direct relation between PAR2 

and osteoarthritis, whose protein levels might be dependent on the type and intensity of flow. 

It was also found that PAR2 was internalized after FSS, suggesting that it could be in response 

to PGE2. Furthermore, the effect of PAR2 activation and inhibition on the gene expression of 

other important pathways was also investigated.  

 

RESUMEN 

 

La osteoartritis (o artrosis) es una enfermedad musculoesquelética, que afecta hasta el 

80% de la población mayor de 65 años, para la cual no hay ningún tratamiento curativo basado 

en fármacos, utilizándose únicamente analgésicos para aliviar el dolor, y la cirugía como última 

opción. Existen fuertes interacciones entre el cartílago, el liquido sinovial, y el hueso 

subcondral, que hacen que cuando la carga mecánica es excesiva o crónica, se induzca la 

expresión de citoquinas proinflamatorias y metaloproteasas de la matriz, que producen daño 

en el cartílago. PAR2, gen cuya expresión aumenta en la osteoartritis, ha sido identificado 

recientemente como un nuevo mediador de los eventos catalíticos de la enfermedad, cuyo 

mecanismo de acción se desconoce. La proteína que codifica, es activada a través del corte de 

su dominio N-terminal, lo que puede ser imitado por la adición de un péptido externo SLIGKV, 

o puede ser inhibido usando anticuerpos que impidan la rotura. El uso de un esfuerzo cortante 

generado por fluido, sobre un cultivo celular, ha demostrado ser un buen modelo para el 

estudio in vitro de la osteoartritis, induciendo la expresión de COX2, que a través de PGE2 

produce un incremento de citoquinas proinflamatorias y metaloproteinasas de la matriz, así 

como la inhibición de la señal de transducción de PAR2, reduciendo su expresión en la 

membrana por un mecanismo que se desconoce.  
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 Con el objetivo de conocer mejor el papel que juega PAR2, como uno de los factores 

importantes, en la osteoartritis, sus niveles de expresión proteica y localización, así como su 

expresión génica y la de otros marcadores importantes, fueron estudiados en células 

condrocíticas SW1353 en respuesta a diferentes tipos e intensidades de esfuerzos de corte 

generados por fluido. Los resultados sugieren que puede tratarse de una relación directa entre 

PAR2 y osteoartritis, siendo la cantidad de proteína PAR2 dependiente del tipo e intensidad del 

flujo. También se observó que PAR2 aparecía internalizado después del esfuerzo de corte, 

sugiriendo que podría ser en respuesta a PGE2. Además, también se investigó el efecto de la 

activación y la inhibición de PAR2 sobre la expresión génica en otras rutas importantes para la 

osteoartritis.   

 

INTRODUCTION 
 

Osteoarthritis (OA), also known as osteoarthrosis, or degenerative joint disease, is a 

global musculoskeletal disease, with no disease-modifying OA drugs (DMOADs), leaving only 

analgesia and ultimately surgery to reduce pain and disability [1]. OA is the most common 

form of arthritis, and it can damage any joint in the body, although the disorder most 

commonly affects joints in the hands, knees, hips and spine. The surfaces within the joints 

become damaged so it doesn’t move as smoothly as it should [2], producing pain and stiffness, 

which are the most common symptoms [3]. Osteoarthritis aetiology is multifactorial, with 

injury being the main influence on the onset and severity of osteoarthritis. Age and genetic 

influences also play a large role in the severity of osteoarthritis, affecting up to 80% of people 

older than 65 years old [4], as well as weight, which is playing a more significant role for 

modern populations. Furthermore sex differences, as a consequence of hormones, body size, 

anatomy, and intense activity starting at a young age still may also influence osteoarthritis [5]. 

 

OA is a disease that includes pathologic changes in all tissues of the joint, including 

articular cartilage degradation, subchondral bone thickening, osteophyte formation, synovial 

inflammation, and degeneration of ligaments (and the menisci in the knee). These strong 

functional interactions among the cartilage, synovium, and subchondral bone, produces an 

impact on cartilage function that is difficult to know where and when the pathological changes 

begin [6]. However, C. Huesa et al. [7] recently showed that the earliest changes appear in 

bone, driving osteophyte formation and other subchondral bone alterations. The temporal 

characterization of the early stages in OA demonstrates that although bone changes precede, 

they do not necessarily lead to, cartilage damage, which seems to occur independently [4, 7]. 

Then, if the damaged cartilage is not able to regenerate, it could steer to development of OA. 

  

Mechanical loading, despite its physiological effects, when excessive chronic or 

repetitive has been proposed as the critical signal for the initiation and progression of OA, 

being chondrocytes the target of these abnormal biomechanical factors [8, 9, 10], which have 

been found to mediate the above-mentioned earliest bone changes [4, 7], and cartilage 

damage by inducing the expression of proinflammatory cytokines (PICs), matrix 

metalloproteinases (MMPs), and apoptosis signals in late OA [9, 11].  
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Protease activated receptor 2 (PAR2), a G protein–coupled receptor (GPCRs), has 

recently been identified as a novel upstream mediator of catabolic events in the osteoarthritic 

chondrocytes, where its expression is enhanced [4, 7, 11, 12]. This GPCRs is activated through 

the cleavage of the PAR2 N-terminal domain by specific serine proteases [4], unmasking a new 

N-terminal sequence (SLIGKV), which acts as a tethered ligand, binding to the extracellular 

loop 2, and activating the receptor itself, transducing the signal via the G-proteins at the C-

terminal domain, and upregulating its expression. This activation is irreversible, and the 

cleaved receptor activated, is internalized, and degraded. Then cell membrane PARs are 

restored from the intracellular pools [11]. 

 

After activation, PAR2 is downregulated through C-terminal phosphorylation by GPCR 

kinase, followed by association with an adaptor protein like β-arrestin, recruited to clathrin-

coated pits and internalized from the cell surface. Internalized PARs are modified with 

ubiquitin, which facilitates lysosomal degradation [13, 14]. The redistribution of uncleaved 

PARs from intracellular pools to the cell surface as well as de novo receptor synthesis permits 

rapid recovery of protease signaling, being critical for cellular re-sensitization [13, 15, 16]. 

 

The mechanism by which PAR2 promotes osteoarthritis has yet to be clarified, but 

PAR2 provides for sensing by cells of the protease environment and allows them to respond 

subsequently [12]. Extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 pathways, but not 

those of JNK or NF-κB, are activated very early in response to a specific PAR2 stimulation, as 

well as widely implicated in the ongoing catabolic events in cartilage degradation, like 

production of MMP-1, MMP-13 by ERK1/2 and activation of cyclooxygenase 2 (COX2, also 

known as Prostaglandin-Endoperoxide Synthase 2, PTGS2) by p38 [4, 11, 14]. 

 

 Furthermore, PAR2 has also been proposed as a potential therapeutic target not only 

to slow the disease progression, but also likely to reduce the symptoms [4, 7, 11]. Chronic joint 

pain is one of the major symptoms of arthritis, and PAR2 activation appears to lead to 

hyperalgesia, rather than analgesia. Thus, in addition to any potential disease modifying 

effects like anticatabolic and anti-inflammatory, PAR2 antagonism may also have the added 

benefit in reducing joint pain [4, 7, 11]. 

 

Then, it was discovered that administration of an exogenous agonist peptide that 

mimics the tethered ligand sequence (SLIGKV) can also lead to activation of the receptor [17]. 

In contrast, there are a number of potential approaches to prevent PAR-2 activation. It can be 

obtained by gene silencing using PAR-2 small interfering RNA, or extracellularly by prevention 

of proteolytic activation, employing serine protease inhibitors, administering antibodies or 

antagonist that target the serine protease cleavage site, as shown in the Figure 1B [17].  

 

Other studies revealed that fluid shear stress (FSS) caused by mechanical loading, 

induces the synthesis of COX-2 in chondrocytes via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBP-

dependent pathway [18, 19], and that its derived prostaglandin (PG) E2 has anabolic effects at 

picomolar concentrations, and catabolic effects at nano and micromolar concentrations, 

producing PICs and MMPs by a mechanism that has yet to be elucidated [9]. 
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Figure 1. A) PAR2 secondary structure and its activation. This representation of PAR2 secondary 

structure shows how PAR2 is activated by proteolysis of the N-terminus (in black), allowing the SLIG 

peptide (in white) to tether the second extracellular loop. Softened colors represent PAR2 structure after 

its proteolysis. B) External inhibition of PAR2 activation. PAR2 activation can be inhibited by many 

different mechanisms, like protease inhibitors, antibodies, agonists or siRNAs. Extracted from Ref. 17. 

   

 

 

PGE2 has been also found to inhibit PAR2 signal transduction by decreasing PAR2 

surface expression [14], through a mechanism involving EP2 that is not well understood. It is 

known that PGE2 binds to specific G-protein coupled cell surface prostaglandin EP receptors 

(EP2), and modulate intracellular levels of cyclic AMP [14, 18, 19], which could produce 

internalization of PAR2, an increase of β-arrestin protein expression, and the inhibition of ERK 

phosphorilation (and thus its pathway) [14]. Nevertheless, PGE2 also induces the production of 

proteases, which may induce PAR2 internalization too [14]. 

In addition, it was suggested that PAR2 internalization can be uncoupled from G-

protein activation and phosphorylation, indicating that distinct determinants control the 

capacity of PAR2 to signal versus recruitment of β-arrestin and endocytosis [15]. Activated 

PAR2 phosphorylation is critical for receptor desensitization and β-arrestin recruitment, which 

facilitates receptor recruitment to clathrin coated pits and endocytosis. Nevertheless, it was 

found that PAR2 internalization can proceed independent of G-protein activation and 

phosphorylation [15]. 

 

Previous experiments revealed the similarities of fluid shear stress in vivo and in vitro, 

providing OA with a FSS experimental model in vitro to mimic in vivo fluid shear stress (Figure 

2). Accumulating in vitro results support the notion that low fluid shear (<10 dyns/cm2) is 

chondroprotective, whereas high shear stress (>10 dyns/cm2) elicits the release of PICs, MMPs, 

etc. [9]. 

 

A B 
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Figure 2. Similarities of mechanical stimulation in vivo and in vitro. In vitro FSS on cell culture can work 

as an experimental model of the in vivo FSS occurred in osteoarthritis. Extracted from Ref. 9. 

 

AIM 
 

The aim of this project is to gain understanding of the role of PAR2 as one of the 

important factors in osteoarthritis. First of all, PAR2 and OA relation will be tested in vivo with 

mice models, and in vitro with a cell line and FSS model. Secondly, we will try to adjust the 

optimal length of in vitro stimulation with FSS to study how PAR2 behaves in response to these 

different types and intensities of fluid shear stress, and we will also attempt to elucidate the 

localization of PAR2 within the cell by using immunofluorescence methods. Furthermore PAR2 

gene expression as well as some key proinflammatory cytokines and matrix metalloproteinases 

gene expressions will be studied, firstly after 1 hour of FSS, and later after 1 hour of FSS, and 2 

hours of resting time, meanwhile PAR2 protein will be rather activated or inhibited by external 

treatment, in order to know how its activation or inhibition could affect directly or indirectly to 

the downstream genes expression, thought to be involved in osteoarthritis disease. 
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MATERIALS and METHODS 

 

Mice joints immunostaining  

Samples were obtained from knee joints 4 weeks after experimental OA induction by 

the destabilization of the medial meniscus (DMM) method [20]. 6 µm sections were cut and 

used for immunohistochemical analysis. For this we carried out dewaxing with Histo-Clear for 5 

minutes at room temperature. Subsequently, samples were rehydrated with decreasing 

concentrations of ethanol (100%, 80% and 70%) for 2 min at room temperature. Then, sections 

were washed with PBS followed by antigen retrieval performed for 6 min using 10 mM sodium 

citrate buffer. Without washing samples, endogenous peroxidase inhibition was carried out by 

incubating the slides in 1% H2O2 in methanol for 30 minutes. Afterwards, samples were 

washed twice with PBS for 5 min and blocked with PBS, 0.5% BSA and 0.05% serum (where the 

2nd species was raised in), for 30 min at room temperature. Sections were incubated 

overnight at 4ºC with SAM-11 antibody and equivalent mouse monoclonal IgG2a antibody as a 

negative control. Next morning, sections were washed twice for 5 min with PBS and then 

incubated with biotinylated universal pan-specific antibody for 30 min at room temperature. 

Samples were washed twice with PBS for 5 min, followed by incubation with Vectastain ABC 

solution for 30 min, at room temperature. Samples were washed as previously indicated. 

Detection was carried out using 3,3-diaminobenzidine (DAB) substrate, counterstained with 

haematoxylin followed by a 2 min incubation with increasing ethanol (100%, 80% and 70%). 

Finally, samples were then incubated for 2 min in xylene and mounted with DPX (a synthetic 

resin mounting media). 

 

 

SW1353 Cells 

SW1353 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) F12 

(Lonza, Belgium) + 10% Fetal Bovine Serum +1%L-Glutamine +1%Penicilin/Streptomycin in 

humidified atmosphere 5% CO2 in air at 37°C. Passages were done at 75-85% cell confluence.  

 

 

Fluid Flow (FF)  

Steady, oscillating and pulsatile fluid flows were used to mimic knee shear stress. 

5dyns/cm2 (0.5Pa) pressure fluid flows were used as a model for the physiological effects (rate 

stress 500) of a healthy knee, and 20dyns/cm2 (2.0Pa) pressure fluid flows were employed as a 

model for the pathological effects (rate stress 2000) of OA within the knee. Ibidi Pump system 

(Ibidi, Germany), a computer-controlled air pressure pump, was used to create by positive 

pressure the above-mentioned fluid flows. 

 

 

Chambers µ-Slide VI0.4 

Fuid flow experiments were run in collagen coated tissue culture chambers (Ibidi, 

Germany) that contain 6 channels of 0.4mm height, 17mm length and 3.8mm width 

dimensions, resulting in 30µl volume per channel, interlinked by 0.8mm and 1.6mm inner 

diameter tubing (Ibidi, Germany) for 5dyns/cm2 and 20dyns/cm2 pressure, respectively.  
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Figure 3. A) Chamber µ-Slide VI
0.4

 representation. Top view of the 6 channels chamber µ-Slide VI
0.4

 (Ibidi, 

Germany). B) Cell culture in Chamber µ-Slide VI
0.4

. Lateral view of one of the channels of the chamber, 

full of culture media and some cells attached to the bottom.  

 

 

Fluid Flow Set up 

Ibidi Pump system and chambers were connected, and Fluidic Units (Ibidi, Germany), 

holders for perfusion sets (10 ml each) and connected to chambers through 15cm length and 

0.8mm and 1.6mm inner diameter tubing respectively. Manufacturer’s instructions (Ibidi, 

Germany) were followed for the set up (http://ibidi.com/).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A) Representation of Fluid Flow set up. Representation of the air pump connection to the 

Fluidic Unit(s), controlled by specific computer software. B) Fluidic Unit. Image of one fluidic unit working 

on one channel chamber.  

 

 

Fluid flow experiment 

30µl of 106cells/ml of the SW1353 chondrocytes cell line with DMEM F12 (+10%FBS 

+1%L-Glutamine +1%Penicilin/Streptomycin) were added into each channel of the µ-Slide and 

after cells fixation to the bottom of the channel, 150µl of the same medium were added, and 

incubated in humidified atmosphere with 5% CO2 and 37°C over night. Half an hour before the 

flow experiment, the medium was changed for DMEM F12 (+1%FBS +1%L-Glutamine 

+1%Penicilin/Streptomycin) and cells were rested to achieve a steady-state level. 

A B 

A B 

http://ibidi.com/
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 Every chamber was subject to 1 hour of experiment 

with 11ml of total working volume (and tubing dead volume 

0.5ml) under humidified atmosphere with 5% CO2 and 37°C. 

Static state (control) underwent no fluid flow. Steady Flow 

5dyns/cm2 and Steady Flow 20dyns/cm2 experienced a 

unidirectional flow. Oscillating Flow 5dyns/cm2 and Oscillating 

Flow 20dyns/cm2 underwent a bidirectional flow switching 

every 0.5s. And finally, Pulsatie Flow 5dyns/cm2 and Pulsatile 

Flow 20dyns/cm2 a unidirectional flow stopped every 0.5s, 

which equates to a frequency of 1Hz.  

 

Figure 5. Several fluidic units set up. Image of two fluidic units 

generating pulsatile flow on one channel chamber. 

 

 

Activation and inhibition of PAR2 after fluid flow 

After the fluid flow experiment, cell cultures were incubated for 2 hours in humidified 

atmosphere with 5% CO2 and 37°C. DMEM F12 (+1%FBS +1%L-Glutamine 

+1%Penicilin/Streptomycin) was used as the control medium, which was compared with the 

activation medium DMEM F12 (+1%FBS +1%L-Glutamine +1%Penicilin/Streptomycin + 10µM 

SLIG-KV), and the inhibitor medium DMEM F12 (+1%FBS +1%L-Glutamine 

+1%Penicilin/Streptomycin, + 200ng/ml SAM 11 (Santa Cruz Biotech, USA)).  SAM11 (Santa 

Cruz Biotech, USA), is an IgG2a monoclonal antibody produced in mice immunized with the 

peptide SLIGKVDGTSHVTG corresponding to residues 37 to 50 of the human PAR-2 sequence.  

 

 

Immunofluorescence Microscopy 

After removing the medium of the wells and washing with PBS, paraformaldehyde 

(PBS +4% PFA) was added for 15 minutes, to fix the cells. Then, the wells were washed with 

PBS three times, and blocked with blocking solution (PBS +3% BSA) for 30 minutes at room 

temperature. The solution was changed for 30µl of primary antibody solution [blocking 

solution + primary antibody (mouse monoclonal IgG 200µg/ml) at 1:100] and incubated at 

room temperature for 1h. After washing with PBS three times, 30µl of secondary antibody 

solution [488nm goat anti mouse IgG, 2mg/ml at 1:200] were added, and incubated at room 

temperature for at least 30mins in the dark. Chamber channels were washed again three times 

and Vectashield was added and stored at 4°C until visualisation in fluorescent microscope. No 

addition of the primary antibody was used as the negative control (isotype). 

 

 

Immunofluorescence quantification 

 Immunofluorescence was assessed by taking images of  immunostained  SW1353 cells 

with a standard LED light source immnunofluorescence microscope (Zeiss, Germany). Cell 

perimeter within the images was delineated and immunofluorescence brightness was 

quantified using ImageJ software. Areas in every image not containing cells were used to 

subtract background fluorescence.   
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Immunofluorescence localization and 3D imaging   

An Inverted Spinning Disk Confocal Microscope (Zeiss, Germany) with a Evolve Delta 

512 EMCCD Camera (Photometrics, USA) was used to obtain a 3D image of immunostained 

cells and localize PAR2 within the cells (http://www.gla.ac.uk/researchinstitutes/iii/facilities/ 

sdconfocal/). Z stack images of 1 µm were taken and reconstructed in ZEN (Zeiss, Germany) 

software for visualization.  

 

 

RNA extraction and purification 

Chamber media was removed and stored at -20ºC, and chambers were washed with 

PBS. 350µl of Lysis Buffer (RLT Lysis Buffer + 1% β-Mecaptoethanol) were added to two 

channels and, after a minute, collected in 1.5 ml RNase free Ependorff tubes. 350µl of 70% 

ethanol were also added to the homogenized lysate. The 700µl of the sample was transferred 

to an RNeasy mini column (Qiagen, UK) placed in a 2ml collection tube, which was centrifuged 

for 30sec at 8000 g. Then, the flow-through was taken and applied to the mini column again, 

centrifuged for 30sec at 8000 g and the new flow-through discarded. After that, 700µl of 

Buffer RW1 were added to the RNeasy column, centrifuged for 30sec at 8000 g to wash the 

column, and the new flow-through discarded. This step was repeated now with 80µl of DNase 

mix (10µl DNase I, 70µl RDD buffer), centrifuged, and the new flow-through discarded. The 

next requirement was the addition of 500µl of Buffer RPE, centrifuged for 2mins at 8000 g to 

wash the column to dry the RNeasy silica-gel membrane, and the flow-through discarded. To 

elute, the RNeasy column was transferred to a new 1.5ml collection tube, 30-50µl of RNase-

free water were pipetted directly onto the RNAeasy silica-gel membrane, and the tube was 

centrifuged for 1min at 8000rpm. Finally, the flow-through was taken, and applied to the mini 

column again. After centrifuging for 1min at 8000rpm, the flow-through was stored. 

 

The RNA quantification and the purity analysis were made with a NanoDrop Lite 

Spectrophotometer (Thermo Scientific, UK). On average we obtained 20ng/µl of not 

completely pure RNA, which was below the limit for running a qPCR. Therefore were used the 

RNA extraction with iScript method as described below.  

 

 

RNA extraction with iScript method 

30µl of iScript were added in each empty channel of the chamber, and after 1 minute, 

the RNA iScript lysate was collected.  

 

q-PCR 

cDNA was made from the RNA collected after the FSS experiment, using the 96 well 

Thermal cycler (Applied Biosystems, USA) for 20min at 55°C and 10min at 72°C; 9µl of RNA 

sample and 20µl of Reverse Transcription Premix (Primer design, UK). Two different methods 

were used for q-PCR analysis.  

1) TaqMan Method: 5µl of Master mix, 0.5µl of Primer mix (Forward, Reverse, 

TaqMan Probe, 2:2:1), 0.5µl of Nuclease-free H20, and 4µl of cDNA were 

used to a total volume of 10µl. 

2) SYBR Green Method: 5µl of Master mix, 1µl of Primer mix (Forward, 

http://www.gla.ac.uk/researchinstitutes/iii/facilities/%20sdconfocal/
http://www.gla.ac.uk/researchinstitutes/iii/facilities/%20sdconfocal/
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Reverse, Water, 1:1:8), and 4µl of cDNA were employed to a total volume of 

10µl.  

Analysis was conducted by the ΔΔCt method and normalizing against 18S and B2M genes. 

 

Gene Forward 5’ 3’ Reverse 5’ 3’ 

PAR2 GGCACCATCCAAGGAACCAATA GGAAGGAAGACAGTGGTGAGTT 

COX2 GCTGTTCCCACCCATGTCAA AAATTCCGGTGTTGAGCAGT 

IL6 ACCCCCAATAAATATAGGACTGGA GAAGGCGCTTGTGGAGAAGG 

TGFB1 CGACTCGCCAGAGTGGTTAT CGGTAGTGAACCCGTTGATGT 

MMP13 AAATTATGGAGGAGATGCCCATT TCCTTGGAGTGGTCAAGACCTAA 

18S CGAATGGCTCATTAAATCAGTTATGG TATTAGCTCTAGAATTACCACAGTTATCC 

B2M TTCTGGCCTGGAGGCTATC TCAGGAAATTTGACTTTCCATTC 
Table 1. Primers sequences 

 

 

ELISA 

The coating solution was prepared by diluting the coating antibody to 1µg/mL with 

Coating Buffer (8.0g NaCl, 1.13g Na2HPO4, 0.2g KH2PO4, 0.2g KCl, 0.1% ProClinTM; q.s. to 1.0L 

with distilled H2O. pH to 7.4), and used to coat a EIA/RIA flat bottom 96 well plate with 

100µl/well. The covered plate was incubated overnight (12-18hours) at 4° C. The wells were 

aspirated and washed 1 time with 300µl of Wash Buffer (0.2g KH2PO4, 1.9g K2HPO4.3H2O, 0.4g 

EDTA, 0.5mL Tween 20; q.s. to 1.0L with distilled H2O. pH to 7.4.) per well. Following the wash, 

the plate was inverted and taped on absorbent paper to remove excess liquid. Then, the plate 

was then blocked with 200µL per well of Assay Buffer (8.0 g NaCl, 1.13 g Na2HPO4, 0.2 g 

KH2PO4, 0.2 g KCl, 5.0 g bovine serum albumin (fraction V), 1 mL Tween 20; q.s. to 1.0 L with 

distilled H2O, pH to 7.4) for 1 hour at room temperature. 100µL of standards in triplicate, and 

samples were pipetted into designated wells. Immediately, 50µL of the working detection 

antibody were added into each well (Anti-Human IL-6 Biotin (0.025mg/0.125mL) diluted to 

0.16µg/mL with Assay Buffer), and incubated for 2 hours at room temperature with continual 

shaking (700rpm). Then, the wells were aspirated and washed 5 times using the method 

previously explained. After washing, 100µL of the working streptavidin-HRP solution (diluted to  

1/2500 in Assay Buffer) were added per well and incubated for 30 minutes at room 

temperature with continual shaking (700rpm). After aspirating and washing again 5 times 

using the previous method, 100µL of the TMB (Tetramethylbenzidina) substrate were added to 

each well, and the plate was incubated for 30 minutes at room temperature with continual 

shaking (700rpm). Then 100µL of Stop Solution (1.8N H2SO4) was added to each well, and the 

absorbance was measured at 450nm (reference absorbance: 650nm) within 30 minutes of 

adding Stop Solution.  

 

Statistical analysis 

Data were tested for normality (Sigmastat 2.03; SPSS) and, depending on the result, 

analysed with parametric or non paremetric tests. One-way analysis of variance (ANOVA) was 

utilized for multiple comparisons whilst two-way ANOVA was used to compare different 

groups and treatments. All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls 

Method). Data was expressed in graphs as mean±SEM. 
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RESULTS 

 

PAR2 detection in mice model 

It was previously demonstrated that PAR2 expression is higher in OA cartilage [15, 34], 

and therefore, we wanted to verify whether PAR2 levels differ from healthy to osteoarthritic 

chondrocytes in an in vivo model of OA. For that reason sham operated and DMM 

(destabilization of the medial meniscus) C57BL/6J mice were used.  After the immunostanning 

treatment, stanning chondrocytes were quantified giving a statistically significant increase of 

PAR2 protein levels in DMM mice compared with sham operated mice, as shown in Figure 6. 

    
 

Figure 6. PAR2 levels in DMM and sham operated mice. This figure shows the percentage of 

chondrocytes (A) whose PAR2 levels were detected by the immunostaning on sham (B) or DMM (c) 

operated mice, where PAR2 stain shows choncrocytes in brown colour. *P<0.05.  
 

Mechanical stimulation of SW1353 cells  

PAR2 showed to be increased in the cartilage of the in vivo mouse model of OA (Figure 

6), which induced us to test whether mechanical stimulation upregulates PAR2 presence and 

expression in vitro. We therefore conducted a series of experiments where different levels and 

types of FSS were generated onto SW1353 cells in culture. In comparison to static cultures, 

cells under FSS showed to have a statiscically significant increased level of PAR2 within the 

cells, as quantified in immunofluorescence (Figure 7).  

As results confirmed that FSS can also generate an increase of PAR2 levels in vitro, it 

was questioned whether PAR2 levels in the cells were dependent on the types and intensities 

of FSS. Thus, the different mechanical stimulations were analysed separatedly by the same 

immunoflourescence quantification method and compared with the rest. As shown in Figure 

7D, two main groups of FSS can be distinguished. Static culture, Steady 5dyns/cm2, and 

Oscillating 5dyns/cm2, present similar PAR2 low levels. By contrast, Steady 20dyns/cm2, 

Oscillating 20dyns/cm2, Pulsatile 5 and 20dyns/cm2 have similar PAR2 levels, higher than those 

A B 

C 
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observed within the first group. Despite this noteworthy trend, only Pulsatile 5dyns/cm2 FSS 

has statistically significant differences with the amounts of PAR2 in the Static culture, 

suggesting that the flow under these conditions was generating a more consistent effect on 

PAR2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. PAR2 protein levels induced by FSS.  Figures A) and C) are representative images of the 

SW1353 cells taken under the fluorescence microscope. Figures A) and B) only compare FSS against 

Control, whereas Figure C) and D) distinguish between the different types and intensities of flows used in 

the experiment. *P<0.05.  

A 

C 

B 
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SW1353 3D imaging and PAR2 localization 

 Where PAR2 was located was unknown so far. Theoretically, PAR2 detected levels 

could be thought to be increased due to its movement to the membrane. However, we wanted 

to confirm where PAR2 was mostly located after 1 hour of FSS, whether on the membrane, 

internalized, or both. Using an Inverted Spinning Disk Confocal Microscope was observed that 

PAR2 actually was not on the membrane but within vesicles in the cytoplasm, as it can be seen 

in Figure 8 and in the full video (https://youtu.be/AZn1B-YT6TY). The cells were fixed and not 

permeabilised, which should have made internalization of the antibody difficult, yet this was 

observed in all the samples, except in the control, where little or no PAR2 staining could be 

seen. Surprisingly, no PAR2 at all was detected on the membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. PAR2 localization. These images of SW1353 were taken after 1hour of FSS and 

immunofluorescence treatment by an Evolve Delta 512 EMCCD Camera adapted to the Inverted Spinning 

Disk Confocal Microscope. Nuclei can be seen in blue color, and PAR2 in green color. 
 

https://youtu.be/AZn1B-YT6TY
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Gene expression after 1hour of Fluid Flow 

Since PAR2 presence in the cytoplasm, was increased depending on the FSS, PAR2 

gene expression, as well as some other OA related gene expression (COX2, IL-6, TFGβ1, and 

MMP13), were quantified. After one hour of mechanical stimulation no statistically significant 

differences in gene expression was detected in SW1353 cell line.  

Nevertheless, according to the data displayed in Figure 9 some remarkable differences 

between gene expression can be appreciated depending on FSS, highlighting the trend 

observed in COX2 gene expression, which is stimulated under Oscillating and Pulsatile flows, 

especially under 20dyns/cm2.  

PAR2 gene expression remained unchanged regardless of the treatment, suggesting 

that the increased PAR2 protein level within the cell is not due to an increase in the synthesis 

of PAR2. MMP13, IL-6, and TGFB1, apparently do not follow any particular trend, and their non 

statistically significant differences may be influenced by the variability within the experiments.  

 

 

Figure 9. PAR2, COX2, IL-6, TGFB1 and MMP13 expression induced by FSS. Statistically significant was 

considered when *P<0.05. 
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Gene expression after PAR2 artificial activation or inhibition 

PAR2 can be artificially activated and inhibited. Therefore it was of interest to test 

whether OA related gene expression changes depending on activation or inhibition of PAR2 

protein in SW1353 cells. After 1 hour of pulsatile 5dyns/cm2 FSS, natural activation was 

mimicked for 2hours using a SLIGKV peptide and its inhibition by using SAM11 antibody. As in 

the previous experiment, PAR2, COX2, IL-6, TFGβ1, and MMP13 genes expression was analyzed 

by mRNA extraction, reverse transcription, and qPCR. 

When analyzing PAR2 gene expression, one of the first things to be detected was its 

statistically significant increase of gene expression after no activating or inhibiting treatment, 

which was not observed in the previous fluid flow experiment, where no resting time was 

included in the assay. In contrast, under FSS, when PAR2 activating peptide was administrated 

PAR2 gene expression was highly decreased compared to control (no treatment), and its 

expression was not affected compared to SLIG treated under static state, suggesting that 

activation of PAR2 after FSS hinders its expression. In cells treated with SAM11, PAR2 gene 

expression shows that FSS induces a significant increase when compared to the static state 

(Figure 10A). However, external inhibition of PAR2 seems to hinder its expression, not only 

after Fluid Flow, but also under static condition. Nevertheless it is not statistically significant. 

 

Whether this PAR2 external activation or inhibition could affect the expression of 

some related genes in SW1353 cell line was tested as well. The study resulted in a highly 

significant stimulation of COX2 expression after activation of PAR2 under no fluid flow (static 

state). Moreover, despite not statistically significant, it seems to be a trend of COX2 hindering 

its expression after 1 hour of FSS and two hours of resting time, no matter the treatment, 

compared to the static state (Figure 10B). 

 

IL-6 shows significantly increased expression (~20 fold) after the external activation of 

PAR2 in static conditions. This effect was not observed under FSS, where activation of PAR2 did 

not yield increased levels of IL-6 (Figure 10C).  

 

Furthermore, in order to analyze whether the increase of IL-6 gene expression 

produces the expected consequent increase of IL-6 protein production several ELISA assays 

were accomplished. Nevertheless, the assessment did not reveal any statistically significant 

change in IL-6 protein levels (Figures 10D and 10E). 

 

We also analysed TGFβ1. Its expression seems to be increased under no FSS, but this 

tendency is not statistically significant if examinated individually by treatments (SLIG or 

SAM11). Nonetheless, TGFβ1 gene expression of cells under static state (including control, and 

treated cells, SLIG and SAM11) presented a statistically significant raise compared to those 

that underwent FSS (Figures 10F and 10G).  

 

Finally, MMP13 showed no significant changes in FSS, either PAR2 activation or 

inhibition in SW1353 cell line. However, there is a trend whereby cells that underwent FSS 

appear to have a higher level of MMP13 gene expression, but it is not statistically significant 

when all the data was pooled attending to the type of flow (Figures 10H and 10I). 
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Figure 10. Gene and protein expression after PAR2 external activation or inhibition, and 2 hours of 

resting time. A) PAR2 gene expression. B) COX2 gene expression. C) IL-6 gene expression. D) and E) IL-6 

protein levels. F) and G) TGFβ1 gene expression. H) and I) MMP13 gene expression. *P<0.05, **P<0.01, 

and ***P<0.001. Two-way ANOVA statistical analysis.  Static state in white, and FSS in black. 

Casa casa 

A 
B 

C 

D E 

F 

G H I 



17 

 

DISCUSSION 

 

Human osteoarthritis is not easily studied in humans. Thus, the induced DMM in mice 

was used as an in vivo model in order to test whether there was a relationship between PAR2 

and OA, what it had been previously observed by W. R. Ferrell et al. [12]. The result was, as 

expected because of its theoretical importance in osteoarthritis development, an over 

expression of the PAR2 protein within the chondrocyte cells on the cartilage of femur and tibial 

condyles (Figure 6). The result was statistically significant, and highly convincing of the direct 

relationship between OA and presence of PAR2 protein in cells within the OA joint. In vitro 

results correlated the in vivo studies, but only shortly after FSS stimulation. PAR2 protein levels 

were increased when mechanical stimulation was applied (Figure 7).  Furthermore, the type 

and the intensity of fluid flow showed different levels of PAR2 protein detected. The 

experiment revealed that not all types of flows and intensities have the same ability to 

mechano-stimulate the cells in the same manner. This connects with the previously mentioned 

chondroprotective effect of low levels of FSS [9]. 

 

Steady and Oscillating Flow at 5dyns/cm2 showed very small differences with the Static 

control, which could be understood as a physiological pressure. Nevertheless, FSS generated at 

20dyns/cm2, including Steady, Oscillating and Pulsatile flows, revealed an elevated 

quantification of PAR2, which in this case could be referred to as a pathological pressure. 

Surprisingly, Pulsatile flow at 5dyns/cm2 appeared to stimulate PAR2 expression at the same 

level of the 20dyns/cm2 fluid flows and it was the only one with statistically significant 

differences. When we examined the location of the PAR2 fluorescence in the cells we observed 

that it was concentrated in vesicles inside the cell, which suggests that PAR2 had internalized. 

This correlates with the fact that PAR2 proteins are stored in Golgi vesicles to have a rapid 

response to PAR2 activation [14]. Since we did not permeabilise the membrane, there are 

questions about how the antibody reached the cytoplasm. Nevertheless, K. Yamamoto et al. 

[21] reported that shear stress increase membrane fluidity in many cell types, which is also 

known to be directly related with membrane permeability [22], suggesting that FSS is the 

responsible of the cell membrane permeability to antibodies, what could alter PAR2 protein 

detected levels, opening a second hypothesis where the detected PAR2 protein might not be 

dependent on the synthesized PAR2, but on cell membrane permeability. There are also 

doubts about the efficiency of SAM11 as an anti-PAR2 antibody to use on fixed cells and tissue, 

where colleagues (personal communication) have encountered problems using this antibody 

to detect PAR2 on the cell membrane. Once the tertiary and quaternary structures of PAR2 are 

published it might be possible to investigate this matter further. 

 

In order to know if the detected PAR2 protein of the previous experiment could have 

just been synthesized because of the stimulation or it was already present within the cells, 

PAR2 gene expression was studied after one hour, and no changes in PAR2 gene expression 

were seen. This finding suggest that the point of highest stimulation is the initial first surge of 

flow, so after 1 hour under flow the gene expression could be returning to normal because 

PAR2 protein levels could have reached the maximum, which was previously suggested to 

happen in 30 minutes by S. K. Böhm et al. [23]. On the other hand, COX2 gene expression, a 

gene that has been reported to be stimulated by FSS not in a direct PAR2 dependent manner, 
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was observed to follow a trend where Oscillating 20dyns/cm2 and Pulsatile flows appeared to 

have rising values of its expression, although none significant due to the high variability within 

the experiment. As indicated by P. Wang et al. [9], COX2 (PTGS2) gene, encodes for an enzyme 

that sinthesises PGE2, which induce the expression of PICs and MMPs. Furthermore, H. 

Komatsu et al. [14] reported that PGE2 can inhibit PAR2 signal transduction by decreasing its 

surface expression. Thus, the data here presented suggest it could have occurred that PAR2 

proteins were internalized into vesicles after its expression on the membrane responding to 

PGE2. 

 

Levels of PAR2 gene expression after 2 hours of resting time appeared to be increased 

(Figure 10A), which was not observed within the non resting time assay. This 2 hours gap could 

have been used by the newly synthesized PGE2 or by any other mechanism to induce its 

internalization, generating a swelling in PAR2 gene expression. Activation with external SLIG 

peptide, a fact that is reasonably faster than the biological production of PGE2, results in a 

reduced value of its gene expression compared to the non activated, suggesting that PAR2 

levels of the membrane were replaced by the fully PAR2 deposits. Regarding at COX2 gene 

expression after 2 hours of gap time (Figure 10B), it is noteworthy that its expression is not 

sustained in a highly activated level, and in fact, it is temporally induced in response to high 

fluid shear stress and then return to the basal level after a 2 hour of FSS exposure [9], whose 

expression could have been even repressed compared to static sate to balance the protein 

number within the cells.  

 

IL-6, which appears to be one of the main mediators in the pathophysiology of OA but 

alone is not capable of stimulating cartilage degradation directly, is also upregulated in 

response to PGE2 by a mechanism that is not completely known in chondrocytes [9, 24]. We 

observed that after one hour of fluid flow its gene expression has no statistically significant 

changes, and it seems to follow no particular tendency, maybe an increased expression when 

mechanical loading is higher, 20dyns/cm2 of flow (Figure 9), which could be explained since 

COX2 is also upregulated by mechanical loading. When PAR2 is activated by SLIG peptide after 

no FSS, a marked increase of IL-6 gene expression is detected (Figure 10C), suggesting that 

when PGE2 mediated PAR2 internalization is not produced, activation of basal PAR2 induces IL-

6 expression in a direct manner. Nevertheless, IL-6 protein levels were incomprehensibly not 

detected by ELISA assay (Figures 10D and 10E), because all the reported IL-6 results were 

under the detection threshold of the technique. The study was repeated several times. It was 

determined that the volume of total media used per well was excessive to allow detection of 

secreted IL-6 by the low number of cells in the well.  Because of the experiment set up, we 

could not reduce the volume any further.  

 

PGE2 regulates PICs mediated - MMP expression, depending on the concentration of 

PGE2 in joint cartilage, as well as by other mechanisms [9, 25, 26]. Low fluid shear stress could 

be chondroprotective and suppresses the expression of MMP13, a protein expressed under 

high FSS that produces collagen type II degradation and generates the breakdown of the 

extracellular matrix (ECM), contributing to the development of OA [9, 25]. Nevertheless, the 

results obtained in this experiment show no change in MMP13 gene expression in response to 

FSS  (Figure 9),  neither  under pathologic FSS,  nor under the physiological one.  Still,  there is a  

trend to increased gene expression after FSS and 2 hours resting time (Figures 10H and 10I). 
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TGFβ1 is a homeostasis regulator for both subchondral bone and articular cartilage, 

and increasing evidence indicates altered TGFβ signaling is involved in the pathogenesis of OA 

development and may have dual role [9, 27]. It has been reported by G. Zhen et al. [27] to be 

upregulated in the early phase of OA, and other researchers disclosed that inhibition of its 

activity leads to development of OA [28], highlighting the hypothetical dual role. Our assay did 

not reveal any significant change in its expression after one hour of fluid flow (Figure 9), but it 

did after two hours resting time (Figures 10F and 10G), suggesting that TGFβ1 is inhibited after 

mechanical stimulation. 

 

Because of the intention of protein and gene expression analysis, it was used an in 

vitro model of SW1353 chondrocyte cells and fluid flow as the originator of the shear stress. 

Human chondrosarcoma cell line SW1353 was used as a model of primary human (adult 

articular) chondrocytes (PHCs), due to its appropriated culturing properties that make it be a 

very suitable in vitro model system and avoid the limitations of PHCs caused by the lack of a 

sufficient number, its variability between donors, and the temporal dedifferentiation and 

change in the gene expression pattern. Nevertheless, SW1353 cells were characterized as a cell 

line with only a limited potential to mimic PHCs, suggesting that their use as a substitute for 

chondrocytes is challenged and requires additional experimental evidence and validation. It 

has been suggested that they are not a good candidate in vitro system for studying 

chondrocyte anabolism, but they seem to be a valuable in vitro system for investigating 

catabolic gene regulation, despite the fact that mRNA expression levels of matrix-degrading 

enzymes, including MMP13 and other PICs, were also partly lower in SW1353 cells than those 

observed in adult articular chondrocytes. Furthermore, it was also reported by M. Gebauer et 

al. [29] that SW1353 cells can adopt an epithelial phenotype after long term culture. All this 

data together, added to the variability found in the gene expression analysis, suggest that 

resulting profiles of genes expression cannot be completely believed, and further experiments 

with fresh cell cultures are required, and probably better using primary chondrocytes. 

Nonetheless, it is important to remark that in OA there are strong functional interactions 

among the cartilage, synovium, and subchondral bone, and this complexity is difficult to 

achieve, and lacks in any in vitro model.  

 

Additional experiments will be essential to gain deeper understanding in PAR2 

regulation and its importance as a mechanotransductor, if it indeed is one, and its role in OA 

mediation. Time course experiments of gene expression, likewise immunofluorescence assays 

after permeabilisation and the usage of antibodies able to detect PAR2 on the membrane, as 

well as ELISAs could reveal important information about the precise moments of protein 

synthesis, confirming its presence thanks to ELISAs, and the location of PAR2 along the time 

course, avoiding the possible alterations originated by cell membrane permeability.  

 

In conclusion, all this data together suggest that shear stress might induce PAR2 

internalization, directly or via PEG2 as proposed by Komatsu et al. [14]. Thus, despite the 

required confirmations, this study would bring light into the largely unknown mechanism of 

PAR2 regulation and osteoarthritis development, revealing that although both PAR2 and COX2 

seem to play very important roles in the mediation of OA progression, they might work 

together,  as part of the same mechanism,  or by two different but connected mechanisms that  

collectively potentiate OA disease. 
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CONCLUSIONS 
 

 Both in vivo and in vitro results suggest a direct relation between PAR2 and osteoarthritis.  

OA DMM mice model showed an over expression of the PAR2 protein within the 

chondrocyte knee cells, and in vitro OA mimicked by Fluid Shear Stress showed an 

apparently increase of PAR2 protein levels in SW1353 human chondrocyte cell line. 

 PAR2 protein levels in SW1353 cell line seem to be dependent on the type and the 

intensity of the fluid flow. Not all types of flows and intensities mechano-stimulate the 

cells in the same manner. Steady and Oscillating Flow at 5dyns/cm2 showed very small 

differences with the Static control, which could be understood as a physiological pressure, 

whereas FSS generated at 20dyns/cm2, including Steady, Oscillating and Pulsatile flows, 

revealed an elevated quantification of PAR2, which could be referred to as a pathological 

pressure. Pulsatile flow at 5dyns/cm2 appeared to stimulate PAR2 expression at the same 

level of the 20dyns/cm2 fluid flows and it was the only one with statistically significant 

differences. 

 Inverted Spinning Disk Confocal Microscope images of PAR2 within the cell, together with 

recent publications about membrane fluidity, suggest that FSS might turn membrane of 

SW1353 cells into permeable to antibodies. This would open a second hypothesis about 

the detected levels of PAR2 protein, which could not be dependent on the synthesized 

PAR2, but on cell membrane permeability.  

 After 1 hour Fluid Flow stimulation PAR2 protein was found within vesicles inside the cells, 

which might suggest that PAR2 had internalized. This internalization could be in response 

to PGE2, attending to PAR2 and COX2 gene expression results too. 

 PAR2 gene expression seems to be stimulated after FSS and resting time, but repressed 

when it is externally activated. On the other hand, COX2 looks to be temporally induced in 

response to high fluid shear stress and then return to the basal level after a 2 hour of FSS 

exposure, whose expression could have been even repressed compared to static sate to 

balance the protein number within the cells. 

 When PAR2 is activated by SLIG peptide after no FSS, a marked increase of IL-6 gene 

expression is detected, suggesting that when PGE2 mediated PAR2 internalization is not 

produced, activation of basal PAR2 could induce IL-6 expression in a direct manner. 

Nonetheless, this result couldn’t be corroborated by the ELISA assay. 

 Neither MMP13 nor TGFβ1 revealed a change in gene expression after 1h of stimulation, 

but they seem to follow an opposite trend after two hours resting time and PAR2 

treatment experiment, stimulating MMP13 gene expression and inhibiting the TGFβ1 one. 

 

CONCLUSIONES 

 

 Los resultados obtenidos tanto in vivo como in vitro sugieren una relación directa entre 

PAR2 y osteoartritis. Los ratones DMM (con desestabilización del menisco medial) usados 

como modelo de osteoartritis, mostraron una sobreexpresión de la proteína PAR2 en los 

condrocitos de la rodilla, y la línea celular de condrocitos humanos SW1353 estimulados 

por  un esfuerzo  de corte generado por fluido,  también mostraron  un incremento  en los  

niveles de PAR2. 
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intensidad de fluido que genera el esfuerzo de corte, de tal modo que no todos los tipos ni 

intensidades de fluidos generan una misma estimulación mecánica. El flujo constante y el 

flujo oscilante a 5dinas/cm2 (0.5Pascales) muestran muy pequeñas diferencias con el 

control estático, que pueden ser considerados como presiones fisiológicas, mientras que el 

esfuerzo de corte a 20dyn/cm2 (2.0Pa), tanto en flujo constante, como en oscilante y 

pulsátil, revelaron una gran cantidad de PAR2, lo que puede entenderse como presiones 

patológicas. El flujo pulsátil a 5dyn/cm2 parece estimular a PAR2 al mismo nivel que los 

flujos de 20dyn/cm2, siendo el único flujo con diferencias estadísticas en la estimulación de 

PAR2. 

 Las imágenes obtenidas con el microscopio confocal de disco giratorio, junto con las 

recientes publicaciones sobre la fluidez de la membrana, sugieren que el esfuerzo de corte 

producido por flujo de fluido podría inducir la permeabilización de la membrana de las 

células SW1353 frente a anticuerpos, lo que abriría una segunda hipótesis sobre los niveles 

detectados de la proteína PAR2, que podrían depender de la permeabilidad de la 

membrana, y no de la síntesis. 

 Tras una hora de estimulación mediante el flujo del fluido, se observó que PAR2 se hallaba 

contenido en vesículas dentro de las células, lo que puede sugerir que se ha producido su 

internalización. Atendiendo a los resultados de la expresión génica de PAR2 y COX2, la 

sugerida internalización podría ser en respuesta a PGE2. 

 La expresión génica de PAR2 parece estar estimulada tras el esfuerzo cortante por flujo y 

un periodo de reposo, y reprimida cuando la proteína es activada externamente. Por otro 

lado, COX2 parece estar temporalmente inducido en respuesta a altos esfuerzos de corte, 

sin embargo, cuando este esfuerzo cesa, se observa que recupera los niveles basales 

después de dos horas de la exposición, llegando incluso a poder reprimirse su expresión 

para compensar el número de proteína en la célula. 

 La activación de PAR2 por el péptido externo SLIG sin haberse producido ningún esfuerzo 

de corte previo, genera un marcado incremento de la expresión génica de IL-6, sugiriendo 

que cuando la internalización de PAR2 mediada por PGE2 no se está produciendo, la 

activación del PAR2 basal puede inducir la expresión de IL-6 de manera directa. Sin 

embargo, esto no pudo ser corroborado mediante el ensayo de ELISA. 

 Ni MMP13 ni TGFβ1 revelaron un cambio en su expresión génica tras la estimulación de 

una hora, a pesar de que parecen seguir tendencias opuestas en el ensayo con tratamiento 

de PAR2 y dos horas de reposo, en el que se estimula la expresión génica de MMP13, y se 

inhibe la de  TGFβ1.  
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