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UNIVERSIDAD DE ZARAGOZA

Octubre 2016





Contents

Introduction 1

1 Dark matter in the Universe 7

1.1 The Standard Cosmological Model of the Universe . . . . . . . . . . . 7

1.2 Dark matter evidences . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Galaxies rotation curves . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Galaxy clusters dynamics and gravitational lens effect . . . . . 14

1.2.3 Anisotropies in the CMB radiation . . . . . . . . . . . . . . . 15

1.2.4 If not dark matter... . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Dark matter candidates . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Standard Model candidates . . . . . . . . . . . . . . . . . . . 20

1.3.2 Beyond the Standard Model candidates . . . . . . . . . . . . . 21

1.4 Dark matter detection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Indirect dark matter detection . . . . . . . . . . . . . . . . . . 24

1.4.2 Direct dark matter detection . . . . . . . . . . . . . . . . . . . 26

1.4.2.1 Calculation of rates . . . . . . . . . . . . . . . . . . . 27

1.4.2.2 Results from experiments . . . . . . . . . . . . . . . 36

1.4.2.3 Annual modulation of dark matter . . . . . . . . . . 38

1.5 The DAMA/LIBRA experiment . . . . . . . . . . . . . . . . . . . . . 40

1.5.1 Description and results . . . . . . . . . . . . . . . . . . . . . . 41

1.5.2 Annual modulation effect in DAMA experiment and symmet-

ric mirror matter . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5.2.1 The mirror world . . . . . . . . . . . . . . . . . . . . 44

1.5.2.2 DAMA signal and mirror dark matter . . . . . . . . 47

1.5.2.3 Analysis procedures . . . . . . . . . . . . . . . . . . 48

1.5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 The ANAIS experiment 57

2.1 ANAIS goals and experimental requirements . . . . . . . . . . . . . . 58

iii



Contents

2.1.1 Energy threshold . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1.2 Background in the region of interest . . . . . . . . . . . . . . . 59

2.1.3 Stability and exposure maximization . . . . . . . . . . . . . . 60

2.2 Previous prototypes and ANAIS set–ups . . . . . . . . . . . . . . . . 60

2.3 NaI(Tl) crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.1 Alpha Spectra NaI(Tl) crystals . . . . . . . . . . . . . . . . . 64

2.4 Photomultipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Electronics and data acquisition . . . . . . . . . . . . . . . . . . . . . 71

2.6 Calibration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7 Slow–Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.8 Muon veto system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.9 Set-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.9.1 ANAIS–25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.9.2 AS1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.9.3 ANAIS–37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.9.4 Blank module . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.9.5 A37D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.9.6 AS2K–1 and AS2K–2 . . . . . . . . . . . . . . . . . . . . . . . 93

2.10 Detector performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.10.1 Light Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.10.2 Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.10.3 Asymmetric events . . . . . . . . . . . . . . . . . . . . . . . . 98

2.10.4 Filtering protocols . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Background model of ANAIS detectors 105

3.1 Background sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.1.1 External components . . . . . . . . . . . . . . . . . . . . . . . 106

3.1.2 NaI crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.1.2.1 40K activity . . . . . . . . . . . . . . . . . . . . . . . 108

3.1.2.2 The 210Pb problem . . . . . . . . . . . . . . . . . . . 109

3.1.2.3 Cosmogenic activation . . . . . . . . . . . . . . . . . 114

3.2 Background modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.3 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4 Optimization of ANAIS design . . . . . . . . . . . . . . . . . . . . . . 118

3.5 Background model of D0 and D1 . . . . . . . . . . . . . . . . . . . . 127

3.5.1 Comparison with data . . . . . . . . . . . . . . . . . . . . . . 127

3.5.1.1 The 3H hypothesis . . . . . . . . . . . . . . . . . . . 131

iv



Contents

3.5.1.2 The 210Pb on surface hypothesis . . . . . . . . . . . . 133

3.5.2 Background contributions . . . . . . . . . . . . . . . . . . . . 134

3.6 Background model for D2 . . . . . . . . . . . . . . . . . . . . . . . . 136

3.6.1 Comparison with data . . . . . . . . . . . . . . . . . . . . . . 136

3.6.2 Background contributions . . . . . . . . . . . . . . . . . . . . 141

3.7 Preliminary background model for D3 . . . . . . . . . . . . . . . . . . 143

3.7.1 Background contributions . . . . . . . . . . . . . . . . . . . . 143

3.7.2 Comparison with data . . . . . . . . . . . . . . . . . . . . . . 145

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 ANAIS background prospects: towards a final design 149

4.1 Background sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.2 ANAIS–112 and ANAIS–250 . . . . . . . . . . . . . . . . . . . . . . . 152

4.3 ANAIS–112 with a liquid scintillator veto . . . . . . . . . . . . . . . . 157

4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.2 Results for the LSV detector . . . . . . . . . . . . . . . . . . . 161

4.3.3 Results for energy depositions at the NaI(Tl) crystals . . . . . 164

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5 Sensitivity projections in different scenarios 171

5.1 Sensitivity plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.1.1 Extraction of the modulation signal . . . . . . . . . . . . . . . 172

5.1.2 Statistical significance . . . . . . . . . . . . . . . . . . . . . . 174

5.2 Prospects for ANAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Summary and conclusions 181

Resumen y conclusiones 187

Agradecimientos 193

Acknowledgements 195

Bibliography 197

v





Introduction

Latest impressive measurements on cosmological parameters (like those of Planck [1])

support a flat Universe, in accelerated expansion with a 27% of non–baryonic dark

matter and a 68% of dark energy content, according to the ΛCDM model of the

Universe. However, and despite the success of the ΛCDM model, many unknowns

still remain, in particular the nature of the dark matter and dark energy.

There exist substantial evidences (see section 1.2), from galactic to cosmological

scale, suggesting that most matter in the Universe is dark, and there are compelling

reasons to believe that it consists mainly of non–baryonic particles. The solution

to the dark matter problem requires the existence of beyond the Standard Model

particle physics: one solution is the incorporation of a new massive, neutral and

weakly interacting particle into the model (see section 1.3), but also more complex

scenarios are possible, as the mirror dark mater framework (see subsection 1.5.2).

Different experimental strategies have been applied in order to detect this un-

known, non–luminous matter, filling the galactic halos (see section 1.4). On one

hand, by identifying the products of the dark matter annihilation in the galactic ha-

los or galaxy clusters and on the other, by searching for interactions of dark matter

particles with the nuclei of a convenient detector in dedicated experiments carried

out at underground laboratories.

Sodium iodide crystals doped with Tl have been widely used as radiation detec-

tors and, in particular, they have taken part in the direct search of galactic dark

matter for a long time [2–8]. Among the several experiments using NaI(Tl) crystal

detectors, DAMA/LIBRA (see section 1.5) in the Gran Sasso National Laboratory

(LNGS), in Italy, is the most relevant one, having reported the observation of a

modulation in the signal compatible with that expected for galactic halo WIMPs

with a large statistical significance [9] [10]. Results obtained in other experiments

with different target materials and detection techniques (like those from CDMS [11],
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CRESST [12], EDELWEISS [13], KIMS [14], LUX [15], PICO [16] [17] or XENON

[18] collaborations) have been ruling out for years the most plausible compatibility

scenarios.

The ANAIS (Annual modulation with NaI Scintillators) project [19] (see chap-

ter 2) is intended to search for dark matter annual modulation with ultrapure

NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC) in Spain; the

aim of the experiment is to provide a model–independent confirmation of the annual

modulation positive signal reported by DAMA/LIBRA using the same target and

technique, but different experimental conditions (affecting systematics). Projects

like DM–Ice [20], KIMS [21] and SABRE [22] also envisage the use of large masses

of NaI(Tl) for dark matter searches. The joint collaboration between KIMS and

DM–Ice groups has made possible to put their detectors together in a common ar-

ray of NaI(Tl) crystals: the 100 kg of COSINE–100 experiment that could start the

data taking at Yangyang laboratory in Korea along 2016 [23].

ANAIS aims at the study of the annual modulation in the dark matter signal

using a NaI(Tl) mass of 112.5 kg at the LSC. To be able to confirm DAMA/LI-

BRA results, ANAIS detectors performance and radiopurity should be comparable

to those of the italian group, in particular, in terms of energy threshold and ra-

dioactive background: energy threshold lower than 2 keVee1 and background at a

few counts/(keV kg day) in the region of interest, below 6 keVee. A long expertise

has been acquired in the University of Zaragoza group since the nineties of the past

century in the operation of NaI(Tl) scintillators, using BICRON and Saint–Gobain

crystals (see section 2.2). In the last years, several prototypes for ANAIS have

been developed. Among them, the so-called ANAIS–0 detector [24–27], a 9.6 kg

Saint–Gobain crystal similar to those of DAMA experiment, has to be highlighted

due to its successful background model [24] that has been the starting point for the

ANAIS background understanding and modeling, which is the main goal of the work

presented in this dissertation. Some other interesting results, as very slow scintil-

lation in NaI(Tl) [26] or an anomalous fast event population attributable to quartz

light emission [28] were also obtained from first prototypes. Over the years, the

main challenge for ANAIS has been the achievement of the required low background

level, being contaminations in the bulk of the crystal the dominant contribution in

the region of interest (see section 3.1).

1keVee is used to refer to an energy deposition equivalent to 1 keV deposited by an electron

2
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The latest ANAIS prototypes, in which this work is focused on, have been

built by Alpha Spectra Inc. (AS), Colorado (US) [29]. Every module consists of

a 12.5 kg NaI(Tl) crystal, housed in OFE (Oxygen Free Electronic) copper and cou-

pled through quartz windows to two Hamamatsu photomultipliers (PMTs) at the

LSC clean room in a second step. They have been fully tested and characterized

at the LSC since the end of 2012, obtaining very promising results (see section 2.10).

ANAIS initial goal was to reproduce DAMA/LIBRA experiment using the same

detection mass, 250 kg of NaI(Tl). However, several reasons led to a modified exper-

imental configuration for ANAIS: a total active mass of 112.5 kg of NaI(Tl) divided

into nine modules. On one hand, improved purification procedures of the raw ma-

terials at AS developed to tackle the 40K and 210Pb radiopurity of the modules

increased strongly the price of the modules. Moreover, on the other hand, excel-

lent light collection in AS modules allows an achievable energy threshold at 1 keVee

(see subsection 2.10.2) improving the sensitivity. Comparison of the sensitivities for

the annual modulation in the different experimental configurations and background

conditions will be presented in section 5.2.

The full ANAIS experiment set–up will be installed at LSC at the beginning of

2017. The shielding will consist of 10 cm of archaeological lead, 20 cm of low activity

lead, 40 cm of neutron moderator, an anti-radon box (to be continuously flushed

with radon-free air), and an active muon veto system made up of plastic scintillators

designed to cover top and sides of the whole ANAIS set–up (see section 2.8). The hut

that will house the experiment at the Hall B of LSC (under 2450 m.w.e.) is already

operative, and shielding materials and electronic chain components are prepared

for mounting [30][31]. Different PMT models were tested in order to choose the

best option in terms of light collection and background [31] [32]. The Hamamatsu

R12669SEL2 PMT was selected, and all the required units are already available at

the LSC.

A large effort has been carried out in order to characterize the background of

sodium iodide crystals within the ANAIS project. The main goals of this work,

presented through this dissertation thesis, have been the development of detailed

background models for the first three 12.5 kg NaI(Tl) detectors produced by Al-

pha Spectra and operating at the LSC (see chapter 3), together with an evaluation

of the background prospects for the final ANAIS experiment considering different

scenarios and experimental configurations (see chapter 4). Monte Carlo simulations
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have been carried out to assess the different background contributions after identify-

ing and quantifying most of the relevant radioactive contaminations in the different

components of the set–up and detectors by different complementary techniques. In

addition to the expectations for the foreseen ANAIS design with a lead shielding,

the achievable improvement thanks to the operation of the crystals matrix inside a

liquid scintillation veto system has been also evaluated.

The structure of this memory is the following:

• A brief introduction on the history of the Universe (section 1.1), dark matter

evidences (section 1.2) and the search for candidates of this unknown kind of

matter (section 1.3) in direct or indirect detection experiments (section 1.4)

are presented in chapter 1. At the end of this chapter, a detailed description

and the most relevant results of the only experiment claiming for a positive

signal on the annual modulation of dark matter, DAMA/LIBRA (section 1.5),

are given. A corollary study of this result in the frame of the symmetric mirror

dark matter models, carried out in a research stage at the Università di Roma

”Tor Vergata”, is presented (subsection 1.5.2).

• In chapter 2, a complete description of the ANAIS experiment is made: goals

and requirements (section 2.1), previous prototypes (section 2.2), all the ele-

ments of the experimental set–up like crystals and photomultipliers, electronics

and data acquisition, slow control or the muon veto system (sections 2.3 to

2.8), the set–ups already operated at LSC (section 2.9) and the general detec-

tor performance (section 2.10).

• A detailed study of the background models developed for the Alpha Spec-

tra ANAIS detectors is presented in chapter 3; including a description of the

sources used in the simulation (section 3.1), of the background modeling and

its validation (sections 3.2 and 3.3) and an analysis of the detector optimum

design (section 3.4). The particular background models, including the compar-

ison with data and the estimate of the different background contributions, are

discussed for D0/D1 (section 3.5) and D2 (section 3.6) detectors. Preliminary

results for D3 are also shown (section 3.7).

• ANAIS background prospects using results derived from the simulation and

comparison with data of chapter 3 for different configurations are presented in

4
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chapter 4: considered background sources are detailed (section 4.1), results for

a set–up with either 112.5 or 250 kg are discussed (section 4.2) and the study

of the inclusion of a liquid scintillor veto is shown (section 4.3).

• Finally, the sensitivity projections in the search for the annual modulation

effect in the dark matter signal in different scenarios for the ANAIS experiment

are shown in chapter 5 before drawing the final conclusions.
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Chapter 1

Dark matter in the Universe

1.1 The Standard Cosmological Model of the Uni-

verse

Understanding the Universe has been a fundamental issue in all cultures since the

very beginning of human history. First theories considered the Earth as the center

of the Universe, and then the Copernican revolution showed that it was not so. Fur-

thermore, later studies showed that the Solar System and the Milky Way galaxy are

a negligible corner of the Universe.

Cosmology aims to describe the global dynamics and contents of the Universe.

High–precision observational data obtained since the last decade of the past cen-

tury allowed to test different cosmological models and conclude that the Universe is

well described by the so–called ΛCDM cosmological model, composed by four fun-

damental elements: dark energy, non–baryonic cold dark matter, baryonic matter

and radiation. As most of the cosmological models, it is based on the Cosmological

Principle, stating that the Universe is homogeneous and isotropic.

The discovery of the Cosmic Microwave Background (CMB) radiation was an im-

portant evidence supporting a hot early Universe (Big Bang model) and introduced

a major development in cosmology. Although predicted by earlier theoretical works

in 1948 [33], it was first discovered accidentally by two American radio astronomers,

Arno Penzias and Robert Woodrow Wilson in 1964 [34] while they were using the

Holmdel Horn Antenna. The CMB radiation was soon identified as a relic radiation

from the epoch of recombination or photon decoupling in Big Bang cosmology.

7



Chapter 1. Dark matter in the Universe

When the temperature of the Universe dropped to 3000 K, neutral atoms could

form: the Universe, filled with a plasma opaque to photons, changed into a gas of

neutral atoms, transparent to photons. After their decoupling from matter, they

travelled freely through the space, being red–shifted as the Universe expanded; they

are observed today at a temperature of 2.73 K, in the microwave frequency range,

and thus, it is named CMB radiation.

Previously to the CMB discovery, the Big Bang model was already strongly

supported by observational data, in particular, by the Universe expansion. The

first evidence of an expanding Universe came from Hubble in 1929, finding out that

galaxies moved away following the Hubble’s law:

v = H0r (1.1)

where H0 is the Hubble’s constant, v the galaxy velocity and r its distance from the

Earth.

Measuring precisely the Hubble constant was for decades a major challenge for

astronomers, trying to study the most distant objects in the Universe. Distant su-

pernovae type Ia proved to be very interesting objects: having a known intrinsic

luminosity allowed to determine precisely the distance to the hosting galaxy from

its apparent brightness. In 1998 unexpected results were obtained independently

by Supernova Cosmology Project and High–Z Supernova Search Team, pointing at

an acceleration in the expansion of the Universe [35]. Because General Relativity

predicts that the expansion of the Universe should slow down at a rate determined

by its density of matter and energy, this accelerated expansion implies the presence

of a new kind of energy able to produce repulsive effects, the dark energy. Thus, in

fact the Universe is currently in a dark–energy–dominated era.

The Standard Cosmological Model describes the dynamics of the Universe in the

General Relativity Theory frame, in which the gravitational interaction has a geo-

metrical meaning, being considered as a distortion of the space–time. The resolution

of Einstein’s equation, allowing a cosmological constant term, leads to the ΛCDM

model in an isotropic and homogeneous Universe, where geometry is defined by the

Friedmann–Lemâıtre–Robertson–Walker metric (FLRW metric, eq. 1.2).

The overall geometry and the evolution of the Universe in the ΛCDM model is

described with two cosmological parameters: the spatial curvature, k and the time

8



1.1. The Standard Cosmological Model of the Universe

dependent scale factor, a(t):

ds2 = gµνdx
µdxν = −dt2 + a2(t)[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)] (1.2)

The k parameter can be equal to 1, 0 or –1, corresponding to a closed, flat or

open Universe respectively.

Relation between space-time, its geometry and its content is stated by the Ein-

stein’s field equations:

Rµν −
1

2
gµνR = 8πGTµν + Λgµν (1.3)

where Λ is the cosmological constant, Rµν is the Ricci tensor, R = gµνRµν is the

Ricci scalar and Tµν is the energy–momentum tensor:

Tµν = (p+ ρ)uµuν + pgµν (1.4)

considering the Universe as a perfect fluid without viscosity or heat flux, with uµ the

four–velocity of the fluid element, p the pressure and ρ the density. The term with

Λ in equation 1.3 was introduced by Einstein to allow an statical Universe solution,

and later dismissed as soon as the expansion of the Universe was beyond doubt, to

be recovered and included as essential in the ΛCDM model, when the acceleration

in the expansion of the Universe was measured.

Combining these relations, the Friedmann’s equations are obtained:

(
ȧ

a
)2 +

k

a2
=

8πG

3
ρ (1.5)

ä

a
=
−4πG

3
(ρ+ 3p) (1.6)

Assuming an ideal fluid model for the Universe, the equation of state is defined

as:

pi = ρiωi (1.7)

where i represents the matter, radiation, dark energy or any other component con-

tributing to the energy density of the Universe. By solving Friedmann equations,

9



Chapter 1. Dark matter in the Universe

the temporal evolution of the energy density for each component results:

ρi(t) ∝ a(t)−3(ωi+1) (1.8)

where ωi is 0 for matter, 1/3 for radiation, and for dark energy, there are two differ-

ent models: ω = –1 (corresponding to a cosmological constant), or, more generally,

any ω < -1/3 value, where a dependence ω(t) is possible.

Equation 1.5 can be used to define the critical density, ρc, which corresponds to

the energy density considering a flat Universe (k = 0):

ρc =
3H2

0

8πG
(1.9)

where H0 is the present value of the Hubble’s constant. Consequently, a dimension-

less parameter can be built to indicate the contribution of each component to the

Universe energy:

Ωi =
ρi
ρc

(1.10)

Along the years, this cosmological model has been refined by adding compo-

nents, as the dark energy. However, only very recently precision measurements

have been available allowing, from the comparison of the model predictions with

the observational data, to fit the model parameters. WMAP (Wilkinson Microwave

Anisotropy Probe, launched in 2001 by NASA) has played a keyrole in establishing

the ΛCDM model as the current Standard Model of cosmology [36]. Planck satel-

lite was launched in 2009 by ESA with the main goal of improving the sensitivity

and angular resolution of the CMB fluctuations measurements (see figure 1.1). The

presently best estimates for the parameters, according to the Particle Data Group

are mostly dominated by Planck data, with a very little effect if other observational

inputs (as Baryon Acoustic Oscillations (BAO), supernova constraints, etc.) are

considered in the fit.
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1.1. The Standard Cosmological Model of the Universe

Figure 1.1: All–sky picture of the infant Universe created from over 1500 days of

Planck data. The image reveals 13.7 billion year old temperature fluctuations (shown

as color differences) that correspond to regions of slightly different densities, repre-

senting the seeds of all future structure. The signal from our Galaxy was subtracted

using the multifrequency data. ESA and the Planck Collaboration [37].

Planck+lowP Planck+lowP+lensing Planck+lowP+lensing+ext

ΩBh
2 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020

Ωch
2 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012

100θMC 1.04085 ± 0.00047 1.0410 ± 0.0005 1.0411 ± 0.0004

ns 0.9655 ± 0.0062 0.968 ± 0.006 0.968 ± 0.004

τ 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013

ln(1010∆2
R) 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024

t0 (Gyr) 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029

H0 (km s−1 Mpc−1) 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55

Ωm 0.315 ± 0.013 0.308 ± 0.012 0.306 ± 0.007

ΩΛ 0.685 ± 0.013 0.692 ± 0.012 0.0694 ± 0.007

Table 1.1: Fitted values for the ΛCDM cosmological model parameters (68% C.L.)

from Planck CMB power spectra, in combination with lensing reconstruction (lens-

ing) and external data. Above the line there are the six parameter combinations

actually fitting to the data; those below the line are derived from these. For more

detail about the assumptions to derive the cosmological parameters see [1]. (Table

reproduced from [1]).
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Chapter 1. Dark matter in the Universe

Table 1.1 summarizes the present status of the estimates of the six parameters of

the cosmological model: ΩBh
2 and Ωch

2 stand for the current baryon and cold dark

matter density, respectively, H0 is the Hubble constant, h is the reduced Hubble con-

stant h = H0 / (100 km s−1 Mpc−1), Ωm is the matter density and ΩΛ is the present

dark energy density; σ8 is the density perturbation amplitude (fluctuation amplitude

at 8h−1 Mpc). θMC is a measure of the sound horizon at last scattering, ns is the

scalar spectrum power–law index, τ is the scattering optical depth and ln(1010∆2
R) is

the primordial perturbation amplitude and t0 corresponds to the age of the Universe.

According to these results, the energy content of the Universe is dominated by the

unknown dark energy (ΩΛ about 68%) and baryonic matter only amounts to 4.4%

(ΩBh
2 about 0.02), being required a large contribution from dark matter about 27%

(Ωch
2 about 0.12). In section 1.2, a more detailed analysis on the CMB anisotropies

supporting that the Universe is composed by a large amount of non–baryonic, neu-

tral, massive and non–interacting matter, beyond the Standard Model, the dark

matter, will be commented.

The baryonic content of the Universe compatible with CMB anisotropies (see

table 1.1) is also fully consistent with the predictions of the primordial Big Bang

Nucleosynthesis (BBN) and the measured abundances of light nuclei [38]. This

consistency of observational data coming from so different fields has been for long

considered as a strong support for the presently accepted ΛCDM cosmological model.

However, studying the halos dwarf stars, it has been observed that 7Li abundance

shows a definite discrepancy with previous observational determinations [39]. To

date, no solution has been found or it requires substantial departures from the Stan-

dard Model. Attempts to find a solution include modifications of the nuclear rates,

inclusion of new resonant interactions, stellar depletion, lithium diffusion in the

post–recombination Universe, new particles beyond the Standard Model decaying

around the time of BBN, axion cooling or variations in the fundamental constants.

1.2 Dark matter evidences

The first reference to dark matter comes from 1933, when Fritz Zwicky inferred the

existence of an unseen matter (dunkle Materie) by studying the redshifts of galaxies

within the Coma cluster [40].
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1.2. Dark matter evidences

Using the virial theorem, Zwicky compared kinetic and gravitational energies in

the cluster, finding that the cluster mass should be much larger than the observed

in form of galaxies and hot gas. Since then, more evidences of the presence of dark

matter have arosen; as it will be shown in this section, measurements from galactic

to cosmological scale show anomalies that can only be explained by the existence of

a large amount of unseen (dark) matter.

1.2.1 Galaxies rotation curves

In the galactic scale, the most direct and convincing evidences of dark matter exis-

tence are the galactic rotation curves first measured by Vera Rubin in 1975 [41].

According to newtonian dynamics and assuming spherical symmetry of the galac-

tic mass distribution, the rotational velocity of stars or gas clouds as a function of

the distance to the galactic centre is:

v(r) =

√
GM(r)

r
(1.11)

where r is the distance to the centre of the galaxy, G is the Newton gravitational

constant and M(r) is the mass content in a radius r.

This velocity should decrease as r−
1
2 in the outskirts of the galaxies. However,

v(r) was observed to reach an almost constant value up to the most outlying objects

in spiral arms of galaxies allowing the measurement (see figure 1.2). The most direct

interpretation of these measurements is that the galactic mass distribution did not

follow the visible mass distribution [41] and thus, the existence of larger amount of

invisible mass was necessary, that is, a dark matter halo, extending further beyond

the limits of the visible galaxy.

This study has also been extended to elliptical galaxies, where dark matter pro-

portion is lower than that of spiral galaxies and to low surface brightness galaxies

where dark matter proportion is higher. In both cases dark matter is required, al-

though dark matter distribution seems to be different than in the spiral galaxies,

specially in the innermost regions [42].
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Chapter 1. Dark matter in the Universe

Figure 1.2: Example of a typical galactic rotation curve. The gas (dotted), disk

(dashed) and halo matter (dash-dotted) rotation velocity contributions are shown.

From [43].

1.2.2 Galaxy clusters dynamics and gravitational lens effect

Light follows geodesics, which are the generalization of straight lines in any curved

space, as is the space–time in the presence of mass according to General Relativity.

Then, the observed light coming from a far source is deflected by massive galaxy

clusters placed between the source and the observer, leading to the appearance of

multiple images of the source (see figure 1.3).

The analysis of the gravitational lens effect allows the determination of the mass

distribution of the interposed object, giving always larger cluster masses than those

estimated from the luminosity. Moreover, X–ray measurements reveal that the tem-

peratures of the hot gas trapped in the galaxy clusters should have lead to the

clusters evaporation long time ago, lacking from enough gravitational pull to keep

it bound if only visible matter is considered. Same argument would prevent clusters

from being stable structures given the high velocities observed for the galaxies they

contain.
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1.2. Dark matter evidences

Figure 1.3: Gravitational lens effect in galaxy cluster Abell 2218. Multiple deformed

images of a few background galaxies are clearly observed after the lensing effect of

the cluster. From [44]

The Bullet Cluster provided a new insight into the dark matter problem: distri-

bution of hot gas in the cluster does not follow neither the distribution of galaxies,

nor the distribution of matter evidenced by the gravitational lens effect (see fig-

ure 1.4). This cluster can be understood as the result of the collision of two clusters,

but requires a different nature for most of the clusters unseen matter, which should

interact much weakly than the hot gas they contained.

1.2.3 Anisotropies in the CMB radiation

In the cosmological scale, the CMB can be interpreted as a map of the density of

the early Universe. Perturbations in this density were the seeds for the growing of

the structures we observe at present in the Universe.

The first measurements pointed at a high isotropy in this radiation and the

study and characterization of the CMB signal has been improving since then reveal-

ing anisotropies at 10−5 level. In 1992, spatial satellite COBE (Cosmic Background

Explorer) obtained the first data about cosmic radiation anisotropies [45]. These
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Chapter 1. Dark matter in the Universe

Figure 1.4: Galaxy cluster 1E 0657–556 (also known as the Bullet cluster) composite

image. Hot gas detected by Chandra X–ray telescope is shown in pink. Galaxies are

seen in orange and white from Magellan and Hubble Space Telescope images in the

optical range. The mass distribution deduced by gravitational lensing is shown in

blue. From [46].

anisotropies have been studied by WMAP and Planck satellites, greatly improving

the angular resolution and sensitivity.

This anisotropy is expressed through the spherical harmonic expansion of the

CMB temperature map:

T (θ, φ) =
∑
lm

almYlm(θ, φ) (1.12)

With this expansion, it is easier to compare the features of the resultant power

spectrum defined as:

l(l + 1)
Cl
2π

(1.13)
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1.2. Dark matter evidences

Figure 1.5: Theoretical CMB anisotropy power spectrum, using a Standard ΛCDM

Model. From [47].

being

Cl =
1

2l + 1

∑
m

a2
lm (1.14)

Baryons and photons were tightly coupled in the early Universe. In such a hot

plasma medium, density perturbations produced oscillations, similar to sound waves.

At the recombination time, the baryons lost the pressure moving them outwards and

stayed in a shell around overdense regions at a radius dependent on the Universe

properties (the sound horizon). Subsequent gravitational interaction of dark mat-

ter and baryons resulted in the conservation of this feature in the clustering of the

galaxies in the present time. Then, BAO are observed in the CMB as acoustic peaks

(see figure 1.5) and in the number of galaxy pairs at the sound horizon distance (as

measured, for instance, by BOSS [48]). The angular position of these acoustic peaks

in the CMB power spectra and their amplitude is very sensitive to the Universe com-

position, and it cannot be explained by including only baryonic matter in the model.

The CMB has a mean temperature of 2.725 ± 0.008 mK which can be considered

as the monopole component (l = 0), whereas the largest anisotropy is in the dipole
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Chapter 1. Dark matter in the Universe

component (l = 1). This is interpreted as the result of the Doppler shift caused

by the motion of the solar system relative to the nearly isotropic black–body field.

Data shown in the plots (as is done in figure 1.1) subtract the dipole term corre-

sponding to our reference frame motion with respect to the CMB, not relevant to

understand the perturbations in the density of the early Universe. Also the galactic

contribution has been subtracted from these plots before analysing the power spec-

trum, combining multifrecuency information. The expected CMB power spectrum

at higher–order multipoles predicted in the frame of the ΛCDM cosmological model

shows peculiar features, as shown in figure 1.5: the Sachs–Wolfe plateau, acoustic

peaks and a damping tail. Different polarization modes in the CMB photons can

also show their own anisotropies and power spectra CE
l , CB

l , CTE
l for E–modes,

B–modes and correlations between density and velocity perturbations at last scat-

tering surface, respectively, providing complementary model parameters constraints

(see figures 1.6 and 1.7). All this information derived from the study of the CMB

anisotropies allows a fine-tuning of the ΛCDM model parameters. Present best fit

parameters values have been shown in table 1.1.

Figure 1.6: Planck 2015 temperature power spectrum and best fit to ΛCDM theoretical

spectrum. Residuals are also shown. Parameters derived from this fit have been

shown in table 1.1. Figure from [1] and details therein.
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Figure 1.7: Planck 2015 frequency–averaged TE and EE spectra and best fit to the

ΛCDM model (without fitting for temperature–to–polarization leakage). Residuals

are also shown. Figure from [1] and details therein.

As shown in table 1.1, recent results from Planck satellite presented a value of

ΩBh
2 = 0.02227± 0.00020, that corresponds to a fractional uncertainty of less than

1% [1]. When compared to the total matter density the conclusion is that less than

20% of the matter of the Universe is baryonic and therefore there is a need of an

important fraction of non–baryonic matter in the Universe, which means unknown

matter (see section 1.3).
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1.2.4 If not dark matter...

The existence of dark matter has been questioned since its proposal. Alternative hy-

potheses to explain the observed anomalies in the Universe have been proposed. The

most promising theories are MOND (MOdified Newtonian Dynamics) [49] and their

relativistic generalization TeVeS (tensor–vector–scalar gravity) [50]. For instance,

rotation curves in spiral galaxies could be matched by slightly modifying (but ad

hoc) the gravity force, without requiring the presence of dark matter halos around

them. These theories do not explain consistently all the observations; for instance,

in galaxy clusters dark matter is still required. TeVeS has been capable to explain

some effects as strong gravitational lensing and some features of the CMB anisotropy

without requiring any additional matter but always in an incomplete way and giving

inaccurate predictions. Moreover, there are plenty of theoretical difficulties: ad–hoc

additions are required to allow for a non–Newtonian non–relativistic limit of gravity

fields.

1.3 Dark matter candidates

Dark matter describes whatever particle species which does not emit or interact with

electromagnetic radiation and takes part of the present density content of the Uni-

verse. These dark matter candidates are required to be stable or long-lived on the

cosmological time scales, weakly interacting with ordinary matter, non–relativistic

at the time of the galaxy formation, neutral and massive.

Dark matter particles are expected to have been in thermal equilibrium in the

early Universe within the primordial soup. Then, depending on the particle mass,

they can be classified as hot or cold dark matter. Hot dark matter (very light par-

ticles) travelled very fast at their decoupling of the rest of the Universe contents,

being relativistic and preventing small structures from forming. On the other hand,

cold dark matter (particles in the GeV range) allowed the gravitational growing of

structures at the scales observed in the Universe.

1.3.1 Standard Model candidates

Looking at the Particle Physics Standard Model, only neutrinos partially fulfill the

previous requirements as they are stable (or long-lived) and do not experience nei-
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ther electromagnetic nor strong interactions. Neutrinos were considered dark matter

candidates as soon as their mass was discovered, but neutrinos were relativistic at

the time of decoupling and, thus, were not able to produce as much small scale

structures as observed in the Universe. Simulations and observations are incompati-

ble with neutrinos being the only particle composing dark matter. Neutrino physics

is well–known and a fossil density of neutrinos should contribute to the Universe

density, as thermal relics of the very hot primordial Universe. These fossil neutrinos

would be hot dark matter, because they decoupled from the rest of the Universe

contents very soon, as their interaction rate is very low, and the Universe temper-

ature was still much higher than the neutrino mass. However, structure formation

favors strongly CDM candidates [51]. Even if neutrinos are known to take part in

the composition of the dark matter of the Universe, it is in a very small percent-

age of the required missing mass. Therefore, a non-baryonic candidate beyond the

Standard Model must be searched for. Anyway, neutrinos served as an important

gateway particle, leading physicists to begin their experimentation with a variety of

other, more viable, particle dark matter candidates.

1.3.2 Beyond the Standard Model candidates

Since 1984 the more widely accepted hypothesis in the scientific community has been

that the mass of the Universe is composed by cold and non-baryonic particles. An

hypothetical non–baryonic particle that would fulfill all the requirements for dark

matter is being investigated. It is worth noting that the number of particles types

contributing to dark matter is unknown and there is not any reason to believe it is

not multi–component (see figure 1.8).

There are arguments supporting the extension of the Standard Model into a

more complete theory. One of them is the supersymmetric extension of the Stan-

dard Model (SUSY) [52]. SUSY states that for every fermion, a boson must exist

with the same quantum numbers (and vice versa) and therefore it predicts the exis-

tence of several new electrically neutral and non-baryonic particles that, in case of

being stable, could be cosmologically abundant, and may have played an important

role in the evolution of the Universe. Since these new SUSY particles have not been

detected yet in particle accelerators, they must be heavy and/or extremely weakly–

interacting particles [53] [54].
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Figure 1.8: Some dark matter candidates as a function of their mass and interaction

cross-section. From [57].

The two leading candidates for dark matter beyond the Standard Model are ax-

ions and Weakly–Interacting Massive Particles (WIMPs). Axions were proposed by

Peccei and Quinn in 1977 in order to solve the strong CP problem in QCD (quantum

chromodynamics) [55]. The axion is only a viable dark matter candidate in a small

mass range; several constraints from experiments and astrophysical observations es-

tablish the mass of the axion below 3 ·10−3 eV, if heavier than ≈ 1 eV would lead to

the very fast cooling of red giant stars, in contradiction with the observations [56].

These light axions can have very interesting consequences for cosmology as they are

stable over cosmological timescales. Therefore, axions produced in the early Uni-

verse would have survived until our days and could be able to constitute the dark

matter.

WIMPs are hypothetical particles that are massive, neutral, non-relativistic, they

interact weakly with ordinary matter and up to date, have an unknown nature.

WIMPs are, as opposed to axions, very massive (from a few GeV to a few TeV).

Assuming thermal production in the early Universe of particles having masses in
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that range, and having interaction cross–section at the electroweak scale, the right

relic abundance to explain the dark matter of the Universe is derived [58]; it is the

so–called WIMP–miracle. The number of WIMPs in a volume expanding with the

universe (comoving density) first decreases exponentially due to the Boltzmann fac-

tor e−m/T and then freezes out to a constant value when the WIMP annihilation

rate fell below the expansion rate (see figure 1.9). This scheme is also especially

attractive for experimentalists, as these particles interact with matter other than

gravitationally, allowing their detection (see section 1.4). Also the natural emer-

gence of this kind of particles in supersymmetric theories is another strong support

to consider WIMP as a solid dark matter candidate.

Figure 1.9: Evolution of the number of WIMPs in a volume expanding with the Uni-

verse (comoving density) in the early Universe during the epoch of WIMP chemical

decoupling, where < σv > is the thermally averaged total annihilation cross–section.

The larger this annihilation cross-section, the lower the relic WIMP density.

Beyond WIMPs and axions, many other “exotic” dark matter candidates have

been proposed: black hole remnants, wimpzillas, fuzzy cold dark matter, etc. An-

other interesting possibility is that dark matter might be a consequence of the ex-
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istence of extra spatial dimensions: in some models, ordinary particles traveling

through an extra dimension of space can appear to us as stationary, but very heavy

particles, called Kaluza–Klein modes, which could be stable and then, constitute the

dark matter of our Universe. Similarly, a parallel or hidden Universe could explain

the dark matter: the so-called mirror matter has been considered and analyzed in

section 1.5.2. If this kind of matter exists in large abundances in the Universe, in-

teracting with ordinary matter via photon–mirror photon mixing, this matter could

be detected in direct dark matter detection experiments (see section 1.4.2).

1.4 Dark matter detection

The search of the dark matter of the Universe and the nature of the particles that

it is made of is a challenge for astrophysics, cosmology, particle and nuclear physics.

For the detection of this kind of matter there are three main established research

lines; the search in big particle accelerators, the indirect search through dark matter

particle–antiparticle pair annihilation products and the direct search through the

interaction of dark matter with ordinary matter. Impressive improvement in sensi-

tivity along the last decades has been achieved in these three research lines. In this

section, the fundamental aspects and results for direct detection will be presented

together with a brief description of indirect searches.

Dark matter particles candidates could be produced at colliders [59] such as

the Large Hadron Collider (LHC) and many information about the nature of dark

matter could be obtained in the case of finding new physics below the TeV scale.

However, no hints of physics beyond the Standard Model have been observed yet

in accelerators but mass and cross–section limits have been established by Tevatron

CDF [60] and LHC CMS [61] [62] and ATLAS [63–66] experiments.

1.4.1 Indirect dark matter detection

A non–negligible fraction of WIMPs can remain gravitationally confined around

massive objects. Where WIMP density is high they can self–annihilate produc-

ing ordinary matter such as quarks or gauge bosons that induce photons, protons,

antiprotons, electrons, positrons and neutrinos. The flux of this radiation is pro-
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portional to the annihilation rate that depends on the square of the density of dark

matter particles and the annihilation cross–section.

The search of dark matter through indirect detection hunts for an excess of ordi-

nary matter in cosmic rays that cannot be explained by any other mechanism. This

excess must be searched for in sources with high dark matter particles density, that

is, in dense regions of the galactic halo (such as the galaxy center, dwarf galaxies

satellites of the Milky Way, or even the center of the Sun) or very massive clusters

of galaxies.

Gamma rays annihilation signal plays an outstanding role as a possible messen-

ger of dark matter because of their nature; they propagate almost unperturbed and

pointing directly to their source. Therefore, gamma rays are searched for directly,

with satellites, or indirectly with ground–based Cerenkov telescopes. Due to the

small area on satellites available for the installation of detectors, higher energies

can be only detected by ground–based telescopes. HESS [67], MAGIC [68] (see fig-

ure 1.10) or VERITAS [69] have not found any excess attributable to dark matter

self–annihilation coming from dwarf galaxies, satellites of the Milky Way. The future

CTA (Cherenkov Telescope Array) [70] could improve significantly the sensitivity in

this search. The Fermi gamma–ray Space Telescope was launched in 2008 carry-

ing the Large Area Telescope (LAT). LAT is an imaging high–energy gamma–ray

telescope that covers an energy range from about 20 MeV to more than 300 GeV.

Although claims of an observation of a 130 GeV line near the galactic center were

published [71] [72], this interpretation was disfavoured after further analyses carried

out by the collaboration, that reported upper limits at 95% C.L. from the absence

of signal excess between 7 and 200 GeV [73].
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Figure 1.10: MAGIC and IceCube telescopes.

Neutrinos can also play a role in dark matter annihilation signature. Due to the

rare interaction of neutrinos and the distance to their sources, indirect detection

focuses on the detection of near annihilation sources. The Earth or the Sun could

scatter WIMPs and bound them gravitationally allowing their annihilation and pro-

ducing a signature of high energy neutrinos coming from the center of the Earth

or the Sun [74]. However, no excess of neutrinos coming from the Sun, nor from

the Earth, has been detected by the IceCube Neutrino Observatory, located at the

geographic South Pole [75] (see figure 1.10).

Also the presence of antimatter, as positrons and antiprotons, can be a signature

of dark matter annihilation. AMS–01 (Alpha Magnetic Spectrometer) [76] confirmed

an excess of positrons previously reported by PAMELA [77] and more recent results

of AMS–02 [78] are inconclusive about the clear excess of positrons that could be

produced in the annihilation of dark matter particles or attributed to astrophysical

backgrounds [79].

1.4.2 Direct dark matter detection

Dark matter direct detection experiments aim at the conversion of some of the halo

dark matter particles energy into a visible signal through their coupling to ordinary

matter or fields. Experimental approach is quite different depending on the dark

matter candidate searched for. The fundamental factor to be considered in order to

design a direct dark matter detection experiment is the expected interaction rate,

which however, is strongly dependent on the dark matter halo and particle models.
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Among the preferred dark matter candidates, showing favorable perspectives for

its direct detection, are not only WIMPs but also axions. Many experiments are

searching for astrophysical axions through the Primakoff effect [80], in which the

axion is converted into a detectable photon under the presence of a strong electro-

magnetic field. None of the experiments searching for axions from galactic origin

and those produced in the Sun’s core have obtained yet a positive result. IAXO

(International Axion Observatory) is a new generation axion helioscope, aiming at

the detection of axions emitted from the Sun [81]. IAXO experiment will use a 20 m

long toroidal superconducting magnet, with eight coils and eight 60 cm diameter

bores placed in between the coils. This magnet will be placed on a conventional

telescope–like moving structure in order to make the magnet point to the Sun.

ADMX (Axion Dark Matter eXperiment) uses a resonant microwave cavity within

a large superconducting magnet to search for galactic halo axions by detecting the

very weak conversion of dark matter axions into microwave photons. It is located

at the Center for Experimental Nuclear Physics and Astrophysics (CENPA) at the

University of Washington (US) [82].

On the other hand, WIMPs are expected to interact weakly with ordinary mat-

ter mainly through elastic scattering with detector nuclei. In these collisions only a

small nuclear recoil kinetic energy (under 100 keV) is released. Experiments search-

ing for WIMPs are carried out in underground laboratories and using very massive

and ultrapure detectors in order to fight against the very low expected interaction

rates.

1.4.2.1 Calculation of rates

This interaction rate can be calculated in a one–type of nucleus of mass mN target

detector as [83]:
dR

dER
= NN

ρ0

mW

∫ vmax

vmin

vg(~v)
dσWN

dER
d~v (1.15)

where mW is the WIMP mass, ρ0 is the local WIMP density, g(v) the WIMP speed

distribution in the detector reference system and dσWN

dER
the WIMP–nucleus differen-

tial cross–section.
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Considering the isotropic, isothermal and non–rotating spherical standard halo

model, WIMPs follow a Maxwellian velocity distribution in the halo reference frame,

f(v), being v0 the most probable value of the velocity, that can be written as:

f(v) =
1

v3
0π

3
2

exp(−v
2

v2
0

) (1.16)

taking into account that this distribution is truncated by the existence of an escape

velocity (vesc).

In the WIMP–nucleus scattering, the recoiling nucleus receives an energy:

ER =
µ2
WNv

2(1− cosθ∗)
mN

(1.17)

where θ∗ is the scattering angle in the center of mass reference frame and µWN is

the WIMP–nucleus reduced mass:

µWN =
mWmN

(mW +mN)
(1.18)

To produce a recoil energy ER the minimum velocity of the WIMP, vmin, in

equation 1.15 is:

vmin =

√
mNER
2µ2

WN

(1.19)

whereas the maximum WIMP velocity, vmax in equation 1.15 is related with the halo

escape velocity, after transformation into the detector reference frame.

In order to compute the WIMP–nucleus cross-section starting from the parti-

cle model parameters (WIMP couplings to SM particles) it is necessary to describe

first the nucleon content in terms of quarks and gluons through hadron matrix el-

ements and then, to build the nuclear matrix elements. A more direct approach

is usually followed: although a new theoretical framework generalizes WIMP in-

teraction with nucleons by including 14 WIMP–nucleon interaction operators (all
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Galilean–invariant operators up to quadratic order in momentum transfer arising

from exchange of particles of spin 1 or less [84]), this interaction is usually decribed

by two terms, an spin–independent (SI) term (coherent sum of the dispersion am-

plitudes with the individual nucleons) and a spin–dependent (SD) term (WIMP is

coupled to the total nuclear spin),

dσWN

dER
= (

dσWN

dER
)SI + (

dσWN

dER
)SD =

mN

2µ2
WNv

2
(σSI0 F 2

SI(ER) + (σSD0 F 2
SD(ER)) (1.20)

In this equation, F (ER) are the nuclear form factors which account for the finite size

of the nucleus and depend strongly on the interaction momentum transfer. σSI,SD0

are the WIMP–nucleus cross–sections in the limit of zero momentum transfer, which

can be written in quite a general form:

σSI0 =
4µWN

2
π[Z · fp + (A− Z) · fn]2 (1.21)

σSD0 =
32µWN

2
πG2

F

J + 1

J
[ap < Sp > +an < Sn >]2 (1.22)

where fp, fn, ap, and an are the effective WIMP couplings to neutrons and protons

in the SI and SD case, respectively. In the SI interaction scheme, coupling to neu-

trons and protons of WIMPs is usually considered the same (fp = fn). < Sp,n >

are the expectation values of proton and neutron spin operators in the limit of zero

momentum transfer in the target nucleus, N, and they can be determined using de-

tailed calculations, specific for each nuclear species. Figure 1.11 shows an example of

expected dark matter rates calculated for Na and I nuclei and two different WIMP

masses.

In order to be able to compare the results of experiments using different target

nuclei, N, it is necessary to relate WIMP–nucleus cross–sections with WIMP–nucleon

cross–sections. Under the assumption of equal coupling intensity of WIMPs to

protons and neutrons in SI interactions, the relation between WIMP cross–sections

with nuclei (σSI0 ) and nucleons (σSIWn) is:

σSI0 = (
µWN

µWn

)2 · A2 · σSIWn (1.23)
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being A the atomic mass number of the target nuclei and µ the reduced masses.

As it has been said before, when interacting with ordinary matter, WIMPs pro-

duce a small recoil in one of the target nuclei. Energy released can be detected

as photons, phonons or electric charge, depending on the detector characteristics.

The expected signal can be easily shadowed by the radioactive background. The

main contributions to the background come from the environmental radioactivity,

primordial radioactive isotopes present in the materials of the detector itself and

cosmic radiation as well as cosmogenic activation in the detector materials due to

exposure to cosmic rays.

Low background techniques are used in this kind of experiments in order to

achieve as much sensitivity as possible. Dark matter direct detection experiments

are carried out in underground laboratories in order to protect the detectors from

cosmic radiation and avoid the cosmogenic activation in the detector materials. The

detectors are built from high radiopurity materials and to minimize radioactive envi-

ronmental background, active and passive shieldings are installed in order to protect

from beta and gamma radiations and neutrons. Whenever possible, nuclear recoil

discrimination techniques are applied in order to remove most of the usual back-

grounds.

Comparing the experimentally measured residual rates in a given detector with

the estimated rates for a specific WIMP candidate and halo model, allows to rule out

such a candidate if the measured rate is below the estimates. However, this exclusion

is halo model, dark matter particle model, and target dependent, and it has to be

cautiously compared with results from other targets. It is impossible to distinguish

an individual energy deposition produced by an hypothetical dark matter particle

from that produced by a neutron, for instance, and then, only negative results can

be derived from such a comparison. A distinctive behaviour must be searched for

WIMPs that would allow a positive identification of a dark matter signal unambigu-

ously. This could be achieved by searching for the annual modulation expected in

the signal rate due to Earth’s motion around the Sun which changes the relative

velocity WIMP–nucleus [85]; by determining the direction of the recoiling nucleus,

which is correlated with the direction of the impinging WIMP (WIMP wind seems

to come from Cygnus constellation, due to Earth movement inside the galaxy) and

changes along the day with a very specific pattern [86]; and by profiting that WIMP
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interaction rate depends strongly on the target nuclei (mass and spin content) and

in a different way as other backgrounds, as neutrons, do [87] [88].

As the energetic deposition is produced by the elastic dispersion of the WIMPs

with the nuclei of the detector, the signal generated concentrates in the low energy

region (below 100 keV). Due to the exponential shape of the searched signal, the

rate is much higher close to the detection threshold (see figure 1.11).

An ideal detector for direct dark matter detection should fulfill the following

characteristics:

• Low energy threshold.

• Good energy resolution in the energy region below 100 keV.

• Very low radioactive background.

• High nuclear recoil discrimination power.

• Large mass.

• High sensitivity to nuclear recoil energy.

• Sensitivity to nuclear recoil direction.

• Stability for long time measurements.

• Possibility of combining different target nuclei in the same set–up.
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Figure 1.11: Expected dark matter rates and modulation amplitude in NaI. Different

signals for WIMPs of mW = 10 GeV and mW = 50 GeV with σSIWn = 10−5 pb, and

different values of Na and I nuclear recoils quenching factors, as reported on [90]

and [91] [92], have been considered. Figure from [32].

Unfortunately, it does not exist a detector satisfying all of these requirements,

but new detection techniques are being continuously under development and strong

improvement in sensitivity and performance of the detectors has been achieved in

the last years. In the rest of the section an updated review of the most relevant

experiments in the field of dark matter direct searches will be presented.
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Figure 1.12: Na–recoil quenching factors measured by several experiments. Figure

from [97].

Figure 1.13: Exclusion plot (for SI interactions) with current better limits (in pink),

current experimental individual results (solid lines) and projections (dashed lines).

From [89].
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The so–called Relative Efficiency Factor (REF or quenching factor, Q) measures

the conversion of the energy deposited by nuclear recoils into visible signal. The

REF is an important feature for all techniques, but it is specially relevant in scin-

tillator materials as it is well–known that the scintillation yield strongly depends

on the type of interacting particle and it is much lower for nuclear recoils than for

electron/gamma events. Therefore, knowing precisely the value of the quenching

factor is mandatory for the correct recoil energy calibration of the experiments.

Most of the detectors devoted to the search for dark matter are calibrated in

energy with the photopeaks of β/γ sources. These calibrations produce an energy

scale valid for electron recoil events, named typically as electron equivalent energy

(keVee), but not for nuclear recoil events. Uncertainties in quenching factors have

an important impact on the conversion of the expected spectra of WIMPs (in recoil

energy) into visible energy (keVee) (see figure 1.11).

In ANAIS, ultrapure NaI(Tl) crystals are used as target material. As it will be

explained in section 2.3, NaI presents several advantageous features in the search

for dark matter. A low energy threshold can be achieved thanks to the high light

yield of NaI and it combines light and heavy nuclei, ensuring good sensitivity in

the low and high mass WIMP ranges. Moreover, both Na and I isotopes have spin,

and are sensitive to SD WIMP–nucleus interactions. The main disadvantage of using

NaI(Tl) as target material in a experiment searching for dark matter is the low REF.

Quenching factor values of∼ 0.3 for Na and∼ 0.1 for I are reported [4] [5] [94] [95].

Energy independent behaviour of Q at low energies is compatible with these re-

sults, whereas other results show a slight increase of Q when lowering the en-

ergy [91] [92] [96]. However, recent measurements point to a stronger dependence

with energy and much lower values of Q for Na in the low energy region [90] [97].

This result would lead to an important shift in the WIMP parameter within reach of

the ANAIS experiment and therefore, a better knowledge of Q is required in order

to compare results from NaI(Tl) experiments with those of experiments using other

target material. Figure 1.12 summarizes the status of quenching factor measure-

ments for Na.
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Figure 1.14: Exclusion plots (for SD interactions) assuming pure proton coupling

(top) and pure neutron coupling (bottom). From [93].
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1.4.2.2 Results from experiments

Several experiments have been devoted to the search of dark matter since the eight-

ies, profiting from the low background techniques developed for investigating the

neutrinoless double beta decay. Since the nineties, NaI scintillators have been cho-

sen due to their sensitivity to spin–dependent interactions and feasibility of big

mass detectors together with hyperpure Ge detectors, having higher radiopurity but

smaller detection mass. More recently, solid–state detectors and detectors using

liquids of noble gases with better sensitivity because of their ability to discriminate

nuclear from electronic recoils, have been used.

Among the different techniques devoted to the direct dark matter detection,

solid–state cryogenic detectors (operating at sub–Kelvin temperatures) offer low

threshold (< 10 keV), excellent resolution (< 1% at 10 keV) and ability to discrim-

inate nuclear from electronic recoils [98]. Following this technique, CDMS collab-

oration has developed several experiments based on semiconductors operating at

40 mK, reporting an excess of three events in Si detectors [99] and no excesses nor

modulation in the Ge detectors. Latest results have been obtained from the low

ionization threshold experiment [100]. SuperCDMS, an upgrade at Soudan Under-

ground Laboratory, United States, using 9 kg of Ge detectors has presented first

results [101]. SuperCDMS next goal is to install 100 kg of Ge and 10 kg of Si detec-

tors [102].

EDELWEISS [13] experiment in the Modane Underground Laboratory, France,

uses cryogenic germanium detectors. An upgrade consisting of 4 kg of Ge detectors,

EDELWEISS–II, found 5 events with a background estimate of 3, giving limits on

the SI cross–section [103]. The next upgrade, EDELWEISS–III consisting of 40 de-

tectors with improved technology and radiopurity with 24 kg of fiducial mass, has

presented first exclusion results [13].

CRESST [12] at the LNGS, uses now CaWO4 scintillating bolometers. The col-

laboration has operated several cryogenic detectors with simultaneous phonon and

photon detection. The upgrade, CRESST–II consisting of 8 detectors, 300 g each,

reported 67 events in the nuclear recoil region that could not be explained by known

backgrounds [104]. More recent results with a new detector design have not con-

firmed this issue [105]. A high scale cryogenic experiment called EURECA [106]

following EDELWEISS and CRESST experience and know–how in this technique is
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in design phase.

Germanium ionization detectors can reach sub–keV energy threshold and very

low backgrounds [107] but, as for NaI, they are not capable to distinguish electronic

from nuclear recoils. CoGeNT [108] is the only p–type point contact germanium ex-

periment that has reported the presence of an annual modulation in the event rate

[108] [109], however, recent analyses result in contradictory conclusions [110] [111].

Liquid Xenon (LXe) and liquid Argon (LAr) are also used in several experiments

devoted to the search of dark matter [112]. Simultaneous detection of scintillation

and ionization allows the identification of the primary interacting particle in the

liquid and by using Time Projection Chambers (TPCs), the 3D position of an inter-

action can be determined. The feasibility to build detectors with large mass, highly

radiopure and allowing to define fiducial cuts convert LXe and LAr into very sound

targets for WIMP searches. Double phase liquid/gas Xe TPC experiments as LUX at

Sanford Underground Research Facility [15] [113], XENON–100 [18] [114] [115][116],

and the proposed XENON1T [117] at LNGS, PandaX [118] at China Jin-Ping un-

derground Laboratory (CJPL); double phase liquid/gas Ar TPC experiments like

ArDM [119] at the LSC; single phase Ar TPC as DarkSide [120] [121] at LNGS;

single phase Ar scintillator as CLEAN [122] and DEAP [123] at SNOLab and single

phase Xe scintillator as XMASS [124] at the Kamioka Observatory are a few exper-

iments searching, with noble liquids, for dark matter. None of them has reported a

deviation from background expectations and XENON and LUX have set very strin-

gent limits on WIMP interaction cross–sections.

To be sensitive to SD interactions, a target nuclei with uneven total angular

momentum is required. 19F is a very convenient target nucleus for SD interaction

which is present in WIMP detectors using superheated liquids as SIMPLE [125],

COUPP [126] and PICASSO [127] experiments. Recently, COUPP and PICASSO

collaborations have joined efforts in the PICO project [16]. They have already ob-

tained competitive results. Searches using other isotopes have been carried out, like
127I by DAMA [4] and KIMS [128] and 129Xe and 131Xe by XENON [115].

Among experiments using scintillation detectors it is worth taking into account

those using NaI(Tl) as, in addition to ANAIS, KIMS [128][129], in Korea (using CsI

and NaI detectors), COSINUS [130], SABRE [22], PICO–LON [131], DM–Ice [20]

or DAMA/LIBRA (see section 1.5) in Italy.
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Figure 1.15: Schematic representation of the Earth’s motion around the Sun and the

Sun’s motion in the GRS.

As a summary of the latest results in the direct detection of WIMPs, figures 1.13

and 1.14 show the updated exclusion plots derived from different experiments for SI

and SD interactions, respectively.

1.4.2.3 Annual modulation of dark matter

Dark Matter attached to our galaxy is distributed in the called dark halo and, in

the simplest model, it can be supposed as isotropic in the galactic reference system

(GRS). The WIMP interaction rate with the target nuclei depends on the relative

velocity WIMP–nucleus, i.e. the velocity of the WIMP in the laboratory reference

system, (equation 1.20). The Earth, in its motion around the center of the galaxy

together with the Solar System, is moving with a velocity vE in the GRS. A trans-

formation of the type v = vW − vE has to be performed, where vW is the velocity of

the WIMP in the GRS. The Earth’s motion produces a distinctive periodic pattern

in the detection rate of dark matter particles from the galactic halo, so that it allows

distinguishing it from another background signals.

The Earth moves around the Sun with a periodicity of 1 year and a velocity vorb

of about 30 km/s. In its motion, the Earth follows an almost circular orbit whose

plane has an inclination angle γ ≈ 60o with respect to the galactic plane (see fig-

ure 1.15). In summer the Earth’s velocity in its motion around the Sun is added to
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the rotation velocity of the Sun around the galactic center (v0 ≈ 220 km/s), while

in winter, Earth’s orbital velocity is opposite to that of the Sun. Thus, the relevant

component of the Earth’s velocity for WIMP annual modulation is the projection in

the direction of the Sun velocity that can be described as vrot = vorbcosγ cosω(t−t0)

where ω = 2π/T and t0 is the time for which vrot reaches its maximum, around June,

2nd [132]. Concerning the Sun, its velocity can be expressed as vS = v0 + v�, being

v� the peculiar velocity of the Sun. Figure 1.16 shows the variation of the Earth’s

velocity in the GRS obtained summing vS and vrot.

Figure 1.16: Variation of the Earth’s velocity (in module) in the GRS along the year

with a maximum around June 2nd. From [133].

Detection rate in the detector depends on the velocity of the WIMPs in the

reference system of the Earth. As the variation ∆vE ≈ 12 km/s is a small percentage

of vE (∆vE/vE ≈ 7%) the expression can be approximated for a determined k–th

energy interval as a Taylor series development cut at the first order, Sk:

Sk = S0,k + Sm,kcosω(t− t0) (1.24)
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where S0,k is the mean rate and Sm,k is the amplitude of the modulated term. In

these conditions, when the relative velocity WIMP–nucleus is higher, WIMPs are

more energetic on average and leave more energy in the detector, changing the shape

of the differential spectrum, which implies that the rate in June can be greater or

smaller than in December depending on the analysed energetic range.

The characteristics of the dark matter searched signal are:

• Sinusoidal behaviour of the rate as a function of time.

• A one-year periodicity signal.

• Presence of the signal modulation phase at around June 2nd.

• Small amplitude signal (≈ 7%).

• Only appreciable in single–hit events and in a very small energy range, depend-

ing on the WIMP mass and the detector (target nucleus and relative efficiency

factor). For example, for NaI detectors, the signal is only distinguishable for

energies below 6 keVee.

On the other hand, for an annual modulation search experiment exceptional con-

ditions of stability of all parameters of the experiment that could induce a variable

behaviour in time must be guaranteed. Very good background understanding is

required too because some backgrounds could produce similar effects to the signal

searched for. For instance, muon flux is correlated at high depth with the atmo-

spheric variations of temperature and could induce a modulation with an annual

periodicity in the background of an underground experiment at low energy through

neutrons induced by muons. This effect has been analyzed in [134–136].

1.5 The DAMA/LIBRA experiment

DAMA/LIBRA experiment [9] [137] [138], at the LNGS, under 1400 meters of rock,

has shown evidence with high statistical significance, of the presence of an annual

modulation in the detection rate at low energy, compatible with the expected for

an hypothetical dark matter halo. The DAMA collaboration considers that this ef-

fect cannot be explained by any systematic effect nor other known background and

that it could be attributable to a dark matter signal [139] [140]. In this sense, in
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Figure 1.17: DAMA/LIBRA experiment in the LNGS, in Italy.

section 1.5.2 a corollary study relating the measured annual modulation signal and

symmetric mirror dark matter is presented.

DAMA/NaI experiment (DArk MAtter Experiment) [3] [10] with NaI(Tl) radiop-

ure scintillators (100 kg of mass) was the first experiment to announce an annual

modulation signal. In 2003 DAMA detectors were upgraded and detection mass was

increased to about 250 kg, this new experiment was called LIBRA and confirmed

with higher statistical significance DAMA/NaI results.

1.5.1 Description and results

DAMA/LIBRA consists of 25 NaI(Tl) scintillating radiopure crystals produced by

Saint Gobain company [141] of 9.7 kg each in a 5×5 matrix. Each crystal is coupled

to two low background photomultipliers with 10–cm–long quartz light guides acting

as optical windows. Modules operate inside a sealed copper box flushed with highly

pure nitrogen placed within a low activity shield of Cu/Pb/Cd/polyethylene/paraf-

fin (see figures 1.17 and 1.18). In addition, 1 m of concrete from Gran Sasso rock

material, almost fully surrounds this passive shield as neutron moderator. The in-

stallation has a 3–level sealing system which prevents environmental air from reach-

ing the detectors. The whole installation is air–conditioned and several operation

parameters are continuously monitored and recorded.
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Software designed for DAMA/LIBRA, as the one designed for DAMA/NaI, has

the capability of registering single–hit (detected by a single detector) and multiple–

hit (detected by more than one detector) events and the energy threshold of the

experiment has been established at 2 keVee.

As shown in figure 1.19, several annual cycles of data seem to confirm this annual

modulation for single–hit events in the 2–6 keVee region satisfying the requirements

for a dark matter signal. In fact, the measured period (0.998± 0.002) y and phase

(144 ± 7) d, are both compatible with expectations. Modulation appears in the

2–6 keVee region and it does not in other energy regions and multiple–hit events,

attributable to background, do not show any modulation. The estimated modula-

tion amplitude in the 2–6 keVee region is (0.0112 ± 0.0012) counts/(keV kg day)

with 9.3 σ C.L.[9].

Figure 1.18: Schematic view of the passive shield of the DAMA/LIBRA set–up.

No other experiment up to date has found such modulation in the detection

rate, even with higher sensitivity detectors. Results have been recently presented

by XENON [18], XMASS [124] and DM–Ice [20].
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However, comparison among experimental results derived from different targets

and techniques is model dependent, and this is the main reason why experiments

using NaI as target and with the same detection technique as DAMA/LIBRA are

required to solve this controversy (see section 1.4.2). Among them, ANAIS, carried

out at the LSC, becomes a crucial experiment, with the same target (NaI) and ex-

perimental technique as DAMA/LIBRA.

Figure 1.19: DAMA/LIBRA experiment residual rate of single-hit scintillation

events in the 2-6 keV region (from [138]).

1.5.2 Annual modulation effect in DAMA experiment and

symmetric mirror matter

The DAMA group has carried out several studies of the model independent annual

modulation effect in different dark matter scenarios [142–146]. In this section, one

specific interpretation of the annual modulation signal observed by DAMA/LIBRA

in terms of symmetric mirror matter is presented as example. This work was done

during the research stage of this thesis author at University of Rome ”Tor Vergata”

in 2015 [147].

Mirror matter is an exact duplicate of ordinary matter from a parallel hidden

sector with a chemical composition dominated by mirror helium, but that can also

contain significant fractions of heavier elements as mirror carbon or oxygen. Mirror

atoms from these ”dark”, ”hidden” or ”shadow” sector could interact with ordi-
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nary matter as result of kinetic–mixing between mirror and ordinary photons. In

this assumption, dark atoms would interact with nuclei of the target detector via

Rutherford-like scattering.

In this section, results of kinetic–mixing parameter range able to explain the

DAMA/LIBRA annual modulation signal in the frame of different scenarios for the

chemical composition of the Milky Way dark sector are presented. Uncertainties

from nuclear and particle physics have been taken into account in the analysis.

1.5.2.1 The mirror world

The idea of dark matter particles coming from a hidden sector has become increas-

ingly popular in the last years. This sector may consist of elementary leptons (as

our electron) and composite baryons (similar to our proton or neutron) which can

be combined in atoms by long–range forces mediated by dark photons. Stability of

dark proton follows from the shadow baryon number conservation, as the stability

of our proton is guaranteed by the conservation of our baryon number. On the other

hand, the cosmological fraction of shadow dark matter should be related to the dark

baryon asymmetry induced by the primordial baryogenesis mechanisms, similar to

the popular mechanisms for the baryogenesis in the observable sector. Such type of

dark matter is also known as asymmetric dark matter.

A mirror world was introduced some time ago by reasons related to parity conser-

vation rather than purposes of explaining the dark matter. Standard Model particles

respect rotation and translation symmetries, but do not respect parity (mirror reflec-

tion symmetry), in fact, only weak interactions breaks parity conservation. However,

parity symmetry can be restored by assigning a mirror partner (right–handed) to

every ordinary particle (left–handed) [148–150].

Thus, as far as our sector is described by the Standard Model SU(3)× SU(2)×
U(1), all ordinary particles (electron e, proton p, neutron n, photon γ, neutrinos ν,

etc.) should have mirror twins (e′, p′, n′, γ’, ν’, etc.), which are sterile to our strong,

weak and electromagnetic interactions but have instead their own gauge interactions

SU(3)’ × SU(2)’ × U(1)’ with exactly the same coupling constants.

Mirror matter is coupled gravitationally to ordinary matter, and then, it is a

sound dark matter candidate as far as it is invisible, not being coupled through
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strong, weak or electromagnetic interactions. Mirror world is expected to be very

similar to ordinary world, being ruled by very similar physical laws. However, mir-

ror matter was not considered as a serious candidate for dark matter for a long

time [150] [151] [152]. In fact, the mirror world having the same temperature as the

ordinary one, T ′ = T , is excluded by the BBN limits on the effective amount of light

degrees of freedom: the contribution of mirror particles in the expansion rate of the

Universe at the BBN epoch would be equivalent to the amount of extra neutrinos

∆Neff = 6.15, while at most ∆Neff ' 0.5 is allowed by the present constraints.

On the other hand, once baryon asymmetry in the mirror sector is generated by the

same physics as in the ordinary one, then the cosmological fractions of the mirror

and ordinary baryons would be expected to be equal, Ω
′
B = ΩB. This would not

be enough to explain the whole amount of dark matter. However, all problems can

be settled assuming that, after inflation, both sectors were heated to different tem-

peratures, and the temperature of the mirror sector, T ′, remained below that of the

ordinary one, T , over all stages of the cosmological evolution [153]. This condition

can be realized by adopting the following paradigm: at the end of inflation, ordinary

and mirror sectors were (re)heated in an non–symmetric way, with T > T ′. Then,

both systems evolved almost adiabatically and the temperature asymmetry T ′/T

remained nearly invariant in all subsequent epochs until the present days.

In order to have a cosmologically plausible mirror dark matter, satisfying present

BBN limits, the temperature ratio should be T ′/T . 0.5, equivalent to ∆Neff = 0.5.

It is worth noting that the stronger limit, T ′/T . 0.3, comes from cosmological con-

siderations, by requiring the early enough decoupling of mirror photons which makes

mirror baryons practically indistinguishable from the canonic Cold Dark Matter

(CDM) in observational tests related to the large scale structure formation and CMB

anisotropies [153–157]. These limits apply independently whether mirror baryons

constitute dark matter entirely, or only about 20% of the dark matter, which is the

case corresponding to Ω
′
B ' ΩB [155] [156]. In this case the remaining 80% of dark

matter should be composed from other component, presumably some kind of dark

matter represented by particles belonging to the so–called WIMP class candidates,

axions or other sort of hidden gauge sectors with heavier shadow baryons [158–160]

as in the case of asymmetric mirror matter [142], where it is assumed that mirror

parity is spontaneously broken and the electroweak symmetry breaking scale in the

mirror sector is much larger than that in the Standard Model.

Mirror matter can interact with ordinary matter via different portals, for exam-
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ple, via kinetic mixing of mirror and ordinary photons, or mass mixing of mirror and

ordinary pions or π-mesons. In the context of GSM × G
′
SM gauge factors, where

ordinary particles belong to G and mirror particles to G’, the kinetic mixing be-

tween gauge bosons, ε̃
2
BµνF

′
µν is allowed. After the electroweak symmetry breaking,

it transforms into photon–mirror photon kinetic mixing term with an effective cou-

pling ε = ε̃cos2θW , where θW is the Weinberg angle. As far as both, ordinary and

mirror photons, are massless, this mixing does not induce oscillation between them.

However, it makes mirror particles mini–charged with respect to ordinary electro-

magnetic interactions: the mirror particles acquire electric charges εq. Generically,

in this case dimensionless parameter ε could be of order 1. However, there are

stringent experimental constraints on ε which come from the limits on ortopositro-

nium oscillation into mirror ortopositronium [161] [162]. The latest limit on the

experimental search points to ε < 4 · 10−7 [163] while cosmological limits are even

stronger [164]. Namely, the condition T’/T < 0.3 implies ε . 3 · 10−9 [165].

As far as at the mirror BBN epoch the expansion rate of the Universe was dom-

inated by ordinary matter density, the weak interaction’s freezing in mirror sector

occured earlier and frozen ratio of neutrons to protons was larger than in ordinary

nucleosynthesis. As a result, primordial chemical content of the mirror sector was

helium dominated, with 4He’ constituting up to 80% of mass fraction of mirror

baryons in the limit T ′/T → 0 [153].

The primordial chemical content in mirror sector should also have larger metal-

licity that in ordinary one, but the primordial mass fraction of the heavier elements

is anyway negligible. However, heavier elements should be produced in stars and

thrown in the galaxy via supernova explosions in ordinary and mirror sectors. In

ordinary sector, the chemical elements with A ∼ 16 as oxygen, carbon, nitrogen and

neon account for about a few per cent of mass fraction, and heavier elements are

less abundant, accounting for about 4 per mille of mass fraction while in the mirror

sector these proportions can be quite different (see table 1.2).

Experimental direct searches of dark matter should be concentrating on the de-

tection of mirror helium as the most abundant mirror matter particles. In fact,

the region of dark matter masses below 5 GeV is practically unexplored, although

existing experimental indications favour light dark matter particles (see figure 1.13).
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1.5.2.2 DAMA signal and mirror dark matter

In this study, the annual modulation observed by DAMA is analyzed in the frame-

work of mirror dark matter, exploiting the interaction portal related to kinetic mix-

ing ε
2
F µνF

′
µν between the ordinary photon and mirror photon [166]. As mixing

renders the mirror nuclei mini–charged with respect to ordinary electromagnetic

force, it mediates the mirror atom scattering off the ordinary target nuclei, the Na

and I nuclei at the DAMA/LIBRA detectors, with the Rutherford–like interaction

cross sections [167] [168]. As mirror atoms have radii as large as the ordinary ones,

at the recoil energies of the DAMA observed effect, the Rutherford scattering of

the mirror nuclei off ordinary target ones is the leading order (with cross–section

proportional to Z2).

In this analysis, only scenarios compatible with the annual modulation phase

experimentally measured by DAMA/LIBRA were studied (see section 1.5.1).

Isotope (Z, A) Mass fraction (%) Atom fraction (%)

H (1, 1) 70.57 91.0

He (2, 4) 27.52 8.87

C (6, 12) 0.30 0.032

N (7, 14) 0.11 0.010

O (8, 16) 0.59 0.048

Ne (10, 20) 0.15 0.010

Si (14, 28) 0.065 0.0030

Fe (26, 56) 0.117 0.0027

Table 1.2: Abundance of elements in the Solar System. From [169]

Cosmological abundances of the mirror atoms are assigned directly rescaling from

the abundances in ordinary sector, as shown in table 1.2. Table 1.3 shows the mirror

matter abundances for three representative scenarios considered in this analysis.
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Mirror Halo composition H’ (%) He’ (%) C’ (%) O’ (%) Fe’ (%)

H’, He’, Fe’ 24.0 75.0 - - 1.0

H’, He’, C’, O’ 12.5 75.0 7.0 5.5 -

H’, He’, C’, O’, Fe’ 20.0 74.0 0.9 5.0 0.1

Table 1.3: Halo compositions of the mirror dark matter scenarios considered in this

analysis; the mass fraction of different mirror atoms is reported.

In section 1.4.2.3 a simplified description of the dark matter halo has been consid-

ered, assuming it at rest in the galactic frame. There are many possible halo models.

In this work, in the framework of a mirror symmetric dark matter model, dark mat-

ter particles are expected to form clouds and bubbles with diameter which could be

even as the size of the Solar System. In this model, a dark halo, at the present

epoch, could be crossing a region close to the Sun with an arbitrary velocity. Each

bubble would be composed by dark atoms of different species having a Maxwellian

velocity distribution in the frame where the halo is at rest. Assuming thermal equi-

librium in a halo at temperature, T , the root mean square velocity of the j–type

atom would be v2
j,rms = 3KT

mj
where K is the Boltzmann constant and mj if the mass

of the j –type atom. In the following such local bubbles will be named simply as halo.

The annual modulation effect phase depends on the module of such a velocity

and on the relative direction of the halo with respect to the Earth velocity, described

by the angle α, cos α = v̂E · v̂halo, where vE is the velocity of the Earth in the galactic

frame. When the velocity of the halo, vhalo, is anti–parallel to the velocity of the

Earth (α ' π) the phase of the annual modulation is June 2nd for any module of

vhalo. For parallel halo velocity (α ' 0) depending whether or not vhalo is larger

than vS the phase of annual modulation can be even reversed.

1.5.2.3 Analysis procedures

In this study, a fraction, f , of the dark matter halo in the galaxy is assumed to be

composed by mirror atoms of various species and two type of temperature regimes

are considered, a cold one (T' 104 − 105K) and a hot one ((T& 106 − 108K). The

direction of the velocity of the halo with respect to the velocity of the Sun changes

the phase of the annual modulation, and thus a detailed study of the behaviour of
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the phase as a function of the velocity of the halo in the galactic frame has been made.

Some discrete cases have been considered to account for the uncertainties on the

measured quenching factors and on the parameters used in the nuclear form factors

(referred as set A, see [147] for more scenarios). Results presented here are obtained

by considering the mean values of the parameters of the used nuclear form factors

and quenching factors from [10].

Data analysis in the considered mirror dark matter framework model allows the

determination of the range of the
√
fε parameter compatible with the observed

annual modulation in DAMA/LIBRA experiment for the different scenarios. The

allowed regions for dark matter can be calculated by comparing (in 1 keV energy

bins from 2 to 4 keV) the measured dark matter annual modulation amplitude

Sexpm,k with the expectation in the considered scenario Sthm,k. In this procedure it

must be taken into account that the measured counting rate in the cumulative

energy spectrum (given by the sum of the constant background contribution, bk,

and S0,k) is ∼ 1 count/(keV kg day) in the lowest energy bins; but, as discussed

e.g. in [170], the constant background, bk, is estimated to be not lower than

∼ 0.75 counts/(keV kg day) in the 2–4 keV energy region; thus, an upper limit

on S0 of ∼ 0.25 counts/(keV kg day), S0,max, is derived. In order to compare the

expectations with the experimental results, the χ2 quantity can be computed as:

χ2 =
∑ (Sexpm,k − Sthm,k)2

σ2
k

+
(S0,max − Sth0,2−4)2

σ2
2−4

Θ(Sth0,2−4 − S0,max) (1.25)

where σk is the error associated to the modulation amplitudes in the k–th energy

bin determined from the annual modulation independent analysis and the second

term encodes the experimental bound about the unmodulated part of the signal, Θ

is the Heaviside function, Sth0,2−4 is the average expected signal counting rate in the

(2–4) keV energy interval and σ2−4 ' 10−3 counts/(keV kg day).

In the mirror dark matter model considered in this study, the χ2 quantity is a

function of only one parameter,
√
fε , thus:

∆χ2{
√
fε} = χ2{

√
fε} − χ2{

√
fε = 0} (1.26)

where ∆χ2 follows a χ2 distribution with one degree of freedom and can be used

to determine the allowed interval for the
√
fε parameter at 5σ from the null signal
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hypothesis.

In case of low mass dark matter particles producing nuclear recoils it is also

necessary to account for the Migdal effect; this effect is known since long time and

is described in [171] [172]. It consists in the ionization and the excitation of bound

atomic electrons induced by the presence of a recoiling atomic nucleus. In the case

of mirror nuclei interacting with the target nuclei the recoiling nucleus can shake

off some of the atomic electrons, and an electromagnetic contribution is present to-

gether with a recoil signal. Since this contribution is not quenched, this part could

play a role, mainly when low mass dark matter candidates are considered; however,

in the present case of mirror matter, only second order corrections (of an order not

exceeding 10% on the expected counting rate) are foreseen when the Migdal effect

is accounted for.

Another important issue to take into consideration is the channeling effect of low

energy ions along axes and planes of the NaI(Tl) crystals. The channeling effect in

crystals implies that a fraction of nuclear recoils are channeled producing a much

larger ionization signal than that expected if quenching factors derived from neutron

calibrations are taken into account. Since the channeling effect cannot be generally

pointed out with neutron measurements [173], only modeling can be considered. Al-

though some amount of blocking effect could be present, because of the difficulties

of experimental measurements and of theoretical estimate of this channeling effect,

in the following it will be either included or not in order to give idea on the related

uncertainty.

Table 1.4 summarizes all the scenarios considered when analysing DAMA/LIBRA

experiment data in the symmetric mirror dark matter framework.

1.5.2.4 Results

Some results obtained in this study with the different scenarios presented are shown

here. The constant part of the signal and the annual modulation amplitude evalu-

ated under different assumptions are depicted in figures 1.20 and 1.21, respectively.

Figures 1.22 to 1.25 show the allowed regions of the
√
fε parameter as a function of

the temperature and the halo velocity, considering different scenarios.
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Scenario Quenching factor Channeling Migdal

a [4] no no

b [4] yes no

c [4] no yes

d [92] no no

e [92]–normalized no no

Table 1.4: Summary of the scenarios considered when analysing DAMA/LIBRA

experiment data in the symmetric mirror dark matter framework (from [147]).

Figure 1.20: Annually averaged event rate expected for different mirror atoms in

a NaI(Tl) detector, considering
√
fε = 1. Two cases are shown here: a cold halo

(T ∼ 104 K) (left) and hot halo (T ∼ 107 K) (right) with vhalo = 100 km/s. The

considered scenario is the case (a) of table 1.4 in set A. From [147].
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Figure 1.21: Examples of expected modulation amplitude of the signal, Sm, for the

mirror dark matter candidates in the scenario (a) of table 1.4, for two different halo

models. Left: composite dark halo: H’(12.5%), He’(75%), C’(7%), O’(5.5%), with

halo velocity vhalo = 30 km/s, temperature T = 106 K, v0 = 220 km/s and parameters

in set A. The contributions to the signal (blue line) of the different dark atoms are

depicted: H’ (not visible), He’ (dashed), C’ (dotted), O’ (dashed–dotted). Right:

composite dark halo: H’(20%), He’(74%), C’(0.9%), O’(5%), Fe’(0.1%), with halo

velocity vhalo = 0 km/s and temperature T = 107 K, v0 = 220 km/s and parameters

in set A. The contributions to the signal (blue line) of the different dark atoms are

depicted: H’ (solid line), He’ (dotted), C’ (dashed), O’ (dashed–dotted), Fe’ (solid,

with tail above 3 keV). From [147].
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Figure 1.22: Halo composed by pure He’ dark atoms in the scenario (a) of table 1.4

with v0 = 220 km/s and parameters in set A. Left: allowed regions for the
√
fε

parameter as function of the halo temperature for different values of the velocity of

the halo in the galactic frame; when increasing the halo velocity from -400 km/s to

300 km/s the allowed regions e.g. at a fixed temperature of 104 K move to higher

values of
√
fε parameter. Right: allowed regions for the

√
fε parameter as func-

tion of the velocity of the halo in the galactic frame for different halo temperatures.

The considered temperatures spam in the range 104 – 108 K; when increasing the

temperature the allowed region at large positive vhalo move to smaller values of
√
fε

parameter. These allowed intervals identify the
√
fε values corresponding to C.L.

larger than 5σ from the null annual modulation hypothesis, that is
√
fε = 0. From

[147].
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Figure 1.23: As figure 1.22, but for a halo composed by pure Fe’ dark atoms. From

[147].

Figure 1.24: As figure 1.22, but for a halo composed of H’(24%), He’(75%) and

Fe’(1%). From [147].
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Figure 1.25: As figure 1.20, but for a halo composed of H’(12.5%), He’(75%), C’(7%)

and O’(5.5%). From [147].

Figure 1.26: Allowed regions for the
√
fε parameter as function of vhalo. The

three graphs refer to different dark halo compositions with the same temperature

T = 104 K, the same set A and the same scenario (d): Left: composite dark halo

H’(12.5%), He’(75%), C’(7%), O’(5.5%). Center: composite dark halo H’(20%),

He’(74%), C’(0.9%), O’(5%), Fe’(0.1%). Right: composite dark halo H’(24%),

He’(75%), Fe’(1%). The three contours in each plot correspond to v0 = 170 km/s

(area with diagonal lines, gray area on–line), v0 = 220 km/s (shaded area, red area

on–line), v0 = 270 km/s (area with diagonal lines, gray area on–line), respectively.

From [147].
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Figure 1.26 shows the allowed regions for the
√
fε parameter as a function of

the halo temperature for three different v0 values considering different dark halo

compositions. Only for low temperature halos the v0 parameter has an impact on

the allowed regions.

In the analysis, the fact that a fraction, f , of the dark matter halo in the Milky

Way is composed by mirror atoms of various species has been assumed and allowed

physical intervals for the parameter
√
fε in different scenarios have been derived.

It is worth noting that some of the existing uncertainties (in particular those corre-

sponding to quenching factors, channeling and Migdal effect) have been taken into

account.

From this study, it can be concluded that the mirror matter model is well

compatible with the model–independent annual modulation effect observed by the

DAMA/LIBRA collaboration using 250 kg NaI(Tl). Results demonstrate that dif-

ferent halo models (composition, temperature, etc.) and experimental parameters

choices reproduce the DAMA annual modulation effect for
√
fε values compatible

with cosmological bounds.
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The ANAIS experiment

The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the

confirmation, in a model-independent way, of the DAMA/LIBRA annual modula-

tion signal using the same target and technique at the LSC, in Spain. The smallness

of this effect (< 10% of the total signal) makes necessary to accumulate as much

statistics as possible, combining both, long exposure and large detection mass. The

initial design of ANAIS full experiment consisted of 250 kg of ultrapure NaI(Tl)

crystals in a 5 × 4 matrix. However, the increase in the price of the crystals, due

to improvements made by the manufacturer company (see section 2.3.1) in order

to reach the ANAIS radiopurity level target, led the Zaragoza group to find the

optimum configuration, with less NaI(Tl) mass, that could satisfy ANAIS goals.

The evolution of the results of the different prototypes, improvement of the energy

threshold and background understanding, presented in this memory, led the experi-

ment to its present design: 112.5 kg of ultrapure NaI(Tl) crystals in a 3 × 3 matrix

configuration.

In this chapter, the goals and experimental requirements of ANAIS will be de-

scribed (section 2.1) as well as previous prototypes (section 2.2), all the elements

of the experimental set–up like crystals and photomultipliers, electronics and data

acquisition, slow control or the muon veto system (sections 2.3 to 2.8), the set–

ups already operated at LSC (section 2.9) and the general detector performance

(section 2.10).
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Figure 2.1: Artistic view of the ANAIS experimental set-up.

2.1 ANAIS goals and experimental requirements

An experiment devoted to the search of the dark matter annual modulation must

fulfill a few requirements in order to achieve its goal, according to the properties of

the searched signal. As it is expected to appear in the very low energy region and

it is very small, an energy threshold as low as possible is desirable and any back-

ground that could mask it must be reduced. Large exposure time and stability are

also an important issue in order to have enough statistical significance in a search

for a seasonal variation.

2.1.1 Energy threshold

WIMPs are expected to produce nuclear recoils in I and Na nuclei below about

100 keV, depending on the WIMP mass, but the visible energy is even lower (see

section 1.4.2). The energy threshold depends on experimental aspects as the light

collection efficiency (that depends on the optical quality of the crystal, the light

collection sytem of the modules, and the quantum efficiency of the photomultipli-
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ers) and the trigger level. Due to the nature of the low energy events (consisting

on few separate photons), triggering strategy is very important as it has to ensure

the acquisition of all relevant events. The first triggering step is then to trigger

each PMT signal at photoelectron level, in order to allow a high trigger efficiency

for very low energy events. In a second step, since dark events would dominate the

trigger rate, they have to be prevented by triggering each module in logical AND

mode between the two PMTs signals. Moreover, robust noise filtering protocols are

mandatory in order to guarantee the quality of low energy events. ANAIS goal is to

reach an energy threshold at or below 2 keVee.

2.1.2 Background in the region of interest

The rate of interaction between dark and ordinary matter is low and the annual mod-

ulation is expected to be less than a 10% of the total dark matter rate, but in a much

lower percentage of the total events rate if other backgrounds are present in the re-

gion of interest. The expected modulation amplitude, according to DAMA/LIBRA

result (see section 1.5) is of the order of 0.05 counts/(keV kg day) above 1 keVee [174].

This is the reason why background in this range of energies must be kept as low as

possible; rates at or below a few counts/(keV kg day) are necessary below 10 keVee

in ANAIS detectors. Special care has to be taken with the radiopurity of the NaI(Tl)

crystal itself. For example, isotopes 40K and 22Na in NaI(Tl) crystals were identified

to be specially harmful for dark matter search experiments as they produce a line

at 3.2 keV and 0.9 keV, respectively, corresponding to the K–shell electron binding

energy released following EC, and falling in the region of interest for the annual

modulation analysis [32].

Besides internal, external contaminations have to be also under control. For

that, a passive shield made of lead (20 cm of low activity lead and 10 cm of ar-

chaeological lead in the inner part) together with a 40–cm–thick neutron moderator

made of boron–loaded water and polyethylene will be installed for ANAIS. A sealed

anti–radon box with continuous boil–off nitrogen flux will also contribute to avoid

the entrance of airborne radon inside the set–up. By installing ANAIS at the LSC,

under 2450 m.w.e. (meter water equivalent), cosmic radiation is suppressed although

a residual muon flux still survives and could be able to induce neutrons and other

particles that could contribute to the background in the region of interest. There-

fore, plastic scintillators placed on the top and lateral faces of the set–up will act as
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active vetoes to tag muon interactions in the detectors and shielding, allowing the

removal of related events (see figure 2.1).

2.1.3 Stability and exposure maximization

Due to the fact that ANAIS searches for the dark matter annual modulation and

thus, measurements of various cycles will be performed, stability is one of the main

requirements for the experiment. Consequently, in order to detect any anomalous

behaviour or seasonal variation that could affect to the gain, threshold, background,

or trigger efficiency of the experiment, as many parameters as possible must be con-

trolled. A slow–control system was designed in order to monitor these parameters

(see section 2.7).

Once the target mass is fixed, the exposure of the experiment is set by the

effective measurement time, the live time. The system has to maintain as low as

possible the dead time after each event, while the system is not able to record another

event due to different reasons. Both times should be precisely known. In present

ANAIS acquisition system both are determined by using specific counters (see [31]).

2.2 Previous prototypes and ANAIS set–ups

Along the years at the Zaragoza University group, experience has been acquired from

the tests with different prototypes for ANAIS. NaI32 experiment, carried out at the

LSC, was the precursor of ANAIS. It was operating for two years and consisted of

three BICRON hexagonal NaI detectors with a total mass of 32.1 kg. No positive

signal was found in the first published results in the search for the annual modula-

tion effect but bounds to WIMP mass and cross–section were established [7] [8] [175].

Later, one of the NaI32 detectors was used as ANAIS Prototype–I [176] and

after decoupling the photomultiplier and removing the original encapsulation, the

crystal was used to build ANAIS Prototype–II and Prototype–III [133]. The main

purposes of these prototypes were the implementation of pulse shape discrimina-

tion techniques, the optimization of light collection, and testing of different PMT

models, together with the measurement of the potassium content of the bulk crys-

tal. After dedicated measurements, all the available BICRON crystals were found

to have too high potassium content (at the level of 0.5 ppm [25]) as well as a high
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210Pb contamination for a dark matter search experiment and thus, were disregarded.

ANAIS–0 set–up (see figure 2.2) consisted of a NaI(Tl) ultrapure crystal of

9.6 kg, made by Saint-Gobain and encapsulated in OFHC copper in the Univer-

sity of Zaragoza. It had the same size and shape as those of DAMA/LIBRA [137]

and was designed to characterize and fully understand the background at low energy,

optimize NaI scintillation events selection, to determine the calibration method and

test the electronics. Although it presented a much lower level of 210Pb than BICRON

crystals, its high potassium content, at the same level than that found in the latter

[25], was again the reason why it was disregarded.

Figure 2.2: Nude NaI(Tl) crystals (left) and detectors in set-up (right) for BICRON

(top) and ANAIS–0 prototypes (bottom).

Backgrounds at low, medium and high energy were quite well understood for

ANAIS–0 prototype [24], very slow scintillation in NaI(Tl) [26] or an anomalous fast

event population attributable to quartz scintillation [28] were studied, and the bulk

NaI(Tl) scintillation low energy events selection procedure was proposed and tested

[27]. Other technical aspects of the set–up and data taking system were established

to be used in next ANAIS prototypes.
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2.3 NaI(Tl) crystals

As pointed out in section 1.4.2.2, scintillators are one of the detector types used

in direct dark matter detection experiments. Choosing the scintillator material for

a direct dark matter search is very important. This material must fulfill a few

properties:

• It should convert the kinetic energy of the nuclear recoil into visible light with

a high scintillation efficiency to be easily detectable.

• It should have a scintillation time as fast as possible.

• It should have good optical quality and the medium should be transparent to

the emitted wavelength.

• It should behave linearly with the deposited energy.

• It would be also desirable that the scintillator emission band would overlap

appropriately with the quantum efficiency peak of the PMTs.

The two most commonly used types of scintillator materials are inorganic crys-

tals and organic-based liquid and plastic scintillators, although there exist other

kind of materials used in dark matter experiments, as liquids of noble gases (see

section 1.4.2.2) which are also proficient scintillators. The scintillation mechanism

is different for each type.

Organic material scintillators have a faster response compared to that of the

inorganic ones but have a lower light yield. In organic scintillators the radiative

transitions can be observed independently of the material physical state because

they arise from the energy level structure of a single molecule. In ANAIS, the muon

vetoes surrounding the shielding consist of plastic organic scintillators, and are used

to tag muons.
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Figure 2.3: Energy band structure of an inorganic activated crystalline scintillator.

In inorganic materials, the scintillation mechanism usually depends on the ex-

istence of radiative decays of some of the states in the gap of the crystal band

structure, which can be filled by excited electrons from the valence band after en-

ergy depositions from charged particles in the material, not being the recombination

of the electron–hole pairs with emission of a photon the dominant process for energy

relaxation in most of the materials. Only a few photons are released by this mecha-

nism and band gap widths in pure crystals are such that the emitted photons are too

energetic to lie within the visible range. Therefore, this type of materials is usually

doped with small amounts of impurities, called activators (see figure 2.3), in order

to enhance the probability of UV–visible photon emission during the de–excitation

process. These activators create special sites within the forbidden gap modifying

the normal band structure of the pure crystal. Electrons can de–excite back to the

valence band emitting photons with a wide range of half–lives from 10−9 to 10−7 s.

The most widely used scintillator materials are inorganic alkali halide crystals, as

NaI. This material presents an excellent light output and good linearity but the re-

sponse is slower than that of the organic scintillators. In the case of NaI Thallium is

usually added as activator. Fine–tuning of Tl concentration is able to achieve high

light yield, while preserving high transparency to its own light emission, because

photons produced in the decay of the activator excited state are not absorbed by

electrons in the valence band. The spectral distribution of the scintillation photons

in NaI(Tl) has its maximum around 410 nm [177].

NaI(Tl) scintillators have been widely used in gamma spectrometry field. The

disadvantages of NaI(Tl) are its long scintillation decay time (230 ns), its fragility

and its highly hygroscopic nature that requires a tight encapsulation.
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2.3.1 Alpha Spectra NaI(Tl) crystals

After disregarding BICRON and Saint–Gobain crystals because of the high potas-

sium content (see section 2.2), for the final ANAIS design, several providers of puri-

fied NaI were contacted in order to find a crystal that would fulfill the requirements

of ANAIS [32].

Alpha Spectra, Inc.[29] in the United States provided a NaI powder sample

compatible with the potassium required content (having <90 ppb, following the

measurements at LSC with HPGe [25]) and therefore, two 12.5 kg NaI crystals were

grown with that powder and installed for testing in the ANAIS–25 set-up [178] (see

section 2.9).

Alpha Spectra (AS) crystals (see figure 2.4) are cylindrical, 4.75” diameter and

11.75” length. They are housed in OFE copper, with two synthetic quartz windows

for PMTs coupling at LSC clean room in a second step. Very low energy calibration

can be performed thanks to a Mylar window in the lateral face of each module.

Figure 2.4: ANAIS–25 NaI(Tl) crystals prepared for encapsulation. Courtesy of

Alpha Spectra Inc.
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2.4 Photomultipliers

Photomultiplier tubes, are extremely sensitive detectors of light in the ultraviolet,

visible, and near–infrared ranges of the electromagnetic spectrum. Photomultipliers

are typically constructed with an evacuated glass housing, with an input window, a

photocathode with a sensitive layer, several electron multipliers (dynodes), focusing

electrodes and an anode.

Figure 2.5: Photomultiplier operating method scheme. From [179].

Photomultipliers convert the incident light into a measurable electrical signal (see

figure 2.5). Light passes through the input window and excites the photocathode,

consequently, and depending on the quantum efficiency of the tube, photoelectrons

are emitted into the vacuum via photoelectric effect. Then, photoelectrons are

accelerated in the vacuum and focused by an electric field onto the first dynode.

Electron multiplication is then achieved by repeating this process at each dynode,

biased through a HV divider circuit, and charge is finally collected usually in the

last dynode.

There are different types of PMTs depending on the photocathode type and the

geometric disposition and number of dynodes. In order to guarantee a correct op-

eration of a photomultiplier tube, a stable high voltage supply is crucial to bias the

dynodes in order to have an stable gain, a good housing system to shield the pho-

tomultiplier from external light and avoid electromagnetic interferences (that could

deviate the electron cloud and affect the gain) and a proper signal processing set–up.

Photomultipliers require a previous characterization to test the following param-

eters:
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• Quantum efficiency: It is the ratio between photoelectrons produced and

incident photons at photocathode. It is dependent on the wavelength of the

incident photons and photocathode material.

• Gain: It is the final number of collected electrons for each produced photo-

electron in the photocathode.

• Rise time: It quantifies the time for going from 10% to 90% of a single

photoelectron signal.

• Transit time: It is the time interval from the arrival of light to photocathode

and the appearance of the output signal in the anode.

• Dark current: It is the rate of dark events produced without light excitation

of the photocathode.

• Single electron response (SER): It is the output signal produced by a

single photoelectron.

In ANAIS, low background PMTs, made of radiopure materials, are required in

order to minimize their contribution to the background of the experiment. Low dark

rate of the PMT is also important, otherwise it would lead to undesired high trigger

rate, increasing dead time and making more difficult data analysis and selection of

real bulk scintillation events in the NaI(Tl).

Hamamatsu R12669SEL2 PMT model, previously R6956MOD (see table 2.1),

was selected for ANAIS. This model conveniently covers all the previously listed

requirements. It has a Bialkali photocathode, high quantum efficiency (>33%), a

maximal response at 420 nm, dark current below 500 Hz, ten dynode stages and a

gain factor of 106 at the nominal voltage value.

42 units of Hamamatsu R12669SEL2 (see figure 2.6) were received at LSC and

soon tested by HPGe spectroscopy to verify the radiopurity levels and the homo-

geneity of all the units (see table 2.2). For most of the units, SER, gain, relative

quantum efficiency and dark rate were measured in the University of Zaragoza. A

dedicated set–up was prepared to characterize all the PMTs. A periodically pulsed

ultraviolet LED was used as light source and trigger for a MATACQ digitizer based

acquisition (more information on details and results in [31]).
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Hamamatsu R12669SEL2

Characteristics:

Diameter 3”

Spectral response 300–650 nm

λ of max. response 420 nm

Photocathode material Bialkali

Photocathode min. effective 70 mm

Dynode structure Box–and–grid + Linear focused

Number of stages 10

Operating ambient T –30/+50oC

Max. supply voltage 1500 V

Max. avg anode current 0.1 mA

Characteristics at 25oC:

Cathode luminous sens. 10 µA/lm

Quantum efficiency at peak >33%

Anode luminous sens. 100 A/lm

Gain 106

Anode dark current (max.) 6 (60) nA

Dark current rate <500 Hz

Anode pulse rise time 9.5 ns

Electron transit time T 60 ns

Transit time spread 13 ns

Pulse linearity 30 (± 2 %) mA

Table 2.1: Hamamatsu R12669SEL2 technical data.

A good knowledge of the PMTs response with low light intensity is essential to

understand the scintillation signal in the very low energy region. Particularly, a

characterization of the SER allows to understand the most elementary PMT signal.
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Figure 2.6: Left: Hamamatsu R12669SEL2 photomultipliers. Right: Coupling the

PMT to D3 module at LSC clean room.

Pulses corresponding to single photoelectrons were obtained by sending a very

small amount of light produced by an UV–LED in the before mentioned testbench

(see figure 2.7). Trigger was done by the LED excitation and light filters were used

to attenuate the light emission until the average number of photoelectrons per event

seen by the PMT was very low (in the particular case shown in figure 2.8, less than

0.04). Hence, the contribution of two or more photoelectrons in the output signal

can be taken as negligible.

SER pulse area distribution is fitted, taking also in consideration the population

of events for which no light reached the PMT, to two Gaussian functions (parame-

ters resulting of the fit are also shown, for example, in figure 2.8).

By increasing the light received at the PMT, the PMT signal can be modelled

as addition of the response functions for one, two, three, and more photoelectrons.

68



2.4. Photomultipliers

Model Reference 232Th 238U 262Ra 40K

(mBq/PMT) (mBq/PMT) (mBq/PMT) (mBq/PMT)

R6959MOD ZK5902 20 ± 2 128 ± 38 84 ± 3 97 ± 19

R6959MOD ZK908 20 ± 2 150 ± 34 88 ± 3 133 ± 13

R12669SEL2 FA0010 18 ± 2 77 ± 42 78 ± 4 113 ± 18

R12669SEL2 FA0016 18 ± 2 179 ± 51 83 ± 4 123 ± 20

R12669SEL2 FA0018 21 ± 3 161 ± 58 79 ± 5 108 ± 29

R12669SEL2 FA0020 25 ± 4 260 ± 84 77 ± 6 95 ± 36

R12669SEL2 FA0022 18 ± 2 158 ± 53 77 ± 4 93 ± 19

R12669SEL2 FA0034 20 ± 2 144 ± 33 89 ± 5 155 ± 36

R12669SEL2 FA0035 22 ± 2 148 ± 29 79 ± 4 79 ± 14

R12669SEL2 FA0036 16 ± 2 139 ± 31 71 ± 4 95 ± 27

R12669SEL2 FA0037 19 ± 2 170 ± 37 78 ± 5 123 ± 32

R12669SEL2 FA0051 19 ± 2 133 ± 52 89 ± 4 94 ± 16

R12669SEL2 FA0053 25 ± 2 114 ± 29 87 ± 4 132 ± 19

R12669SEL2 FA0057 19 ± 2 153 ± 25 82 ± 3 128 ± 23

R12669SEL2 FA0058 22 ± 2 168 ± 31 84 ± 4 118 ± 27

R12669SEL2 FA0059 26 ± 2 171 ± 32 85 ± 4 104 ± 24

R12669SEL2 FA0060 22 ± 2 145 ± 29 88 ± 4 95 ± 24

R12669SEL2 FA0064 21 ± 2 180 ± 34 85 ± 4 131 ± 31

R12669SEL2 FA0066 19 ± 2 156 ± 31 82 ± 4 117 ± 29

R12669SEL2 FA0068 18 ± 2 185 ± 29 81 ± 4 138 ± 25

R12669SEL2 FA0069 18 ± 2 159 ± 29 79 ± 3 105 ± 15

R12669SEL2 FA0070 21 ± 2 127 ± 30 82 ± 4 103 ± 20

R12669SEL2 FA0072 27 ± 3 172 ± 35 91 ± 4 91 ± 27

R12669SEL2 FA0073 22 ± 2 181 ± 31 78 ± 4 112 ± 25

R12669SEL2 FA0074 20 ± 2 252 ± 61 73 ± 3 89 ± 21

R12669SEL2 FA0076 17 ± 2 234 ± 65 79 ± 3 88 ± 22

R12669SEL2 FA0081 21 ± 2 162 ± 31 87 ± 4 98 ± 24

R12669SEL2 FA0086 19 ± 2 300 ± 70 59 ± 3 104 ± 25

R12669SEL2 FA0088 26 ± 2 241 ± 46 64 ± 2 137 ± 19

R12669SEL2 FA0090 18 ± 2 187 ± 58 59 ± 3 136 ± 26

R12669SEL2 FA0094 18 ± 2 233 ± 60 55 ± 3 102 ± 23

R12669SEL2 FA0093 22 ± 1 209 ± 37 63 ± 2 153 ± 16

R12669SEL2 FA0099 23 ± 2 210 ± 48 65 ± 2 116 ± 19

R12669SEL2 FA0100 21 ± 1 244 ± 49 60 ± 2 90 ± 15

R12669SEL2 FA0101 26 ± 2 243 ± 57 63 ± 3 103 ± 19

R12669SEL2 FA0104 23 ± 1 207 ± 47 63 ± 2 127 ± 19

R12669SEL2 FA0106 21 ± 1 198 ± 39 65 ± 2 128 ± 16

R12669SEL2 FA0108 21 ± 2 199 ± 44 61 ± 2 124 ± 18

R12669SEL2 FA0111 20 ± 2 254 ± 48 60 ± 2 93 ± 17

R12669SEL2 FA0117 23 ± 2 238 ± 70 53 ± 3 83 ± 26

R12669SEL2 FA0118 24 ± 2 228 ± 52 67 ± 3 139 ± 21

R12669SEL2 FA0119 22 ± 2 259 ± 59 59 ± 3 105 ± 21

R12669SEL2 FA0121 38 ± 2 261 ± 39 71 ± 2 126 ± 14

Table 2.2: Contamination levels of Hamamatsu (R6956MOD and R12669SEL2)

units measured at low background HPGe test bench at LSC.
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Figure 2.7: Left: Hamamatsu R12669SEL2 radiopurity screening with a HPGe de-

tector at LSC. Right: Set–up for PMT characterization at University of Zaragoza.

Figure 2.8: SER pulse area distribution obtained from a population of events having

a very low mean photoelectrons number (µ = 0.04 is derived from the fit). From [31].

Contamination levels measured in R12669SEL2 by HPGe (see table 2.2) show

good homogeneity among units and are compatible with ANAIS requirements. These

data have been used as an external contamination input for the background model

of D0, D1, D2 and D3 modules, presented in chapter 3. The operational parameters

(SER, gain, relative quantum eficiency and dark rate) were tested at the University

of Zaragoza in order to understand R12669SEL2 response with low light intensity

in the very low energy region and were found to follow the specifications.
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2.5 Electronics and data acquisition

Design and characterization of the whole ANAIS acquisition system has been carried

out in the frame of M.A. Oliván dissertation thesis [31]. ANAIS electronics has been

tuned–up and tested through the different ANAIS set–ups (see section 2.9). ANAIS

acquisition hardware and software design is robust and scalable. The electronic

front–end has been designed taking into account the features of the scintillation sig-

nal described in section 2.3. Electronics has to be able to get information in a wide

range of energies in order to understand the background of the experiment and a

baseline as clean as possible is also needed to achieve a low energy threshold.

Hence, the design of the electronics of ANAIS has been made taking into account

the following requirements:

• Trigger level must be done at photoelectron level with a good signal/noise

ratio.

• Electronic noise must be minimized and controlled.

• Stability must be ensured during several annual cycles.

• The system must allow periodic energy calibrations to control the stability.

• The whole system must be robust and scalable.

Figure 2.9: DAQ system block diagram. From [31]

In order to fulfill these requirements, the front–end (see figure 2.9) can be divided

into two main stages:

• Analog stage: responsible for processing PMTs signals to achieve the trigger

and signal/noise ratio goals. It consists of a preamplifier (placed very close
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to the PMT output); Fan–In/Fan–Out module that produces several output

signals from a given input, allowing the processing of the trigger signal line from

one of the outputs, and the energy conversion/digitization of the signal from

the others; and a Constant Fraction Discriminator (CFD), which produces

the trigger for signals above the threshold at a given fraction of the signal

maximum.

• Digital stage: responsible for digitizing the signal parameters:

–PMT signal waveform

–Charge generated at the PMTs

–Pattern of triggering for all detectors

–Triggering time for all the PMT signals

–Real time of the trigger and accumulated live time.

Acquisition system stores data depending on some configurable runtime condi-

tions. It is important to reduce the dead time by avoiding the transfer of irrelevant

data (as baselines from non–triggered detectors). This selection can be done by

checking the trigger pattern, via Pattern Unit module (PU) and read the triggered

data only. Precise estimate of the system dead time is crucial for ANAIS goals.
109Cd calibrations have been performed in order to have enough statistical signifi-

cance in those estimates at low energies leading to big improvements in both dead

time and storage terms. High acquisition rate has been also tested by running with

radon inside the shielding.

Each photomultiplier charge output signal is separately processed in order to

obtain the trigger, pulse shape digitization and energy at different ranges (see fig-

ure 2.10). Triggering is done by the coincidence (logical AND) of the two PMT

signals of any detector at photoelectron level in a 200 ns window, enabling digitiza-

tion and conversion of these two signals. The building of the spectra is done off–line

by software by adding the signals from both PMTs, and Pulse Shape Analysis is

applied in order to select bulk scintillation events in the NaI crystals and to distin-

guish alpha interactions from beta/gamma ones. Filtering protocols for PMT noise

similar to those described at [27] for ANAIS–0 prototype but optimized for these

new detectors have been applied.
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Figure 2.10: Scheme of the ANAIS electronic acquisition system for one module.

Along February 2016, ANAIS electronics was installed inside a temperature con-

trolled space besides the ANAIS hut at LSC Hall B (see figure 2.11). This temper-

ature control should allow to decouple the electronics temperature from the Hall B

temperature fluctuations. Electronics temperature before and after the installation

of the temperature control system are shown in figure 2.12. It can be observed that

the fluctuation in temperature has been strongly reduced.
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Figure 2.11: Temperature controlled room for ANAIS electronics at Hall B of LSC.

Figure 2.12: Front–end temperature vs. time showing the effect of the new refriger-

ation system for ANAIS electronics.

2.6 Calibration method

A few radioactive sources have been used to calibrate the different ANAIS set–ups

(see table 2.3). Energy calibration is very important in any experiment. In the

case of ANAIS, calibration also allows to get a reference of the NaI(Tl) scintillation

events, to search for systematic effects in simulation, check the gain stability (con-
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trolled through periodic calibrations), etc.

ANAIS modules are manufactured with a small Mylar window in order to allow

the calibration at low energies. A good energy calibration near the threshold is

crucial for ANAIS because the searched signal should appear in this energy region.

In previous prototypes, and also in ANAIS–25 first months of operation, this cali-

bration was made introducing, through an aperture in the anti–radon box and lead

shielding, a tray with a disk–shaped source (see figure 2.13).

Figure 2.13: Old disk–shaped calibration source.

Since June 2014 two radioactive sources (57Co and 109Cd), specially designed

for ANAIS, are mounted along a flexible wire that is introduced into the shielding

through a closed tube and positioned in front of the Mylar window (see figure 2.14).

This new system guarantees a closed radon–free calibration and is scalable to the

full ANAIS experiment. In adjacent modules, Mylar windows are placed face to face

in order to allow a simultaneous calibration when introducing the source. 57Co and
109Cd sources have been chosen for periodic calibration because of the low energy X

and gamma emissions (see table 2.3).
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Figure 2.14: New calibration system with two radioactive sources (57Co and 109Cd)

mounted along a flexible wire.

Source Energy (keV) Intensity (%)

57Co 6.4(*) 56.1 ± 1.0

14.4 9.2 ± 0.2

122.1 8.5 ± 0.1

136.5 10.7 ± 0.2
109Cd 22.6 (*) 101.5 ± 1.5

88.0 3.6 ± 0.3
137Cs 32.9 (*) 6.9 ± 0.2

662 85.0 ± 0.2
22Na 511 90.4 ± 0.2

1275 99.9 ± 0.1

1786 (A)

Table 2.3: Radioactive sources used for ANAIS calibration and their main gamma

and X emissions (with intensities larger than 3%). Energies with (*) are average

values that ANAIS set–ups are not able to resolve. Energies with an (A) correspond

to the addition of two lines that are emitted in cascade, producing a peak in the

energy spectrum and used for calibration.

In the case of the 109Cd source, it was covered by a heat–shrink tube as protection

while building the new calibration system. This cover has some Br in its composition

and then, it produces X–rays at 11.9 keV under irradiation of the 109Cd gammas

(see figure 2.15). This low energy line is also used for calibration purposes, although

not included in table 2.3.
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Figure 2.15: Example of the pulse area spectrum using a 109Cd source to get the en-

ergy calibration (data corresponding to D1 detector in ANAIS–37 set–up). 22.6 keV

and 88.0 keV lines are clearly observed as well as the 11.9 keV of the Br K–shell

X–ray mean.

2.7 Slow–Control

As it has already been explained in section 2.1, stability of the operation parameters

of an experiment searching for the annual modulation of the dark matter is a key

feature. A slow–control system has been developed for ANAIS, as a LabVIEW pro-

gram, to monitor and store any parameter that could have an effect in the stability

of the system or background of the experiment (see figure 2.16).

The parameters monitored in ANAIS are:

• Temperature: Temperature is measured in different locations of the exper-

iment as it can have a large effect in all the acquisition stages due to the

observed relation between trigger rate and the temperature at the electronics

rack, disturbing the acquisition.

– Inside the shielding
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– Inside the ANAIS hut

– At the electronics.

Figure 2.16: ANAIS Slow–control interface.

• Nitrogen flux: As it has been explained in section 2.1.2, ANAIS set–up is

continuously flushed with boil–off N2 flux in order to keep the inner space of

the shielding as free as possible of radon. This flux is monitored to register

any variation that could affect the experiment.

• Radon concentration in the laboratory: Radon concentration in the ambient

that surrounds the experiment is also monitored by a Genitron (now Saphymo)

AlphaGuard system that also records the pressure, humidity and temperature

environmental parameters (see figure 2.17). It is worth to remark that ANAIS

shielding is designed to prevent radon entrance and inner space is continuously

flushed with radon–free gas, and thus, radon concentration in the ANAIS

inner volume is below sensitivity. However, monitoring external environmental

radon concentration levels is interesting in order to have under control possible

systematics in the annual modulation analysis. In figure 2.17, behavior of

humidity and radon concentration in LSC Hall B along three years and a half

are shown. The best fit to a modulation in both parameters is also shown.
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• PMT bias voltage and crate parameters: The electrical signal of the photomul-

tipliers is very dependent on the high voltage applied and thus, it has to be

very stable to assure the gain stability of the PMTs. PMTs current can also

be monitored to detect any variation in its value. The CAEN crates used in

ANAIS allow to monitor several temperatures (power supply and module sec-

tion temperature, for instance) as well as fan behavior, voltages and intensity

of the crate power supplies.

Figure 2.17: Daily mean values (left) and monthly mean values (right) with modu-

lation fit for radon concentration (top) and humidity (bottom).

2.8 Muon veto system

Although most of the muon flux is avoided by placing the experiment underground,

a residual flux is still present and contributes to the background of the experiment.

Muons are expected to interact directly in the NaI(Tl) detector producing high en-

ergy depositions, but muon–related events, as secondary neutrons, produced in the

shielding are expected to produce signals very similar to those expected for WIMP

interactions and could mimic the dark matter signature.
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At LSC, muon flux is small, of the order of 5·10−3 µ·s−1m−2, this is four orders of

magnitude lower than the flux in surface but still enough to affect ANAIS detectors.

Therefore, a veto system for ANAIS must be implemented in order to tag muons

and then, veto all the possible muon–related events.

In the full ANAIS experiment, a veto system consisting of sixteen plastic scin-

tillators covering all the faces of the ANAIS set–up, except the bottom one, will be

installed (see figure 2.18).

Figure 2.18: Design of the sixteen plastic scintillators set–up to be installed as muon

veto system in ANAIS full experiment.

Plastic scintillators vetoes available for mounting in the ANAIS full experiment

have different origin and dimensions (see table 2.4). Scionix vetoes were purchased

for the full set–up and are still under test at LSC. Homemade vetoes were tested

in ANAIS–0 and have been used since then covering the top face of the different

set–ups. In ANAIS–37 and forward set–ups (see figure 2.19), eleven plastic scintil-

lators are covering the lateral and top faces of the shielding. It has been observed
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that top vetoes detect a higher muon flux than lateral vetoes, in agreement with

the expected angular distribution, and that south and north faces have more events

than east and west faces, compatible with the non–homogeneous rock overburden

profile at the Hall B position [31] (see table 2.5).

Figure 2.19: Plastic scintillators in ANAIS–37 set–up.

A test bench with two stacked plastic scintillators was installed at LSC facilities

(external building and underground laboratory) in order to test the new Scionix

vetoes (see figure 2.20). OR trigger between the two scintillators signals, digitizing

both of them, allows the study of coincident and anti–coincident events. Non–

coincident events come from natural radioactive background or have a PMT origin,

while coincident events are mainly muons ionizing both detectors; the latter show

the spectral features predicted by specific Geant4 simulations. The characterization

of these populations was needed because the geometry of the ANAIS set–up (see

figure 2.19) does not allow to use coincidences to select muons and Scionix scintil-

lators in particular showed a too high anticoincident trigger rate, which had to be

suppressed in order to guarantee the correct operation of the muon veto system.

As result of these tests, a PSA procedure was implemented in order to discriminate

muons from other background events in the Scionix scintillators. This PSA is carried

out on–line, while data taking is ongoing, and only muon–origin events trigger the

veto system.
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Veto numbers Vendor/Model Dimensions (mm)

1, 2, 7, 8 Scionix/R500*50B1000–2ME2PX 1000×500×50

3, 4, 5, 6 Scionix/R700*50B550–2ME2PX 750×700×50

9, 10, 11, 12, 13, 14, 15, 16 Homemade 1000×500×50

Table 2.4: Plastic scintillators models and dimensions for the ANAIS muon veto

system.

Face Veto Measured rate Mean measured rate

10 −3 (µ m−2s−1) 10 −3 (µ m−2s−1)

South #1 5.27 ± 0.10 5.43 ± 0.07

#2 5.53 ± 0.10

West #3 4.88 ± 0.10 4.75 ± 0.07

#4 4.61 ± 0.10

East #5 4.53 ± 0.10 4.54 ± 0.07

#6 4.54 ± 0.10

North #7 5.05 ± 0.10 4.91 ± 0.07

#8 4.77 ± 0.10

Top #9 7.23 ± 0.12 7.36 ± 0.07

#10 7.54 ± 0.12

#11 7.32 ± 0.12

Table 2.5: Muon detection rate in each face of the plastic scintillator veto system.

From [31].
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Figure 2.20: Plastic scintillators test bench set–up at LSC.

2.9 Set-ups

Most recent set–ups and prototypes aiming at the evaluation of the background,

detector performance and the consequent expected sensitivity used to choose the

final design for ANAIS experiment, as well as their main characterization results are

presented in this section.

2.9.1 ANAIS–25

ANAIS–25 set–up consisted of two detector prototypes, amounting 25 kg of NaI(Tl),

grown by AS and installed in the LSC (see figure 2.21). These two detectors (named

D0 and D1) took data from December 2012 to March 2015.

The shielding consisted of 10 cm of archaeological lead plus 20 cm of low activity

lead inside a radon exclusion box at Hall B of LSC. An active muon veto system

made up of plastic scintillators covered the top and lateral faces of the shielding.
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Figure 2.21: ANAIS–25 crystals (top) at LSC clean room and ANAIS–25 set–up

artistic view (bottom).

The main goals were to measure the crystal internal contamination, determine

light collection, fine tune the data acquisition and test the filtering and analysis

protocols. As it will be shown in this chapter, D0 and D1 presented an excellent

light collection (see section 2.10.1) and an acceptable 40K content.

Figure 2.22 shows the low energy spectrum at the beginning of the data taking

and after fifteen months underground. A high suppression of most of the lines, of

cosmogenic origin, can be observed except the corresponding to 210Pb. A more de-

tailed study of this issue is presented in section 3.1.2.2. Alpha population events

were selected by Pulse Shape Analysis (PSA) as alpha events are faster than beta–

gamma–muon events, and can be distinguished by comparing the area and the am-

plitude of the pulse; a high alpha rate was observed, which could be due to 210Po

produced in 210Pb decay series.
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Figure 2.22: Low energy spectra of D1 corresponding to the first month of measure-

ments (black) and data taken after fifteen months underground (red). Most of the

cosmogenically induced isotopes contributions at low energy have strongly decayed.

2.9.2 AS1K

Conversations with Alpha Spectra about the possible origin of the very high 210Pb–
210Po contamination in D0 and D1 modules started very soon after its discovery.

As a result, a new bare crystal was ordered and very fast delivered. It was a 1–kg

NaI(Tl) crystal prepared by Alpha Spectra and received at Zaragoza the first week

of August 2013. This 1–kg crystal was coupled to two PMT units at the glove box

available at the University of Zaragoza, under controlled atmosphere and inside a

tightly sealed encapsulation. Then, it was moved to LSC and installed in a small

shielding besides ANAIS–25. Measurements in low background environment at LSC

started almost immediately. It was called AS1K set–up (see figure 2.23).
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Figure 2.23: Mounting of the 1–kg NaI(Tl) crystal from Alpha Spectra at the glove

box at the University of Zaragoza (top) and installation of AS1K set–up at LSC

(bottom).

As in ANAIS–25, alpha population events were selected by PSA. Alpha rate

evolution in time showed that equilibrium in the chain had not had time to recover

(as it will be presented in the following chapter, see figure 3.5). Although AS1K

was not an ultra–low background set–up, and for instance, low energy 210Pb energy

depositions were shadowed by other backgrounds, similar analysis to that used for

ANAIS-25 at high energy was applied for AS1K data, and it could be confirmed

that thorium chain and upper parts of uranium chain were not responsible of the

high alpha rate, being again 210Pb–210Po the most plausible explanation for the con-

tamination.

According to information provided by AS about dates of powder purification,

crystal growing and machining, the observed increase in the rate could be explained

by a contamination in the crystal growing (green line in figure 3.5). A thorough

investigation of the possible mechanism responsible of the contamination was carried

out at AS and changes were implemented in their protocols.
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2.9.3 ANAIS–37

After these changes, a new module similar to D0 and D1 was ordered to be tested

at LSC that, once incorporated to the set-up, formed ANAIS–37 (see figure 2.24)

[180, 181]. This new detector, D2, grown using these new protocols to prevent radon

contamination, presented a remarkable reduction of the 210Pb content. It also pre-

sented an excellent light collection. The crystal was received the 6th of March, 2015

and data taking started five days later. It was placed in between the two ANAIS–25

modules to maximize the coincidence efficiency for the potassium determination.

Although in ANAIS–25 set-up the coverage of the muon vetoes was only partial, at

the end of the ANAIS–37 data taking period the vetoes were fully operative.

The main goal of ANAIS–37 set-up was to characterize the new D2 module,

in particular, to evaluate the reduction of 210Pb contamination, to check the con-

tent of 40K and 238U and 232Th chains and to assess also its general performance.

Details on the achieved results will be presented in more detail in following chapters.

Figure 2.24: ANAIS–37 set–up at LSC and artistic view.

2.9.4 Blank module

A blank module, similar to AS modules, was prepared and mounted in the ANAIS–

37 set–up replacing the D1 detector in September 2015. This blank module had no

crystal nor quartz windows and was coupled to the two photomultipliers used in D1

(see figure 2.25).
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Figure 2.25: Blank module installed in ANAIS–37 replacing D1 detector.

The main goal of this set–up was to accumulate a population of pure photomul-

tiplier events and to test the filtering protocols. Events with energies equivalent up

to 20 keV were identified and most of the events were removed by applying the same

filtering protocols that are used in the detectors (see section 2.10.4) and only a resid-

ual background of a few tenths of counts/(keV kg day) remained (see figure 2.26).

Figure 2.27 shows the average of pulses above 10 keV, and figure 2.28 the average

of events passing the cuts in the filtering procedure for the blank module data.

Figure 2.26: Energy equivalent spectra corresponding to the blank module before (red)

and after (blue) applying the filtering.
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There exists light coming out from the PMTs triggering in coincidence, not at-

tributable to dark rate as pulses have high number of photons. Most of the events

triggering are very fast events (see figure 2.27), being a possible origin the Cerenkov

emission in the PMT glass. However, those events passing all cuts have a temporal

distribution of photons emitted with a characteristic time of hundreds of ns. Further

work is ongoing in order to fully understand the origin of these events.

On the other hand, a cut in the N2 flux at the beginning of the data taking of

the blank module in the ANAIS–37 set–up served to study the effect of the absence

of N2 flux in the triggering rate (see figure 2.29). Effect of N2 flux on total trig-

ger rates is much larger than expected due to the radon present in the air. This

effect amounts an order of magnitude in the case of D0, but up to two orders of

magnitude in the case of D2. Radon–origin events can be observed in figure 2.30

in the 200 to 400 keV energy region, at the 609 keV line, and also in figure 2.29

through coincidences between D0 and D2 modules. Moreover, it was found that the

timing of the increase and decrease in the triggering rate after the change in the N2

flux is not compatible with that observed for the radon-origin observed events. No

explanation is available for this high increase in the triggering. Anyway, thanks to

the installation of the blank module, it can be concluded that photomultipliers are

not responsible (although contributing).
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Figure 2.27: Average of pulses from each PMT for blank module events above 10 keV.

Figure 2.28: Average of pulses from each PMT for blank module events passing all

the cuts.
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Figure 2.29: Left: Total trigger rates in D0, D2 and blank module. Coincidence rate

between D0 and D2 modules is also shown. N2 flux was disconnected before starting

taking data and resumed about 310 hours later. Right: zoom in the rates near the

resume of the N2 flux.

Figure 2.30: Total trigger rate in D2 together to partial rates corresponding to regions

from 200 to 400 keV and the 609 keV line where radon is expected to contribute.

Different behaviour can be observed.

2.9.5 A37D3

Alpha Spectra latest received module, D3 in the following, consists of a crystal made

with a more purified powder (WIMPScint-III quality), which should have a lower

potassium content than previous AS crystals (D0, D1 and D2 modules).
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Figure 2.31: The new Alpha Spectra module, D3, at LSC clean room.

The crystal was encapsulated following similar protocols and using same mate-

rials to those from previous AS modules. An aluminized Mylar window was also

built to allow low energy calibrations. The crystal arrived to Barcelona on February

23th, 2016, but the Spanish customs delayed the arrival to Canfranc until March, the

7th. PMTs were coupled to this new module at LSC clean room the 7th of March,

2016 (see figure 2.31) and the mounting in the ANAIS hut at Hall B was done from

7th to 8th March 2016, starting the measurements immediately, profiting from the

availability of the ANAIS–37 set–up (see figure 2.32).

This new set-up, A37D3, is very similar to ANAIS–37 in shielding configuration

and acquisition parameters, but different in the module layout. The new module

(D3) is placed in between D0 (bottom) and D2 (top) modules to maximize the co-

incidence efficiency for the potassium determination (see figure 2.32).

The preliminary results of D3 characterization will be commented in following

chapters; a promising reduction in potassium content seems to be confirmed but in
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contrast 210Pb activity seems higher than in D2 module according to the alpha rate

measurement and the 210Pb spectral feature at low energy.

Figure 2.32: A37D3 set–up at LSC.

2.9.6 AS2K–1 and AS2K–2

Because of the high alpha rate measured in D3 and after discussing the possibility

of a surface contamination with AS, two pieces of 1 kg of NaI(Tl) grown from two

different ingots were analyzed: sample 1 had as origin the same ingot as D3 module,

whereas sample 2 was drawn from a second ingot, grown afterwards. They were

sent from AS facilities, in Colorado, to Zaragoza for the measurement of their alpha

content.

The pieces arrived to Zaragoza on April the 20th, and one of them (sample 1) was

immediately encapsulated and coupled to two PMTs in a glove box at the University

of Zaragoza (see figure 2.33) and installed at LSC the following day. After two weeks

of measuring, this sample was replaced by sample 2 following the same procedure.
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Figure 2.33: Alpha Spectra samples (AS2K–1 and AS2K–2) being mounted at Uni-

versity of Zaragoza glove box.

PSA allows easily the identification and quantification of the alpha rate. If the

total number of alphas is scaled to the crystal mass, sample 1 shows an alpha rate

of about 1.6 mBq/kg. For sample 2, better results have been obtained, at the level

of 0.7 mBq/kg (although 210Po activity is still being built) and then, support the

suitability of the corresponding ingot to produce more modules for ANAIS.
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2.10 Detector performance

AS detectors built for ANAIS have been taking data at LSC since December 2012.

Work on their data has been focused on the demonstration of an energy threshold

as low as possible with robust efficiency determination (more concretely, to confirm

a 1 keVee energy threshold). Main aspects of the detector performance are summa-

rized in this section.

2.10.1 Light Collection

One of the most important features for the ANAIS NaI(Tl) detectors is the optical

quality of the crystal. An outstanding light collection must be remarked for D0, D1,

D2 and D3 modules, at the level of ∼15 phe/keV [31], which is a factor of 2 larger

than that determined for the best DAMA/LIBRA detectors [137]. This much higher

light output has a direct impact in both energy resolution and energy threshold, but

it also allows to strongly improve the signal vs. noise filtering down to the threshold

and hence, to reduce analysis uncertainties.

In table 2.6 all the data derived up to present with the AS modules in the different

experimental set–ups are shown. D3 shows very high light collection, similar to that

measured for previous AS modules.

Detector PMT/set–up Total light collection

(phe/keV)

D0 R12669SEL2/ANAIS–25 15.6±0.2

D0 R12669SEL2/ANAIS–37 15.3±0.1

D0 R12669SEL2/A37D3 15.1±0.1

D1 Ham R11065SEL/ANAIS–25 12.6±0.1

D1 R12669SEL2/ANAIS–25–III 15.2±0.1

D1 R12669SEL2/ANAIS–37 14.4±0.1

D2 R12669SEL2/ANAIS–37 15.4±0.1

D3 R12669SEL2/A37D3 15.2±0.5

Table 2.6: Total light collection derived for all AS modules in the different set–ups.
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2.10.2 Triggering

Triggering strategy must ensure the storage of all relevant events for the experiment

but avoiding a too high rate that could increase the dead time. Therefore, two PMTs

are coupled to each crystal and trigger is made with the coincidence of the two PMT

signals. It is also remarkable that, due to the nature of the low energy events, con-

sisting on few separate photons, trigger must be performed at photoelectron level

and can be affected by electric noises; therefore, a baseline characterization was also

performed (see [31]).

Coincident events populations at low energy selected for 22Na and 40K events

have been used to study trigger efficiency, for energy calibration and background

understanding (see figure 2.34).

In figure 2.34 it can be observed that most of the events from 22Na, coincident

with 1274 keV in the second detector and expected at 0.9 keV and those from 40K,

coincident with 1461 keV and expected at 3.2 keV, are triggering our experiment,

allowing to estimate very high trigger efficiencies, almost 100% down to 1 keVee.
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Figure 2.34: Low energy spectra in one module coincident with a high energy deposi-

tion around 1274 keV (top) or 1461 keV (bottom) in a second module. Data shown

here correspond to D0 and D1 detectors. The former can be attributed to 22Na in

the crystal bulk, the latter to 40K. All events and only triggered events are depicted

in different colours.

97



Chapter 2. The ANAIS experiment

2.10.3 Asymmetric events

Since ANAIS–0 prototype, asymmetric events have been observed in the background

and calibration data by looking at the different energy sharing between the channels

of the two PMTs, PMT0 and PMT1, coupled to each module.

Two types of asymmetric events have been identified in the data.

• Bulk scintillation events: These kind of events produce different sharing of

the light collected in the two PMT channels depending on the energy release

position along the crystal length. These events are originated in the NaI(Tl)

crystal.

• Low energy very asymmetric events: These kind of events show a much larger

pulse area in one PMT than in the other, being not compatible with scintilla-

tion events from the bulk. Their origin is probably found at the PMTs.

In order to understand the behaviour of the bulk asymmetric events, the spatial

dependence of the light collected for every PMT channel was studied and charac-

terized (see [32]) with a 137Cs source placed in different positions along the axis in

ANAIS–0 prototypes. Same procedure was followed with ANAIS–25 modules, D0

and D1 (see figure 2.35).

The spatial dependence was characterized by studying the A parameter, defined

as:

A =
Q0 −Q1

Q0 +Q1

(2.1)

where Q0 and Q1 are the mean channel associated to the 662 keV gamma line from
137Cs seen by PMT0 and PMT1, respectively. It has to be remarked that parameter

A is not distributed around zero because of the different gain in the PMTs and it

has to be corrected by subtracting the mean value. Finallly, parameter A− < A >

is plotted as a function of the source position along the axis.
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Figure 2.35: 137Cs calibration source in different positions along the axis in ANAIS–

25 modules.

The quantification of this asymmetry effect for bulk scintillation events has al-

lowed to fix the cut values in the asymmetry parameter in the ANAIS filtering

protocols.

Figure 2.36 shows the parameter A for ANAIS–0, PIII, D0 and D1 modules. In

this plot, the 0 value is the central position, that is, on the Mylar calibration window,

while negative (positive) values mean positions near PMT0 (PMT1). ANAIS–0, D0

and D1 detectors present variations below 2% in the light collected in each PMT.

PIII anomalous behaviour might be related to the less coverage of the crystal base

by the PMT, but no clear explanation has yet been found in order to understand

this issue.

2.10.4 Filtering protocols

Regarding the analysis of the data acquired in ANAIS, the rejection of non–bulk scin-

tillation events is required in order to reduce the energy threshold below 2 keVee [27].

A compromise between high acceptance of NaI scintillation events and also a high
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Figure 2.36: Parameter A, after substracting < A >, calculated as a function of the
137Cs source position for ANAIS–0 (black), PIII (red), D0 (green) and D1 (blue).

rejection factor of other, non–bulk origin events must be established through the

filtering. There exist a few aspects on the nature of the signal to consider in the

filtering of the data as, among others, dark matter events should not:

• be correlated with muon interactions in vetoes.

• appear in coincidence between two or more modules.

• accumulate in short periods of time.

• show anomalous scintillation time constants in the pulse shape.

As it has been explained before, residual muons are tagged by plastic scintilla-

tors covering the shielding, thus, muon related events, coincident with a plastic veto

signal can be easily rejected from data.

Due to the slow NaI(Tl) scintillation constant [26], when a very energetic particle

interacts in ANAIS set–up, photons at the tail of the pulse can trigger again the

acquisition leading to a wrong trigger rate. For this reason, events arriving 0.5 s
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after a high energy event are discarded and their live time discounted. Also an algo-

rithm has been developed to count and store the number of peaks in a single pulse.

This algorithm requires two parameters: a threshold voltage and the width of the

peak. The established criterion is to reject events with less than three peaks in any

of the PMTs. Most of these events come from chance coincidences and PMT origin

events, and they produce a similar signal to that of the SER, but with a different

amplitude/area of that of bulk NaI origin events.

Other filtering criterion is to reject events faster than typical NaI(Tl) bulk scintil-

lation pulses. In order to apply this filter, a few parameters have been studied in the

different ANAIS set–ups. Presently there are two main ones in different time–bases:

p1 =
area(t0 + 100 ns, t0 + 600 ns)

area(t0, t0 + 600 ns)
(2.2)

and

p2 =
area(t0 + 500 ns)

area(t0, t0 + 100 ns)
(2.3)

where t0 is the time where the pulse overtakes the analysis threshold.

The acceptance efficiency when filtering data as described above must be quan-

tified. It is evaluated from 109Cd calibrations (see figure 2.37); the acceptance ef-

ficiency curves obtained for the different detectors are shown in figure 2.38. These

curves are used to correct the filtered spectra in order to obtain the final background

data; figure 2.39 presents for D3 detector the comparison of raw spectrum and those

after the application of this filtering and correction by the corresponding acceptance

estimated for bulk scintillation events.
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Figure 2.37: 109Cd calibration before (black) and after (blue) applying the filtering

protocols.

Figure 2.38: Acceptance efficiency after cuts for D0, D1, D2 and D3 detectors.
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Figure 2.39: D3 background before (black) and after (red) applying the filtering pro-

tocols. Background after filtering and efficiency correction is shown in green.

Figure 2.40: Comparison of the filtered spectra in D0, D2 and D3 detectors in dif-

ferent set–ups.
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Figure 2.40 compares the filtered spectra of D0, D2 and D3 detectors. Cos-

mogenics has completely decayed in D0, and almost completely in the case of D2,

whereas D3 background has still a strong contribution from cosmogenic isotopes,

especially in the regions from 30 to 75 keV and 4 to 6 keV. In the region from about

6 to 20 keV the background in D3 is higher than in D2, probably by the effect of

the 210Pb content. But on the other hand, the reduced peak from 40K at 3 keV

measured for D3 is very promising. Work is still ongoing in order to improve the

filtering and the acceptance efficiency estimate, probably underestimated at present

[19].
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Background model of ANAIS

detectors

A thorough background understanding is a must in experiments searching for a

dark matter signal, allowing that the background can be reduced as much as pos-

sible, that estimates of the experiment sensitivity are robust, and that any possible

time–dependent background is under control. In the frame of the ANAIS experi-

ment, background characterization of the different prototypes and set–ups has always

been a main focus, as it is also the case for other projects [182–187]. In this chap-

ter, detailed background models developed for the first three detectors produced by

Alpha Spectra company (described in section 2.3.1) and operated at the LSC are

presented. First, the background sources considered and the details of their simu-

lation are reviewed in sections 3.1 and 3.2. Validation of the code and the search

of an optimum design for the full ANAIS set–up is also discussed in sections 3.3

and 3.4. Then, the quantified background contributions and the comparison with

data at different energy ranges and experimental conditions for the different set–ups

are presented in sections 3.5, 3.6 and 3.7.

3.1 Background sources

Regarding the possible background sources that can contribute to the experimental

background, a distinction between sources in the NaI crystal and those in external

components is considered.
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3.1.1 External components

Activities of most of the external components were measured by HPGe spectrometry

at LSC before being installed in the set-up. A summary of the measured activities

of the components of ANAIS–25 and ANAIS–37 are shown in table 3.1. Usually,

the most important external contribution to the background comes from the pho-

tomultipliers. Every PMT unit to be used in the full experiment has been already

screened, finding compatible levels of activity among them; values quoted in table 3.1

correspond to the six units used in the ANAIS–25 and ANAIS–37 set–ups and to

the mean of all screened units.

Component Unit 40K 232Th 238U 226Ra Others

PMTs (R12669SEL2) mBq/PMT 97±19 20±2 128±38 84±3

133±13 20±2 150±34 88±3

108±29 21±3 161±58 79±5

95±24 22±2 145±29 88±4

136±26 18±2 187±58 59±3

155±36 20±3 144±33 89±5

mean activity all units mBq/PMT 111±5 20.7±0.5 157±8 82.5±0.8

Copper encapsulation mBq/kg <4.9 <1.8 <62 <0.9 60Co: <0.4

Quartz windows mBq/kg <12 <2.2 <100 <1.9

Silicone pads mBq/kg <181 <34 51±7

Archaeological lead mBq/kg <0.3 <0.2 210Pb: <20

Inner volume air Bq/m3 222Rn: 0.6

Table 3.1: Activities of the external components considered as background sources

in the simulation of the different ANAIS prototypes and set–ups. Except for the

inner volume air (see text for details), the values have been measured by HPGe

spectrometry at the LSC. Upper limits are given at 95% C.L.

There are not direct measurements of most of the materials used in the hous-

ing of the AS crystals, but upper limits and values for similar quality copper and

synthetic quartz, for instance, from ANAIS–0 prototype have been considered (see

table 3.1). For archaeological lead, upper limits on 210Pb, 232Th and 238U activities

in table 3.1 and presented in [188] have been used in the model.

Radon activity in the laboratory air is being continuously monitored, but for
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radon content in the air filling the inner volume of the shielding, there is no direct

measurement. The inner volume of the shielding is flushed with boil–off nitrogen,

to guarantee its radon–free quality. Therefore, a value for the radon content in the

inner volume air of about one hundredth of the external one has been assumed in

our background model (0.6 Bq/m3), compatible with the absence of lines coming

from radon daughter isotopes in the measured background.

Contribution from fast neutrons and environmental gamma background has also

been estimated, being negligible at the present sensitivity level of the experiment.

On the other hand, contribution from muons interacting in the crystal (and other

muon related events) are vetoed by the coincidence with a signal in the plastic scin-

tillators covering the top and lateral faces of the shielding. Even though the active

veto was not in operation during the whole data taking this work refers to, the

muon induced background is negligible [27] and thus, it has not been considered in

the ANAIS background model.

3.1.2 NaI crystal

Background coming from inside the NaI(Tl) crystals is the dominant background

contribution and thus, it has to be studied in a much thorough depth. The most

relevant radionuclides activity has been directly measured for ANAIS crystals ap-

plying different techniques [178]. 40K bulk content is estimated by searching for

the coincidences between 3.2 keV energy deposition in one detector (following elec-

tron capture, EC) and the 1460.8 keV gamma line escaping from it and being fully

absorbed in another detector [25]. 210Pb, 232Th and 238U chains activities are de-

termined on the one hand, by quantifying Bi/Po and alpha-alpha sequences, and

on the other, by comparing the total alpha rate, determined through PSA, with

the low energy depositions attributable to 210Pb, which are fully compatible. The

potassium concentration and alpha activity reported by the KIMS collaboration for

similar crystals produced also by Alpha Spectra [189] are of the same order than

those measured for ANAIS detectors.

Data taking for ANAIS AS detectors started very soon after their arrival at

the LSC. This allowed the observation of short–life isotopes activated during their

stay on surface. Despite transportation is done by boat, in order to avoid higher
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activation rates associated to air travel, relevant cosmogenic activation has been

observed in all the ANAIS AS modules.

3.1.2.1 40K activity

40K bulk contamination is typically the most relevant radioactive contribution for

NaI(Tl) detectors. It is specially important its contribution to the background in the

very low energy region, and thus, a very good knowledge of the 40K contamination

is required to properly estimate the sensitivity prospects achievable for ANAIS.

The technique used to estimate the 40K activity in the bulk of ANAIS crystals

is the measurement in coincidence: one detector measures the energy released by

the X–ray/Auger electrons emissions of argon, amounting a total energy release of

3.2 keV, following the K–shell EC of 40K, while another detector measures the high

energy gamma at 1460.8 keV, escaping from the former, and being fully absorbed in

the latter. In figure 3.1 a simplified 40K decay diagram is shown. From the measured

coincidence rates and the corresponding efficiencies estimated with Geant4 package,

the 40K activity in the crystal can be deduced.

Figure 3.1: Simplified 40K decay diagram.

The contribution at 3.2 keV after K–shell EC in 40K is the most worrisome

background in the search for dark matter, falling in the region of interest, below

6 keVee. A part of these events is moved to higher energies by the simultaneous

interaction of the high energy gamma in the same detector, another part is vetoed

by an interaction of the high energy gamma in another detector, however, a residual

peak at 3.2 keV can jeopardize the search for dark matter if 40K content is not at

a few ppb level. It is worth noticing that the rate of the direct decay of 40K to the

ground state of 40Ar through EC (at the 0.2% level) has not been yet experimentally

measured, and hence, the uncertainty on the corresponding branching ratio is really
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high [190] [191]. This decay is important for the ANAIS background because those

events can not be rejected by the coincidence method.

The results obtained for ANAIS–25 detectors, D0 and D1 (see table 3.2) ev-

idenced a moderate contamination of 40K, still above the initial goal of ANAIS

(20 ppb1 of K) but acceptable. The potassium content of D2 was analyzed using the

same technique applied to previous prototypes, obtaining a value compatible with

those of D0 and D1, whereas the preliminary value obtained for D3 is clearly lower.

Detector Unit 40K 232Th 238U 210Pb

D0 mBq/kg 1.4±0.2 (4±1) 10−3 (10±2) 10−3 3.15±0.10

D1 mBq/kg 1.1±0.2 (4±1) 10−3 (10±2) 10−3 3.15±0.10

D2 mBq/kg 1.1±0.2 (0.7±0.1) 10−3 (2.7±0.2) 10−3 0.70±0.10

D3 mBq/kg 0.57±0.06 (0.6±0.3) 10−3 (4±1) 10−3 1.8±0.1

Table 3.2: Measured activity in NaI(Tl) crystals for D0, D1 and D2 detectors using

ANAIS–25 and ANAIS–37 data and combining different analysis techniques. Pre-

liminary results for D3 detector from A37D3 set–up are also shown.

3.1.2.2 The 210Pb problem

PSA in NaI(Tl) scintillators allows to powerfully discriminate the alpha origin en-

ergy depositions in the bulk and, hence, to identify and quantify the presence of

different isotopes from the 238U and 232Th chains. Bi/Po and alpha–alpha sequences

have been also studied in order to better quantify the upper segments on the 238U

and 232Th chains.

A specific digitization line for high energy events has allowed to select alpha

origin events by PSA. Alpha energy depositions produce in NaI(Tl) a faster scintil-

lation than that corresponding to beta–gamma–muon events, and thus, events can

be distinguished by comparing the area and the amplitude of the pulse. Red events

in figure 3.2 correspond to alpha particles depositions (faster) and those marked in

black to beta–gamma–muon events. Total alpha rate in all the studied AS modules

is mostly attributed to 210Po decay, as a result of the crystal contamination in the

parent, 210Pb.

11 ppm K = 31 mBq/kg 40K
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Figure 3.2: Pulse area as a function of the pulse amplitude in detector D2. Alpha

events are shown in red while beta–gamma–muon interactions are shown in black.

Testing the crystals manufactured by Alpha Spectra for ANAIS, it was found

that 232Th and 238U activities were low enough but an out–of–equilibrium activity

of 210Pb at the mBq/kg level was observed (see table 3.2), precluding the fulfilment

of the background goal of the ANAIS experiment. The lower part of the 238U chain

(see figure 3.3) can be frequently found out of equilibrium, being one possible ori-

gin of such contamination the entrance of radon during growing and/or machining

of the detectors. After a few weeks, only 210Pb would remain. 210Pb content has

been quantified by the total alpha rate (determined by PSA and attributed to the

daugther, 210Po) and the low energy spectrum, dominated by the decay of the 210Pb

itself (see figure 3.4).

The origin of this large 210Pb contamination found in ANAIS–25 crystals was

identified with the timing information of the procedures followed by the company

(see section 2.9.2). It is compatible with a contamination at the end of the pu-

rification process and growing of the crystal (see figure 3.5). This conclusion was

addressed by Alpha Spectra and the company modified its procedures in order to re-

duce the 210Pb content in the next crystals produced for ANAIS. D2 crystal showed

a significantly reduced 210Pb content in comparison with previous D0 and D1 crys-

tals: total alpha rate is a factor 5 lower (see table 3.2).
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Figure 3.3: 222Rn decay chain. 210Pb is the isotope with the longest half–life.
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Figure 3.4: 210Pb decay scheme.

At the alpha region of the energy spectra measured for the detectors, the promi-

nent peak due to the 210Po decay does not show the pure structure expected from

a crystal bulk 210Pb contamination (see figure 3.6) [32]. The double peak struc-

ture is not fully understood yet. It is worth noting that sharing of events between

these populations is very similar for D0 and D1 modules, but different from those

corresponding to D2 and D3. Therefore, the possibility of a surface deposition was

carefully analyzed, as it will be shown in section 3.5.1.
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Figure 3.5: Total alpha rates in AS1K module weekly averaged. Green: expectation

of the rate evolution if a contamination in 210Pb entered along the growing procedure.

Figure 3.6: Alpha region of the measured spectra for D0 (similar to that of D1), D2

and D3 detectors.
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3.1.2.3 Cosmogenic activation

Thanks to the very good performance of ANAIS detectors and the prompt data

taking starting after storing the detectors underground, a detailed study of cosmo-

genic radionuclide production in NaI(Tl), due to the exposure time spent while being

the detectors manufactured and transported, has been performed using mainly data

from ANAIS–25 set-up [192]. The initial activity, A0, corresponding to the moment

of storing crystals underground at LSC was derived, studying the exponential decay

of the identifying signature produced by each isotope; production rates at sea level

were derived considering the exposure history of the crystals. The crystal growth

and detector manufacture took place at Alpha Spectra facilities in Grand Junction,

CO (US) and detectors were shipped from US to Spain by boat.

Most of the cosmogenically induced isotopes dissapeared and their decay was

observed along the first months of data taking, but some others with larger lifetime

remain and must be included in the background models. The production of some

induced I, Te and Na isotopes was well characterized and it was considered also as

a background source of the detectors; table 3.3 shows the list of all identified prod-

ucts and their half-lives, together with the measured initial activities. 22Na could

be specially worrisome for dark matter searches because the binding energy of the

K–shell of its daughter Ne is 0.87 keV, falling the corresponding energy deposition

in the region of interest, and having a long enough half–life to compromise the first

years of data taking. A direct estimate of 22Na activity in D2 crystal was carried

out by analyzing coincidences from data corresponding to 111.4 days from a special

set-up from October 2015 to February 2016 where only D0 and D2 detectors and

a blank module were used. In particular, profiting from the reduced cosmogenics

in this period, D2 spectrum in coincidence with 1274.5 keV depositions in D0 was

analyzed. It is worth noting that the 22Na initial activity in D0 deduced from the

equivalent analysis is in perfect agreement with the first estimate in [192]. The ob-

tained value for the initial activity in D2, A0=(70.2 ± 3.9) kg−1d−1, is more than

a factor of two lower than the one deduced for D0 and D1 detectors. This result is

compatible with a lower time of exposure to cosmic rays, taking into account the
22Na half–life, longer than that corresponding to I and Te products.

As it will be discussed later, there are hints of the production of other isotopes

like 3H, 109Cd and 113Sn in the NaI(Tl) crystals, even if they could not be directly

identified in the first analysis of cosmogenic activation presented in [192]. Apart
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from this, 129I can be present in the NaI crystals, produced either as residual prod-

uct of uranium spontaneous fission, or by cosmic rays reactions, having a broad

range of activity values in iodine compounds depending on the ore origin. Due to

its long lifetime and the difficulty to disentangle its signal from other background

contributions, the amount of 129I in D0, D1 and D2 crystals could not be quantified.

Because of that, the 129I contribution considered in the background model of these

modules has been assumed to be the same as estimated by DAMA/LIBRA (129I/natI

= (1.7 ± 0.1) 10−13) [137], corresponding to an activity of 0.94 mBq/kg.

Table 3.3: Measured initial activities underground (A0) for the identified cosmogenic

isotopes in NaI(Tl) crystals using ANAIS–25 data [192]. Half-lives of the products

are also indicated [193].

Isotope T1/2 (d) A0 (kg−1d−1)

126I 12.93±0.05 430±37
125I 59.407±0.009 621.8±1.6
127mTe 107±4 32.1±0.8
125mTe 57.40±0.15 79.1±0.8
123mTe 119.3±0.1 100.8±0.8
121mTe 154±7 76.9±0.8
121Te 19.16±0.05 110±12
22Na (2.6029±0.0008) y 159.7±4.9

3.2 Background modeling

The contribution of all the background sources considered (and detailed in sec-

tion 3.1) to the background levels of the ANAIS prototypes has been simulated by

Monte Carlo using the Geant4 package [194]. A detailed description of the set–

ups was implemented: NaI crystals, Teflon wrapping, copper encapsulation, quartz

windows, silicone pads, Mylar window, photomultipliers and the shielding made of

archaeological and standard low activity lead. Figure 3.7 shows the views of the

Geant4 geometry for ANAIS–25 and ANAIS–37 set-ups.

Simulation of the decay of radioactive contaminations, after carefully checking

the energy conservation in the decay of all considered isotopes, has been made with
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the Geant4 Radioactive Decay Module. The low energy models based on Liver-

more data libraries were considered for α, β and γ emissions. In the components,

a uniformly distributed bulk contamination was assumed and activities (or derived

upper limits) given in tables 3.1, 3.2 and 3.3 considered. For each simulated event,

defined considering an energy integration time of 1 µs, the energy deposited at each

detector by different types of particles has been recorded separately in order to be

able to build the energy spectrum afterwards, filtering alpha deposits above 2.5 MeV

(as it can be made in real data by PSA) and correcting each component with the

corresponding relative scintillation efficiency factor. In this work, a constant value

of 0.6 has been taken as relative efficiency factor for alpha particles in the building

of the electron equivalent energy spectra and energy from nuclear recoils has been

neglected. Energy spectra at different conditions have been constructed to allow

direct comparison with data obtained from detectors. Production of scintillation at

the NaI(Tl) crystals and the subsequent light propagation and collection have not

been simulated here.

Figure 3.7: Geometry of the ANAIS–25 (left) and ANAIS–37 (right) set-ups imple-

mented in the Geant 4 simulations.

3.3 Code validation

The reliability of a background model lies on an accurate quantification of the dif-

ferent sources (shown in section 3.1 for ANAIS detectors), a careful computation of

their contribution to the experiment (typically made by Monte Carlo simulations,

presented in section 3.2) and a continuous validation of the code by comparing the

model with experimental data at all energy ranges (as it will be made in sections 3.5.1

and 3.6.1).
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Figure 3.8: Measured and simulated spectra for 57Co (top) and 109Cd (bottom) cali-

bration sources in the low energy range. Simulations have been normalized consid-

ering the activity of the sources.
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In ANAIS–25 set–up, an additional code validation using experimental calibra-

tion spectra has been made in the same way it was done in ANAIS–0 prototype [24].

Energy spectra for 57Co and 109Cd calibration sources with their present activity

(0.017µCi for 57Co and 0.1 µCi for 109Cd) have been simulated to validate the code,

specially at the region of interest. Experimental and simulated spectra for these two

radioactive sources measured at ANAIS–25 set-up have been compared (see figure

3.8). In an attempt to quantify the agreement, table 3.4 presents different ratios

between measured and simulated areas of some peaks or integral regions.

From the comparison between simulations and experimentally measured data,

it can be concluded that Geant4 simulation reproduces qualitatively well all the

spectral features above 10 keV. The observed discrepancies, specially at the lowest

energies, could be due to some systematics which could be related with the impre-

cise knowledge of the sources geometry and possible misplacement of the source with

respect to the Mylar window.

Source Initial activity Ratio area (a) Ratio area (b) Ratio area (c)

57Co (1.0 ± 0.1) µCi 1.50 0.91 1.50
109Cd (1.0 ± 0.1) µCi 1.07 0.99 1.57

Table 3.4: Nominal activities of the 57Co and 109Cd sources and ratio between the

areas (measured and simulated) for an energy range from 0 to 160 keV (a), for

14.4 keV line in 57Co and 22.1 keV line in 109Cd (b) and for 122.1 keV line in 57Co

and 88.0 keV line in 109Cd (c) at 1σ window width. Activities at the time of the

measurement were considered for the simulation.

3.4 Optimization of ANAIS design

Several parameters in the module geometry were analyzed in order to optimize the

rejection power of the experiment, profiting from the multiple detector design. For

this purpose, rejection power for 40K events in ANAIS–25 layout was studied. The

measured 40K activity in ANAIS–25 crystals (see table 3.2) meant an improvement

of almost an order of magnitude with respect to ANAIS–0 potassium content and

although close to the ANAIS goal of 20 ppb of potassium, a factor of two could be

decisive to jeopardize the feasibility of the experiment. While Alpha Spectra was
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trying to further purify the NaI powder, and get lower potassium content, simula-

tion of this 40K rejection factor by coincidence between modules when modifying

the design parameters was faced. High modularity is usually considered an asset in

these issues, but the large size of the crystals is also an advantage, preventing the

high energy gamma of 40K from escaping without interaction and thus, removing

the dangerous low energy events from the region of interest.

Some examples of the geometries considered, using D0 and D1 detectors, in an

experimental layout similar to that of ANAIS–25, are shown in figure 3.9.

Figure 3.9: Two module geometries considered for the analysis of the 40K rejection

factor by coincidences between modules in ANAIS–25 layout: NaI(Tl) crystal lengths

of 198.45 mm (top) and of 398.45 mm (bottom), having the same crystal radius,

whereas AS crystals length is 298.45 mm.

Different parameters have been analysed in this study: length and radius of

the crystals (giving different detection mass per module), distance between adja-
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cent modules, and thickness of the copper encapsulation. For this study, only the

1460.8 keV gamma following 40K EC decay has been simulated. The percentage

of gammas escaping without interacting in any of the two NaI(Tl) crystals (and

originating therefore an event in the low energy region of interest) has been used as

indicator of the rejection factor achievable.

The existence of a small percentage of 40K decays that cannot be vetoed due to

the lack of coincident high energy gamma (see figure 3.1) has a negligible effect on

the conclusions derived using this approximation.

The dependence of escape probability for the 1460.8 keV gamma on copper en-

capsulation thickness, distance between modules (defined as the distance between

the outer parts of the copper encapsulation), detector radius and detector length is

shown from figure 3.10 to 3.13. Only one parameter is changed each time, keeping

the other ones as in the real AS modules (see table 3.5). The relative error in the

escape probability due to the number of simulated histories is of the order of 0.1% in

all cases. Notice that mass crystal per module is different when modifying detector

radius and length.

Radius 60.32 mm

Length 298.45 mm

Mass 12.52 kg

Copper thickness2 2 mm

Distance between adjacent modules 30 mm

Table 3.5: Alpha Spectra modules dimensions and distance between adjacent modules

as in ANAIS-25 set-up.

2Although in this study the reference value of the copper thickness was considered as 2 mm,

the company, in later conversations, gave 1.5 mm as the correct value. Therefore, the latter has

been used in following simulations.
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Figure 3.10: 1460.8 keV escape probability without interaction in any module as a

function of the copper encapsulation thickness in the ANAIS–25 configuration.
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Figure 3.11: 1460.8 keV escape probability without interaction in any module as a

function of the distance between adjacent modules in the ANAIS–25 configuration.
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Figure 3.12: 1460.8 keV escape probability without interaction in any module as a

function of the crystal radius in the ANAIS–25 configuration.
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Figure 3.13: 1460.8 keV escape probability without interaction in any module as a

function of the crystal length in the ANAIS–25 configuration.
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Simulations with more than two modules were carried out in order to explore

the improvement in rejection power with the full ANAIS experiment in different

hypothetical module configurations. At first, a configuration of 20 modules, 12.5 kg

each in a 5 × 4 matrix (ANAIS–250) was considered (see figure 3.14). Only the

1460.8 keV gamma following the 40K EC decay has been simulated and again, the

percentage of gammas escaping without interacting in any of the 20 NaI modules has

been taken as indicator of the rejection factor achievable. Photons were uniformly

distributed over all the crystals and emitted with random directions. Figures 3.15

to 3.18 show the dependence of the escape probability with the analyzed parameters.

Figure 3.14: Different views of the complete geometry developed for the simulations

of the ANAIS–250 setup in a 5 × 4 configuration (20 modules).
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Figure 3.15: 1460.8 keV escape probability without interaction in any module as a

function of the copper encapsulation thickness in the ANAIS–250 configuration.
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Figure 3.16: 1460.8 keV escape probability without interaction in any module as a

function of the distance between adjacent modules in the ANAIS–250 configuration.
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Figure 3.17: 1460.8 keV escape probability without interaction in any module as a

function of the detector radius in the ANAIS–250 configuration.
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Figure 3.18: 1460.8 keV escape probability without interaction in any module as a

function of the detector length in the ANAIS–250 configuration.
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The results point to a reduction of the 1460.8 keV gamma escape probability,

going down from ≈ 38% at ANAIS–25 set-up until ≈ 25% in ANAIS–250 studied

configuration.

From this study it can be concluded that:

• Rejection factors evaluated as one less the probability of escape of the 1460.8 keV

photon, larger than 60% have been obtained for all the geometries tested.

• Larger and closer crystals offer a better rejection factor while for the copper

encapsulation thickness a best value between 2 and 4 mm has been found (see

figure 3.13). Two opposite trends in photon interaction can be induced by

the variation of the copper encapsulation thickness. Total absorption in cop-

per increases with copper thickness and then the escape probability should

be higher; but Compton scattering probability also increases, and can make

the escape probability reduce due to detection of the backscattered photons.

Given the copper mean free path for 1460.8 keV energy gammas, for low cop-

per thickness (below 2 mm) absorption is not yet important, dominating the

backscattering contribution to the escape probability.

• Variations of just a few per cent at most observed in the rejection factor by

modifying the module design parameters in a reasonable range do not justify

the modification of such a design, as the improvement in sensitivity is not

significant, and the larger crystal size is expected to produce a worsening of the

optical quality and total light collection. On the other hand, copper thickness

value is in the present design close to the optimum range (see figure 3.15).

It can be concluded that, although only a small improvement in the rejection

power can be achieved by modifying the modules design parameters, it has been

quantified the rejection power in a high modular matrix (5×4). Being the improve-

ment significant, nevertheless to achieve an order of magnitude improvement, a liquid

scintillator veto system has to be implemented (see sections 4.2 and 4.3).

As result of this analysis, ANAIS modules design parameters were fixed and

kept to the values of first AS modules (given in table 3.5), and thus, these are the

parameters considered in all the following simulations.
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3.5 Background model of D0 and D1

Background models developed for D0 and D1 detectors taking into account all the

background contributions are presented in this section together with the comparison

with measured data.

3.5.1 Comparison with data

Figures 3.19 and 3.20 compare the energy spectra obtained by summing all the sim-

ulated contributions described previously with the measured data obtained for D0

and D1 detectors, in the ANAIS–25 set-up, considering anticoincidences or coinci-

dences between the detectors. These data were taken from June 2014 to March 2015,

corresponding to 231.55 d (live time); in these data most of the cosmogenic isotopes

had already decayed. Only data for D1 detector are shown since those corresponding

to D0 are analogous. From this comparison it can be said that a good agreement

among simulated and experimental data is found at high energies. However, in the

very low energy region some relevant contributions seem to be missing. Background

could be overestimated in some energy regions since upper limits on radionuclide

activity have been used for several components. The addition of cosmogenically

produced isotopes to the background model was essential to reproduce, in particu-

lar, coincidence data.

The region from about 100 to 200 keV is not well reproduced by simulations;

but when adding to the model the 235U activity at the PMTs, which corresponds to

the measured 238U value and assuming the natural isotopic abundances of uranium,

∼7.2 mBq/PMT 2, this mismatching between data and simulation seems partly

solved (see figure 3.21).

In addition, the overestimation of the simulation around 92 keV can be controlled

by reducing the 238U upper limit for the copper vessel and quartz windows to that

of 226Ra (see figure 3.21). The upper limits on the activity of isotopes derived from

gamma spectroscopy at the upper part of the 238U chain are typically much larger

than those at the lower part starting on 226Ra (as it can be seen in table 3.1) because

of the very low intensity of the gamma emissions at that chain segment.

2This value is very similar to that reported at [195]
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Figure 3.19: Comparison of the energy spectra summing all the simulated contribu-

tions (before and after adding the cosmogenics) with the measured data for ANAIS–

25 D1 detector considering anticoincidence data at low energy (top) and high energy

(bottom).
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In order to find out the origin of the missing contributions at the very low energy

region, different hypotheses have been analysed.

The unexplained peak around 25 keV, observed in figure 3.19, could be due to

the cosmogenic production of 109Cd. This isotope decays by electron capture to the

88–keV isomeric state of the daughter, having a half-life of 461.9 d, and therefore the

peak may correspond to the binding energy of the K-shell of Ag. The observed peak

can be reproduced using different exposure conditions and production rates of the

order of the estimates made by convoluting production cross-sections with the cos-

mic neutron spectrum (see for instance [196], where a calculated rate of 4.8 kg−1d−1

is reported). It is worth noting that, being the case, an additional peak around

3.5 keV (Ag L-shell binding energy) is also expected, being 5.4 the ratio between K

and L-shell EC probabilities [193].

Figure 3.21 compares again for anticoincidence data the measured ANAIS–25

spectra with the simulated ones including the described hypotheses and two other

ones, which are very relevant: the presence of 3H in the crystal and the surface

location of part of the 210Pb contamination. These two hypotheses are discussed in

detail in this section. The final model still produces an overestimation in the event

rate in the energy range from 0.6 to 1 MeV, since upper limits have been considered

for several contaminations, and an underestimation from 100 to 200 keV. The in-

clusion of both 3H and 109Cd contributions significantly improves the agreement in

the lowest energy region. The additional inclusion of 210Pb partly on surface helps

to reproduce the region from 30 to 40 keV.
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Figure 3.20: Comparison of the energy spectra summing all the simulated contribu-

tions (before and after adding the cosmogenics) with the measured data for ANAIS–

25 D1 detector considering coincidence data at low energy (top) and high energy

(bottom).
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3.5.1.1 The 3H hypothesis

When comparing the simulated spectrum with the measured spectrum, a very good

agreement is obtained when including all the well–known contributions except for the

very low energy region. This problem could be solved if an activity of ∼0.2 mBq/kg

of 3H homogeneously distributed in the NaI crystal is added to the model, as shown

in figure 3.21. Tritium disintegrates 100% by beta-minus decay directly to the ground

state of 3He, with a half–life of 12.31 y and a transition energy of 18.59 keV [193].

This required activity is about twice the upper limit set for DAMA/LIBRA crys-

tals [137] but lower than the saturation activity predicted assuming the production

rate of 3H in NaI(Tl) of 31.1 kg−1d−1 calculated in [197] using production cross–

section estimated with TALYS 1.0 code [198] or the rate of 42.9 kg−1 d−1 obtained

in [199] using Geant4 as described in [200].

In order to quantify this production rate in 23Na and 127I (both having 100%

natural isotopic abundance) an attempt, using the same approach followed for the

cosmogenic isotopes identified in ANAIS–25 [192], has been carried out. First, avail-

able information on the excitation function by nucleons was collected, as shown in

figure 3.22: only one experimental result was found in the EXFOR database [201]

and cross sections were taken from the TENDL–2013 (TALYS–based Evaluated Nu-

clear Data Library) library [202] up to 200 MeV and from the HEAD-2009 (High

Energy Activation Data) library [203] from 150 to 1000 MeV. Then, the produc-

tion rate was computed convoluting a selected excitation function with the energy

spectrum of cosmic neutrons at sea level, using the parameterization from [204].

Table 3.6 summarizes the rates for several descriptions of the cross sections. The

total rate considering data from TENDL–2013 library below 150 MeV reproduces

the value obtained in [197], since the library is also based on TALYS code. Although

information on the excitation function is very limited, it seems that the contribution

to the production rate from energies above 150 MeV is not negligible. Assuming

that in this high energy range neutron and proton cross–sections are comparable and

that production from 23Na and 127I is similar (as for energies below 150 MeV, see

table 3.6) the production rate could be of ≈ 50 kg−1d−1 summing the contributions

in table 3.6. For such a rate, an exposure of 1.9 y to the neutron flux at Grand

Junction, Colorado, would produce the required 3H activity in ANAIS–25 crystals.

Therefore, the asssumed 3H hypothesis in the background model seems reasonable.
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Figure 3.21: Effect of the consideration of some background hypotheses in the spectra

of ANAIS–25 D1 detector at all energy ranges for anticoincidence data (see text).

The inclusion of some reduced 238U upper limits, 235U at PMTs and 3H and 109Cd

at crystals has been considered (green line); the additional assumption of half of the
210Pb emission from a depth of 100 µm on the crystal surface is separately shown

(blue line). The considered hypotheses allow to significantly improve the overall

agreement with measured data.
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Figure 3.22: Comparison of excitation functions for production of 3H on 23Na and
127I by nucleons (n for neutrons and p for protons) taken from different sources.

Isotope Library Energy range Production rate (kg−1d−1)

23Na TENDL–2013 < 150 MeV 14.3
127I TENDL–2013 < 150 MeV 15.4
127I HEAD–2009 150 MeV–1000 MeV 10.9

Table 3.6: Production rates (per kg of NaI) of 3H in NaI isotopes obtained considering

different excitation functions.

3.5.1.2 The 210Pb on surface hypothesis

Because of the structure of the peak due to 210Po in the alpha region of the energy

spectra shown in figure 3.6, the possibility of a surface deposition has been analyzed.

Figure 3.23 compares the low energy spectra simulated assuming 210Pb in bulk or

in surface; since the surface contamination profile is unknown, different constant

depths all around the crystal have been considered. The alpha emission is fully

absorbed and only a small continuum appears at the left side of the peak for depths

at or below 30 µm in the simulation as the range of a 5–MeV alpha particle in NaI
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is 29 µm, following NIST data [205]. The need to reproduce the low energy region

of the measured spectrum dominated by 210Pb emissions excludes surface contami-

nations at a very small depth.

The best option to reproduce the whole range of data was found when consider-

ing half of the 210Pb content in bulk and the other half on surface from a constant

depth of 100 µm; the bulk and surface proportion was fixed following the observed

almost symmetric double structure of the 210Po peak for D0 and D1 detectors.

This result has to be taken very cautiously, energy conversion into visible signal

is assumed to be constant throughout the crystal in our simulation, but there should

be a difference between energy depositions for alpha particles in two regions, as we

are indirectly assuming when interpreting the double structure in the alpha peak as

due to 210Po. These two regions could be surface and bulk. However, simple tests,

including a similarly reduced energy conversion for beta/gamma energy depositions

having the same distribution than alpha contamination can be discarded, because it

affects so much at the low energy events that it should have been clearly observed

in the data. Nevertheless, we cannot discard some spatial dependence of the energy

conversion at sub-micrometer scale, that could affect differently alpha particles than

beta/gammas and then, it could affect too the energy depositions at the lowest

energies (below 10 keV but not in the 50 keV energy scale).

3.5.2 Background contributions

Figure 3.24, summarizes the different contributions from the explained background

model of ANAIS–25 detectors, for anticoincidence data, to the rate in the region from

1 to 6 keVee. The energy spectra expected from different background sources in the

very low energy region for anticoincidence data are plotted in figure 3.25, together

with the sum of all contributions. In the region of interest 210Pb and 3H continua

together with 40K, 22Na and 109Cd peaks are the most significant contributions.
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Figure 3.23: Comparison of the low energy spectra simulated for 210Pb emissions from

the crystal bulk or from the surface, considering different constant depths all around

the crystal; results for uniform emissions from a 50–µm–thick layer are presented

too. All simulations are normalized for an activity of 0.7 mBq/kg.
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Figure 3.24: ANAIS–25 background model: expected rates from different background

sources in the region of 1–6 keVee . Some contributions have been estimated from a

directly quantified activity (filled bars), but others from upper limits (plaid bars) or

hypothesized activities (dotted bars).
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Figure 3.25: ANAIS–25 background model: anticoincidence spectra from different

background sources at the low energy region.

3.6 Background model for D2

Similarly to D0 and D1, the background model developed for D2 taking into ac-

count all the background contributions is presented in this section together with the

comparison with measured data.

3.6.1 Comparison with data

The same procedure followed for D0 and D1 detectors in the ANAIS–25 set–up has

been applied to build the background model of D2. Figure 3.26 compares the energy

spectrum measured for D2 detector at the ANAIS–37 set–up (see section 2.9.3) with

the corresponding simulation. The data taken with this set-up from May to Septem-

ber 2015 for 89.5 d have been considered here, where the cosmogenic activation has

significantly, but not completely, decayed. For the simulation, the input activities

given in tables 3.1 and 3.2 for D2 have been assumed. The same initial activity of

I and Te products cosmogenically induced in the NaI crystal, as determined for D0

and D1 detectors, has been taken; although the previous exposure history of the

D0, D1 and D2 detectors is not the same and some differences could be expected

in other longer half–life isotopes, in the case of I and Te products saturation should

have been reached nonetheless.
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Figure 3.26: Comparison of the energy spectrum measured for D2 detector at the

ANAIS–37 set-up with the corresponding simulation summing all contributions (be-

fore and after adding the cosmogenics) at low (top) and high (bottom) energy regions.

Anticoincidence data are shown in the low energy region.
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For 22Na, the initial activity quantified specifically for D2 detector and presented

in section 3.1.2.3 has been considered. The overall agreement between data and sim-

ulation in figure 3.26 is quite satisfactory except for some energy regions. As it was

observed in D0 and D1 detectors, 210Pb emissions at low energy are well reproduced

by the simulation assuming the activity deduced from the alpha rate (see figure 3.27).

At medium energies (around 1 MeV), it can be stated that the simulation is clearly

overestimated; this could be due again to the fact that upper limits on radionuclide

activity have been used for several components in the code.

Figure 3.27: Effect on the low energy region of varying the 210Pb activity in the

NaI(Tl) crystal in the background model of D2 detector. Values around that deduced

from the alpha rate have been considered.

The observed peak around 185 keV in D2 data and not reproduced by simula-

tion, as well as the underestimation at ∼145 keV, could be justified by the content

of 235U from the photomultipliers also considered for D0/D1 detectors. Again, as

for ANAIS–25, the overestimation of the simulation around 92 keV can be partially

suppressed by reducing the 238U upper limit for the copper vessel and quartz win-

dows to that of 226Ra.

In this direction, some plausible hypotheses have been analysed in order to find

an explanation to the relevant discrepancies between data and simulation in the low

energy region:
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• The prominent line registered at ∼28 keV is not explained by the cosmogenic

isotopes identified in ANAIS–25 data. 113Sn, having a half–life of 115.1 d

and decaying by electron capture mainly to a 391.7 keV isomeric state of

the daughter, could justify this spectral feature as binding energy of In K–

shell and cosmogenic activation of the isotope is possible. As for 109Cd, the

observed peak can be reproduced by using different exposure conditions and

production rates of the order of the estimates made by convolving production

cross-sections with the cosmic neutron spectrum (at [196], a production rate

of 9 kg−1d−1 is reported and a measured value of 16 kg−1d−1 presented). A

peak around 4 keV is expected from 113Sn as the binding energy of the L-shell

of In, being 7.4 the ratio between the probabilities of EC at K and L shells

for the decay to the isomeric state [193], but since the half-life of 113Sn is

not too large, it should not be a problem in the long term. 113Sn induced in

D0/D1 detectors should have decayed in the data analysed here. No hint of

the presence of 109Cd, as seen in ANAIS–25 detectors, has been observed in D2

data; as for 22Na, the initial activity of this isotope, having a longer half-life

than 113Sn, could be lower than in ANAIS–25 detectors due to the different

time spent at Colorado.

• The spectrum shape and rate observed below 20 keV in D2 data is not com-

pletely reproduced by simulation. Several possibilities have been explored:

– Considering the amount of 3H deduced for D0 and D1, the spectral shape

of its beta emission does not fully explain the observed background below

20 keV in D2; therefore, D2 3H content has been fixed to the upper limit

set by DAMA/ LIBRA (0.09 mBq/kg [137]). Due to the fact that D2

had shorter exposure to cosmic rays in Colorado in comparison to D0

and D1, a lower 3H activity is expected.

– The possibility of 210Pb emissions on the crystal surface instead of in bulk

has been deeply studied too. As shown in figure 3.6, the double struc-

ture of the 210Po peak observed at the alpha region of the energy spectra

of D2 detector is more asymmetric than that measured for ANAIS–25

detectors; according to the structure of this peak, a fourth of the 210Pb

contamination has been considered in the crystal bulk and three fourths

on the surface. For D2 detector, and considering all the possibilities

analysed (see figure 3.23), the best option to reproduce the low energy

region of the spectra, dominated by 210Pb emissions, was a surface con-

tamination from a depth of 30 µm.
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Figure 3.28: Effect of the consideration of the plausible analysed background hypothe-

ses (see text) in the spectra of D2 detector at different energy ranges (at the highest

energies the hypotheses have no effect). The inclusion of some reduced 238U upper

limits, 235U at PMTs and 3H and 113Sn at crystal has been considered (green line);

the additional assumption of part of the 210Pb emission from a depth of 30 µm on

the crystal surface is separately shown (blue line). The considered hypotheses are

essential to improve the overall agreement with measured data.
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Figure 3.28 compares the measured D2 spectra with the simulated ones taking into

account all these described hypotheses, which significantly improve the agreement.

It is remarkable that the inclusion of 3H in the model is necessary since only surface

and bulk 210Pb emissions cannot reproduce the registered spectrum shape. The

higher continuum level below 40 keV produced by the 210Pb surface emission in

comparison with the bulk contamination helps to improve the agreement between

the model and the measured data (see figure 3.23).

3.6.2 Background contributions

Figure 3.29, summarizes the different contributions from the proposed background

model of D2 at the ANAIS–37 set-up, for anticoincidence data, to the rate in the

region from 1 to 6 keVee. The energy spectra expected from different background

sources in the very low energy region for anticoincidence data are plotted in fig-

ure 3.30, together with the sum of all contributions. In this region of interest it has

been verified that 210Pb contribution has been significantly reduced in comparison

to D0 and D1; but it is worth pointing out that emissions from surface make a larger

contribution than from bulk. Peaks from 113Sn and, to a lesser extent, 22Na will be

decreasing in the next future.

Figure 3.29: Background model for D2 at the ANAIS–37 set-up: expected rates from

different background sources in the region of 1-6 keVee. Some contributions have been

estimated from a directly quantified activity (filled bars), but others from upper limits

(plaid bars) or hypothesized activities (dotted bars). Contribution from cosmogenic

isotopes has been evaluated for the period corresponding to the real data taking.
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Figure 3.30: Background model for D2 at the ANAIS–37 set-up: spectra from differ-

ent background sources at the very low energy region. Contribution from cosmogenic

isotopes has been evaluated for the period corresponding to the real data taking.

As conclusion, and according to our background model, surface contamination

in 210Pb is needed to reproduce low energy spectra of D0/D1 and D2 modules, even

though in a different amount and in different depth profile. Although some important

assumptions are required to estimate the contribution of surface contaminants to

the energy spectra, and then, the contaminations depths for 210Pb derived from our

analysis should not be firmly taken as stated, we can conclude that a fraction of the

total contamination in 210Pb could be due to the treatment of the surfaces while the

building of D0/D1 and D2 modules. In [206] and [207], diffusion lengths for radon–

induced surface contamination which could happen due to exposure to air during

assembly phase and storage of detectors are estimated below 1 µm, depending on

radon concentration, exposure time and features of material surface; the required

depths deduced for ANAIS crystals cannot then be explained by diffusion from

radon surface deposition, but they would point to other mechanisms allowing the

contamination from radon (or even directly 210Pb) at the production phase of the

crystals or at the treatment of surfaces. This issue is being further investigated in

collaboration with AS company.
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3.7 Preliminary background model for D3

As explained in section 2.9.5, A37D3 set–up is very similar to ANAIS–37 in shielding

configuration and acquisition parameters. A preliminary analysis of D3 background

in A37D3 set–up is presented here.

3.7.1 Background contributions

The total alpha rate of the new module D3 has been determined by PSA. The ob-

served alpha rate is increasing, pointing at the building of 210Po activity in the de-

tector (see figure 3.31). An average value of 1.3 mBq/kg can be reported by August

2016, although saturation of the alpha activity is expected at a level of 1.8 mBq/kg,

which is more than a factor of two higher than the alpha rate observed in D2 module

(0.7 mBq/kg), although better than that in D0 and D1 (3.15 mBq/kg). As shown in

figure 3.32, a 210Pb activity around 1.8 mBq/kg could explain the low energy region

of the measured spectrum.

Figure 3.31: Evolution of the alpha rate in D2 and D3 detectors.

In figure 3.6 the corresponding spectrum for alpha selected events in D3, com-

pared to those measured for D0 and D2 modules is shown. Calibration has been

done by using alpha–alpha sequences from 232Th chain, having a very low number
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of events, which limits the accuracy of the calibration. Although statistics for D3

alpha events is much lower, it can be confirmed a qualitative difference between D3

spectrum shape and those from D0 and D2. A plausible hypothesis is that con-

tamination of the crystal surface occurred while building this detector, and work is

ongoing exploring this possibility in collaboration with Alpha Spectra.

0 10 20 30 40 50 60 70 80 90 100

1

10

 

 

co
un

ts
 /k

eV
 / 

kg
 / 

da
y

Energy (keV)

 data D3
 sim 1.4 mBq/kg 210Pb
 sim 1.5 mBq/kg 210Pb
 sim 1.6 mBq/kg 210Pb
 sim 1.7 mBq/kg 210Pb
 sim 1.8 mBq/kg 210Pb
 sim 1.9 mBq/kg 210Pb
 sim 2.0 mBq/kg 210

Figure 3.32: Effect on the low energy region of varying the 210Pb activity in the

NaI(Tl) crystal in the background model of D3 detector. Values around that deduced

from the alpha rate have been considered. D3 spectrum shown here corresponds to

first data taken with this detector in March and April 2016.

Coincidences between the three modules in order to determine the potassium

content in the D3 module have been studied. Energy windows at ± 1.4 σ of the

1460.8 keV lines in D0 and D2 modules have been chosen and searched for energy

depositions at very low energy in D3. Results are shown in figure 3.33. A value

around 19 ppb can be derived for the content of potassium in the D3 crystal, as-

suming that all the events in the region from 2 to 5 keV are due to 40K.
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Figure 3.33: Events in D3 in coincidence with energy windows around 1460.8 keV

gamma line in D0 and D2 modules. Same spectrum obtained for D2 module is also

shown (in ANAIS–37 set–up, having the same geometry and then, efficiency for the

coincidence).

Table 3.2 includes the previously commented determinations of potassium con-

tent and 210Pb, but also the content in the radioactive natural chains (238U and
232Th), determined by looking at the 212Bi-Po and 214Bi-Po sequences and the alpha-

alpha decay sequences: 220Rn- 216Po- 212Pb. Clear improvement in radiopurity is

observed in the last modules made at AS.

3.7.2 Comparison with data

The background model built for D0, D1 and D2 modules has been preliminary

adapted to D3. Measured activities for D3 crystal (reported in table 3.2) have been

considered and cosmogenics properly included, for initial activities of 3H and 22Na as

in D2. The same hypotheses considered in D2 have been assumed too, but including

50% of 210Pb activity on surface. The simulation has been compared with 24 d of

data taken from June to July 2016 in the A37D3 set–up and the result can be seen

in figure 3.34. Remarkable agreement between simulation and measurement can be

observed.
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Figure 3.34: Low energy background of D3 module together with the estimates of

the background model adapted to the measured contaminations (see table 3.2) and

estimated contribution from cosmogenic isotopes. Results from the background model

without and with hypotheses (see text) are depicted.
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3.8 Conclusions

Using the same simulation framework developed for studying the background of

ANAIS detectors, the dependence of the escape probability of high energy photons

has been evaluated as a function of some detector parameters to assess a possible re-

duction of crystal 40K contribution. The dependence found did not justify a change

of the original detector parameters.

The background models constructed for D0, D1 and D2 modules provide a good

description of measured data at all energy ranges and at different analysis conditions

(coincidence and anticoincidence). Preliminary results for D3 are also satisfactory.

The measured activity in external components and in crystal roughly explains

the observed background, but the inclusion of some additional hypotheses, like the

presence of cosmogenic isotopes which cannot be directly quantified or partial crystal

surface 210Pb contamination, significantly improves the agreement between model

and real data. Crystal bulk contamination is the dominant background source in the

region of interest: 210Pb, 40K, 22Na and 3H give the most relevant contributions. An

acceptable potassium content has been reached in all detectors but the high activity

of 210Pb is a problem, which is being addressed by means of dedicated tests and mea-

surements in collaboration with Alpha Spectra. Surface contamination in 210Pb is

needed to reproduce the low energy background, even though in a different amount

and in different depth profile for different crystals; the required depths for ANAIS

crystals would point to some surface treatment at the production phase as the origin

of the contamination. Cosmogenics should be reduced in future AS modules thanks

to the use of a shelter for cosmic rays in Alpha Spectra facilities in Colorado.

At present, the best measured background at low energy in ANAIS prototypes

is that of D2: 2 counts/(keV kg day) at 6 keVee, being 210Pb and 3H continua

contributions at the level of some tenths of counts/(keV kg day) each, PMTs and

other external components amounting less than 0.2 counts/(keV kg day). The most

relevant contribution from 40K and 22Na peaks amounts to 4 counts/(kg day) from

1 to 6 keVee in D2, but it could be strongly reduced by anticoincidence in a detector

matrix set–up (and even more with a Liquid Scintillator Veto System), see section

4.3, and an improved control of radiopurity in the building of the modules. For

instance, for D3, with a reduced K content, contribution from 40K and 22Na peaks

is of 2.6 counts/(kg day) in the 1–6 keVee region.
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ANAIS background prospects:

towards a final design

ANAIS in collaboration with AS is strongly pursuing an improvement of the radiop-

urity of the subsequent 12.5 kg modules, required to complete the goal of 112.5 kg

total detection mass, trying to focus in further reduction of the powder 40K content

by increasing the purification steps, in reducing 22Na and 3H activation by using

convenient shieldings while storing at surface, and avoiding 210Pb contamination,

whose origin is still unknown, although could be related to radon. In parallel, back-

ground rejection power of coincidences has been analyzed in different experimental

scenarios for ANAIS: present configuration with 3×3 modules (112.5 kg, ANAIS–

112) and also the original configuration using 4×5 modules (250 kg, ANAIS–250).

An additional Liquid Scintillator Veto (LSV) surrounding the NaI(Tl) detectors has

been also considered in order to improve the rejection power of the experiment.

Monte Carlo simulations, as those carried out for the AS modules already operated

in Canfranc and described in chapter 3, have been developed for all the considered

configurations in order to quantify the achievable background levels.

Background sources considered in the simulation of the NaI modules and a possi-

ble LSV are explained in section 4.1. In section 4.2, the study of two different config-

urations for the geometry of the final ANAIS set–up, ANAIS–112 and ANAIS–250,

is presented. The results of the inclusion of a LSV, considering two different designs,

are exposed in section 4.3.
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4.1 Background sources

The following background sources have been taken into consideration, although not

all of them have been simulated for all the ANAIS configurations analyzed. Details

about the contributions not considered for every configuration will be given in the

corresponding sections.

For the NaI modules, measured primordial activities from PMTs and crystals,

mainly as for D2 module (0.7 mBq/kg of bulk 210Pb and 1.25 mBq/kg of 40K) have

been included (see table 4.1). The cosmogenic initial activity of 22Na (estimated at

the beginning of the underground measurements) and possible tritium contribution

have been also taken into account, at the levels deduced for D2 at the ANAIS–37

set–up, but conveniently reduced as corresponds to the time spent underground. In

the case of PMTs, the mean activity from all the screened units at LSC by HPGe

spectrometry has been considered (see table 3.1).

Unit 40K 232Th 238U 226Ra 210Pb 22Na 3H

Crystal mBq/kg 1.25±0.11 (0.7±0.1) 10−3 (2.7±0.2) 0.7±0.1 0.81±0.05 0.09

PMTs mBq/PMT 111±5 20.7±0.5 157±8 82.5±0.8

Table 4.1: Activities considered for the NaI modules in the simulation of the different

ANAIS configurations. For the rest of components, such as copper, silicone pads,

quartz, etc., values from table 3.1 have been assumed.

Concerning the activities of the different components of the LSV system itself,

values from the literature have been considered (see table 4.2): from NEXT for

stainless steel container [208], from SNOlab for PMTs [209] and from JUNO for

LAB scintillator [210]. For the stainless steel container, results for 316Ti stainless

steel from the Nironit company obtained by the NEXT experiment are similar to

those obtained by the GERDA collaboration for the same material [211]. This is

the cleanest stainless steel we are aware of from the radiopurity point of view. For

the Hamamatsu R5912 PMTs, U, Th and K concentrations obtained by the UKDM

collaboration [212] for the same PMT model give similar activities to those from

SNOlab. For the liquid scintillator, values from JUNO are of the same order than

those considered as target also by the SNO+ experiment [213].
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Unit 40K 232Th 238U 226Ra 60Co

Container mBq/kg <0.96 <0.54 <21 <0.57 2.8 ±0.8

PMTs mBq/PMT 2150 ±126 339 ±11 346±105 652±18

LAB scintillator mBq/kg 0.0031 4.1 ·10−6 1.2 ·10−5

Table 4.2: Activities considered for the LSV components in the simulation of the

different ANAIS configurations. For those materials where only upper limits are

available, they have been taken as simulated activity values.

For the environmental gamma background, the value of the flux determined at

Hall B of LSC using a 3” × 3” NaI(Tl) detector has been assumed [214]. Table 4.3

includes also equivalent results obtained at Hall A for comparison [215]. Gamma

emissions having intensities above 1% from the radioactive isotopes shown in ta-

ble 4.3, assuming secular equilibrium in the natural chains, have been simulated

from a spherical surface containing the whole set–up.

For the ANAIS configurations without a LSV a 30–cm–thick lead shielding is

simulated (as in the ANAIS–25, ANAIS–37 and A37D3 set–ups installed in LSC)

and therefore, gamma background contribution is expected to be negligigle and has

not been simulated; but for ANAIS configurations with a LSV, the implementation

of a lead shielding is much more complicated and gamma background has been

simulated to evaluate its need and suitability, as it will be shown in section 4.3.

Location Unit 40K 232Th 238U

LSC, Hall B (2006) γ cm−2s−1 0.33 ± 0.01 0.85 ± 0.07 0.71±0.12

LSC, Hall A (2010) γ cm−2s−1 0.15 ± 0.04 0.36 ± 0.23 0.55±0.22

Table 4.3: Gamma flux data at LSC [214] [215].

Similarly, the muon background has been also taken into account for ANAIS

configurations with a LSV; without a LSV, the foreseen use of plastic scintillator

vetos all around the set–up will reduce muon background contribution to negligible

levels and it has not been considered. The muon flux determined at LSC using plas-

tic scintillator detectors [214] has been assumed (see table 4.4). In the simulation,
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muons have been generated at the surface of a semisphere containing the whole set-

up. The muon energy spectrum has been sampled from Lipari [216] distributions

evaluated for the Canfranc depth (with mean energy of 216 GeV) while an angular

distribution proportional to cos3.6θ has been considered [217], corresponding to a

depth of 850 m of standard rock.

Location Muon flux

LSC, Hall B (5.04 ± 0.06 (stat) ± 0.25 (sys)) ·10−3 µ m−2s−1

LSC, Hall A (4.71 ± 0.06 (stat) ± 0.24 (sys)) ·10−3 µ m−2s−1

Table 4.4: Muon flux data at LSC [214].

4.2 ANAIS–112 and ANAIS–250

A study of the expected background for the full ANAIS set-up using several modules

similar to D2, was undertaken in order to quantify the power of the anticoincidence

rejection in the full experiment and thus, to be able to estimate the experiment

sensitivity. The 3 × 3 crystal matrix planned (ANAIS–112) has been studied (see

figure 4.1) as well as the originally considered configuration with 5 × 4 detectors

(ANAIS–250) (see figure 3.14).

It must be noted that the 3 × 3 modules set–up without a LSV system has not

been independently simulated. As it will be shown in section 4.3, for the assumed

geometry and radiopurity of the different system components, the contribution to

the background level of the LSV components is negligible (two orders of magnitude

lower) in comparison to that of the NaI(Tl) crystals. Therefore, simulations for

ANAIS–112 shown in this section are the same presented in section 4.3, without

profiting from the LSV veto effect.
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Figure 4.1: Geometry of the ANAIS–112 set–up as implemented in Geant4 simula-

tions: 3 × 3 NaI(Tl) crystals matrix.

Figure 4.2: Energy spectra at the very low energy region expected from all the consid-

ered background sources in the ANAIS–112 and ANAIS–250 set-ups. For the 3×3

modules configuration the spectrum before anticoincidence rejection is also shown

for comparison. For the 5×4 configuration, the result when considering only the six

inner crystals (see text) is presented too.
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Figure 4.3: Energy spectra of the different contributions to the background in the

low energy region for a 3×3 matrix configuration (ANAIS–112) when assuming the

same input activities and hypotheses than for D2 except for a reduced 40K content

(0.65 mBq/kg), at the level of that obtained in D3 detector.

Figure 4.2 presents the obtained energy spectra at the very low energy region

for ANAIS–112 and ANAIS–250 set–ups, when adding all the simulated background

sources and after rejecting coincidences. The spectrum without profit from coin-

cidence rejection is also depicted for the 3×3 modules configuration to show the

obtained reduction; reduction factors in the region of interest will be quantified and

discussed in section 4.3 (see table 4.9) together with the results using the LSV sys-

tem.

As described in section 4.1, to estimate the expected background level for ANAIS–

112, D2 measured activities have been mainly assumed. However, the potassium con-

tent achieved in D3 detector is significantly lower (see section 3.7). Consequently, the

background level which could be obtained considering the lowest 40K and 210Pb ac-

tivities measured for AS modules (those from D3 and D2 respectively, see table 3.2)

has been evaluated; the corresponding energy spectra are shown in figure 4.3.
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Figure 4.4: Distribution of the background level (expressed in counts/kg/d) registered

in the 1–6 keVee region in anticoincidence at each crystal over a matrix of 4 (vertical)

by 5 (horizontal) detectors, for 40K (a) and 22Na (b) from the NaI(Tl) crystals and
226Ra from the PMTs (c). These plots indicate that the analysis of only the six inner

modules could be advantageous.
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For ANAIS–250 set–up, it is clear that rejection power will be much more effec-

tive for the six inner detectors, as demonstrated in figure 4.4; thus, results for this

set–up are shown in the following separately for both, the whole detection mass, and

only the six inner modules.

Source counts/kg/d (%) of total

Crystal 40K 2.74 26.23

Crystal 232Th <0.01 <0.01

Crystal 238U 0.02 0.21

Crystal 210Pb 2.45 23.47

Crystal 3H 3.82 36.65

Crystal 22Na 0.71 6.77

PMTs 0.70 6.67

Total 10.44

Table 4.5: Expected rate in anticoincidence from different background sources for the

ANAIS–112 set–up in the 1–6 keVee energy region.

Source counts/kg/d (%) of total

Crystal 40K 2.00 21.62

Crystal 232Th <0.01 <0.01

Crystal 238U 0.02 0.23

Crystal 210Pb 2.42 26.18

Crystal 3H 3.82 41.36

Crystal 22Na 0.48 5.16

PMTs 0.50 5.45

Total 9.25

Table 4.6: Expected rate in anticoincidence from different background sources for

the ANAIS–250 set–up in the 1–6 keVee energy region considering the six central

modules only.
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Tables 4.5 and 4.6 summarize the expected rates in the 1-6 keVee region from all

the background contributions as well as the total expected rate in anticoincidence

for ANAIS-112 and ANAIS-250 (considering the six inner modules), respectively.

As expected, the reduction by anticoincidence is more modest in a 3 × 3 matrix

than in a 5 × 4 configuration.

4.3 ANAIS–112 with a liquid scintillator veto

The ANAIS set-up for an array of 3 × 3 detectors has been modified by includ-

ing a LSV. The goal is to evaluate the effective improvement in the background of

ANAIS considering the reduction thanks to the rejection of coincidence events, not

only between the NaI crystals but also with the veto, and taking into account the

contribution from the radioactivity of the main components used in the veto system.

Some of the parameters of the design have been considered as variables and some

particular materials or components have been assumed following the work of KIMs

[21][189] and SABRE [22] collaborations. For ANAIS LSV system, two different

possible designs have been considered (see figure 4.5):

LSVc: A large cylinder for the liquid scintillator (LS) container where NaI mod-

ules (including PMTs and crystals) are suspended inside the liquid scintillator.

LSVb: A smaller LS container could be installed in a configuration very similar

to that designed for ANAIS-112: the LS would fill the present lead shielding space

(10 cm of archaeological lead plus 20 cm of low activity lead surrounding the mod-

ules, see figure 4.5) and external 15 cm lead shielding could be added. This design

would be easier to be implemented at LSC.
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Figure 4.5: ANAIS–112 set–up artistic view with a liquid scincintillator veto con-

sidering two possible designs: LSVb (top) and LSVc (bottom).
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4.3.1 Simulation

The components of the set–ups included in the corresponding Geant4 simulation

(see figures 4.6 and 4.7) are:

• Vessel:

– For LSVc, a stainless steel cylinder, 5–mm–thick, has been defined. It

allows to contain a thickness 1 of scintillator of 60 cm; this value has been

chosen after studying the escape probability 2 of the 1460.8 keV photons from
40K (after emission in one of the NaI crystals) as a function of the liquid

scintillator thickness. In figure 4.8 it can be observed that for values of the

thickness beyond 60 cm there is not a significant improvement in the escape

probability.

– For LSVb, a 1.5–mm–thick stainless steel box has been defined, as that

prepared to house the ANAIS–112 set–up, having external dimensions of 1150

× 1125 × 1550 mm3.

• Reflector: 0.5–mm–thick reflector Lumirror has been considered. It is a polyester

produced by Japanese Toray company.

• Liquid scintillator medium: Linear AlkylBenzene (LAB) has been considered.

The total mass of scintillator is estimated to be 3.8 tons for LSVc and 1.7 tons

for LSVb. Although it has not been considered in the simulation, 2 g/l 2.2-

diphenyloxazole (PPO) will be added to the LAB as a wavelength shifter.

• Photomultipliers: PMT model Hamamatsu R5912, with 8” diameter, has been

chosen. A simplified description of each PMT unit as a 0.5–mm–thick cylinder

made of borosilicate with vacuum inside, having approximately the diameter

and length of the R5912 PMT, has been implemented. In both cases, 10 units

are used, five units at each end of the vessel for LSVc and one unit at each

small face and two units at the four large faces for LSVb.

1This thickness is considered as the increase both in radius and half–height of a minimum

cylinder with radius 30 cm and height 62 cm containing the 3×3 crystals matrix
2At each condition, the escape probability of the 1460.8 keV photon has been evaluated as the

probability of null energy depositions in the active detector volumes (either the 9 NaI crystals, or

the LSV). For 40K decays, this probability can be multiplied by the probability of K–shell EC to the

excited state of the daughter nucleus in order to quantify the residual events at the 3.2 keV peak.

This peak has in addition the unavoidable contribution of the direct decay to the fundamental

state.
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• Shielding: no shielding has been considered for LSVc, but for LSVb, a 15–cm–

thick layer of lead outside the stainless steel vessel has been included in the

simulation.

Figure 4.6: LSVc geometry for the Geant4 simulation.

Figure 4.7: LSVb geometry for the Geant4 simulation.

Energy deposited at each one of the 3 × 3 NaI crystal matrix and in the LSV is

registered for each simulated event to perform coincidence analysis afterwards. An

energy threshold for event detection in the LSV can be applied for analysis.

Energy spectra for the following conditions have been derived:

• Spectra at the LSV (without including the effect of the energy resolution of

the detector).

• Total spectra (t), summing the contributions from the 9 NaI(Tl) modules.
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4.3. ANAIS–112 with a liquid scintillator veto

• Anticoincidence spectra (a), summing the contributions from the 9 NaI(Tl)

modules and rejecting coincidences between them.

• Anticoincidence vetoed spectra, summing the contributions from the 9 NaI(Tl)

modules and rejecting coincidences between them and with the LSV. No

threshold in LSV (av) and a 500 keV energy threshold (av500 ) conditions

have been evaluated.
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Figure 4.8: Escape probability of the 1460.8 keV photon as a function of the liquid

scintillator thickness, for both external and central detectors and for different energy

threshold values of the LSVc system. The curves show that the reduction of the

escape probability softens for thickness above 60 cm.

4.3.2 Results for the LSV detector

Plots in figure 4.9 show the energy spectra registered at the LSV for the different

simulated background contributions, for LSVc (the larger cylindrical veto without

lead shielding) and LSVb (the smaller box veto with a 15–cm–thick lead shielding).

Note that contributions from muons and the LSV system have not been simulated

yet for the LSVb configuration because their effect is negligible in the NaI detectors

background, as it will be shown later (see subsection 4.3.3).

In the simulation of the LSVc, the external gamma flux contribution to the

energy depositions in the LSV is about three orders of magnitude higher than the
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Chapter 4. ANAIS background prospects: towards a final design

other contributions, while that of muons is 3–4 orders of magnitude lower. From the

detection system, photomultipliers and container are the dominant sources, while

emissions from crystals are much less relevant. In the case of LSVb, even though

the external gamma background still dominates the counting, its contribution is

significantly reduced (see figure 4.9).
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Figure 4.9: Energy spectra registered at the LSV for different simulated background

contributions in the case of LSVc (top) and LSVb (bottom). Note that some sources

(muons and contaminations of LSV components) have not been simulated for LSVb.
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4.3. ANAIS–112 with a liquid scintillator veto

The total trigger rate below 3 MeV for the LSV is of the order of 65 kHz in the

LSVc (simulated without shielding) while it is below 100 Hz in the case of LSVb

(see tables 4.7 and 4.8). Different energy thresholds for the LSV trigger have been

considered in the simulation: a 500 keV threshold reduces the trigger rate in a factor

of 2 for both designs. Anyhow, it is clear that a shielding for the LSVc should be

included in the experimental implementation of the veto system in order to be able

to veto real coincidences and not being overcome by the veto rate.

Threshold Rate from Rate from Rate from Rate from Total rate

(keV) NaI modules LSV muons external gammas

(Hz) (Hz) (mHz) (kHz) (kHz)

0 3.2 11.2 0.24 64.5 64.5

100 2.8 9.5 0.21 60.1 60.1

250 2.2 7.4 0.18 47.5 47.5

500 1.6 5.5 0.14 35.3 35.3

Table 4.7: Detection rates below 3 MeV at the LSV assuming different energy thresh-

olds and for different simulated background contributions in LSVc.

Threshold Rate from Rate from Total rate

(keV) NaI modules external gammas

(Hz) (Hz) (Hz)

0 3.2 72.3 75.5

100 2.8 64.2 67.0

250 2.2 51.9 54.1

500 1.6 38.4 40.0

Table 4.8: Detection rates below 3 MeV at the LSV assuming different energy thresh-

olds and for different simulated background contributions in LSVb. Note that some

sources (muons and contaminations of LSV components) have not been simulated

for LSVb.
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Chapter 4. ANAIS background prospects: towards a final design

4.3.3 Results for energy depositions at the NaI(Tl) crystals

Figure 4.10 compares the energy spectra corresponding to energy depositions at

the very low energy region in the NaI(Tl) modules, considering all the background

sources as explained in section 4.1 and in different situations, to illustrate the effect

of anticoincidence between crystals and also with the LSV. Spectra have been evalu-

ated for the 3×3 detectors set-up considering anticoincidence only between crystals,

also with an ideal LSV and with a LSV having a 500 keV energy threshold. Spec-

tra obtained in anticoincidence in the 5 × 4 modules set–up (ANAIS–250) are also

shown for comparison. Environmental gamma background is assumed to be properly

suppressed thanks to the implementation of a lead or water shielding.

Table 4.9 summarizes the reduction factors obtained in the considered situations

at the 1–6 keVee region, for all the contributions altogether and separately for some

background sources, those for which high reduction is expected: 40K and 22Na at

crystals and PMT contaminations. The reduction factor is computed from the ratio

between the rates in the 1–6 keVee after coincidence events rejection and before any

rejection and therefore corresponds to the percentage of remaining background.

For comparison, the values of the reduction factors obtained by anticoincidence

at the ANAIS–250 set–up (5 × 4 crystals, without LSV system) are also reported,

both for the whole crystal matrix or considering only the six inner detectors. The

veto by the LSV is very effective for the 40K and 22Na peaks, but since it is useless

for the other relevant background sources at the region of interest (3H and 210Pb)

the estimated overall reduction factor is in the end of 55.6% for the ideal LSVc and

59.1% considering a 500 keV threshold. For the assumed background model, about

70% of the background obtained in anticoincidence for the 3 × 3 crystals configura-

tion remains even after the vetoing effect of the LSV. Comparing the reduction for

the two veto systems, the loss of effectiveness in the small box veto is more impor-

tant for 22Na; the 40K contribution is in both systems dominated by the EC decays

to the ground state of the daughter, which cannot be vetoed.

The background rates in the 1–6 keVee region for the considered contributions

in the ideal av situation for the two veto systems are summarized in tables 4.10

and 4.11. In figure 4.11, the low energy spectra from different contributions for

the av situation (assuming that the external gamma background has been properly

suppressed) are shown for the two designs. The effective reduction of the 40K and
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4.3. ANAIS–112 with a liquid scintillator veto

22Na peaks can be seen, becoming tritium the dominant contribution.
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Figure 4.10: Energy spectra at the very low energy region expected from all the

considered background sources in different set-ups and anticoincidence conditions

(see text). Results are shown for LSVc (top) and LSVb (bottom).

Concerning the contribution at the region of interest from 210Pb in crystals, it

is worth noting that it could be higher in case of a surface contamination (see sec-

tions 3.5 and 3.6). Assuming all the 210Pb was on surface at a depth of 30 µm, the

increase in the rate in the 1–6 keV region in comparison to a pure bulk contamina-

tion would be of a factor 1.6.
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Figure 4.11: Energy spectra from the simulated background sources registered at the

NaI(Tl) detectors for LSVc (top) and LSVb (bottom) designs in the av conditions.
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4.3. ANAIS–112 with a liquid scintillator veto

Set-up R.F.(%) R.F.(%) R.F.(%) R.F.(%)
40K from crystals 22Na from crystals PMTs Total

3×3 modules 69.0 62.4 62.3 83.7

3×3 modules 11.9 1.2 7.3 55.6

+ LSVc

3×3 modules 15.5 5.7 29.3 59.1

+ LSVc (500 keV threshold)

3×3 modules 14.5 3.7 7.3 56.6

+ LSVb

3×3 modules 20.5 11.0 31.1 61.3

+ LSVb (500 keV threshold)

5×4 modules 62.7 55.1 45.9 77.9

5×4 modules 48.6 39.8 32.5 70.3

(6 inner crystals)

Table 4.9: Reduction factor (R.F.), defined as percentage of background remaining

after anticoincidence in the 1–6 keVee region, computed for several set–ups and

applying anticoincidence rejection only between crystals or also with the LSV (see

text). It has been evaluated separately for some background sources and for the

overall background in different experimental scenarios.

From the simulation of LSVc, we can conclude that the contribution of the emis-

sions produced in the LSV (container, PMTs and liquid scintillator) is negligible for

the assumed activities and geometry, since it is at least two orders of magnitude

lower than the contribution from the NaI(Tl) crystals and their PMTs.

The contribution from muons is also negligible and completely disappears when

considering anticoincidence with LSVc. For these reasons, these contributions (emis-

sions from the LSV system and muons) have not been simulated for the moment

for LSVb. It must be noted that no upper cut has been considered in the detection

energy of the LSV for the moment, although it could affect the efficiency of the veto

effect for muons.

In the present LSVc configuration (without shielding), the contribution of the

external gamma background is about 2 orders of magnitude higher than the total

contribution from the detection system activity without considering anticoincidence

167



Chapter 4. ANAIS background prospects: towards a final design

with the LSV. The same is observed at higher energies. The anticoincidence with the

LSV allows a very effective reduction of this gamma background contribution, but

its dependence on the energy threshold of the LSV is very important; for a 500 keV

threshold, the external gamma flux gives a rate still comparable to, or significantly

higher, than the total contribution from the detection system activity. Therefore,

operation of the LSV without a shielding against the environmental gamma back-

ground seems to be problematic. For the LSVb, the 15–mm–thick lead shielding

efficiently suppresses the external gamma contribution.

With respect to the evaluated contribution from the crystals and their PMTs,

there is no difference between the two veto systems when considering total spectra

(t) or anticoincidence between crystals (a), but, as expected, the anticoincidence

with the veto (av) is less effective for the small box LSV, although the difference is

not very significant.

4.4 Conclusions

From the simulation of the most relevant background sources for the full ANAIS

set–up considering different configurations, the following conclusions can be drawn:

• Assuming the activities of the best characterized detector (D2), for 9 crystals

with total mass of 112.5 kg of NaI(Tl), the expected background rate is below

2 counts/(keV kg d) above 4 keVee and of 2.5 counts/(keV kg d) in the region

from 1 to 4 keVee, which could be reduced at 1.4 counts/(keV kg d) by using

a LSV. Following the obtained results, the implementation of a LSV system

at the 3×3 matrix set–up is more effective that the increase of NaI modules,

for fixed radiopurity levels, in order to reduce the intrinsic background level.

However, it is worth noticing (see chapter 5) that the expected signal increases

with the total detection mass, and thus both effects have to be considered in

the sensitivity analysis.

• Operation of a LSV system without a lead (water) shielding is precluded due to

the non–negligible contribution of the environmental gamma background at the

region of interest and the high counting rate generated at the LSV. The inclu-

sion of a 15–cm–thick lead shielding allows to reduce the environmental gamma

background contribution in the 1–6 keVee below 0.04 counts/(keV kg d) for
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4.4. Conclusions

an ideal LSV and to 0.11 counts/(keV kg d) considering a 500 keV threshold

for the LSV.

• The increase in the rate at the region of interest when considering a small

box instead of a larger cylindrical LSV is not very significant for the dominant

background sources and it seems that it could be tolerated. Reduction factors

are virtually the same for both LSV systems (see table 4.9).

• Expected contribution from the activity of the LSV system itself seems to be

unimportant for the assumed values, being two orders of magnitude lower than

that from the NaI detectors.

• The effect of the energy threshold of the LSV is not very relevant in the very

low energy region of interest.

Source counts/kg/d (%) of total

Crystal 40K 4.7 10−1 6.83

Crystal 232Th 5.6 10−4 0.01

Crystal 238U 2.1 10−2 0.31

Crystal 210Pb 2.4 35.72

Crystal 3H 3.8 55.78

Crystal 22Na 1.3 10−2 0.19

PMTs 8.0 10−2 1.16

LSV PMTs 1.5 10−5 0.0002

Container 4.1 10−6 0.0001

LS 0 0

Muons 0 0

Total 6.9

Table 4.10: Expected rate from different background sources for the LSVc set–up for

the av condition in the 1–6 keVee energy region.
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Source counts/kg/d (%) of total

Crystal 40K 5.7 10−1 8.19

Crystal 232Th 5.6 10−4 0.01

Crystal 238U 2.1 10−2 0.31

Crystal 210Pb 2.4 34.88

Crystal 3H 3.8 54.85

Crystal 22Na 4.2 10−2 0.60

PMTs 8.2 10−2 1.17

LSV PMTs not simulated

Container not simulated

LS not simulated

Muons not simulated

External gamma < 0.19 (90% C.L.)

Total 7.0

Table 4.11: Expected rate from different background sources for the LSVb set–up for

the av condition in the 1–6 keVee energy region.
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Chapter 5

Sensitivity projections in different

scenarios

In the absence of a distinctive signal, as is the observation of an annual modulation

effect in the interaction rate, it is very difficult to distinguish interactions produced

by the dark matter particles from those corresponding to backgrounds in a given

experiment. In these cases, results are usually presented in exclusion curves of the

WIMP–nucleon interaction cross-section vs. WIMP mass.

Exclusion curves are obtained by comparing the measured rate in a given ex-

periment and the expected rate of nuclear recoils due to the interaction of WIMPs

(see section 1.4.2.1), as shown in figures 1.13 and 1.14 for SI and SD interactions,

respectively. In these plots, for a fixed WIMP mass, all cross–sections remaining

above the curve are excluded, as they would produce interaction rates large enough

to be incompatible with the measured one. In the most conservative approach, all

the measured rate is attributed to dark matter. If some of the backgrounds are re-

ally well understood, they can be taken into account in order to improve the derived

limits.

However, this is not the goal of the ANAIS experiment, devoted to the search

for the annual modulation signal (described in section 1.4.2.3). To evaluate the

sensitivity of a given experiment in this search, the so–called sensitivity plots were

introduced in [218]. A brief explanation about how these plots are derived will be

given in section 5.1 and the projections obtained assuming different scenarios for

ANAIS will be discussed in section 5.2.
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5.1 Sensitivity plots

5.1.1 Extraction of the modulation signal

In order to study any seasonal modulation in a given experiment, data have to be

grouped in convenient energy and time intervals. Nik represents the number of events

collected in the i–th time bin and k–th energy bin and for a given exposure Wik =

M∆ti∆Ekεk, being M the detector mass, ∆ti the effective live time in the i-th time

bin, centered in ti, ∆Ek the amplitude of the k-th energy bin and εk the efficiencies

that have to be taken into account whenever some subtraction or filtering method is

used with the data. In the following εk have been taken as 1, except when explicitly

stated.

The mean value of Nik can be expressed as the expected background in the k-th

energy bin (bk) plus the dark matter expected event rate as:

< Nik >≡ µik = [bk + S0,k + Sm,k · cosω(ti − t0)] ·Wik (5.1)

where ω=2π
T

with T=1 y and t0 corresponds to 2nd June (see section 1.4.2.3). For

simplicity t0 is omitted in the following equations as far as this only implies a re-

definition of the time origin. S0,k and Sm,k parameters (constant and modulated

amplitude of the dark matter expected event rate, respectively, as seen in subsec-

tion 1.4.2.3) depend on the WIMP–nucleus cross–section and the WIMP mass.

The procedure to extract a modulated signal with a given period and phase from

a set of measured events has been discussed by several authors [85] [220–222].

The maximum–likelihood estimation method is the most commonly used proce-

dure when comparing theory with the measured data. Assuming that Nik follow a

Poisson distribution with mean values µik, the combined–probability function of all

the collected Nik is given by:

L =
∏
ik

e−µik
µNik
ik

Nik!
(5.2)

The most probable values of mW and the cross–section, σ, maximize equation 5.2,
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this is, minimize the following function:

y(mW , σ) ≡ −2logL− C = 2µ− 2
∑
ik

Niklog[bk + S0,k + Sm,k · cosωti] (5.3)

where µ ≡
∑

ik µik and, for simplicity, those terms not depending on mW or σ are in-

cluded in the constant, C, as they are irrelevant for the minimization of equation 5.3.

The function y is minimized in two steps: first with respect to the time indepen-

dent parts, bk+S0,k, and second with respect to mW and σ. In the first minimization,

bk are free parameters, only constrained to be positive.

Following standard procedures [219], a region of n standard deviations around the

minimum in the plane (σ, mW ) can be found by imposing the condition y(σ,mW )−
ymin ≤ n2.

In reference [218] it is shown that the likelihood function y behaves asymptoti-

cally like the χ2 function:

χ2(σ,mW ) ≡
∑
k

(Sm,k(mW , σ)−Xk)
2

V ar(Xk)
(5.4)

where

Xk ≡
∑

iNikcosωti −Nkβk
Wk(αk − β2

k)
(5.5)

βk =

∑
iWikcosωti
Wk

αk =

∑
iWikcos

2ωti
Wk

(5.6)

Nk ≡
∑
i

Nik Wk ≡
∑
i

Wik < Xk >= Sm,k (5.7)

When the maximum of the likelihood function has been found, a positive result

excludes the absence of modulation at some confidence level probability. In order to

test the goodness of the null hypothesis, the quantity

δ2 = y(σ = 0)− y(mW , σ)min (5.8)

can be evaluated, due to its asymptotic behaviour as:

δ2 ' χ2(σ = 0)− χ2
min (5.9)
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5.1.2 Statistical significance

Following this procedure, two different situations could be found:

• Absence of a modulation effect; in this case, numerical simulations show that

δ2 belongs asymptotically to a χ2 distribution with two degrees of freedom

(once the cross–section is set to zero, the L function no longer depends on mW

as all the S0 and Sm functions vanish).

• Presence of a modulation effect; in this case, δ2 has an asymptotic distribution

of a non–central χ2 with one degree of freedom and with a mean value given

by:

< δ2 >=
1

2

∑
k

Sm,k(σ,mW )2∆Ek
bk + S0,k

MTα + 2 (5.10)

where the factor of merit α, has been considered as α = 2
T

∑
i cos

2ωti (α = 1

in case of a full period of data taking). The same time of measuring has been

assumed for all the energy bins and the approximations

<
∑
i

Nikcos
2ωti >'< Nik >

∑
cos2ωti (5.11)

and

< Nik >' Wk(bk + S0) (5.12)

have been considered.

The statistical interpretation of the sensitivity plot is obtained from the degree

of overlapping between the δ2 distributions in the two cases, absence and presence

of modulation.

The needed exposure MTα in order to observe a modulation effect with a given

probability can be estimated through equation 5.10: for instance, < δ2 > = 14.9

(5.6) corresponds to a 90% (50%) probability to see an effect at least at the 95%

(90%) C.L. Therefore, once a required < δ2 > is chosen, a sensitivity plot can be

obtained by showing the curves of constant MTα in the plane mW − σ. Other sit-

uations are summarized in table 5.1, where < δ2 > is tabulated as a function of the

fraction of experiments where absence of modulation can be excluded (rows), at a
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5.2. Prospects for ANAIS

given confidence level (columns). This procedure would allow to see the masses and

exposures needed to explore each different region of the WIMP mW–σ parameter

space in a compact way.

90% 95% 99 % 99.5% 99.9%

50% 5.6 7.0 10.2 11.6 14.8

60% 6.8 8.3 11.8 13.3 16.8

70% 8.1 9.9 13.7 15.3 19.0

80% 9.9 11.8 16.0 17.8 21.8

90% 12.8 14.9 19.6 21.6 26.0

95% 15.4 17.8 22.9 25.0 29.8

99% 21.0 23.8 29.7 32.2 37.5

Table 5.1: Parameter < δ2 > as a function of the confidence level required to ex-

clude the absence of modulation (columns) and the fraction of successful experiments

(rows). From [218].

5.2 Prospects for ANAIS

The projected sensitivity of ANAIS to dark matter annual modulation assuming SI

interactions has been evaluated in different scenarios following the procedure pre-

sented in [218] and summarized in section 5.1.

In the calculation of the sensitiviy plots, Helm form factors have been consid-

ered, as well as a standard halo model (isothermal sphere) with ρ=0.3 GeV/cm3,

v0=220 km/s and vesc=650 km/s, quenching factors 0.3 for Na and 0.1 for I. All

sensitivity plots have been obtained requiring 90% CL and 90% of successful exper-

iments and assuming 5 years of data taking.

First, a conservative scenario of background, assuming that already achieved for

D2 (see section 3.6.1) with two active masses (112 and 250 kg of NaI(Tl)) is shown

in figure 5.1. The modulated signal is searched for in an analysis energy window

from 1 to 6 keVee.
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Figure 5.1: Sensitivity plot in the σSIWn − mW plane for ANAIS full experiment.

Background level achieved in D2 detector has been assumed in the 1-6 keVee energy

region for 112 kg and 250 kg of NaI(Tl). Orange areas represent DAMA modulation

regions at 90%, 3σ and 5σ levels.

Then, the effect of considering different energy regions for the analysis in ANAIS–

112, without LSV and for 5 years of data taking is shown in figure 5.2. The simulated

background depicted in figure 4.2 has been assumed.
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Figure 5.2: Sensitivity plot in the σSIWn − mW plane for ANAIS-112 experiment

considering different energy regions in the analysis for 112 kg of NaI(Tl) and the

background simulated for ANAIS-112 without LSV (shown in figure 4.2).

The sensitivity plot for ANAIS–112 with LSV, ANAIS-250 and considering only

the six central crystals in the 5 × 4 configuration for 5 years of data taking is shown

in figure 5.3. The simulated backgrounds shown in figure 4.10 (top) have been

assumed.
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Figure 5.3: Sensitivity plot in the σSIWn−mW plane for ANAIS-112 + LSV, ANAIS-

250 and considering only the six central crystals in the 5 ×4 configuration. The

simulated backgrounds shown in figure 4.10 (top) have been assumed in the 1–6 keVee

energy region.

In figure 5.4 it is shown the sensitivity corresponding to ANAIS–112 with and

without LSV (spectra from figure 4.10) (top) and to ANAIS–112 with an improved

background (by reducing 40K contamination to the level of D3, as estimated in

figure 4.3) in the 1–6 keVee region.
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5.2. Prospects for ANAIS

Figure 5.4: Sensitivity plot in the σSIWn−mW plane for ANAIS–112 with and without

LSV together with a reduction of the background (40K at the level of D3 and 210Pb

at the level of D2) in the 1-6 keVee energy region for 112 kg of NaI(Tl).

Finally, the effect of including a filtering acceptance efficiency lower than 1 near

the threshold has been studied and it is shown in figure 5.5. Two cases are compared

with that corresponding to efficiency 1 from 1 to 6 keVee: efficiency of 0.1 from 1

to 2 keVee and 1 from 2 to 6 keVee and an efficiency linearly increasing from 0.1 at

1 keVee till 1 at 3 keVee and constant above 3 keVee. Background level in a 3 × 3

configuration set–up without LSV, shown in figure 4.2, has been assumed.
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Figure 5.5: Sensitivity plot in the σSIWn − mW plane for ANAIS–112 without LSV

including a filtering acceptance efficiency lower than 1 near the threshold in different

situations (see text).

Summarizing, from this sensitivity analysis it can be concluded:

• A significative improvement in sensitivity is observed when lowering the energy

threshold down to 1 keVee (see figure 5.2).

• On the other hand, a clear sensitivity improvement can be appreciated in

figure 5.3 when increasing the total NaI(Tl) mass up to 250 kg, being this

effect much more significant than the background improvement achieved by

applying a LSV, or by analyzing only the six central crystals.

• Although the most sensitive of the ANAIS configurations analyzed in this

work corresponds to the 5 × 4 matrix of NaI(Tl) detectors, ANAIS-112, as

it is designed, covers in a reasonable way DAMA/LIBRA region, even in the

more conservative scenario, with the background level achieved for D2 detector

(see figure 5.1).
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Summary and conclusions

The detection of the dark matter in the Universe and the understanding of its

nature represent one of the largest challenges of Cosmology, Astrophysics and

Particle Physics of the modern era. There exist many hints, from galactic to

cosmological scales, pointing to the existence of this particular kind of matter.

These evidences restrict the nature of dark matter, requiring it to be very

weakly interacting and non–relativistic at the time of decoupling from the rest

of the Universe contents (cold dark matter), leading to the search of a particle

beyond the Standard Model of Particle Physics.

Several experiments have been devoted to the dark matter direct detection

with different targets and techniques since the mid–eighties. Among the tar-

gets used, germanium, xenon, argon, and sodium iodide can be highlighted;

among the techniques, semiconductor devices, scintillators, cryogenic hybrid

detectors, and noble liquids TPCs have played a relevant role in the develop-

ment of the field and the continuous improvement in sensitivity. Up to date,

only DAMA/LIBRA experiment, at the LNGS, Italy, has claimed to have

detected a positive signal of annual modulation in single–hit events in the 2–

6 keVee energy region. This result is not compatible neither with conventional

backgrounds, nor with any systematic effect proposed. However, it has not

been confirmed yet by any other experiment.

The DAMA group has carried out several studies of the model independent an-

nual modulation effect in different dark matter scenarios. Here, the DAMA/LI-

BRA measured signal has been analyzed in terms of symmetric mirror dark

matter, assuming that a fraction, f , of the dark matter halo in the Milky Way

is composed by mirror atoms of different species that interact with target nu-

clei in the detector via Rutherford–like scattering induced by kinetic mixing

between mirror and ordinary photons. Many different possible scenarios for the
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mirror matter chemical composition, its density profile and velocity distribu-

tion in the Milky Way were considered. Allowed physical intervals compatible

with the DAMA/LIBRA positive annual modulation signal for the parameter
√
fε have been derived in various situations. The results obtained with this

study demonstrate that
√
fε values compatible with cosmological bounds are

able to reproduce the DAMA/LIBRA positive signal for many different exper-

imental parameters configurations and halo models.

The ANAIS project has been a long–time effort developed by the University

of Zaragoza in order to carry out an experiment searching for dark matter

annual modulation with very low background NaI(Tl) detectors at the LSC.

ANAIS experiment aims at the confirmation of the DAMA/LIBRA positive

signal using the same target and technique. Very stringent requirements are

mandatory, in order to have enough sensitivity to detect an annual modulation

signal in the very low energy region: very low energy threshold, a background

as low as possible in the region of interest, high target mass, very stable op-

eration conditions and control of environmental parameters. ANAIS–112, an

experiment of more than one hundred kilograms of ultrapure NaI(Tl), has been

conceived as the conclusion of previous ANAIS prototypes, having enough sen-

sitivity to test the DAMA/LIBRA signal, and it is being commissioned at the

LSC.

An extensive work has been carried out to characterize and quantify the differ-

ent background contributions and develop a satisfactory background model for

sodium iodide detectors, that was lacking. In this work, the different set–ups

including AS detectors, operated at LSC within the ANAIS project, have been

considered.

– ANAIS–25: two detector prototypes (named D0 and D1), amounting

25 kg NaI(Tl), took data from December 2012 to March 2015. D0 and

D1 presented an excellent light collection at the level of 15 phe/keV, and

an acceptable K bulk content, around 40 ppb, but an unacceptable 210Pb

activity of 3.15 mBq/kg.

– AS1K: a 1–kg NaI(Tl) crystal prepared by Alpha Spectra confirmed the

contamination on 210Pb, and the building of the 210Po activity allowed to

establish the contamination time at the end of the purification procedures
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or crystal growing. A thorough investigation of the possible mechanism

responsible of the contamination was carried out at AS and changes were

implemented in their protocols.

– ANAIS–37: a new detector, D2, was placed in between the two ANAIS–

25 modules. It was grown using new protocols to prevent radon con-

tamination and presented a reduction of the 210Pb content down to

0.7 mBq/kg maintaining an excellent light collection and similar 40K

activity than the D0 and D1 detectors.

– Blank Module: a module built like the AS ones but without crystal,

silicone pads and quartz windows was prepared and mounted in the

ANAIS–37 set–up replacing the D1 detector. The goal of this set–up

was to accumulate a population of pure photomultiplier events and to

test the filtering protocols. This module has allowed to confirm the pres-

ence of light coming from the PMTs and being able to trigger the ANAIS

acquisition. However, the suitability of the filtering protocols could be

tested, and most of those events were efficiently rejected. Some events

survive this filtering procedure, being anomalously slow, and they are

still under study, trying to improve the selection criteria to get rid of

them.

– A37D3: very similar to ANAIS–37 set–up in shielding configuration and

acquisition parameters, but different in module layout in order to incor-

porate the latest received module, D3, made of a crystal grown with a

more purified powder. This new module (D3) is placed in between D0

(bottom) and D2 (top) modules; preliminary results point to a signifi-

cantly reduced K content of 19 ppb in comparison to previous modules

but a 210Pb activity higher than in D2, which could reach 1.8 mBq/kg.

D3 has also shown excellent light collection, similar to that of previous

AS modules.

– AS2K-1 and AS2K-2: due to the high alpha rate measured in D3 and

after discussing the possibility of a surface contamination with AS, two

pieces of 1 kg of NaI(Tl) (AS1K-1 grown from the same ingot than D3 and

AS2K-2 from the same ingot than the following detectors in preparation)

were received and have been measured along the summer 2016. Prelim-

inary results confirm the 210Pb activity measured for D3 in the sample

from its ingot, but point to a lower value at the level of 0.7 mBq/kg
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for the other one. From this second ingot are being built the last four

ANAIS–112 modules.

The background models constructed for D0 and D1 detectors at the ANAIS–

25 set–up and for D2 module at ANAIS–37 provide a good description of

measured data from energy threshold to high energy at different analysis con-

ditions. Preliminary results for the model of D3 detector in A37D3 set–up

are also satisfactory. The measured activity in external components and in

crystal, including cosmogenic products, quantified combining different analy-

sis techniques, roughly explains the observed background. But the inclusion

of some additional hypotheses, like the presence of cosmogenic isotopes which

cannot be directly quantified or partial crystal surface 210Pb contamination,

significantly improves the agreement between model and real data. It can

be concluded that at the region of interest, crystal bulk contamination is the

dominant background source. Contributions from 210Pb and 3H continua and
40K and 22Na peaks are the most relevant ones. The best measured back-

ground, corresponding to D2 module, is already about 2 counts/(keV kg day)

at 6 keVee, but reduction is still possible thanks to the increase of the back-

ground rejection power in a detector matrix set–up and an improved control

of radiopurity in the ANAIS modules under preparation. D2 background in

the region from 1 to 2 keVee increases steeply. Work is ongoing to improve

PMT–origin events filtering and better estimate of the corresponding accep-

tance efficiencies.

Together with the background models of the already operated Alpha Spectra

detectors, an evaluation of the background prospects for the full experiment

has been developed, taking into account the planned ANAIS–112 design as

well as several other hypothetical scenarios, like a matrix of NaI(Tl) crystals

corresponding to a total mass of 250 kg (ANAIS–250), or the use of a Liquid

Scintillator Veto (LSV) in the 3×3 modules configuration.

– Reduction factors for the background at the very low energy region

thanks to the rejection of coincident events have been computed for all

these situations, confirming that contributions from 40K and 22Na could

be efficiently suppressed thanks to anticoincidence operation in a crystals

matrix or inside the LSV. However, since the other relevant background

sources at the region of interest (3H and 210Pb) are fully absorbed at each
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detector and anticoincidence operation is useless for them, the estimated

overall reduction factor could be in the end of a factor 2 in the best case.

– With the radiopurity levels achieved in D2 detector, for the 3 × 3 matrix

of crystals amounting to 112.5 kg of mass, a background rate below

2 counts/(keV kg day) above 4 keVee is expected; the foreseen rate is

2.5 counts/(keV kg day) in the region from 1 to 4 keVee, which could be

reduced at most to 1.4 counts/(keV kg day) by using a LSV. In terms

of background, the use of a LSV is clearly a better alternative than the

increase of the total mass up to 250 kg. In this situation, the fully

absorbed emission from 3H could become the main contribution in the

region of interest; therefore, a shielding against cosmogenic activation has

been procured for the production of the new ANAIS NaI(Tl) crystals at

Alpha Spectra facilities. Additionally, a further reduction of 210Pb and
40K in Alpha Spectra detectors could be possible thanks to improved

purification and surface machining protocols. In this direction, detector

D3 already confirmed a clear improvement in the potassium content,

attributed to the WIMPScint-III grade powder used. The additional

reduction in 210Pb content is expected to be confirmed after measuring

D4 and D5 modules, on their way to Canfranc at the moment of writing

this memory.

– Concerning the design of the possible implementation of the LSV in

ANAIS, different options have been analyzed, concluding that a shielding

against the environmental gamma background is mandatory, being 15 cm

of lead enough to reduce its contribution to non-relevant levels. The

box holding the shielding of the ANAIS–112 set–up filled instead with

liquid scintillator offers reduction factors in the region of interest for the

dominant 22Na and 40K crystal emissions similar to a larger LSV system

with a 60–cm–thick liquid scintillator. Contribution from the radioactive

contaminants of the LSV, assuming typical activities from the literature,

is unimportant as it is two orders of magnitude lower than that from

NaI modules. It has been checked that the effect of a non-zero energy

threshold in the LSV is not relevant for the background in the region of

interest.

The sensitivity of ANAIS in the search for the annual modulation effect in the

dark matter signal has been evaluated in different experimental configurations
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(for 112.5 or 250 kg of NaI(Tl), using or not a LSV) and background conditions

(taking into account the background models developed).

– It can be concluded that a significative improvement in sensitivity is

observed when lowering the energy threshold down to 1 keVee.

– A clear sensitivity improvement can be appreciated when increasing the

total NaI(Tl) mass up to 250 kg, being this effect much more significant

than the background improvement achieved by applying a LSV, or by

analyzing only the six central crystals.

– Finally, although the most sensitive of the ANAIS configurations ana-

lyzed in this work corresponds to the 5 × 4 matrix of NaI(Tl) detectors,

it is important to highlight that ANAIS-112, as it is designed, covers in

a reasonable way the region of parameters compatible with DAMA/LI-

BRA positive result, even in the more conservative scenario, with the

background level achieved for D2 detector.

In the immediate future, detectors D4 and D5 will be characterized at the

LSC following the same procedures applied to the previous modules. Recep-

tion of the last three detectors completing ANAIS–112 set–up is expected for

beginning of 2017.
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Resumen y conclusiones

La detección de la materia oscura del Universo y la comprensión de su natu-

raleza se encuentran desde hace décadas entre los mayores desaf́ıos que afrontan

la Cosmoloǵıa, la Astrof́ısica y la F́ısica de Part́ıculas. Existen muchas evi-

dencias, desde la escala galáctica a la cosmológica, que apoyan la existencia

de materia que interacciona muy débilmente, masiva y no relativista en la

época del desacoplo del resto de componentes del Universo: la materia oscura

fŕıa. El Modelo Estándar de la F́ısica de Part́ıculas no contiene ningún can-

didato capaz de explicar todas estas evidencias, por lo que hay que buscarlos

en nuevas teoŕıas que, ampliando dicho modelo, incorporan nuevas part́ıculas

con propiedades adecuadas.

Desde mediados de los años ochenta se han llevado a cabo diversos experimen-

tos dedicados a la detección directa de la materia oscura con diferentes blancos

y técnicas. De entre los blancos utilizados, destacan el germanio, xenon, argon

e yoduro de sodio; y de entre las técnicas, semiconductores, centelleadores,

detectores h́ıbridos criogénicos y TPCs de ĺıquidos nobles han jugado un papel

fundamental en el desarrollo de un campo que ha mejorado en varios órdenes

de magnitud la sensibilidad de los experimentos. Hasta la fecha, sólo el exper-

imento DAMA/LIBRA, en el LNGS, Italia, ha reivindicado haber detectado

una señal positiva de modulación anual para eventos que depositan enerǵıa

en un único detector en la región de 2 a 6 keVee, como la que se espera que

produzcan las part́ıculas de materia oscura que constituyen el halo de nuestra

galaxia. Este resultado no es compatible ni con fondos convencionales ni con

los variados efectos sistemáticos propuestos. Sin embargo, todav́ıa no ha sido

confirmado por ningún otro experimento.

La colaboración DAMA/LIBRA ha llevado a cabo diversos estudios del efecto

(independiente del modelo) de modulación anual en diferentes escenarios de
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materia oscura. En esta tesis, la señal medida por DAMA/LIBRA ha sido

analizada en términos de materia oscura ”mirror” simétrica, asumiendo que

una fracción, f , del halo de materia oscura en la Vı́a Láctea está compuesta por

átomos espejo de diferentes especies. Estos átomos ”mirror” interaccionaŕıan

con los núcleos blanco en el detector v́ıa dispersión Rutherford inducida por

la mezcla cinética entre los fotones ordinarios y los fotones ”mirror”, caracter-

izada por un parámetro de acoplo ε. Se han considerado diferentes situaciones

para la composición qúımica de la materia mirror, su perfil de densidad, tem-

peratura y velocidad neta del halo de materia oscura respecto a la velocidad de

la Tierra, obteniéndose intervalos permitidos para el parámetro
√
fε, compat-

ibles con la señal positiva de la modulación anual medida por DAMA/LIBRA.

Los resultados obtenidos con este estudio demuestran que valores de
√
fε com-

patibles con los ĺımites cosmológicos son capaces de reproducir la señal positiva

de DAMA/LIBRA para diferentes configuraciones de parámetros experimen-

tales y modelos de halo.

El proyecto ANAIS es la culminación de un gran esfuerzo desarrollado por la

Universidad de Zaragoza para llevar a cabo un experimento de búsqueda de la

modulación anual de la materia oscura con detectores de NaI(Tl) de muy bajo

fondo en el LSC. El experimento ANAIS tiene como objetivo la confirmación

de la señal positiva de DAMA/LIBRA usando el mismo blanco y técnica de

detección. Para lograr este objetivo, ANAIS debe cumplir los siguientes re-

quisitos: umbral en enerǵıas inferior a 2 keVee, fondo radiactivo lo más bajo

posible en la región de interés (de 1 a 6 keVee), gran masa de detección y con-

trol de los parámetros ambientales. ANAIS–112 es un experimento de más de

cien kilogramos de NaI(Tl) ultrapuro que ha sido concebido como conclusión

del estudio de prototipos previos, teniendo suficiente sensibilidad para pro-

bar la señal de DAMA/LIBRA. El montaje de ANAIS–112 en el LSC está

prácticamente listo, pendiente de completar la masa de detección de NaI(Tl)

con los últimos 5 módulos.

Se ha llevado a cabo un extenso trabajo para caracterizar y cuantificar las

contribuciones al fondo radiactivo de los diferentes prototipos considerados en

el marco del proyecto ANAIS. En este trabajo se presentan resultados de todos

los montajes que han incluido detectores fabricados por Alpha Spectra en el

LSC.
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– ANAIS–25: dos prototipos (denominados D0 y D1), con un total de

25 kg de NaI(Tl), estuvieron tomando datos desde diciembre de 2012

hasta marzo de 2015. D0 y D1 presentaron una excelente recogida de

luz, del orden de 15 phe/keV, y un contenido interno de K aceptable,

alrededor de 40 ppb, pero una actividad inaceptable de 3.15 mBq/kg de
210Pb.

– AS1K: un cristal de 1 kg de NaI(Tl) preparado por Alpha Spectra con-

firmó la contaminación de 210Pb y la evolución del 210Po permitió es-

tablecer el momento de la contaminación al final de los procesos de

purificación o crecimiento del cristal. AS llevó a cabo una exhaustiva

investigación del posible mecanismo responsable de la contaminación y

se implementaron mejoras en sus protocolos.

– ANAIS–37: un nuevo detector, D2, se instaló entre los dos módulos de

ANAIS–25. Fue crecido usando protocolos mejorados para la prevención

de la contaminación con radón y presentó una reducción del contenido

de 210Pb a 0.7 mBq/kg manteniendo una excelente recogida de luz y una

actividad de 40K similar a la de los detectores D0 y D1.

– Módulo blank : un módulo similar a los de AS, pero sin cristal, láminas

de silicona y ventanas de cuarzo, se preparó y montó en ANAIS–37 reem-

plazando al detector D1. El objetivo de este montaje era acumular una

población de sucesos puros de fotomultiplicador y poner a prueba los

protocolos de filtrado. Este módulo ha permitido confirmar la presen-

cia de luz procedente de los fotomultiplicadores, capaz de disparar la

adquisición de datos de ANAIS. Sin embargo, se confirmó la adecuación

del procedimiento de selección debido a que la mayoŕıa de estos suce-

sos pudieron ser rechazados eficientemente. Algunos eventos pasan estos

filtros, siendo anómalamente lentos, y son todav́ıa objeto de estudio,

intentando mejorar el criterio de selección para poder eliminarlos.

– A37D3: muy similar al montaje de ANAIS–37 en la configuración del

blindaje y parámetros de adquisición, pero diferente en el diseño para

incorporar el último módulo recibido, D3, fabricado con cristal crecido

con un polvo más purificado. Este nuevo módulo (D3) está situado en-

tre los detectores D0 (abajo) y D2 (arriba); los resultados preliminares
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apuntan a una significativa reducción en el contenido de K hasta 19 ppb

en comparación con módulos previos, pero una actividad mayor de 210Pb

que en D2, que podŕıa alcanzar 1.8 mBq/kg. D3 ha mostrado también

una excelente colección de luz, similar a la de los módulos anteriores de

AS.

– AS2K-1 y AS2K-2: debido al alto ritmo alfa medido en D3 y después de

discusiones acerca de la posibilidad de una contaminación superficial con

AS, dos piezas de 1 kg de NaI(Tl) (AS2K-1 crecida del mismo lingote que

D3 y AS2K-2 del lingote de los módulos restantes en preparación) fueron

recibidas y han estado midiendo desde el verano de 2016. Resultados

preliminares confirman la actividad de 210Pb medida en D3 en la muestra

de este lingote, pero apuntan a una reducción a nivel de 0.7 mBq/kg para

la otra muestra.

Los modelos de fondo construidos para los detectores D0 y D1 en ANAIS–25 y

para el detector D2 en ANAIS–37 dan una buena descripción de los datos me-

didos desde la enerǵıa umbral hasta la alta enerǵıa en diferentes condiciones de

análisis. Los resultados preliminares para el modelo del detector D3 en A37D3

son también satisfactorios. La actividad medida en los componentes externos y

en el cristal, incluyendo los isótopos activados cosmogénicamente, cuantificados

combinando diferentes técnicas de análisis, explica a grandes rasgos el fondo

observado. Pero la inclusión de algunas hipótesis adicionales, como la presen-

cia de isótopos cosmogénicos que no pueden ser cuantificados directamente o

la contaminación parcial de 210Pb en la superficie, mejoran significativamente

la concordancia del modelo con los datos reales. Se puede concluir que en la

región de interés, la contaminación en el propio cristal es la fuente de fondo

dominante. Las contribuciones de 210Pb y 3H, y las de los picos de 40K y 22Na

son las más relevantes. El mejor fondo medido hasta la fecha, el del detector

D2, es de aproximadamente 2 cuentas/(keV kg d́ıa) en 6 keVee, pero se espera

mejorar dicho fondo en ANAIS–112 gracias al incremento del poder de rechazo

en un montaje multimodular, que permite eliminar coincidencias, y un mayor

control de la radiopureza de los módulos restantes. El fondo de D2 en la región

de 1 a 2 keVee crece rápidamente. Se está trabajando en mejorar el proceso

de filtrado de los sucesos originados en los fotomultiplicadores y la estimación

de las eficiencias de aceptación de sucesos de centelleo en el cristal de NaI(Tl).
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Junto con los modelos de fondo de los detectores de Alpha Spectra ya opera-

tivos, se han evaluado las perspectivas de fondo para el experimento completo,

teniendo en cuenta el diseño planeado para ANAIS–112, aśı como otros esce-

narios hipotéticos, como una matriz de detectores de NaI(Tl) correspondiente

a 250 kg (ANAIS–250), o el uso de un veto de centelleo ĺıquido (LSV) en la

configuración de 3 × 3 módulos.

– Se han calculado factores de reducción para el fondo en la región de muy

baja enerǵıa gracias al rechazo de los eventos en coincidencia para to-

das estas situaciones, confirmando que las contribuciones de 40K y 22Na

pueden ser suprimidas eficientemente gracias a la anticoincidencia entre

los cristales de la matriz o con el LSV. Sin embargo, dado que otras

fuentes de fondo relevantes en la región de interés (3H y 210Pb) producen

depósitos energéticos en un único detector y la anticoincidencia no per-

mite su rechazo en ningún caso, el factor de reducción total estimado

podŕıa ser un factor 2 en el mejor de los casos.

– Con los niveles de radiopureza alcanzados en el detector D2, para la ma-

triz 3 × 3 de cristales, que corresponde a 112.5 kg de masa, se espera un

ritmo de fondo menor que 2 cuentas/(keV kg d́ıa) por encima de 4 keVee;

la perspectiva es de un ritmo de 2.5 cuentas/(keV kg d́ıa) en la región de

1 a 4 keVee, que podŕıa ser reducida como máximo a 1.4 cuentas/(keV

kg d́ıa) usando un LSV. En términos de fondo, el uso de un LSV es

claramente mejor alternativa que el incremento de masa a 250 kg. En

esta situación, 3H se podŕıa convertir en la mayor contribución en la

región de interés; por tanto, se ha instalado un blindaje frente a la ac-

tivación cosmogénica en la producción de nuevos cristales de NaI(Tl)

para ANAIS en las instalaciones de Alpha Spectra. Además, las mejoras

implementadas en los procesos de purificación y tratamiento superficial

de los cristales hacen viable una mayor reducción del contenido en 210Pb

y 40K en los siguientes módulos fabricados por AS. En esta dirección,

el detector D3 ya ha confirmado una clara mejora en el contenido de

potasio, atribúıdo al mayor grado de purificación del polvo de NaI de

calidad WIMPScint-III. La reducción adicional en el contenido de 210Pb

se espera que se confirme tras medir los módulos D4 y D5, viajando a

Canfranc en el momento de redacción de esta memoria.
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– En cuanto al diseño de la posible implementación de un LSV en ANAIS,

se han analizado diferentes opciones, concluyendo que un blindaje contra

el fondo gamma ambiental es imprescindible, siendo suficientes 15 cm

de plomo para reducir su contribución a niveles aceptables. La caja

contenedora del blindaje diseñada para su uso en ANAIS-112 llena de

ĺıquido centelleador ofrece unos factores de reducción para las emisiones

dominantes de 22Na y 40K en la región de interés similares a un LSV

mayor con un espesor de 60 cm de centelleador ĺıquido. La contribución

de los contaminantes radiactivos del LSV, asumiendo actividades t́ıpicas

de la literatura, no es importante ya que es dos órdenes de magnitud

menor que la de los módulos de NaI. Se ha comprobado que el efecto de

un umbral energético distinto de cero en el LSV no es relevante para el

fondo en la región de interés.

La sensibilidad de ANAIS en la búsqueda de la modulación anual de la señal de

materia oscura ha sido evaluada en diferentes configuraciones experimentales

(para 112.5 o 250 kg de NaI(Tl), usando o no un LSV) y condiciones de fondo

(teniendo en cuenta los modelos de fondo desarrollados).

– Se puede concluir que se observa una mejora significativa al reducir el

umbral energético hasta 1 keVee.

– Se puede apreciar una mejora en la sensibilidad al incrementar la masa

total de NaI(Tl) a 250 kg, siendo este efecto mucho más significativo que

la mejora alcanzada en el fondo al aplicar un LSV, o analizando sólo los

seis cristales centrales.

– Finalmente, aunque las configuraciones más sensibles de ANAIS anali-

zadas en este trabajo corresponden a matrices de detectores 5 × 4, es

importante destacar que la sensibilidad de ANAIS-112 al efecto de modu-

lación anual cubre de manera razonable la región de parámetros compat-

ible con el resultado positivo de DAMA/LIBRA, incluso en el escenario

más conservador, con el nivel de fondo alcanzado en el detector D2.

En un futuro inmediato, los detectores D4 y D5 serán caracterizados siguiendo

los mismos procedimientos aplicados para módulos previos. La recepción de los

tres detectores restantes y la operación del experimento completo ANAIS–112

está prevista para 2017.
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