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Abstract: Our aim is to characterize curvatures using a methodology previously applied to 
other localized disturbances in plastic optical fibers (POFs). The effects of several curvature 
radii and turn angles have been analyzed, so that for each condition, angular dependent 
attenuation and diffusion are obtained from experimental measurements to construct a matrix 
that accounts for the global effects of power loss and mode mixing introduced by the 
curvature over the angular power distribution. Power loss as a function of bend radius was 
calculated using the characteristic matrices and compared to experimental results to validate 
the model. This curvature model can be a useful tool to predict the impact of bends on 
transmission properties as is demonstrated in the example of a small network in a domestic 
environment. 
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1. Introduction 

The layout of POFs for their usual short-range applications in reduced environments as cars, 
planes and houses requires a number of bends that often have very small radii. Although 
POFs are more resistant to bending loss than glass fibers, reported curvature losses can reach 
several dBs for radii below 20 mm depending on the fiber index profile, its numerical aperture 
and the curvature configuration [1]. Moreover, it is reasonable to expect that curvatures 
introduce not only angle-dependent power loss but also power transfer among modes (mode 
mixing) both with an impact on fiber bandwidth. Thus, a model that accounts for power loss 
and mode mixing caused in small bends is needed to incorporate the effects of curvatures into 
network simulations. In this line, ray-tracing models that account for mode mixing in 
curvatures are able to give good predictions at the cost of long calculation time [2]. Another 
approach based on segmentation of the time-independent power flow equation is also able to 
estimate the changes in the angular power distribution produced by a given curvature but so 
far it has only been tested for radii larger than 10 cm [3]. 

In previous works, we showed that a POF can be modelled by a characteristic matrix to 
describe the amount of power in a given angle that is transferred to another angle for each 
temporal frequency and where the optical power distribution transmitted through the fiber is 
described as a function of propagation angle and frequency. The characteristic matrix for an 
infinitesimal fiber length is a tri-diagonal matrix calculated using the fiber angular attenuation 
and diffusion functions that were obtained from experimental measurements [4]. This 
approach was later extended to describe passive components that produce localized 
disturbances over the optical power propagated through the fiber [5]. The device introduces 
localized power loss and strong mode coupling as the power transfer is accomplished in a 
very short distance, not only between adjacent modes or angles, but also to others further 
away or even to radiating modes. In fact, we showed that connectors can be modelled using a 
square matrix obtained as a tri-diagonal matrix but elevated to a high exponent to account for 
the greater and localized changes they impose in optical power distribution. The elements of 
this tri-diagonal matrix are also calculated from the angular attenuation and diffusion that 
underlie the global power loss and mode mixing produced by the device [6]. To obtain these 
functions, we devised a method based on the comparison of experimental output far field 
patterns (FFPs) measured with and without the disturbance and for different launching angles 
[7]. 

Here, we analyze the effects on a 1 mm step-index POF of small bends whose radii range 
from 3 to 35 mm, and for two turn angles: 360° and 90°. These turn angles have been selected 
as fiber loops (360° turns) are often made to store the fiber in small receptacles, while 90° 
turns are a good representation of the shape fibers take around nooks and corners that are 
frequent in houses. The range of bend radii has been chosen to cover the span of curvatures 
that are likely to occur in the installation of domestic links. Our final aim is to provide a new 
tool that can be integrated into our proposed matrix framework to model light propagation in 
POF networks [8]. In this way, a POF link can be simulated by the product of several matrices 
that model different fiber lengths, the connectors that join them, and also the bends necessary 
to install the fiber in a realistic environment. 

The paper is organized as follows: First, the methodology to obtain the mode dependent 
attenuation and diffusion from the experimental radial profile scans with and without the 
bends is described. Next, we show the attenuation and diffusion obtained for all conditions. 
Also, we perform a study of the variation of the curvature effects as a function of time to 
assess the stability of the model. Then, the corresponding matrices calculated from the 
curvature characteristic functions are displayed. These matrices are used to validate the model 
comparing its predictions to measured power loss versus curvature radius. Last, a case 
example is implemented to illustrate how this curvature characterization can be integrated in 
the POF matrix model and to show the consequences of bending in a domestic network. 
Finally, we summarize our results and emphasize our conclusions. 
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2. Methods 

In the first subsection, the experimental set-up to obtain the FFPs scanning the input angle is 
described and the measurements of FFP radial profiles obtained for bent fibers are shown. 
Next, we explained how the comparison of these experimental radial profiles to those 
measured for a straight fiber can be used to obtain the free parameters of a model based on a 
characteristic matrix postulated to describe the total power loss and mode mixing produced by 
the curvature. The fiber tested was an ESKA PREMIER from Mitsubishi that is a step index 
PMMA POF of 1 mm of diameter. For the experiments, we used fiber samples of 2.5 meters 
as this length was sufficient to ensure the minimum changes in fiber position through the 
whole set of measurements. We tested 360° and 90° turns with radii of 3, 6, 13, 25 and 35 
mm. 

2.1 Experimental set-up and measurements 

FFPs were obtained injecting a collimated beam directly into the fiber input end. This end was 
placed on the center of a motorized rotary mount to vary the input or launching angle from 
−40° to 40° in 1° steps as described in [5]. The images of the output FFPs reflected from a 
white screen were recorded by a cooled CCD. From each FFP image, the radial profile was 
extracted to provide a measurement of the optical power as a function of the FFP output angle 
relative to the fiber axis. All the angles in this paper are external to the fiber. The 
experimental conditions for these measurements were specifically designed to apply the 
curvature under test without introducing further bending of radii comparable to the one under 
test in other sections of the fiber. The FFP-scans were recorded first for the straight fiber to 
serve as a reference, and then for the fiber with the curvature, starting first from the largest 
radius down to the smallest one. Independent series were taken for the 360° and 90° turns. 
The curvatures were applied at 20 cm from its output end using a mandrel that was a pile of 
cylinders with different radii starting from 35 mm at the base and decreasing to 3 mm at the 
top step. This curvature tower was the same used in [1] and is depicted in Fig. 1, as well as the 
two configurations used to test the 90° and 360° curvatures. The fiber was kept straight in the 
20 cm previous to the curvature tower whose lateral position and height were changed using 
poles to avoid bending the fiber in other axes. 

 

Fig. 1. Schematic of the curvature tower showing the set of radii and turn angles considered. 

A control experiment to assess the influence of the turn sign (clockwise or anti-clockwise) 
was performed but the results did not show systematic differences and all the results were 
pooled together. Also, measurements for negative and positive launching angles for the same 
fiber were considered as independent measurements. 

Figure 2 shows some experimental measurements that will be later used to determine the 
characteristic matrix for the corresponding curvature. These measurements were obtained for 
a fiber segment bent a complete turn and a quarter of a turn with radii of 35 and 6 mm, 
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respectively. Each image corresponds to a matrix, P where all the FFP radial profiles obtained 
for a launching angle scan are displayed on a single plot. Each column shows the FFP radial 
profile obtained for a given input or launching angle (horizontal axis) as a function of the FFP 
output angle (vertical axis). Red indicates the highest power while blue is the lowest. All 
images have been normalized to the maximum value that was found in the measurement for 
35 mm and 360°. They illustrate how bending produces power loss at high angles for the 
smaller radii and also introduces some power spread among angles that is revealed by the 
slight widening of the patterns which is more evident in the diagonals. Also, notice that loss at 
low angles is higher for the 90° than for the 360° turn. 

 

Fig. 2. Experimental FFP radial profiles: bend radius of 35 mm (left) and 6 mm (right) for 90° 
and 360° turn angles. 

2.2 Estimation of the characteristic functions 

We assume that the global effect of the curvature can be mathematically modeled as a linear 
system so that the output power at a given propagation angle can be written as a linear 
combination of the power at that and other angles and thus, the angular power distribution 
after the bend in vector form can be obtained multiplying the characteristic matrix by the 
power distribution before the bend. The experimental FFP radial profiles measured with and 
without the bend provide a representation of the angular power distribution after and before 
the curvature, respectively. Thus, their relationship is the following: 

 ,= ⋅C,R C,R REFP M P  (1) 

where MC,R is the characteristic matrix for a curvature of angle C (360° or 90°) and radius R, 
and PC,R and PREF are the matrices of the FFP radial profile scans measured with and without 
the curvature, respectively. 

To obtain the curvature characteristic matrix, we start from a tri-diagonal matrix, M0
C,R. 

Its elements are calculated from the attenuation function: α (θ) in Np/m, that describes power 
loss for each angle outer to the fiber, θ, and the diffusion coefficient: d0, in rad2/m, that is the 
power transferred to adjacent angles and underlies mode mixing, as: 
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where Δθ = 0.005 rad and Δz = 0.001 m are the infinitesimal angular and axial coordinates [4]. 
To model the global effects of the curvature that are localized but intense, its characteristic 

matrix MC,R, is calculated as the power of this basic matrix: 

 ( ), , ,
N

=C R C R
0M M  (3) 

where N is a very large integer that in our case was fixed to 10000. The exact value of N is 
arbitrary, provided it is large enough to account for the effects of the curvature. If this value is 
changed, the obtained values of α (θ) and d0 will change accordingly but the resulting global 
characteristic matrix will be the same. 

A good approximation of the angular attenuation function for the curvature can be directly 
obtained from a pair of experimental FFP radial profile scans while the diffusion is estimated 
fitting the model to the experimental measurements. We found that a good fit was reached 
with a constant diffusion as we did in the case of connector characterization [6]. In both cases, 
the high variability of the measurements prevents further refinement using a diffusion 
function of several fitting parameters. Thus, the expressions in Eq. (2) to calculate the 
elements of the tri-diagonal matrix were given specifically for a constant diffusion. 

As the sum of all the elements of a row in matrix P is related to the total power for the 
corresponding propagation angle, the ratio of this sum for the reference matrix PREF, relative 
to the same sum for the matrix with the curvature PC,R provides the power change at that 
angle introduced by the curvature under test: 
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Then, the diffusion constant, d0, for each measurement was fitted to minimize the 
following cost function: 

 , ,F ,= −C R C R REFP M × P  (5) 

where MC,R was calculated using Eq. (3) and introducing the attenuation function obtained 
using Eq. (4) for the corresponding measurement and a trial diffusion coefficient [6]. 

Notice that although the infinitesimal matrix is obtained from attenuation and diffusion, 
we do not try to model the physical propagation path of light throughout the bend. We use this 
approach as an efficient way to model the global behavior of the curvature. 

3. Results 

3.1 Curvature attenuation and diffusion effects 

Figure 3 shows the attenuation and diffusion values obtained for all conditions tested. 
Attenuation is the average of at least eight measurements. The middle graph shows the overall 
diffusion as a function of the curvature radius for the two turn angles, also obtained averaging 
the values for all individual measurements. Error bars show the standard deviation for the 
diffusion and for the attenuation illustrating their high variability. The origin of this variability 
is the impact on power distribution of factors such as fiber termination, position, etc. 
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The attenuation curves show a relative flat base at lower propagation angles that rises 
steeply from a given propagation angle. This cut-off angle (shown as a triangle) is lower the 
smaller the curvature radius, and higher for the 90° turns (right graph) than for the 360° turns 
(left graph) of the same radius. From the cut-off angle, attenuation rises linearly with slopes 
that are steeper for 360° than for 90° curvatures. In general, the attenuation for low angles is 
higher for the 90° turns than for the 360° turns as was also visible in the images shown in Fig. 
2. Figure 3 also shows that the value of the diffusion is higher for 90° than for 360° turns. In 
both cases, diffusion is higher for the smaller bends, decreasing slightly with increasing radii. 
The order of magnitude of the diffusion for curvatures is relative small compared with that of 
the fiber and connectors [6, 9]. In fact, it is about three times lower than the value found for 
polished connectors [10]. 

 

Fig. 3. Attenuation as a function of propagation angle obtained for different curvature radii and 
turn angles of 360° (left) and 90° (right); overall diffusion as a function of bend radius for 360° 
and 90° turns (center). 

Thus, our findings reveal that curvatures act as spatial filters that reduce the optical power 
transmitted above a given angle. This filtering is more effective for the complete turn than for 
the quarter of a turn. 

3.2 Permanence of curvature effects 

In previous works, we have assessed and quantified permanent changes in fiber propagation 
properties produced by extensive long-duration strains applied over the fiber [11]. Here, we 
repeated the characterization procedure after leaving the fiber installed at the curvature tower 
for extended periods of time to determine if there were changes in its attenuation and 
diffusion. We kept several fiber segments bent a 360° turn over the smallest radius in the 
curvature tower (3 mm) for periods longer than 15 hours. Our results do not reveal changes in 
the attenuation as is evident in the left graph of Fig. 4 where several of these individual 
measurements have been represented. In the right graph, the diffusion is shown. Different 
colors in both plots indicate measurements corresponding to different fiber segments. The 
black line is the average value for the diffusion for the 3 mm 360° turn with its standard 
deviation to allow assessment of the differences. The circles show the initial value of the 
diffusion coefficient and the squares the value obtained after waiting some time specified on 
the horizontal axis. The figure shows that the diffusion coefficient value estimated after a time 
was systematically lower than its initial value. However, these small decrements of diffusion 
are well below the standard deviation also plotted in the figure. 
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Fig. 4. Temporal variation of the attenuation (left) and the diffusion (right) for a 3-mm radius 
and 360° turn. 

The characterization procedure was also carried out after un-bending and straightening 
each fiber segment. The differences between the obtained attenuation and the reference 
curves, not shown in order to simplify the graph, are below the standard deviation so that we 
can conclude that the changes over the angular attenuation of the released fiber are not 
relevant. However, the values of the diffusion coefficient obtained after releasing the fiber, 
shown as triangles of the color of the corresponding measurement, are significantly higher 
than those obtained just before. This increase of diffusion can be related to the breakage of 
molecular bonds when the fiber is straightened after it has been bend for a long time. These 
findings confirm that it is not advisable to re-use fibers once they have been bent. A similar 
behavior was obtained after bending the fiber 90° and 3 mm. 

3.3 Curvature characteristic matrices 

The curvature characteristic matrices, MC,R, are displayed in Fig. 5 for radii of 35 and 6 mm 
and both turn angles. The images have been normalized to the maximum of all displayed 
matrices (located on the matrix for 360° and 35 mm) to visualize their differences. 

 

Fig. 5. Curvature characteristic matrices: 360° turn (left) and 90° turn (right). 

The characteristic matrices show a nearly diagonal pattern, which is shorter for smaller 
radii due to the higher power loss at higher angles. The cause of power loss at a given angle 
can be coupling to other modes or radiation but our approach does not provide this 
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information. The diagonal width describes the overall power diffusion which is relatively low. 
This image representation demonstrates how the effect of curvatures is filtering out power at 
high propagation angles, more restrictively for 360° than for 90° bends due to their lower cut-
off angles and higher attenuation slopes. The filter selectivity is yet enhanced for the 360° 
turn whose matrix shows lower attenuation at low angles and less mode mixing than that 
corresponding to the 90° turn. This fact is also evident in Fig. 1 where we remarked how the 
radial profiles measured for low angles (left hand corner of the patterns) show higher values 
for 360° than for 90° turns. The higher mode mixing for the 90° turn is consistent with our 
previous finding that higher bending losses are related to the number of curved-to-straight 
fiber transitions [1]. 

To emphasize our findings and to show that the overall effect of a curvature in which only 
a few centimeters of fiber are involved is comparable to those of power propagation through a 
relatively long straight fiber, Fig. 6 shows the characteristic matrix of a 10 meter GH fiber and 
those obtained for 360° and 90° bends of 3 mm radius. Images are normalized to the 
maximum value of the three that, in this case, is in the characteristic matrix for 360° and 3 
mm. Optical power transmission through the fiber imposes a filtering of power at high angles 
similar to that of the curvature but with substantially more mode mixing, particularly at low 
angles. In fiber propagation, the higher diffusion and attenuation at lower and middle angles 
increase the global power loss and mode mixing compared to bends. The shapes of the 
curvature matrices are closer to that of a diagonal matrix so that they behave as a highly 
selective angular filter that removes power from a cut-off angle while confining power at 
lower angles with only slight loss and a little spread. 

 

Fig. 6. Curvature characteristic matrices for 3-mm bend radius: 360° turn (center) and 90° turn 
(right). Comparison with characteristic matrix of 10 meters of fiber without bending (left). 

3.4 Validation experiment 

We tested the model by comparing its predictions of total power loss to measurements 
obtained using a very wide LED source. We measured the curvature loss introduced by 360° 
bends in several 2.5 meter segments of GH fiber near their output end using a 660 nm LED to 
inject power. These fiber segments were different from those used in the characterization 
procedure. In addition, the FFP radial profile using this LED as the launching source was first 
measured for the straight fiber segment and put in vector form as a function of the 
propagation angle: pLED. This distribution can be used to predict the angular power 
distribution after the fiber is bent using the characteristic matrix: 

 .= ⋅360º,R 360º,R LEDp M p  (6) 
The total power for a given angular power distribution can then be obtained as: 

 ( )sin .Total kk
P p k θ θ= ⋅ ⋅ Δ ⋅ Δ  (7) 

In Fig. 7, the experimental results are shown as power loss in dB with their standard 
deviation to demonstrate their good agreement with model predictions. 
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Fig. 7. Bending loss as a function of radius: model predictions (red), experimental 
measurements (black). 

3.5 Integration into the matrix simulation environment 

The curvature matrix can be integrated into the POF propagation matrix toolbox and used to 
incorporate the effects of bends at different positions the link [12]. The angular low-pass 
shape of the curvature matrices allows us to predict an enhancement of transmission 
capability in the presence of bends that filter the slower modes out of the power distribution 
similar to that found for other devices [5,13]. However, this assumption cannot be generalized 
because power distribution in POFs shows a strong dependence on launching aperture and 
fiber length. Therefore, to illustrate the impact of curvatures on transmission properties in a 
likely scenario, we consider a 20-meter POF link where it is necessary to bend the fiber 
around a corner. We contemplated two possible implementations depending if the curvature is 
closer to the emitter or to the receiver. The schematic depicted in Fig. 8 shows the two 
configurations implemented: a) and c), as well as configuration b) with the fiber straight to 
serve as a reference. To assess the influence of launching numerical aperture (NA), the 
analysis has been performed for two different sources. 

 

Fig. 8. Twenty-meter POF link: a) with a corner at 0.5 m from the emitter; (b) no corner; (c) 
with a corner at 0.5 m from the receiver. 

A curvature of 90° and 6 mm radius has been used to describe bending the fiber around a 
corner, so the characteristic matrix used is M90°,6mm. In our approach, vectors represent the 
angular power distributions at different points in the link and matrices describe the diffusion 
and loss introduced by different fiber lengths or by curvatures. The configurations shown in 
Fig. 8 are implemented by the following matrix products using a simplified notation where the 
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frequency dependence in the characteristic matrices for different fiber lengths and in the 
power distribution vectors is not explicitly shown: 

 

,
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 (8) 

where pE is the source angular distribution in vector form, and pD the transmitted power 
distribution that reaches the detector. ML is the propagation matrices that account for power 
loss and mode coupling caused by L fiber meters (in this case, L is 0.5, 19.5 or 20 m). Both 
the fiber propagation matrix and the power distribution have dependences on the angle and 
the frequency, while the curvature matrix only has angular dependence. The power 
distribution vector carries not only angular but also frequency information and can be used to 
obtain not only the angular power distributions but also the transfer function. In Fig. 9, the 
amplitude of the transfer functions measured at the detector is compared for the three 
configurations. The left graph shows the simulation results when the source has a wide 
emission pattern such as a LED (with a FWHM of 30°) and the one on the right for a 
narrower source such as a VCSEL (10°). As all matrices are independent on the input 
conditions, they do not have to be re-calculated to evaluate the link when the source is 
changed. 

When using the LED as optical source, the bend increases bandwidth for both deployment 
configurations. This increase of over 30% of its reference value is achieved by the filtering 
out of the power at higher angles with slower modes. The cost of this bandwidth increase is a 
relative small power loss: 1.1 dB for configuration a) and 1.2 dB for configuration c) relative 
to reference case b). For the VCSEL, however, the bend degrades the performance when it is 
near the source, while there is slight improvement when it is near the receiver. Power losses 
are 0.44 and 0.37 dB, respectively for configurations a) and c). They are lower with this 
narrow launching conditions that confine of power at lower angles which, as we have shown, 
are much less affected by bending. 

 

Fig. 9. Normalized transfer function obtained at the detector for a LED (left) and a VCSEL 
(right) for the three configurations tested. 

6. Conclusions 

In this paper, we have assessed the effects of several small-radius curvatures for a quarter of a 
turn (90°) and a complete turn (360°) obtaining their characteristic matrices. Results show 
how curvatures produce intense power loss for angles higher than a cut-off angle that 
decreases with the bend radii and is higher for 90° turn angles. Mode mixing produced at the 
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bend is slight so that, according to our work, small radius curvatures have the effect of an 
angular low-pass filter that is more selective for 360° than for 90° turns. Therefore, curvatures 
in a POF link can enhance transmission capacity as they filter out the slowest modes from the 
optical power distribution depending on their position, the launching conditions, etc. The 
curvature characteristic matrix can predict changes produced over any power distribution and 
thus, its integration as a new block of the propagation matrix framework will provide more 
realistic simulations of POF network designs before their deployment. 
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