
Teoría de nudos y aplicaciones

Jorge Tejerina García
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Directores del trabajo:
José Ignacio Cogolludo Agustín
María Teresa Lozano Imízcoz

16 de Septiembre de 2016

2 Chapter 0.

Resumen

A lo largo de prácticamente todo el desarrollo tecnológico de la humanidad, los nudos han tenido un
papel relevante debido a su singular geometría: desde las primeras herramientas ideadas por el hombre
hasta la ingeniería de nuestros días.

Su particular estructura les hace habituales en fenómenos naturales e indispensables en el progreso
del ser humano. Debido a todo esto, se ha ido generando un fuerte estudio matemático de lo denomi-
nado como nudo matemático (clásico): rudimentariamente, el resultado de anudar una cuerda y unir los
extremos. Este objeto recoge en cierta medida la esencia de lo que nosotros entendemos como nudo y su
estudio es fundamental en topología y geometría en particular, y en matemáticas en general, resultando
útil también en otras disciplinas científicas como la bioquímica o la física.

Desarrollando las ideas de [1] (y usando [2] como apoyo), el presente trabajo consiste en una breve
introducción a la teoría de nudos, con especial hincapié en la teoría de nudos virtuales (una joven rama
de este campo con prometedoras perspectivas de futuro que estudia una generalización del concepto
de nudo clásico) y su conexión (siendo ésta de carácter topológico) con unos elementos de naturaleza
algebraica.

La memoria está dividida en tres partes fundamentales: preliminares (apéndice A), códigos de Gauss
(capítulo 1) y planaridad (capítulo 2).

La lectura debe comenzar con el apéndice A: en éste se expone lo necesario para entender el de-
sarrollo de los capítulos 1 y 2. Se introducen conceptos básicos de teoría de nudos y teoría de nudos
virtuales y, debido a la fuerte analogía entre nudos y grafos, también de teoría de grafos. Esta parte
presenta una visión general para posicionarse en el contexto de lo estudiado, proporcionando las herra-
mientas para afrontar cuestiones más particulares.

En el capítulo 1 entraremos en algo más concreto: la capacidad de unas secuencias de números,
letras y signos para representar los nudos virtuales, los llamados códigos de Gauss. Desarrollaremos
de forma natural y detallada el proceso para demostrar que estos códigos verdaderamente sirven para
representar nudos virtuales y nos familiarizaremos mejor con el entorno sobre el que estamos trabajando.

El último y segundo capítulo servirá para demostrar la utilidad de este nuevo enfoque para estudiar
los nudos virtuales: el hecho de trabajar con códigos de Gauss nos permitirá obtener nuevos resultados
y además, ser capaces de desarrollar algoritmos para el estudio de nudos virtuales.

En definitiva, se trata de una breve inmersión en una línea de investigación actual, la teoría de nudos
virtuales, mostrando su motivación y (parte de) la utilidad de la misma. Como anotación final, cabe
destacar que tanto el algoritmo que concluye el trabajo como los resultados que justifican la repre-
sentación de nudos mediante códigos de Gauss están realizados por nosotros, basándonos en las ideas
de [1], además de las figuras no referenciadas.

3

4 Chapter 0.

Abstract

From the most daily things, like tying our shoes or getting water from a well, to the most abstract, like
mathematics or biochemistry, from the most ancient hunting weapons to nowadays fishing devices or
from art to physics, knots has served as a powerful tool for the development of the human being.

It is its unique strucure what make them that special and necessary for certain tasks. Due to this,
there is a strong line of investigation in mathematics entirely devoted to the understanding of their ge-
ometry called Knot Theory, or being more exact, to the study of the so-called (classical) mathematical
knot: the resulting of knotting a rope and joining its endpoints (forming though an "intertwined circun-
ference" in R3).

The following paper consists in a clarification and extension of the ideas exposed in [1] (with the
help of [2]):

Appendix A is a brief introduction to Knot Theory and the basics of it. In addtion, it will also be
exposed Virtual Knot Theory, the study of virtual knots: a generalization of the concept of classical
knot. In the following chapters we will see that, although they can´t (always) be seen in R3, it is a very
natural generalization in the context of topology that contributes to the understanding of classical knots:
in the same way that prime numbers inherit what known of natural numbers, virtual knots help us with
the study of classical knots. Moreover, some necessary concepts of Graph Theory will be reviewed due
to the conexion between graphs and knots.

In some sense, although knots are defined from a topological/geometrical persepective, they have
kind of discrete interpretation: they are determined by the number and types of intertwinings they have.
This idea is captured by the algebraic concept of Gauss code, a sequence of numbers, letters and signs,
which are capable to represent virtual knots. This new way of seeing virtual knots is what will be de-
veloped in chapter 1.

Chapter 2 is devoted to proving that this new prespective is able to provide us new results, in par-
ticular in identifying when a virtual knot is classical as well, using techniques based in algorithms and
computable processes.

In conclusion, we will get involved in a current line of investigation in mathematcis, a field with
promising future prospectives that contributes to the development of Knot Theory, fundamental in topol-
ogy and geometry and with applications to a wide variety of disciplines.

5

6 Chapter 0.

Contents

1 Gauss Codes 9
1.1 Introduction . 9
1.2 Adjustments in GC . 10

2 Planarity 19
2.1 Introduction . 19
2.2 Shadows . 20
2.3 Code Planarity Algorithm . 26
2.4 Conclusion . 31

A Preliminaries 33
A.1 Graph Theory . 33
A.2 Knot Theory . 34
A.3 Virtual Knot Theory . 38

B Algorithm table 41

7

8 Chapter 0. Contents

Chapter 1

Gauss Codes

An interesting motivation for virtual knot theory is due to the so-called Gauss codes. The basic idea of
this chapter is that, associating to each diagram a Gauss code, which consits in a specific sequence of
numbers, signs and letters (that won´t be unique), we will get a new way to represent knots as classes of
equivalence of these codes instead of as classes of equivalence of diagrams.

The algebraic nature of these codes is allow us uncover certain results hidden before, mainly about
understanding when a virtual link is also classical or not, and will provide us a more computable ap-
proach to virtual knot theory.

1.1 Introduction

Gauss codes were introduced by C.F. Gauss in the XIX century. Although they haven’t been much
useful, an enriched version of them turns out to be interesting in virtual knot theory. Let’s see what
consists these codes in:

Definition 1.1.1. We say that a diagram d, with n ∈ N (non-virtual) crossing is a labelled diagram if
every (non-virtual) crossing i j ∈ u, with j ∈ {1,2, ...,n}, is labelled as j.

Definition 1.1.2. Let K be a knot, d a labelled diagram of K in which we have fixed as + and - the two
different possible orientations, with n∈N (non-virtual) crossings and a point P∈ d. We call Gauss code
of d based in P with orientation k, gk

P(d), to the sequence gk
P(d) = a1b1a2b2...a2nb2n, where ai ∈ N and

bi ∈ {O,U} ∀i ∈ {1,2, ...,2n}, obtained in the following way:

• Starting from P, we travel through d following orientation k until we reach P again. Every time
we reach a (non-virtual) crossing (in jth position, with j ∈ {1,2, ...,2n}) we conclude:

* a j = r, where r ∈ {1,2, ...,n} is the label of the (non-virtual) crossing reached in jth position.

* b j = O if we overcross r in jth position and b j =U if we undercross it.

Since we know that diagrams are 4-valent graphs with an extra structure in the vertices, then the number
of appearances of every label in guk

P(u) must be two.

In order to clarify this concept, let’s check an example in Figure 1.1 (b): d2 is a diagram of a knot
K, similar to d1 in Figure 1.1 (a) except for crossing 2. We start in P′ following the given orientation
(which we have denoted as + and - its opposite): We first face crossing 1 and start with 1O, then we have
a virtual crossing so we add nothing (is like is not really there) and keep on checking. The following is
crossing 2, so we have 1O2U. We get 1O2U3O in crossing 3 after a virtual crossing, and the next one
is crossing 1, where we get 1O2U3O1U. To finish, we face crossing 2 and 3 before coming back to P′,
concluding that g+P (d2) = 1O2U3O1U2O3U . Following the same scheme in the d1 in Figure 1.1 (b)

9

10 Chapter 1. Gauss Codes

(a) g+P (d1) = 1O2U3O1U2O3U (b) g+P (d2) = 1O2U3O1U2O3U

Figure 1.1: Gauss codes examples.

(and denoting as + to the given orientation) , we get that g+P (d1) = 1O2U3O1U2O3U .

Note that the nature of the diagram, and then of the knot, is captured in a Gauss code: it tells you
how you have to ”travel” in the plane to get the diagram you’re dealing with, it gives the instructions
you have to follow to draw it.

Definition 1.1.3. In general, we call Gauss code g to a sequence g = a1b1a2b2...a2nb2n with ai ∈
{1,2, ...,n} and bi ∈ {O,U} ∀i ∈ {1,2, ...,2n}. The length of g is 2n and the set of Gauss codes will be
denoted as GC.

Since our aim is to forget about diagramas and work with Gauss codes in an abstract sense, we will
deal more with this last definition, but it is necessary to understand the motivation of the set we working
are with. Let’s connect both perspectives:

Definition 1.1.4. Given g ∈ GC, a labelled diagram d and orientations + and - fixed in it, we say that g
satisfy d (or d satisfy g) if ∃P ∈ d 3 gk

P(d) = g for some k ∈ {+,−}.

1.2 Adjustments in GC

Recall that our intention is to represent knots as classes of equivalence of Gauss codes. Nevertheless, we
have the same Gauss code, 1O2U3O1U2O3U, for two non-equivalent diagrams, d1 and d2 from Figure
1.1 (in fact, one is classical the other is not ([1] page 668)). This makes us wonder if the information
given in the Gauss code is not enough.

Unfortunately, this is not the only problem we will encounter. Since we need to define an equiva-
lence relation in GC that behaves analogously to the given in D in a way that the natural representation
(that is, every Gauss code represents the diagrams it satisfies) makes sense, we have the following
problems to care about:

• (1): A Gauss code can represent two non-equivalent diagrams.

• (2): There may be Gauss codes that does not satisfy any diagram.

• (3): The same diagram satisfies more than one Gauss code. In a more general sense, two equiv-
alent diagrams may satisfy two different Gauss codes (so, we will have to relate them in some
way).

Introduction to Knot Theory - Jorge Tejerina García 11

Let’s check first problem (1): coming back to the Gauss codes in Figure 1.1, it is clear that they do
not contain enough information to differenciate d1 from d2. As said before, d1 and d2 are equal except
for crossing 2 and you can get d2 by applying move in figure 1.3 (a) to crossing 2 in d1, which doesn’t
preserve diagram equivalence in general.

(a) + (b) -

Figure 1.2: Sign associated to a crossing.

This change is not detected by the Gauss code. Nevertheless, the orientation given to the diagrams
allows us to capture what happened in crossing 2, it has the form of Figure 1.2 (a) in Figure 1.1 (a) and
of Figure 1.2 (b) in Figure 1.1 (b). These two types of crossings are essentially different: if we have
the arc that overcrosses as our reference (with the arrow getting out from the crossing), in Figure 1.1
(a) we have that the arrow of the arc that undercrosses (with the arrow getting out from the crossing)
is on the left of our reference and in Figure 1.1 (b) on the right. Every (non-virtual) crossing (in an
oriented diagram) can be classified as one of these two types and, if the crossing is as in Figure 1.2 (a),
we associate it sign + and - if it is as in Figure 1.2 (b).

In addition, although an orientation must be given to obtain the sign of a crossing, it does not de-
pend on the orientation given: if we change the orientation of the diagram the sign of every crossing is
preserved.

Coming back to Figure 1.1, what has actually happened is that the sign of crossing 2 has been
changed: this is a curious phenomenon that arises when we admit virtual crossings in our diagrams.
The appearance of virtual crossings permits, using moves in Figure 1.3, to change the sign of any
crossing and keep any other information given in its Gauss codes invariant, in other words, we can get
diagrams such that they have the same Gauss code but are essensially different.

Thus, we have to care about the sign information too:

Definition 1.2.1. Let K be a virtual knot, d a labelled diagram of K with n ∈ N (non-virtual) cross-
ings in which we have fixed as + and - the two different possible orientations, and a point P ∈ d.
We call signed Gauss code of d based in P with orientation k, gsk

P(d), to the sequence gsk
P(d) =

a1b1c1a2b2c2...a2nb2nc2n with k ∈ {+,−}, n ∈ N, ai ∈ N, bi ∈ {O,U} and ci ∈ {+,−} ∀i ∈ {1, ...,2n},
where ai and bi are obtained as allways and ci is the sign of the crossing reached in ith position. The
sequence s(gsk

P) = c1c2...c2n that contains the sign information is called the sign sequence of the signed
Gauss code.

Definition 1.2.2. Given n∈N, in general, a signed Gauss code gs is just a sequence gs= a1b1c1a2b2c2...a2nb2nc2n

with ai ∈ {1,2, ...,n}, bi ∈ {O,U} and ci ∈ {+,−} ∀i ∈ {1, ...,n} and the sequence s(gs) = c1c2...cn

that contains the sign information is called the sign sequence of gs. The length of gs is 2n and the set of
all signed Gauss codes will be denoted as SGC.

As before, we will deal more with this last definition due to its abstract sense.

If we now come back again to Figure 1.1 (a) and Figure 1.1 (b) we can see that, if we add the sign
sequence to the Gauss codes obtained before, then they are different, 1O+2U+3O+1U+2O+3U+ and
1O+2U+3O-1U+2O+3U- respectively. This is not casuality:

12 Chapter 1. Gauss Codes

Proposition 1.2.1. Given d1,d2 two diagrams, P1 ∈ d1, P2 ∈ d2 and k1,k2 ∈ {+,−}. If gsk1
P1
(d1) =

gsk2
P2
(d2)⇒ d1 ∼ d2.

Which gives an alternative to problem (1): signed Gauss codes distinguish between non-equivalent
diagrams. Then, from now on we will be working in SGC.

On the other hand, not all signed Gauss codes can satisfy a diagram (problem(2)). For example,
3O+3O+ have no proper realization, since crossing 3 must be overcrossed twice and never undercrossed,
which has no sense. All these codes will be a problem for us, they won´t represent any diagram and
should be eliminated in order to adapt the set we are working with according to our purposes: we will
clean SGC in a way that all the elements represent at least, one diagram:

Definition 1.2.3. Given gs ∈ SGC, gs is said to be valid if there exists a diagram satisfying it. We will
denote the set of all valid signed Gauss codes as V SGC.

These codes can be easily characterized:

Proposition 1.2.2. gs ∈ SGC is valid ⇐⇒ gs has exactly two appearances of each label, both O and
U are associated to exactly one appearance of each label and the signs of the two appearances of each
label coincide.

Proof. ⇒): The negation of one of the three conditions of the hypothesis trivially implies that gs is not
valid.
⇐): Let gs = a1b1c1a2b2c2...a2nb2nc2n be a code satisfying the hypothesis, with n ∈ N. Let’s construct
a diagram satisfying it: in the plane, start from a point P, drawing from it an oriented straight line and
put the labels in the order they appear until one label is repeated, then we go back with the line to this
label by using no interection except from the needed when we reach the label. We continue drawing
a straight line with labels until we reach one repeated and do as before. We will finish when we get
to the last label. Notice that we can need extra intersections during the process, so we just consider
these intersections as virtual crossings in order to generate no more crossings. When the last label is
reached, join the end and the begining with a line putting virtual crossings in the intersections generated
if necessary, generating thus a shadow u.

Now we travel again through u, starting from P and using the orientation fixed before and start
giving the (O/U) structure of the code (with no ambiguity due to the (O/U) hypothesis). We have
generated a diagram d.

Travel again through d as before and every time you reach a label:

• If the sign coincides with the one of the code, then keep on travelling.

• If the sign does not coincide we do the corresponding move in figure 1.3 to change it (with no
extra consequences for the code but in the involved sign).

Notice that there will be no ambiguity in the sign of a label, since by hypothesis are equal for the two
appearances in the code. This new diagram d clearly satisfies gs.

(a) : + to -. (b) : - to +.

Figure 1.3: Change of sign moves.

Introduction to Knot Theory - Jorge Tejerina García 13

From now, when we say code we will refer to a valid signed Gauss code.

This proposition gives us the oportunity to stop and think about an important remark in this paper:
when we have a valid signed Gauss code what we actually have is an infinite amount of diagrams (all of
them equivalent) represented by the code, and when we have a diagram, a finite number of codes. For
every valid signed Gauss code there exists a diagram satisfying it and vice versa.

This seems to warn us that the working line we are following is not the correct one, that is not a good
idea to connect diagramas and codes: how can we make a proper identification between them if, not
only each diagram corresponds to more than one code, but also the same happens in the other direction?

The answer to the first lays in joining together all the codes that satisfy the same diagram:

Definition 1.2.4. Given a diagram d of a knot K, we denote by C(d) the set of all the codes that satisfy
d, which will be called the set of representantives of d.

In the context of codes, we call move any variation over a code. The set above can be characterized
in terms of moves:

Definition 1.2.5. Given n ∈N and gs,gs
′ ∈V SGC, we call strong equivalence moves number 1,2 and 3

to the moves of the form

gs = a1b1c1a2b2c2...a2nb2nc2n −→ gs
′
= a

′
1b
′
1c
′
1a
′
2b
′
2c
′
2...a

′
2nb

′
2nc

′
2n

where:

• (1): a
′
i = a

′
j ⇐⇒ ai = a j, b

′
i = bi and c

′
i = ci ∀i, j ∈ {1,2, ..2n}.

• (2): a
′
i = al(i), b

′
i = bl(i) and c

′
i = cl(i), where l(i) = i− k (mod 2n) for a fixed k ∈ N and ∀i, j ∈

{1,2, ..2n}.

• (3): a
′
i = a2n−i+1, b

′
i = b2n−i+1 and c

′
i = c2n−i+1 ∀i ∈ {1,2, ..2n}.

Note that the length of the code is always preserved. Is easy to check that the geometrical interpre-
tation of these moves is the following:

• (1): Re-labelling of the crossings.

• (2): Change of the point P of start.

• (3): Change of orientation.

So, these moves and the finite compositions of them capture all the possible variations in the pa-
rameters involved in obtaining a code from a certain diagram: the labelling, the point of start and the
orientation choosen:

Definition 1.2.6. Given gs1,gs2 ∈ V SGC, we say gs1 is strongly equivalent to gs2, gs1 'o gs2, if gs2
can be obtained by applying to gs1 a finite number of strong equivalence moves.

Strong equivalence is clearly an equivalence relation in V SGC and we will denote the corresponding
classes as [·]o. The sets of representantives can be identified as these classes and finally characterized:

Proposition 1.2.3. Given a diagram d of a knot K and gs ∈C(d) =⇒C(d) = [gs]o.

Thus, we can now represent every diagram d ∈ D with C(d) ∈ V SGC. And what is more, these
sets are classes of equivalence: we have generated partition in VSGC such that every component of it
represents an infinite amount of diagramas that are not represented in any other component. From a

14 Chapter 1. Gauss Codes

more rigurous point of view, at this point, the natural representation we have been adjusting through this
chapter is:

µ : D −→ V SGC/'o

d 7−→ C(d)

Which is clearly surjective but not injective: an infinite amount of diagrams goes to every element
of V SGC/'o. However, this won´t be a problem: From proposition 1.2.3, C(d1) =C(d2)⇐⇒ ∃gs1 ∈
C(d1),gs2 ∈C(d2) 3 gs1 = gs2, which let us extend and clarify proposition 1.2.1:

Corollary 1.2.1. Given diagrams d1,d2, C(d1) =C(d2)⇒ d1 ∼ d2.

Thus, there can be two different diagrams d1,d2 ∈ D 3 C(d1) = C(d2), but they will always be
equivalent.

To sum up, we are working in V SGC, where we have defined an equivalence relation to represent
diagrams to begin to see this space as something that will represent knots. Then, our aim is to make a
partition in V SGC such that every component of it consists in all the codes that satisfy a certain knot
(that is, satisfy some diagram of this knot). It is quite clear that the equivalence relation defined so far
is not enough, we have equivalent diagrams whose set of representants are different, as for example two
equivalent diagrams that differ somewhere in a single classical Reidemeister move (i), since they will
have different number of crossings.

This shouldn’t be a surprise since we haven’t taken into account generalised Reidemeister moves,
which contain the essence of diagram equivalence. We haven’t studied how to translate (if possible)
these moves in terms of codes, what are the consequences in its corresponding codes when we do a
Reidemeister move to a certain diagram.

Although what we want is to relate and put together all the codes that satisfy a certain knot, we will
work with a more intuitive approach, we will relate the set of representants of diagrams as we relate
diagrams in terms of Reidemeister moves:

Not all generalised Reidemeister moves leave invariant signed Gauss codes (in fact, classical ones
does not). If we look at moves in Figure A.7 (b) and (c) is difficult to check that keep invariant signed
Gauss codes, nevertheless, all moves in Figure A.7 (a) does not.

Concretely, two different codes like gs1 = 1O+ 2O+ 2U + 1U+ and gs2 = 1O+ 1U+ belong to
different classes (they have a different number of crossings) but all their realizations are equivalent, in
fact we can construct two diagrams d1 and d2 from gs1 and gs2 respectively using the proof of propo-
sition 1.2.2 and see that d2 is obtained by aplying to d1 classical Reidemeister (i). Since every diagram
obtained from gs1 and gs2 is equivalent to d1 and d2 respectively, by proposition 1.2.1 and the fact that
this last two are equivalent, every two realization of gs1 and gs2 are equivalent.

More rigurously, what we need is to define an equivalence relation in V SGC/ 'o such that µ pre-
serves the equivalence relation and the converse also holds, that if two elements in V SGC/ 'o are
equivalent, then all its anti-images are equivalent.

We will use the same work line used in (D,∼) and try to define the equivalence relation in terms
of moves, relating the sets of representants as do its diagrams in (D,∼). In particular, it seems natural
try to traduce generalised Reidemeister moves to the language of codes and see if they work for our our
purposes:

Introduction to Knot Theory - Jorge Tejerina García 15

Definition 1.2.7. In the context of codes, we call generalised Reidemeister move (from gs1 ∈V GSC to
gs2 ∈V SGC) any move from gs1 to gs2 3 ∃ d1,d2 diagrams satisfying gs1 and gs2 respectively 3 d1 is
obtained from d2 by applying a generalised Reidemeister move.

Is important to pay attention in which context we are in every moment (diagrams or codes) to be
able to distinguish to what we refer when we say generalised Reidemeister move, since there is an abuse
of notation here. Let’s consider:

Definition 1.2.8. The following moves are called basic generalised Reidemeister moves (i),(ii) and (iii):

(i):

• gs1 =C1ia1s1i(−a1)s1C1 −→ gs2 =C1C2

(ii):

• (a) gs1 =C1ia1s1 ja1(−s1)C2i(−a1)s1 j(−a1)(−s1)C3 −→ gs2 =C1C2C3

• (b) gs1 =C1ia1s1 ja1(−s1)C2 j(−a1)(−s1)i(−a1)s1C3 −→ gs2 =C1C2C3

(iii):

• a) gs1 =C1ia1s1 ja1s2C2i(−a1)s1ka2s3C3 j(−a1)s2k(−a2)s3C4 −→
gs2 =C1 ja1s1ia1s2C2ka2s3i(−a1)s1C3k(−a2)s3 j(−a1)s2C4

• b) gs1 =C1ia1s1 ja1s2C2 j(−a1)s2k(−a2)s3C3i(−a1)s1ka2s3C4 −→
gs2 =C1 ja1s1ia1s2C2k(−a2)s3 j(−a1)s2C3ka2s3i(−a1)s1C4

Where i,j,k∈N and i 6= j 6= k, al ∈ {O,U}, sm ∈ {O,U},with l ∈ {1,2} and m ∈ {1,2,3} and Cr ∈ SGC
in a way that gs1,gs2 ∈V SGC, for r ∈ {1,2,3,4}. Moreover, O =−U and U =−O.

In particular, we will say that σ is a basic generalised Reidemeister (i),(ii) or (iii) if it is of the form
in (i),(ii) or (iii).

Proposition 1.2.4. In the context of codes, any generalised Reidemeister move is of the form ρ−1 ◦σ ◦
ρ , where ρ is a finite composition of strong equivalence moves and σ is a basic Reidemeister move.

Definition 1.2.9. In the context of codes, we say that γ is a generalised Reidemeister move (i), (ii) or
(iii) if the σ above is a basic Reidemeister move (i), (ii) or (iii).

To sum up, we have characterized all the possible consequences of doing a Reidemeister move to a
diagram in terms codes, defining them with the support of basic Reidemeister moves in order to make
the notation the most compact as possible, since there a lot of possible code moves. However, this
characterization won´t be very helpful: as we will see after, the equivalence relation in V SGC/ 'o we
are looking for to make our representation work is going to be defined in terms of these moves. How-
ever, finding when a code gs1 can be obtained by applying a finite number of generalised Reidemeister
moves to other code gs2 is going to be, at least, as hard as finding when a diagram d1 can be obtained by
applying a finite number of Reidemeister moves to other diagram d2, since there exists no other method
than brute force.

Nevertheless, now we know that these moves can be characterized and we can understand better the
representation we are constructing.

It is simple (but ponderous and technical) to check that, effectively, (code) generalised Reidemeister
moves are all the possible consequences in a code when the diagram that it represents is affected by a
generalised Reidemeister move. Therefore, we will begin to relate the sets of representants of diagrams
under these moves:

16 Chapter 1. Gauss Codes

Definition 1.2.10. Given d1,d2 ∈ D, we say C(d1) and C(d2) are equivalent, C(d1)∼C(d2), if ∃ gs1 ∈
C(d1), gs2 ∈ C(d2) such that gs2 can be obtained from gs1 by using a finite number of generalised
Reidemeister moves. It is an equivalence relation and the equivalence classes will be denoted by [·].

Note that it can be defined in the same way in terms of elements of V SGC/'o:

Definition 1.2.11. Given gs1,gs2 ∈ V SGC, we say [gs1]o and [gs2]o are equivalent, [gs1]o ∼ [gs2]o, if ∃
gs
′
1 ∈ [gs1], gs

′
2 ∈ [gs2] such that gs

′
2 can be obtained from gs

′
1 by using a finite number of generalised

Reidemeister moves. It is clearly an equivalence relation and the equivalence classes will be denoted
by [·].

We now have to study if this relation make sense, if ∀d1,d2 ∈ D, C(d1)∼C(d2) means that d1 ∼ d2
and vice versa:

First of all, If d1 ∼ d2 we can get d2 from d1 by using just Reidemeister moves, what, if we fix
gs1 ∈C(d1), is traduced as obtaining some gs2 ∈C(d2) by using just (code) Reidemeister moves, and
then C(d1)∼C(d2). As an immediate consequence of this one has the following.

Proposition 1.2.5. Given d1,d2 ∈ D, d1 ∼ d2 =⇒C(d1)∼C(d2).

Proof.

However, the converse is not that easy, is not trivial that C(d1)∼C(d2) implies d1 ∼ d2, or equiva-
lently, that every diagram move that has as a consequence in its codes a (code) generalised Reidemeister
move is a (diagram) generalised Reidemeiser move (note that corollary 1.2.1 provide us a not so trivial
necessary condition for the implication to hold). We have to care about if there exist moves in diagrams
that are not generalised Reidemeister moves whose consequence in codes is a Reidemeister move. In
fact, the answer is yes: diagram move in figure 1.4 is not a generalised Reidemeister move and is tra-
duced in its codes as a Reidemeister move number 1 (2U-2O-1O+1U+−→1O+1U+ if we start from the
arrow).

Figure 1.4: Example of non-Reidemeister move with a (code) Reidemeister move as consequence.

Nevertheless, this won´t be a problem:

Lemma 1.2.1. Any (diagram) move whose consequence in a previously fixed code of the starting di-
agram is a generalised Reidemeister move is composition of a finite number of (diagram) generalised
Reidemeister moves.

This means that when we do a generalised Reidemeister move to a code we do not get out from the
class of equivalence in its corresponding diagrams, every two realizations of these codes are equivalent:

Proposition 1.2.6. Given d1,d2 ∈ D, C(d1)∼C(d2) =⇒ d1 ∼ d2.

Which, together with the fact that the converse also holds (see Proposition 1.2.5), implies:

Proposition 1.2.7. Given d1,d2 diagrams, C(d1)∼C(d2)⇐⇒ d1 ∼ d2.

Introduction to Knot Theory - Jorge Tejerina García 17

Then, we have finally reached our purpose, we have the representation µ desired: Now every dia-
gram d can be represented by C(d) (or by [gs]o for some gs ∈C(d) in a more abstract sense) which are
all related in terms of generalised Reidemeister moves in the same way as their correspoding diagrams.
This two notations, even though they are defined from different perspectives, basically represent the
same, but the second one will let us talk fully in terms of codes while the first still shows the connec-
tions with the world of diagrams.

We can now talk about knots in terms of codes: we have traduced the geometrical definition of
knots in the world of diagrams into the algebraic and more computable world of codes. To conclude, we
will join together all the codes that satisfy the same knot and make a partition in V SGC such that every
component uniquely represents a knot and every knot is represented by some component:

Definition 1.2.12. Given a knot K, we call set of representatives of K, C(K)⊆V SGC, to C(K) := {gs∈
V SGC : gs ∈ µ(d) for some d ∈ D(K)}, where D(K) is the set of all diagrams of K.

This is the set of all the codes that are satisfied by K. Analogously to diagrams, these sets are
classes of equivalence (under the relation of "being satisfied by the same knot") and the relation can be
characterized in the following way:

Definition 1.2.13. Given gs1,gs2 ∈ V SGC, we say gs1 is equivalent to gs2, gs1 ∼ gs2, if gs2 can be
obtained from gs1 by applying a finite number of generalised Reidemeister moves and/or strong equiv-
alence moves. It is an equivalence relation and the equivalence classes will be denoted by [·].

Proposition 1.2.8. Given a knot K and gs ∈C(k), C(K) = [gs].

As before, the proposition above assures that we can use both notations, the second if we want to
talk fully in terms of codes and the first if we want the connection with the world of diagrams to remain.
This last concept of set of representatives of a knot conforms the conclusion of this chapter: codes can
represent knots. Moreover, the following chapter will be the responsible to show that this representation
becomes useful in virtual knot theory.

18 Chapter 1. Gauss Codes

Chapter 2

Planarity

In the context of virtual knot theory, it seems reasonable to wonder how we can identify when a given
virtual knot is classical or purely virtual. Unfortunately, this problem, which we call the problem of the
nature of knots, exceeds the objectives of this paper.

Nevertheless, if we work with diagrams, it is trivial that no virtual crossings implies its correspond-
ing knot is classical, what is an advantage for this approach. This property is lost when we work with
codes: it is not trivial in general to identify the nature of a knot just by watching one of its codes. How-
ever, there is a way to identify whether a code is representing a classical knot in certain situations.

In this chapter, making an independent analysis to the different types of information given in a
valid signed Gauss code, we will give answer to the so-called problem of planarity of codes: determine
whether or not a given code has a realization with no virtual crossings. This checking is made via an
algorithm and will also give such a diagram should it exist.

Nevertheless, note that we won’t be able to identify the nature of the knot from one of its codes, just
obtain if, among the diagrams that satistisfy the code there exists at least one planar. If it exists, the knot
represented is classical, if not, the knot won’t necessarily be non-classical, since there can exist other
code equivalent to ours with a planar realization. Then, in comparison with diagrams representation,
the fact of working with codes will let us check the planarity of more than one diagram at the same time.

In conclusion, we will close this paper by seeing that, not only valid signed Gauss codes can rep-
resent knots, but also they inherit and extend some planarity properties of diagrams working in a more
abstract sense: their algebraic nature let us operate with computable algorithms.

2.1 Introduction

Recall that a knot is classical if it can be embedded in R3, or equivalently, when there exists at least
one diagram of the knot that has no virtual crossings. Thus, in order to determine whether the knot
represented by a given diagram is classical, we have to find an equivalent planar diagram or prove that
there exist no such diagrams. In this paper, the only tool we have to do so is generalised Reidemeister
moves, which is not a good idea: in general, finding the way to obtain one diagram from another in
terms of these moves turns out to be intractable from a not so big number of crossings.

We know from appendix A that the classification of knots is one of the main problems in this theory.
Although is easily proposed, its answer does not seem that easy. The same happens with identifying the
nature of a knot: at this point, the problem is reduced to use generalised Reidemeister moves in both
cases. However, other techniques have been succesfully developed to give partial solutions to these
problems, more advanced techniques that won’t be studied in this paper. Gauss codes will let us obtain

19

20 Chapter 2. Planarity

an answer in some cases:

Definition 2.1.1. Given gs ∈V SGC, we will say gs is planar if there exists a planar diagram satisfying
gs.

In the following sections, we will develop a new approach to the study of codes in order to give a
method to determine whether or not a given code is planar. The concept of shadows will come back,
simpler objects than diagrams where our results (mainly an algorithm) can be clearerly exposed in a
way that they can be extended to the universe of diagrams later. Meanwhile, gs = 1O+ 2U + 3O+
1U +2O+3U+ will be the example followed to clarify all the exposed.

2.2 Shadows

As said before, we will make an independent analysis to the different types of information given in a
code: labels, (O/U) structure and signs. This lets us face the problem of planarity of codes by parts,
which simplifies considerably the magnitude of the problem.

First we will study the information provided by the distribution of the labels:

Definition 2.2.1. Given gs = a1b1c1a2b2c2...a2nb2nc2n ∈V SGC, where n ∈ N, we call underlying code
of gs, u(gs), the sequence u(gs) = a1a2...a2n.

In a more abstract sense:

Definition 2.2.2. We call underlying code any sequence gu= a1a2...a2n where n∈N and ai ∈{1,2, ...,n}.
We define the length of the code as n and the set of all underlying codes is denoted as UGC.

Shadows will play an essential role here. Recall from appendix A that a shadow is just a diagram
that have lost the over/under structure of their crossings, are diagrams with intersections instead of
crossings. In order to clarify this, some examples are available: in Figure A.5 (a) we have a diagram
and the shadow obtained from the diagram (every diagram d has associated with it exactly one shadow
by transforming its crossings into intersections denoted by w(d)) and more other shadows in Figure A.6
(a) and Figure A.8 (a). Therefore, every shadow can be seen as a diagram without the crossing structure
and every diagram as a shadow with a certain crossing (O/U) structure.

Every shadow has a finite number of associated diagrams, depending on the (O/U) structure given
to the shadow and every diagram just one shadow. Thus, it is faster to get the shadows of all the planar
diagrams satisfying a given code instead of all the planar diagrams that satisfy a code.

On the other hand, underlying codes will be to shadows what signed Gauss codes to diagrams. If
we treat shadows like diagrams, when we try to get a signed Gauss code from them, we realize that,
although the sequence of labels can be obtained as allways, the (O/U) structure and consequently, the
sign sequence, make no sense here:

Definition 2.2.3. We say that a shadow u, with n ∈N (non-virtual) intersections is a labelled shadow if
every (non-virtual) intersection i j ∈ u, with j ∈ {1,2, ...,n}, is labelled as j.

Definition 2.2.4. Let K be a knot, u a labelled shadow of K in which we have fixed as + and - the
two different possible orientations, with n ∈ N (non-virtual) intersections and a point P ∈ u. We call
underlying code of u based in P with orientation k, guk

P(u), to the sequence guk
P(u) = a1a2...a2n, where

ai ∈ N ∀i ∈ {1,2, ...,2n}, obtained in the following way:

• Starting from P, we travel through u following orientation k until we reach P again. Every time
we reach a (non-virtual) intersection (in jth position, with j ∈ {1,2, ...,2n}) we conclude:

Introduction to Knot Theory - Jorge Tejerina García 21

* a j = r, where r ∈ {1,2, ..,n} is the label of the (non-virtual) intersection reached in jth

position.

Since shadows are 4-valent graphs, then the number of appearances of every label in guk
P(u) must be

two.

In order to clarify this concept, we have an example in Figure 2.1 (a) of an underlying Gauss code
of the trefoil shadow. Starting from P, we first face intersection 1 and later intersection 2, obtaining 12.
Later on, we encounter intersection 3, and again intersection 1 and 2. The last one is 3, which concludes
that guk

P(u) = 123123.

Then, if we are working with a diagram d and we want to study its corresponing shadow w(d),
the underlying codes of w(d) capture its information as do the codes of d with d and, moreover, the
underlying code of a code obtained from a diagram is the underlying code of its shadow, read starting
in the same point, using the same labelling and with the same orientation used in the diagram reading:

Proposition 2.2.1. Given d a diagram and w(d) its corresponding shadow, P∈ d point and k orientation
given to d, then u(gsk

P(d)) = guk
P(w(d)).

This is why we make this independent analysis: if we first study the distribution of labels of a code
(its underlying Gauss code) we will get information of the shadows of the diagrams of the code. As
it is a necessary condition for the diagram to be planar that its shadow is planar, we will first obtain
the planar shadows satisfying the underlying Gauss code (if exists), give them the (O/U) structure and
check if they verify the sign sequence. Therefore, let’s study more about underlying codes. Most of the
things seen for codes have their analogous for underlying codes, but just some will be required here:

Definition 2.2.5. Given gu ∈UGC, we say gu is valid if ∃ u a shadow satisfying gu. The space of all
valid signed Gauss codes is denoted by VUGC.

Corollary 2.2.1. Given gu ∈UGC, gu is valid⇐⇒ every label appears exactly twice.

Proof. Analogous to Proposition 1.2.2.

Definition 2.2.6. Given gu ∈VUGC, we say gu is planar if ∃ u a shadow satisfying gu with no virtual
crossings.

With the above, we have all the necessary preliminaries to expose our study of underlying codes’
planarity. The algorithm we will first develop, called underlying codes’ planarity algorithm, not only
tells us if the underlying code we are dealing with is planar, but also gives us a planar realization of
it and its understanding will serve to characterize all the possible planar realizations (recall that there
are infinite planar realizations of a given planar underlying code, however, they can be (completely)
classified in a finite list of shadows under strong equivalence, in other words, there is a finite list of
representatives where every realization of the planar underlying code is strongly equivalent to just one
of them).

The idea is the following: we will suppose that such a planar realization exists and work with it in
an abstract sense. We will perform some deformations that reorganize this realization and bring it to a
especial type of shadow that is strongly equivalent to it (and thus, satisfies the same underlying code).
All these geometrical performances can be captured in terms of sequences in a way that this special
shadow can be reconstructed from them. This reconstruction will be our planar embedding in case that
it is planar and, otherwise, the code is not planar.

Let’s begin with the algorithm. Note that the underlying code we are dealing with must be valid
and that we have given an easy criterion to check so. We will first describe the algorithm itself and
after, give its geometrical interpretation. It is a simple method, but the necessity of making a rigurous

22 Chapter 2. Planarity

description so as to avoid ambiguity can make the lecture difficult. In order to fix so, it will be applied
to our standard example gs = 10+2U +3O+1U +2O+3U+ while being exposed:

UNDERLYING CODE PLANARITY ALGORITHM:

Input: gu = a1a2...a2n ∈VUGC, with n ∈ N.
Example: gu = u(gs) = 123123.

• 1.- Description: for i = 1, ...,n, being a j1 and a j2 the first and the second appearance of i in gu
respectively, we reverse all the labels between a j1 and a j2 :

◦ Rename gu as guo and a j as ao
j ∀ j ∈ {1,2, ...,2n}.

◦ For i = 1, ...,n:
gui−1 = ai−1

1 ai−1
2 ...ai−1

2n −→ gui = ai
1ai

2...a
i
2n

ai−1
j −→ ai

j

ai
j =



ai−1
j i f j ≤ j1

ai−1
j i f j2 ≤ j

ai−1
j2−(j− j1)

i f j1 < j < j2

◦ The resulting gun is renamed as gu∗.

Example: gu = 123123−→ 132123−→ 132123−→ gu∗ = 132123.

• 2.-Description: we have to join the two appearances of every label in gu∗ with an arc, either over
or under gu∗, in a way that the arcs (of each label joining) does not intersect each other. To do so,
we define two sets, OJ for the labels joined over gu∗ and UJ for those joined under it and proceed
as follows:

◦ For i = 1:
OJ1 := {1} and UJ1 :=∅.

◦ For i = 2, ...,n:
If both appearances of i are simultaneous, either between or outside the two appearances of
j, ∀ j ∈ OJi−1, then OJi = OJi−1∪{i} and UJi =UJi−1. Else:

∗ If exactly the two appearances of i are, either between or outside the two appearances
of j, ∀ j ∈UJ, then UJi =UJi−1∪{i} and OJi = OJi−1. Else:
· The algorithm stops because the code is not planar and outputs ’non-planar’.

◦ OJ = OJn and UJ =UJn.

Example: OJ = {1} and UJ = {2,3}.

Output: If the code is planar: gu∗, OJ and UJ. If the code is not planar: ’non-planar’.

GEOMETRICAL INTERPRETATION:

Let us interpret the algorithm and understand why it works. While giving the geometrical explana-
tion in a general sense, the example before will also be followed here in order to be more concrete:

We will suppose that a planar realization u for gs exists (in our example, this realization is in Figure
2.1 (a)). Recall that shadows do not have a particular orientation, labels or point of starting: all the extra
drawings in Figure 2.1 (a) to the trefoil shadow just indicate how to read it to get the underlying code

Introduction to Knot Theory - Jorge Tejerina García 23

we are dealing with, are not part of the shadow. This is going to happen with shadows, diagrams and
other geometrical objects: extra information will be drawn in order to understand what we are doing,
depending on the context of the moment.

• Step 1: Here, ∀ i ∈ {1,2, ...,n} we consider Gi = B(i,εo(i))∩u, where B(i,εo(i)) the opened ball
of center intersection i and radius a fixed εo(i) such that

⋂
i∈{1,2,...,n}B(i,εo(i)) = ∅ (see Figure

2.1 (b)).

For i = 1, ...,n:
Gi is composed by 4 segments with a common endpoint, the intersection i. These segments will
be denoted by iAA, iAB, iBA, and iBB for the first reached when reading gu, the second, the third
and the fourth respectively (see again Figure 2.1 (b)).

For i = 1, ...,n:
Note that, when we travel from 1AB to 1BA following gu, a closed curve (with intersections in
the way) is what actually being travelled (see Figure 2.2 (a)). The idea of this step is to do a
reconnection (see Figure 2.2) of the segments that changes the orientation of this closed curve,
for every intersection. Thus, a kind of "pseudo-shadow" is generated and a new kind of "pseudo-
underlying code" is used to capture what is happening:
We disconnect the two pairs of non-adjacent segements, iAA− iAB and iBA− iBB, and reconnect
them as the two pairs Si

1−Si
3 and Si

2−Si
4, where Si

j is the segment corresponding to i reached in jth

position when reading gui−1 (the pseudo-underlying code generated for i−1), for j ∈ {1,2,3,4}
(in our example, for i = 1: S1

1 = 1AA, S1
2 = 1AB, S1

3 = 1BA, and S1
4 = 1BB, see Figure 2.1 (c)).

Furthermore, we will put a segment joining the connecting points of the pair (which preserve the
labelling i), to indicate that there is an intersection there (intersection i) and be able to undo this
process at the end. We call ui the resulting "pseudo-shadow".
When the loop is finished, due to the reconnecting choice we do, the resulting un is allways a
Jordan curve with segments joining the labelled connecting points inside and outside that never
cross as follows in Figure 2.1 (d). This is the key fact that let us reconstruct the planar embedding
(if it exists).
On the other hand, this Jordan curve can be deformed to a circunference (with segments inside
and outside that never cross) as in Figure 2.1 (e) and this circunference, to Figure 2.1 (f): we put
all the labels in the upper part of the circunference and deform it as a straight line containing all
the labels (called the axis), whose endpoints are joined by a curve. Note that the distribution of
the labels in the axis is gu∗.
Now, we can undo the reconnections, substituting the labelled segments by labelled intersections
(see Figure 2.1 (g)). All we have done to u until here will be called the canonical shadow algo-
rithm, since the resulting shadow is of a special type called canonical shadow:

Definition 2.2.7. Given u a planar shadow, we call canonical shadow of u, c(u), the result of
applying the canonical shadow algorithm to u.

Definition 2.2.8. Given gu ∈VUGC planar, we call canonical shadow of gu, to any shadow that
is the result of applying the canonical shadow algorithm to u, where u is a planar shadow verifying
gu. The set of all canonical shadows of gu is denoted by C(gu).

Definition 2.2.9. Given u a planar shadow, we say u is a canonical shadow if u = c(u).

Note that this shadow is strongly equivalent to the original one: we have just done a reordering
of u, encoding the intersections with segments and performing deformations that do not involve
them. So, every planar realization of an underlying code can be brought to its canonical form,
and then, canonical forms represent all the planar realizations of a given underlying code.

24 Chapter 2. Planarity

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.1: Example of underlying code planarity algorithm.

Introduction to Knot Theory - Jorge Tejerina García 25

(a) (b)

Figure 2.2: Reconnection scheme.

• Step 2: Actually, every canonical shadow can be encoded as a sequence (of the form of an un-
derlying code) with the appearances of the same label joined by an arc (either over or under the
sequence) such that they do not interesect, as represented in Figure 2.3.

Definition 2.2.10. Given gu∗ ∈ VUSG, we call proper pairing of gu∗ to any way of joining the
appearances of the same label by an arc (either over or under the sequence) in a way they do not
intersect.

Then, the problem of finding all the canonical shadows of gu is equivalent to finding all the proper
pairings of gu∗. We can see in Figure 2.3 again all the canonical shadows of gu = 123123.

Unfortunately, finding an algorithm in polynomial time that gives all possible pairing does not
seem an easy task. However, this step identifies if there exists at least one proper paring and gives
it in affirmative case:

For i = 1, ...,n:
We pair 1 over gu∗.

For i = 1, ...,n:
We check whether or not we can pair i over gu∗, that is, whether or not it intersects with one of the
previously paired labels over gu∗ and do it in the affirmative case. If it is not possible, we do the
same under gu∗. If it is not possible again, there exists no proper pairing and the algorithm stops
and outputs:’non-planar’, since we have found three labels such that every two of them cannot
be paired in the same part (over or under gu∗). Note that if the algorithm does not stop we have
found a proper pairing.

Output:

* If the code is planar, gu∗ and a proper pairing (for gu= 123123: gu∗= 132123 and OJ = {1}
and UJ = {2,3}), what can reconstruct a canonical shadow with an axis determined by gu∗

and the position of the intersections by the proper pairing.

* If the code is not planar, the message: ’non-planar’.

To conclude, we will review that the algorithm really works:

Proposition 2.2.2. Given gu ∈ VUGC, gu planar ⇐⇒ the underlying code planarity algorithm
gives a planar shadow.

26 Chapter 2. Planarity

(a) (b)

Figure 2.3: All canonical shadows of 123123.

Proof. ⇒) Let gu ∈ VUGC and suppose that the algorithm stops (find that there is no proper
pairing for gu∗). Since gu is planar, there exists a planar realization of gu, say u, and if we encode
c(u) as gu∗ and the induced pairing, we have found a proper pairing of gu∗ (since c(u) is planar),
a contradiction.
⇐) Trivial.

2.3 Code Planarity Algorithm

Recall that our main aim is to identify if a given code is planar and give a planar realization in this case.
In this direction, the underlying code planarity algorithm exposes some ideas that we are going to use
here and clarify our knowlege about shadows and diagrams, but that does not suffice our purposes: to
check that a code is planar, it would be enough to obtain all the planar shadows of its underlying code,
give them the (O/U) structure and see if the diagram obtained verify the sign sequence. However, we
do not know any algorithm in polynomial time to obtain all the planar shadows of an underlying Gauss
code.

Fortunately, an extension of the shadow planarity algorithm for the signed Gauss code case identify
if the code is planar and gives one of its planar realizations in the affirmative case, whose shadow is
canonical:

Definition 2.3.1. Given a diagram d, we say d is a canonical diagram if w(d) is a canonical shadow.

In addition, the canonical diagram satisfying a code turns out to be unique: the realization provided
by the algorithm is the only canonical diagram satisfying the code, that is, every planar realization of it
is strongly equivalent to the one obtained.

Definition 2.3.2. Given gs ∈ V SGC planar, we call the canonical diagram satisfying gs its canonical
diagram.

Definition 2.3.3. Given d a diagram and gs ∈V SGC a code satified by d, we call canonical diagram of
d, c(d), to the canonical diagram that verifies gs.

Having all these preliminaries in mind, let us develop the method and see in more detail all the
anticipated above. Since it is an extension to the other algorithm and shares the same notation, the
explanation won’t be as extense as before.

Introduction to Knot Theory - Jorge Tejerina García 27

It is important to recall that we have given a simple criterion to determine when a signed Gauss code
is valid. Consequently, in order to simplify the algorithm, we will require as its input a (valid signed
Gauss) code. Furthermore, as it is a necessary condition for the code to have a planar realization that
its underlying Gauss code has a planar realization, it is a good idea to check so by using the underlying
code planarity algorithm. Although not necessary since the algorithm itself will give us a more complete
answer, it can save us time.

As always, we will expose the abstract description of the algorithm and after, give its geometrical
explanation, following our example gs = 1O+2U +3O+1U +2O+3U+.

CODE PLANARITY ALGORITHM:

Input: gs = a1b1c1a2b2c2...a2nb2nc2n ∈V SGC, with n ∈ N.
Example: gs = 10+2U +3O+1U +2O+3U+.

• 1.- Description: we take u(gs) = gu = a1a2...a2n.

Example: gu = 123123.

• 2.- Description: substitute in gu the first appearance of i, a j1 , by A2 j1−1A2 j1 , where A2 j1−1 = iAA
and A2 j1 = iAB, and the second, a j2 , by A2 j2−1A2 j2 , where A2 j2−1 = iAA and A2 j2 = iAB, for
i ∈ {1,2, ...,n} and where 1 ≤ j1 < j2 ≤ 2n. Then, GU = A1A2...A4n and we call block to every
Ar, with r ∈ {1,2, ...,4n}:

◦ gu = a1a2...a2n −→ GU = A1A2...A2n.

Example: gu = 123123 −→ GU = 1AA1AB2AA2AB3AA3AB1BA1BB2BA2BB3BA3BB and for
example, the block A3 = 2AA and A10 = 2BB.

• 3.- Description: Rename GU as GUo. For i = 1, ...,n: reverse all the blocks between the first and
the last block corresponding to the label i in GU i−1, where GU i is the sequence obtained in step
i:

◦ Rename A j as Ao
j and GU as GUo.

◦ For i = 1, ...,n:

GU i−1 = Ai−1
1 Ai−1

2 ...Ai−1
4n −→ GU i = Ai

1Ai
2...A

i
4n

Ai−1
j −→ Ai

j

Ai
j =


Ai−1

j i f j 6 2 j1−1 j
Ai−1

j i f 2 j2 ≤ j
Ai−1

2 j2−(j−(2 j1−1)) i f 2 j1 ≤ j ≤ (2 j2−1)

The resulting GUn is renamed as GU∗.

Example:
GU = 1AA1AB2AA2AB3AA3AB1BA1BB2BA2BB3BA3BB−→

1AA1BA3AB3AA2AB2AA1AB1BB2BA2BB3BA3BB−→
1AA1BA3AB3AA2AB2BA1BB1AB2AA2BB3BA3BB−→

GU∗ = 1AA1BA3AB3BA2BB2AA1AB1BB2BA2AB3AA3BB

28 Chapter 2. Planarity

• 4.- Description: for i = 1, ...,n: capture in a 6-component vector vi:

◦ The information of the distribution of the appearances of i in GU∗: in component number j
of vi we write the two letters followed by the jth appearance of i in GU∗, with j ∈ {1,2,3,4}.

◦ The (O/U) information of i in gs: the 5th component of vi is, O if the first appearance of i
in gs is followed by O and the second by U , or U otherwise.

◦ The sign information of i in gs: the 6th component of vi is, + if the sign associated to i in gs
is +, or − otherwise.

Example: v1 =(AA,BA,AB,BB,O,+), v2 =(BB,AA,BA,AB,U,+), and v3 =(AB,BA,AA,BB,O,+).

• 5.- In Figure B.1 we have a table that gives an output, ’o’ (over) or ’u’ (under), for every possibility
of the vectors vi, with i ∈ {1,2, ...,n}: save the output of vi as pi, ∀ i ∈ {1,2, ...,n}.
Example: p1 = o, p2 = u and p3 = u.

• 7.- Generate two sets, the set of labels whose output is ’o’ and the set of those whose output has
been ’u’: OJ := {i ∈ {1,2, ...,n}|pi = u} and UJ := {i ∈ {1,2, ...,n}|pi = d}.
Example: OJ = {1} and UJ = {2,3}.

• 8.-Obtain gu∗:

◦ ∀i∈OJ check that, between the two appearances of i in gu∗, there is, either two appearances
of j or none, ∀ j ∈U \{i}.

◦ ∀i∈UJ check that, between the two appearances of i in gu∗, there is, either two appearances
of j or none, ∀ j ∈ D\{i}.

If this is not the case, then the algorithm stops because there exists no planar realization of gs and
outputs:’non-planar’, if not we give:

Output: GU∗, OJ, and UJ, which will determine the embedding.

GEOMETRICAL INTERPRETATION:

As said before, this is just an extension of the underlying code planarity algorithm for the diagram
case. Following its work line, we will begin by supposing that there exists a planar realization d for gs∈
V SGC and bring it to its (unique) canonical diagram c(d). For gs = 1O+2U +3O+1U +2O+3U+
the diagram d followed will be Figure 1.1.

• Step 1: we obtain its corresponding shadow, w(d) = u (see Figure 2.1 (a)). From now until almost
the end, the geometrical process will be exactly the same as in the underlying code planarity
algorithm.

• Step 2: we label the four segments corresponding to label i with iAA, iAB, iBA, and iBB ∀i ∈
{1,2, ...,n} as in the first step of the underlying code planarity algorithm (see Figure 2.1 (b)),
with the difference that we now capture the information of the distribution of these segments
instead of the distribution of the labels (GU), which gives us more information: when we get the
canonical shadow, this will let us reconstruct the orientation, since iAA goes to iBB (and iBA to
iBB) in the original diagram ∀i ∈ {1,2, ...,n}. The reason that we haven’t done so in the other
algorithm is that orientation was not important, however, when we give the (O/U) structure back
to the resulting canonical shadow, the sign sequence must be verified, what makes orientation an
essential part.

Introduction to Knot Theory - Jorge Tejerina García 29

• Step 3: For i = 1, ...,n:
We do the segment reconnection done in step one of the underlying code planarity algorithm to
i (forming ui), reversing the orientation of the closed curve (with intersections in the way) ex-
plained before (see Figure 2.2), whose starting and endpoint is intersection i and travel through
the result to read the new sequence GU i (see Figure 2.1 (c) and (d)).

As before, we bring the resultant labelled Jordan curve (with segments joinning the connecting
points) un to a circunference and after, to the canonical shadow undoing the reconnections, as
in Figure 2.1 (e), (f) and (g). Trivially, if we give the (O/U) structure back to our example the
sign sequence is satisfied, as we have just done a reordering of a initial planar diagram we knew
that satisfies the code and we have obtained the (unique) diagram that satisfies gs (see Figure 2.4).

Figure 2.4: Canonical diagram of the trefoil 1O+2U +3O+1U +2O+3U+

• Steps 4,5 and 6: However, remember that the only information we obtain having gs is GU∗, the
(O/U) structure and the sign sequence. The pairing has being obtained due to the fact that we
have used a known planar realization of gs in order to explain the algorithm, what is supposed to
never happen. Let’s care now about obtaining the pairing:

There exists a simple method that allows us to obtain the position of every crossing indepently:
given the label i ∈ {1,2, ...,n}, the distribution of the blocks corresponding to i in GU∗ (or the
segments corresponding to i in the axis (see Figure 2.1 (f))), the (O/U) structure and the sign
associated determines if the crossing must be placed over or under the axis (if the appearances
of i must be joined over or under gu∗). Note that this proves that there exists a unique canonical
diagram of gs: GU∗ (uniquely determined by gs), the (O/U) structure and the sign sequence
determine the unique possible position of each label in its canonical shadow if it exists.

For example, let’s obtain the position of crossing 1: we know that every intersection in a canonical
shadow will be of the form in Figure 2.5 (a). We will use all the information in v1=(AA,BA,AB,BB,O-
U,+) to get the real form of the crossing:

◦ The appearances distribution will provide us the local orientations of the crossing. In the
case of crossing 1, the distribution in

GU∗ = 1AA1BA3AB3BA2BB2AA1AB1BB2BA2AB3AA3BB

is
1AA1BA...1BA1BB 7−→ (1AA,1BA,1BA,1BB).

30 Chapter 2. Planarity

Since 1AA goes to 1AB and 1BA to 1BB, the orientations must be as in Figure 2.5 (b).

Due to the construction of the algorithm, only some distributions will appear. All these
possibilities are collected in table Figure B.1.

◦ The (O/U) information transforms the intersections in crossings. Therefore, if the first
appearance of a certain label i∈ {1,2, ...,n} in gs is associated to an O (and the second a U),
which is codified as O, then the segment iAAiAB must overcross iBAiBB, on the contrary,
codified as U , undercross it. For crossing 1, the first appearance has associated an O, so
the information is codified as O and then, 1AA1AB overcrosses 1BA1BB, as seen in Figure
2.5(c).

◦ If we look again at Figure 2.5 (c), we have the only 2 options for crossing 1, the first with
sign + and the second with−. This is what allways happens, given all the conditions but the
sign information, there are two possibilities for the crossing, over and under the axis, that
have a different sign. As we need the crossing to be +, we conclude that crossing 1 must be
placed over the axis.

Then, working analogously, crossing 2 and crossing 3, we must obtain that both must be placed
under the axis, and consequently we get the unique canonical realization of 1O+2U +3O+1U +
2O+3U+ in Figure 2.4. In order to avoid drawing the crossings satisyfing the conditions to get

(a) (b) (c)

Figure 2.5: Determination of position of crossing 1.

its position and make this last a computable step, a table in Figure B.1 have been created: when
you input vector vi with all the information, outputs an ’o’ if the crossing must be placed over the
axis and a ’u’, otherwise.

• Step 7: This last step checks if the pairing is proper or not. Doing the above with all the labels, we
obtain the only possible pairing of GU∗ and then, the only possible canonical diagram of gs, com-
pletely determined by gs itself. However, the pairing won’t be necessarily proper. In the example
followed here (see Figure 2.4) the pairing is proper, and thus we have a planar realization and the
code is planar, however, this is not the case for gs=1O+2U+3O-1U+2O+3U-, where crossings 2
and 3 must be placed over the axis to satisfy the code, but they intersect. We obtain the canonical
diagram in Figure 2.6, where the intersections generated must be seen as virtual crossings in order
to satisfy the code: our realization is not planar.

This means that the code is not planar, since if it exists a planar realization, it would be brought
(with the algorithm) to its planar canonical diagram by using the algorithm, but no planar canon-
ical diagram has been obtained and no planar realization exists. This concludes that the code is
planar if and only if the algorithm outputs the (unique) canonical diagram. Note that we have
identified that 1O+2U +3O+1U +2O+3U+ is planar and 1O+2U +3O−1U +2O+3U−

Introduction to Knot Theory - Jorge Tejerina García 31

(a)

Figure 2.6: Non-planar realization of non-planar code 1O+2U +3O−1U +2O+3U−.

is not, what implies that the codes are not equivalent, or what is the same, any of their realizations
are not equivalent. This proves what advanced in chapter 1, that the diagrams in Figure 1.1 (a)
and (b) are not equivalent, something impossible to check with the given about diagrams.

In conclusion, the algorithm above, by facing the different information given in the code indepently,
allows us obtain a planar realization of a code if it exists and identify that is not planar in case that does
not exist.

Before concluding this section it is important to know that, since shadows are simply 4-valent
graphs, we could have used well-known results in Graph Theory about planarity (if a given graph
G = (V,E) has a planar realization or not) to identify if a code is a planar and give a realization in
affirmative case: however, we have opted to work in a line according to the idiosyncrasy of Knot The-
ory.

2.4 Conclusion

This last algorithm about planarity closes this brief exposition about virtual knot theory:

To sum up, we have seen a generalization of knot theory that turn out to fit very well with certain
approaches: Gauss codes, the relation with graph theory... and some others that we haven’t studied.
Due to this, it represents a promising line of research inside the well-stablished knot theory, essential
in topology and geometry and that contributes in a wide range of disciplines, within Mathematics and
other sciences.

32 Chapter 2. Planarity

Appendix A

Preliminaries

This appendix consists in a brief summary of the basics in Knot Theory and in particular in what is the
central topic of the paper, Virtual Knot Theory, in order to gain the necessary background to follow all
the exposed.

A.1 Graph Theory

Before entering in the subject and due to the fact that there is a strong relation and common core between
knots and graphs, some concepts of these last will be reviewed. Graph Theory consists in the study of
certain geometrical objects called graphs:

Definition A.1.1. We call abstract graph any set G = (V,E), where V is a finite set whose elements are
called vertices and E a multiset whose elements, called edges, are sets of two vertices.

These sets are usually represented in R2, where the vertices are drawn as (different) points and the
edges as segments joining its two vertices. We call any of these representations graphs and vertices and
egdes of the graph to the image of the vertices and the edges in the representation. An example of a
graph is given in Figure A.1 (a): we have the abstract graph Go = (Vo,Eo) with Vo = {1,2,3,4} and
Eo = {{1,2},{2,3},{3,4},{4,1}} represented in the plane, a graph of Go.

(a) Planar graph of Go. (b) Non-planar graph of Go. (c) Virtual crossing.

Figure A.1: Graphs of Go and virtual intersection/crossing.

Definition A.1.2. Given an abstract graph G = (V,E), we say e ∈ E is incident to v ∈V if v ∈ e (if v is
one of the endpoints of e in any of its graphs). We denote as E(v) the set of egdes incident to v.

Definition A.1.3. Given a graph G = (V,E) and n∈N, we say G is a n-valent abstract graph if |E(v)|=
n ∀v ∈V . Any of its graphs are said to be n-valent graphs.

33

34 Chapter A. Preliminaries

On the other hand, in Graph Theory it is very important the concept of planarity:

Definition A.1.4. Given a graph g, we say g is planar if the edges do not intersect outside of the vertices.

As we can see, the graph in Figure A.1 (a) is a planar graph, but in Figure A.1 (b) we have a non-
planar graph of Go. The intersection of the edges (outside of the vertices) is represented as in Figure
A.1 (c) in order to differenciate it from the vertices. We call this kind of intersections virtual crossings.

Definition A.1.5. Given an abstract graph G, we say G is planar if there exists a planar graph g of G.

The abstract graph Go of our example is planar because there exists at least one planar graph of
Go, the given firstly, but not all abstract graphs have a planar graph. We will see that, in the context
of Virtual Knot Theory, these concepts serve to clarify and help to understand the complex universe of
virtual knots.

A.2 Knot Theory

From the Stone Age to our recent days, knots has been a key element in the development of mankind.
Mainly used as tools in devices, constructions and more, its particular structure make them essential
for certain specific purposes. Due to this particular geometry, they constitute an object of analysis and
study in some disciplines.

Figure A.2: Description of mathematical knot.

In mathematics, an idealization of what we understand as knot conforms a relatively young branch
of topology: routhly speaking, a mathematical knot is the object resultant of knotting a given rope
in whatever way and joinning its endpoints, forming a kind of "intertwined circunference" in the 3-
dimensional space as represented in Figure A.2. In a more rigurous sense:

Definition A.2.1. Given two topological spaces A and B and an application between them h : A−→ B,
we say h is a homeomorphism if it is bijective, continuous and h−1 is continuous as well.

Definition A.2.2. Given K : S1 −→ R3 map, we say K is a knot if it is an embedding (in a topological
context), that is, if the map g : S1 −→ K(S1) such that K = iK(S1) ◦ g is a homeomorphism, where
iK(S1) : K(S1)−→ R3 is the inclusion and K(S1) inherits the topology of R3.

This topological structure frequently appear describing certain natural geometrical phenomena.
Their study is fundamental within Topology and Geometry (where knots appear as selfintersections
and boundaries of surfaces as well as in the study of 3-manifolds among other things) and become use-
ful in research in Physics and Biochemistry.

The branch that takes care of understanding them is the so-called Knot Theory. Although the first
investigations associated to knots took place in the late XVIII Century by the hands of C.F. Gauss or A.

Introduction to Knot Theory - Jorge Tejerina García 35

Vandermonde and the (erroneous) atomic model based in knots of Lord Kelvin in the 1860s increased
the interest in them, they stayed in a secondary position until the beginning of XX Century, in the apogee
of topology, with M. Dehn and J.W. Alexander.

Knot Theory has experienced a revolutionary development from then, been faced from many dif-
ferent aproaches from what, among all, we will be particularly interested in the combinatorial one
represented by L.H. Kauffman or V. Jones. However, the natural context to define knots is from topol-
ogy: coming back to the example of the rope, once we have this intertwined circunference, we do not
distinguish between the same knot with different sizes, the same knot but being rotated 90 degrees or, in
a more general sense, two knots obtained by deforming one to the other with any move that does not cut
the knot. In Figure A.3 we have an example of a process in which we get equivalent knots all the time
using this type of transformations (notice that we get S1 (the trivial knot) from other knot that seems
more complex).

Figure A.3: Equivalent moves.

These moves are captured by a particular map called isotopy, a deformation that depends on time
and brings one knot to another:

Definition A.2.3. Given two topological spaces X ,Y and two embeddings h1,h2 : X −→ Y , we call
isotopy from h1 to h2 any map

H : X× I −→ Y
(x, t) 7−→ H(x, t)

such that Ht(x) = H(x, t) is an embedding ∀t ∈ I, H(x,0) = h0 and H(x,1) = h1.

These maps capture the essence of knot equivalence:

Definition A.2.4. Given two topological spaces X ,Y and two embeddings h1,h2 : X −→ Y , we say h1
isotopic to h2, h1 ∼ h2, if there exists an isotopy from h1 to h2. This is an equivalence relation.

Definition A.2.5. Given two knots K1 and K2, we say they are equivalent, K1 ' K2, if K1 ∼ K2.

Therefore, what we are actually interested in is these classes of equivalence of knots under isotopy,
since englobe knots that are essentially the same for us, knots that can be obtained one from the other
by moves that do not cut the knot. All these definitions form the basis of Knot Theory.

However, they just characterize these objects, but in the practice is very hard to find an isotopy
between two knots or define knots in terms of embeddings of S1. Fortunately, we will work with a
simpler approach, the universe of diagrams: a diagram is just a representation in the plane of a knot (see
Figure A.6 (b)). Before giving a rigurous definition we need to introduce the concept of shadow:

36 Chapter A. Preliminaries

Definition A.2.6. Given a knot K, we call shadow of K any closed curve (with or without selfintersec-
tions) in the plane that is the resulting of projecting (call p the projection) K into A, where A is some
plane in R3, satisfying:

• There exists no n-points for n > 2, where an n-point is any point P ∈ p(K) with n preimages in
the projection (see Figure A.4 (a) (1)).

• For every 2-point, the arcs involved intersect transversally (see Figure A.4 (a) (2)).

We call intersection of the shadow any 2-point.

(a) Forbidden situations in con-
ditions 1 and 2 respectively.

(b) Projection of a knot.

Figure A.4: Shadow concepts.

In order to clarify this, we have a projection in Figure A.4 (b), the shadow of the so-called trefoil
knot in Figure A.5 (a) and some other shadows in Figure A.6 (a). However, they do not capture all the
information: what we want is to represent in the plane a closed curve in R3. As it is an intertwined
curve, it may have intersections when projected in a plane and we have to distinguish between its two
preimages. The way to do so is very intuitive, we draw the complete arc that overcrosses and cut in the
intersection the one that undercrosses, as we would see it in front of the plane, represented in Figure
A.5 (b) and Figure A.6 (b) . Then, intersections are transfromed in what we call crossings and every
diagram can be seen as a 4-valent graph by substituting crossings by vertices, as in Figure A.5 (c).

(a) Trefoil shadow. (b) Trefoil diagram. (c) 4-valent graph of a
trefoil diagram.

Figure A.5: Trefoil knot: shadow, diagram and 4-valent graph.

Thus, all the possible diagrams of a given knot represent the knot and from now on, they will be used
to develop our study. The next step will be to translate the concept of isotopy to the universe of diagrams.

To do so, we will need to relate the diagrams that come form the same knot.

Introduction to Knot Theory - Jorge Tejerina García 37

Figure A.6: Examples of shadows and diagrams

Definition A.2.7. Given two diagrams d1 and d2, we call move from d1 to d2 any transformation that
brings d1 to d2.

Equivalence in diagrams will be defined in terms of moves. We will need to be able to determine
which moves are allowed and which are not, which moves preserve equivalence in the knots they are
representing and which does not. As a necessary condition, it is clear that diagramas that are the same
but one is bigger than the other are essentially the same, or that rotations are allowed moves, or in a
more general sense, moves that does not erase or generate new crossings, that are just are reordering
of the ones we have. These trivial cases are captured by isotopy in the context of graphs: we will see
diagrams as graphs (as in Figure A.5 (c)) and define these trivial moves in terms of deformations of
these graphs.

Definition A.2.8. Given a planar graph go ⊆R2, we call graph embedding (for go) any map h : g−→R2

which is an embedding (in a topological context) and (h(g) = go), that is, if the map f : g−→ h(g) such
that h = ih(g)) ◦ f is a homeomorphism, where ih(g)) : h(g)−→R3 is the inclusion and g and h(g) inherits
the topology of R2, and (h(g) = go).

Definition A.2.9. Given two planar graphs g1,g2 ⊆ R2, we say g1 and g2 are strongly equivalent, g1 '
g2, if there exists h1 a graph embedding for g1 and h2 a graph embedding for g2 that are isotopic
(h1 ∼ h2).

In other words, two graphs are strongly equivalent if one can be brought to the other in a way that
its topological structure is preserved. Let´s translate it to diagrams:

Definition A.2.10. We say two diagrams d1 and d2 are strongly equivalent, d1 'o d2, if, seen as graphs,
they are strongly equivalent. We call the move from d1 to d2 strong equivalence move.

In conclusion, given d1 and d2 strongly equivalent diagrams, the move that brings d1 to d2 is one of
these moves that trivially preserves equivalence in its knots, d1 and d2 trivially represents two equivalent
knots.

However, there are more moves that preserves equivalence in its knots that are not that trivial, as
for example, each move involved in Figure A.3. If we pay attention, in each step of the process, the
two diagrams involved are equal except from inside the balls drawn. We will define all the moves
that preserve equivalence as composition of 3 moves (and its inverses) that leave invariant the diagram
except from a local part of it:

Definition A.2.11. We call Reidemeister move (i), (ii) or (iii) to any move that leaves invariant the
starting diagram except from a local part, where the diagram is transformed as represented in Figure
A.7 (a) (i), (ii) or (iii) respectively.

These diagrams form the true basis of diagram equivalence:

38 Chapter A. Preliminaries

Figure A.7: Generalized Reidemeister moves ([1, page 665]).

Definition A.2.12. Given diagrams d1 and d2, we say d1 is equivalent to d2, d1 ' d2, if d2 can be
obtained from d1 by using a finite number of Reidemeister moves and/or strong equivalence moves.
This is an equivalence relation.

To sum up, strong equivalence moves and Reidemeister moves capture in the universe of diagrams
the equivalence under isotopy of the knots they represent:

Proposition A.2.1. Given d1,d2 diagrams of K1,K2 respectively, K1 ' K2 ⇐⇒ d1 ' d2.

Proof. See [3].

We have defined the concept of knot and equivalence of knots in terms of diagrams in order to have a
simpler context to work with knots, but also combinatorial: we have some objects related to each other,
related by 3 differents moves. Is not easy to get the way to obtain one from the other, since there exists
an infinite number of possiblities to begin with one and continue with others.

This turns the problem of giving a complete classification of knots a hard task: however, partial
solutions have been given using more advanced techniques. Following this line, we will continue ex-
tending the given before for Virtual Knot Theory, which is the central topic of this paper. So, from now,
we will refer to knots as classical knots and the concept of knot will be extended.

A.3 Virtual Knot Theory

Discovered in 1996 by L.H. Kauffman, virtual knots conform a generalization of the concept of classical
knots. In the same way that we have used diagrams to represent classical knots and Reidemeister moves
to characterize their equivalence relation, we will identify virtual knots with a new type of diagrams and
define a set of moves that characterize its equivalences.

These new diagrams are a generalization of the concept of diagram: being diagrams are a represen-
tation of a closed curve of R3 in the plane that admits objects called crosings instead of intersections,
we will permit a new type of crossing (Figure A.1 (c)) (called virtual crossing), resulting objects as in
Figure A.8 (b).

Introduction to Knot Theory - Jorge Tejerina García 39

(a) Trefoil shadow.

Figure A.8: Virtual shadows and diagrams.

The idea of virtual crossings is that actually there is no crossing there: although we will define virtual
knots in terms of (these new) diagrams, they can be also defined from a topological perspective, as
embeddings of S1 in complex topological spaces. The fact that they do not live in R3 (as classical knots
do) provokes that, when we try to represent them in the plane certain artifacts appear, virtual crossings.
In this line, virtual crossings are not real crossings, just a product of the representation in R2.

Thus, we will redefine and extend the concept of shadow and diagram in order to present virtual
knots:

Definition A.3.1. From now, we call shadow any 4-valent graph.

This extends the definition given before, and we say a shadow is planar if it is a planar 4-valent
graph (see Figure A.5 (a)), that is, does not contain virtual intersections, and non-planar in other case
(see Figure A.8 (a)).

Definition A.3.2. We call diagram any shadow with an extra structure in its (non-virtual) intersections
as in Figure A.6 (b). In this context, we call crossing this resulting intersections and virtual crossings to
virtual intersections. Moreover, we denote as D the set of all diagrams.

In the same line, we say a diagram is planar if it does not contain virtual crossings (see Figure A.5
(b)) and non-planar in other case (see Figure A.8 (b)). Notice that these redefinitions effectively extends
the concept of shadows and diagrams given for Knot Theory.

The basis of diagrams equivalence will be given as before, in terms of moves: strong equivalence
moves and a generalization of Reidemeister moves:

Definition A.3.3. Given a diagram d, we call planar graphof d, p(d), to the graph resulting of substi-
tuting its crossings and its virtual crossings by vertices.

We redefine the concept of strong equivalence diagrams:

Definition A.3.4. Given two diagrams d1 and d2, we say d1 and d2 are strongly equivalent, d1 'o d2, if
p(d1) and p(d1) are strongly equivalent (p(d1)' p(d2)).

And generalize Reidemeister moves:

Definition A.3.5. We call virtual Reidemeister move (i), (ii), (iii) or (iv) to any move that leaves invariant
the starting diagram except from a local part, where the diagram is transformed as represented in Figure
A.7 (b) (i), (ii) or (iii) or (c) (iv) respectively. We call generalized Reidemeister move to any move
that leaves invariant the starting diagram except from a local part, where the diagram is transformed as
represented in any of the moves in Figure A.7. From now we call classical Reidemeister moves (i),(ii)
and (iii) to Reidemeister moves (i), (ii) and (iii).

40 Chapter A. Preliminaries

All these moves form the basis of equivalence in diagrams:

Definition A.3.6. Given diagrams d1 and d2, we say d1 is equivalent to d2, d1' d2, if d2 can be obtained
from d1 by using a finite number of generalized Reidemeister moves and/or strongly equivalence moves.
This is an equivalence relation and the classes of equivalence are denoted by [·].

Definition A.3.7. We call virtual knot any of these clases.

The concept of virtual knot generalise the concept of classical knot and from now, they will be the
object of our study, so, when we say knot we refer to virtual knot. Due to many facts, Virtual Knot
Theory represents a promising line of investigation in Knot Theory, which is the main motivation of this
paper. After these preliminaries, we will study a specific part of this branch, the capability of certain
algebraic elements to represent virtual knots and give us a new interesting and computable perspective
to study these particular objects.

Appendix B

Algorithm table

(a)

Figure B.1: Table that outputs of the position of crossings.

41

42 Chapter B. Algorithm table

Bibliography

[1] L.H. KAUFFMAN, Virtual Knot Theory, Europ. J. Combinatorics 20 (1999), 665-671. Disponible
en https://www.math.washington.edu/~reu/papers/2011/allison/VKT.pdf.

[2] K. MURASUGI, Knot teory and its applications. Disponible en http://www.maths.ed.ac.uk/

~aar/papers/murasug3.pdf.

[3] D. ROLFSEN, Knots and links, second ed., Mathematics Lecture Series, vol. 7, Publish or Perish,
Inc., 1990.

43

https://www.math.washington.edu/~reu/papers/2011/allison/VKT.pdf
http://www.maths.ed.ac.uk/~aar/papers/murasug3.pdf
http://www.maths.ed.ac.uk/~aar/papers/murasug3.pdf

	Gauss Codes
	Introduction
	Adjustments in GC

	Planarity
	Introduction
	Shadows
	Code Planarity Algorithm
	Conclusion

	Preliminaries
	Graph Theory
	Knot Theory
	Virtual Knot Theory

	Algorithm table

