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Abstract: Adolescent smoking is one of the most pressing public health problems. The objective of this 

paper is to analyse the influence of peer pressure on adolescent cigarette consumption. More concretely, 

we explore the significance and robustness of the peer effects using several estimation methods employed 

in the existing literature. On the basis of the data provided by the 2004 Spanish Survey on Drug Use in 

the School Population, we estimate the probability of being a smoker by two-stage models. The results 

reveal that when we use standard errors used in the literature the class peer variable appears to be 

significant. However, the class peer variable is not significant when we calculate more exigent standard 

errors, a result that is robust across all specifications. The paper suggests the need for a more cautious 

interpretation of the peer effects found previously in the literature until a deeper analysis confirms the 

robustness of the peer effects. 
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1. Introduction  

Tobacco consumption among adolescents is one of the most pressing public health 

problems, with youth smoking being recognized as the major preventable risk factor for 

cancer. Most smokers initiate this behaviour in adolescence (Yu and Williford 1992; 

Smith et al. 2007), and the early starting age doubles the risk of lung and other types of 

cancer (Taylor 1993; Gold et al. 1996; Band et al. 2002). Moreover, the consumption of 

tobacco appears to be addictive, most young smokers begin smoking with no intention 

of becoming smokers, but they are trapped by the addiction. Thus, Becker and Murphy 

(1988) develop a model in which past consumption increases the marginal utility of 

present consumption.  

Despite these facts, tobacco is the most widely consumed drug among 

adolescents, with a number of aspects of this consumption being studied in recent years, 

e.g. the impact of addiction (Chaulopka 1991; Becker et al. 1994; Pierani and Tiezzi 

2009), the impact of taxes (Escario and Molina 2004; Wan 2006; Tauras et al. 2007), 

and the effects of advertising (Keeler et al. 2004). 

Looking at the explanatory factors of tobacco consumption among adolescents, 

the immediate and broader social environment of the individual, that is to say, family, 

friends, and school community, appear to be important influences on the initiation of 

this risk behaviour (Flay et al. 1999; Leatherdale et. al. 2006; Lundborg 2006; Ali and 

Dwyer 2009). Papers such as Mounts and Steimberg (1995), Harturp (1999) and 

Dekovic et. al. (2004) explore these factors, arguing that, during adolescence, the group 

of friends and schoolmates becomes the most important social reference for students. 

The literature has often focused on these social environments (immediate and 

broader), studying the correlates between drug consumption and peer behaviour 



(Gaviria and Raphael 2001; Eisenberg and Foster 2003; Scal et al. 2003; Powel et al. 

2005; Lundborg 2006; Clark and Lohéac 2007; Ali and Dwyer 2009; Duarte et al. 2011; 

McVicar 2011). In most cases, positive and significant correlates are found between 

individual smoking behaviour and the behaviour of peers. An excellent overview about 

theorical and empirical literature on peer effects can be found in Epple and Romano 

(2011), although the survey is focused in the education topic. 

Manski (1993) warned of the difficulty of inferring whether or not the average 

behaviour in a certain group influences the behaviour of the individuals comprising that 

group, due to the “reflection” problem. Other difficulties arise from the existence of 

different types of social interaction. Following Manski (1993), three hypotheses explain 

why individuals who belong to the same group tend to behave similarly. First, the 

propensity of an individual to behave in a certain way is influenced by the behaviour of 

the group (endogenous effects). The second hypothesis, exogenous or contextual effects, 

establishes that the propensity of an individual to behave in a certain way varies with 

the exogenous characteristics of the peer group. Finally, the third level of social 

interaction, or correlated effects, arises from the fact that individuals in the same group 

tend to behave similarly, since they share similar characteristics and institutional 

environments. As Manski (1993) showed, if we assume the existence of both contextual 

and endogenous effects, there is no clear way to distinguish between them. 

Consequently, most papers have assumed that there are no contextual effects. 

An important issue pointed out by Foster (2006), in the educational context, is 

that most peer effects found in education are modest and not robust to alternative 

specifications, and as a consequence it is necessary to be more cautious in interpreting 

the results. Following this idea, our objective is to analyse the robustness of the peer 

effect significance in the context of smoking behaviour. In particular, we investigate 



whether this peer effect is robust when we take into account the possible correlation in 

the unobserved variables of the same group of peers, in order to compute standard 

errors. 

On the basis of the data provided by the Spanish Survey on Drug Use in the 

School Population, collected for 2004 by the Spanish Government’s Delegation for the 

National Plan on Drugs, we compute a peer group measure at the class level, and 

analyse its impact on the decision of adolescents to smoke.  

The rest of the paper is structured as follows. Section II is devoted to presenting 

the model, as well as the empirical strategy. The data and variables are described in 

Section III.  In Section IV, the results are presented, and Section V closes the paper with 

a review of our main conclusions.  

 

2. Model and strategy 

In order to examine the determinants of adolescent tobacco consumption, we assume 

that people make rational choices, in the sense that they decide to smoke if the utility of 

such behaviour is higher than the utility of not smoking. Accordingly, each student i 

belonging to class c in school k,  indexed by ick, has a utility function uick(Yick, Xick, Pick), 

where variable Yick is a dichotomous variable that takes values one or zero, depending 

on whether the adolescent smokes or not, Xick is a set of covariates reflecting the 

individual and family characteristics of the adolescent, and Pick is the peer group 

variable, measuring the prevalence of cigarette consumption in the reference group of 

the adolescent. The individual will decide to smoke cigarettes if the following condition 

holds: 

 uick(1, Xick, Pick) - uick(0, Xick, Pick) > 0     (1) 

while he/she will prefer to be a non-smoker otherwise.  



Given that the dependent variable is the outcome that reflects the individual 

decision, most empirical research has been carried out within the random utility 

framework used in binary choice models, adopting the following stochastic 

specification: 

 *
ickY = uick(1, Xick, Pick) - uick(0, Xick, Pick) = ickickick PX εγβ ++   (2) 

where *
ickY  is a latent variable whose sign determines whether or not the individual 

consumes tobacco, that is to say, the value (one or zero) of the observable variable Yick. 

Finally, εick is an error term normally distributed with mean zero and unitary variance. 

Despite the fact that, until Case and Katz (1991), empirical work used peer effect 

regressors as exogenous variables, the estimation of equation (2) must account for some 

potential sources of endogeneity. First, the individual error would be correlated with the 

peer effect variable if we assume, which is the most plausible option, that individual 

smoking affects the average smoking of the group of friends. Moreover, adolescents 

who become smokers will tend to have friends who smoke. In other words, we are 

assuming that there is causality in both directions. Thus, average smoking affects the 

individual decision of whether or not to smoke and, at the same time, individual 

behaviour also affects the behaviour of the group of friends. Second, families could sort 

across schools according to their conscientiousness about the education of their 

children, in such a way that they devote resources to the choice of where to live, 

focusing on the perceived quality of schools in the area. Both of these endogeneity 

problems would yield upwardly biased peer effect estimates.  

 As we have pointed out above, it was not until the 1990s that research took into 

account the possible endogeneity of the peer variable, and the majority of subsequent 

studies have implemented an instrumental approach, as do we. In this context, models to 



analyse the decision to smoke or not, have often been estimated by a two-stage 

procedure. Following this approach, we estimate equation 2 using a Probit model1.  

Following Gaviria and Raphael (2001), Krauth (2007), and Lundborg (2006), 

among others, we assume there are no contextual effects and thus parameter γ can be 

interpreted as the endogenous social effect or endogenous peer effect2. Further, this 

assumption enables us to solve the problem of bidirectional causality, as the individual 

behaviour is not affected by the average characteristics of peers, consequently, they are 

natural candidates to instrument the peer variable.  

With respect to the problem of sorting, prior studies have found that this 

problem is not very significant (Gaviria and Raphael 2001; Lundborg 2006). In 

particular, Gaviria and Raphael (2001) split the sample into two groups: “movers”, 

those youths whose families moved during the last two years, and “stayers”, the 

remainder. The hypothesis is that, under relevant endogenous sorting, the peer effects 

will be larger for “movers”. They find no evidence of statistically significant differences 

in the peer effect estimates for four of the five behaviours analysed, with one of these 

being cigarette smoking. Similarly, Lundborg (2006) includes school/grade fixed effects 

in order to address the issue of sorting. After estimating the peer effects with and 

without school/grade fixed effects, the magnitude of the peer effects in smoking 

behaviour decreases only 7%.  

                                                
1 In general, the literature that estimated Probit models reported the standard errors of the second stage 

with the robust option, but without correcting for the generated peer regressor (see, for example, 

Lundborg (2006) or Clark and Lohéac (2007)).  
2 As Krauth (2007) pointed out, in most cases it is only possible to distinguish between endogenous and 

contextual effects by assuming that one or the other is absent. Thus, as Lundborg (2006) pointed out, by 

using measures of peer effects at the class-level, the importance of the contextual effects will be reduced, 

since when the reference group is broader, pupils are likely less exposed to the family background of their 

peers, and thus the observed peer effects are more likely to be caused by endogenous rather than 

contextual effects.  



The sorting problem is probably less important in Spain than in other countries, 

given that parents cannot choose which class their sons and daughters attend. In fact, 

students are assigned to different classes in alphabetical order or by other school rules. 

Moreover, most students in Spain are sent to the schools of the district where the youth 

lives; there is a set of norms to assign a particular school, and living in the district of the 

school is the most important criterion. However, some sorting is still possible, that is, 

parents can move to another school district, or they can choose to send their child to a 

private school, with this second type of sorting being the most significant. 

Consequently, in order to deal with these endogeneity and sorting problems, we 

implement the following strategy. First, our estimations include school fixed effects. 

Second, given that the sorting reflects the unobservable “preoccupation” of parents, the 

introduction of several variables that measure parents’ backgrounds, such as education 

level, will reduce spurious correlations, as these variables are “good” proxies for the 

interest of parents in giving their sons and daughters a good education. Finally, we use 

instrumental variables to deal with any other correlations between the peer variables and 

the error term. With these strategies, although some unobserved heterogeneity could 

still remain, we consider that the problem is considerably alleviated. 

 

3. Data and variables 

In order to implement the empirical model, the data analyzed in this paper come from 

the Spanish Survey on Drug Use in the School Population for the year 2004. This 

survey is carried out by the Spanish Government’s Delegation for the National Plan on 

Drugs, and constitutes a nationally representative sample of the student population 

between 14 and 18 years old. We restrict our sample to the years of compulsory 

education, up to age 16, since the population between 16 and 18 years old are not 



randomly sampled and those who decide to drop out of school cannot be interviewed3. 

The information provides measures of smoking behaviour and certain individual and 

family characteristics. The questionnaires were filled in confidentially, in a classroom 

setting. The survey was carried out in both state/public and private centres of secondary 

education and vocational training throughout the national territory.   

The dependent variable in the study is CigaretteConsumption, a dichotomous 

variable which takes value 1 if the individual has smoked cigarettes during the last 30 

days, and 0 otherwise. In our data, most occasional smokers are not considered as 

smokers, since those who have declared having smoked only a few times in their lives 

are asked to skip the following questions about smoking behaviour, among which is the 

question whether or not they have smoked cigarettes during the last 30 days. 

Consequently, we consider those individuals to be non-smokers.   

Given that the main objective of this work is to evaluate the peer effect on 

individual cigarette consumption, we must define an appropriate measure of the peer 

group. As we have mentioned, we use a traditional measure of the peer effect computed 

at class level. For an individual i belonging to class c in school k, peer group cigarette 

consumption is defined by taking the class average prevalence of tobacco consumption, 

after subtracting his/her contribution to this average: 

                                                
3 Thus, the final sample size is 10,666 individuals, of which 10,102 can be used in our estimations. 

According to our data set, first smoking decisions are mostly taken by Spanish adolescents before age 16. 

Specifically, 23.13 % of respondents aged 15 are smokers. Although it is difficult to generalize the results 

of the paper to broader age groups, we feel we are justified in doing so, since i) this figure of 23.13% of 

smokers among people who are 15 years old is a significant proportion of future smokers (37% male, 

28% female according to the 2008 WHO report), ii) the fact that we are using a large sample with more 

than 10,000 students, and iii) the fact that the estimated marginal peer effects (0.558) are in the normal 

range found in the literature. Nevertheless, a caution must be introduced regarding the different gender 

composition of the adolescent and adult populations. 
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where Nck is the total number of individuals in this class. 

Apart from the peer variable, other exogenous variables are considered, 

including individual and family characteristics. Additionally, as mentioned in the 

previous section, school fixed effects are considered in our analysis. The definition and 

a descriptive analysis of these variables are shown in Table I.  

(Table 1) 

 

4. Empirical results 

In order to deal with the endogeneity problem of the peer effects variables, we use a 

two-stage procedure that provides consistent estimates of equations 2 and 3. We cannot 

use the estimated variances of the second stage, as they ignore the fact that a regressor 

has been estimated. One general approach, applicable to both the linear probability 

model and the Probit model, is to use bootstrap methods for statistical inference. As 

Cameron and Trivedi (2005, p. 355) point out, a bootstrap procedure can lead to a more 

refined asymptotic theory. In this application, we use normal bootstrap and block-

bootstrap procedures.  

With respect to the first stage of the estimation, we have regressed the peer 

class-based variable on the exogenous variables and five instruments that are the class 

average, after excluding individual i of the following variables: Income, 

SmokingMother, SmokingFather, WithoutFather and HouseWifeMother.  



In order to gain confidence in the instruments used, we have implemented 

several tests. We test the joint significance of the instruments4 and the over-

identification restrictions by following Wooldridge (2002, p. 122-123). The results 

provide evidence that the instruments are clearly significant in explaining the peer effect 

variable, after controlling for the exogenous covariates (F=135.82, p-value= 0.000), and 

thus we cannot reject the null hypothesis of the validity of the instruments (W=7.085, 

with the critical value being )5(295.χ = 11.1). 

Having explained the procedure to instrument the peer effect, we go now to 

obtain the estimates of equations 2 and 3, beginning with Equation 2, which is estimated 

by a Probit model. To that end, we use two strategies. In the first, we follow the two-

step approach suggested by Rivers and Vuong (1988), using the original peer effect 

variable, and we introduce the first stage errors as an additional regressor (see Table 2). 

In the second, we replace the peer effect variable by its predicted counterpart obtained 

in the first stage linear regression, reported in Table A.1. The estimates appear in Table 

3. 

In both cases, we present three different estimates of the t-statistics for the 

coefficient estimates. In the first column we do not correct the standard errors of the 

second stage in order to compute the t-ratios, in the second column we correct the 

standard errors with normal bootstrap and, finally, in the third column, the standard 

errors have been corrected with block-bootstrap. In both cases, normal bootstrap and 

block-bootstrap procedures use 200 replications (Efron and Tibsharani (1993) consider 

that this practice is almost always enough for standard error estimation). 

(Table 2) 

                                                
4 The  first-stage estimates are available upon request. 



The computation of standard errors taking into account the cluster structure of 

the data is important in order to account for the third level of social interaction, or 

correlated effects, that are independent of the exogenous variables. Thus, students in the 

same class are taught by the same teacher, who can exert heavy, little or even no effect 

on their smoking behaviour. Hence, individuals in the same class tend to behave 

similarly since they share similar institutional environments. Although omitting these 

correlated effects does not yield inconsistent estimates of the coefficients if they are 

independent, it is necessary to take them into account for efficiency reasons, and for the 

computation of correct standard errors.  

The two-stage procedure of estimation following Rivers and Vuong (1988) 

enables us to obtain marginal effects (see Table 2). In order to compute average partial 

effects or marginal effects under the Rivers and Vuong approach, we follow  

Wooldridge (2002), using his equation (15.47), ,)ˆˆPˆXˆ(
N
1 N

1i
ickckck 111∑
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for continuous variables, we take derivatives, or, for discrete variables, we evaluate the 

difference of the equation at two values of the variable. For example, for a continuous 
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where the ickυ̂ are the first-stage OLS residuals and 
11
ˆ,ˆ ρρ γβ and 

1
ˆ
ρθ are the estimated 

coefficients in the Probit second stage, where the first stage errors have been introduced 

as an additional variable. The marginal effects for the residuals of the first stage, and for 

the IncomeSquared variable, are not computed as it has no economic interpretation for 

the residuals and we have computed the marginal effect of disposable income taking 

into account the effects of both Income and IncomeSquared variables.  

The peer effect estimates are listed at the top of Table 2. A noticeable result is 

that the peer effect at the class level is significant in two of the specifications. With 



reference to the quantitative impact of the peer effect, it appears to be quite high, 

although it is in line with most of the literature (see Krauth 2007, p. 296, for a survey of 

the quantitative estimates found in several studies). According to Table 2, our estimates 

suggest that if students are in a class where the percentage of smokers is 10 points 

higher, all other things being equal, their probability of becoming smokers will be 5.58 

points higher.  

A different issue is the significance of the results. Thus, the peer effect is 

statistically significant at the 5% level when we do not correct standard errors, or when 

we correct them by normal bootstrapping. However, only without correction does the 

peer effect appear significant at the 1% level. Moreover, the t-statistic with the normal 

bootstrap correction is barely higher than 2, which is a modest value if we take into 

account that the estimate uses a considerable sample of 10,102 adolescents. A different 

result appears if we use a block-bootstrap procedure, in which case the peer effect is not 

significant, even at the 10% level. 

This result is in line with Krauth (2007) who estimates a structural model which 

takes non-random peer selection into account, by considering within-group correlation 

in the unobservable variables or error terms. The model uses this correlation in the 

estimation of both coefficients and standard errors and, as in our case, finds t statistics 

for the peer effect below the usual asymptotic critical values.    

All in all, the results of this two-stage estimation yield mixed evidence about the 

importance of the peer effect in smoking behaviour among adolescents. The reported 

peer effect is quantitatively high. However, the significance is not robust to alternative 

specifications, and when we use the more refined standard errors to take into account 

the cluster nature of the data, the peer effect is clearly not significant. 



In relation to the second two-stage procedure (see estimates in Table 3), it is 

important to point out that the fitted values approach, a common procedure in the 

literature, does not allow us to obtain consistent average partial effects (see for example, 

Wooldrige 2002; or Arellano 2008). As a consequence, we report the estimated 

coefficients that, as they are a scale transformation of the structural parameters, only 

permit the determination of the direction of the effects and, therefore, whether these are 

significant or not. Although, the t-statistics are somewhat higher, our main conclusion 

remains. That is to say, the coefficient of the peer variable (or the direction of the effect) 

is positively significant with no correction or normal bootstrap correction of the 

standard errors, but it appears not to be significant when the cluster nature of the data is 

taken into account5. 

(Table 3) 

 

5. SUMMARY AND CONCLUSIONS 

The objective of this paper was to go deeper into the analysis of peer effects among 

adolescents who face the decision of whether or not smoke. More concretely, we 

analyse the robustness of the peer effects using several estimation methods employed in 

the existing literature. To that end, we compute several standard errors for every 

estimation method.  

                                                
5 In order to check the stability and, therefore, the robustness of these results, we estimate a linear 

probability model with the same three versions of the standard errors used in the Probit models. Once 

again, our results provide evidence that the peer effect is not robust when more restrictive standard errors, 

accounting for the cluster nature of the data, are considered. It should be noted that this conclusion is 

robust to several specifications, that is to say, in the linear probability model and in the Probit model with 

two estimation approaches. The estimates of the linear probability model are available upon request. 



We have examined the determinants of being a smoker by estimating a Probit 

model and a probability linear model, using the data provided by the Spanish Survey on 

Drug Use in the School Population (2004). 

Although we have found positive and significant peer effects for some 

specifications, we find that social interactions or peer effects are not significant once we 

calculate more “refined” or exigent standard errors. It appears that block bootstrap can 

yield more appropriate standard errors as it takes into account the nature of the clustered 

sample. Moreover, even if we do not favour either of both bootstrap standard errors, the 

results provide evidence that the peer effects are not robust to different specifications of 

the standard errors. The plausibility of the results is reinforced by the similarity of the 

results across all specifications. 

The paper also highlights the difficulties of achieving conclusive results about 

peer effects (McVicar, 2011), a problem first pointed out by Manski (1993). The 

relationship between the individual decision and the peer variable is increasing in γ (the 

endogenous effect) and in the correlation of the unobserved variables of the peer group 

(correlated effects). What our paper illustrates is that, if we consider this correlation 

when computing standard errors, which appears as an advisable strategy, the peer 

effects are no longer significant and, consequently, doubts could arise about the 

existence of endogenous peer effects commonly found in the literature about smoking. 

The existence, or not, of peer effects, acting as “social multipliers”, has 

important policy implications. Policy interventions in preventing tobacco consumption 

among adolescents could exert larger gains in terms of reducing smoking rates, since 

effective policies act at the individual level, reducing the number of adolescent smokers. 

However, if the number of individuals who smoke declines, then the fraction of peers 

who smoke also declines and, consequently, this will have an indirect effect in reducing 



the number of adolescent smokers as they have fewer smoker friends and there would 

then be less pressure to smoke. These indirect or amplifying effects are known as social 

multipliers. 

We conclude that our findings should encourage more caution in the 

interpretation of peer smoking effects found in most of the literature on peer effects, and 

foster more robust analysis in the future. Thus, although marginal effects at the class 

level are high, their statistical significance can be not robust to alternative procedures of 

computing standard errors, which gives rise to certain doubts about the social 

multipliers of policy interventions. As a consequence, future research needs to analyse 

more thoroughly the robustness of peer effects under alternative specifications. 
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Table 1. Descriptive analysis 

Variable Definition Mean 

(Std. Deviation) 

TobaccoConsumption 

 

This takes value 1 if the adolescent has smoked more than one 

cigarette per day in the last month and 0 otherwise 

0.198 

(0.398) 

ClassPeerGroup 

 

Smoking prevalence in the class after eliminating the individual’s 

influence 

0.236 

(0.136) 

Gender 

 

This takes the value 1 if the young person is male and 0 if female 0.488 

(0.500) 

Age14 

 

This takes value 1 if the adolescent is 14 years old and 0 otherwise 

                                           (omitted category) 

0.339 

(0.473) 

Age15 

 

This takes value 1 if the adolescent is 15 years old and 0 otherwise 

 

0.661 

(0.473) 

WithoutFather 

 

This takes value 1 if the adolescent lives without the father at home 

and 0 otherwise 

0.112 

(0.315) 

UnemployedFather 

 

This takes value 1 if the father of the adolescent is unemployed and 0 

otherwise 

0.014 

(0.116) 

HouseWifeMother 

 

This takes value 1 if the mother is a housewife and 0 otherwise 

 

0.320 

(0.467) 

SmokerFather 

 

This takes value 1 if  the father of the adolescent smokes and 0 

otherwise  

0.324 

(0.468) 

SmokerMother 

 

This takes value 1 if  the mother of the adolescent smokes and 0 

otherwise  

0.325 

(0.468) 

FatherDrinking 

 

 

This takes the value 1 if he/she never drinks alcohol; 2 if he/she 

sometimes drinks; 3 only weekends; 4 almost everyday in 

moderation; 5 everyday a lot.  

2.236 

(1.259) 

 

MotherDrinking 

 

 

This takes the value 1 if he/she never drinks alcohol; 2 if he/she 

sometimes drinks; 3 only weekends; 4 almost everyday in 

moderation; 5 everyday a lot. 

1.754 

(1.050) 

 

PrimaryStudiesMother 

 

This takes value 1 if the mother has no more than basic school 

certificate and 0 otherwise (omitted category) 

0.507 

(0.500) 

SecondaryStudiesMother 

 

This takes value 1 if the mother has a secondary school certificate or 

vocational training but not a university degree and 0 otherwise 

0.253 

(0.434) 

UniversityStudiesMother 

 

This takes value 1 if the mother has a university degree and 0 

otherwise 

0.240 

(0.427) 

PrimaryStudiesFather 

 

This takes value 1 if the father has no more than basic school 

certificate and 0 otherwise (omitted category) 

0.500 

(0.500) 

SecondaryStudiesFather 

 

This takes value 1 if the father has a secondary school certificate or 

vocational training but not a university degree and 0 otherwise 

0.276 

(0.447) 

UniversityStudiesFather 

 

This takes value 1 if the father has a university degree and 0 

otherwise 

0.224 

(0.417) 

Income 

 

Available income per week of the adolescent (in euros) 

 

12.901 

(14.517) 

 



Table 2. Estimation results Probit model  (Rivers and Vuong Marginal effects) 

 

 Without correction Normal bootstrap Cluster bootstrap 

Variable       

ClassPeerGroup 0.558 *** 0.558 ** 0.558  

 (2.588)  (2.045)  (0.642)  

Residual(First-Stage)a -  -  -  

 -  -  -  

Gender -0.083 *** -0.083 *** -0.083 *** 

 (-10.439)  (-9.305)  (-8.110)  

Age15 0.103 *** 0.103 *** 0.103 *** 

 (10.541)  (8.960)  (4.273)  

WithoutFather 0.054 *** 0.054 *** 0.054 *** 

 (3.334)  (3.523)  (3.046)  

UnemployedFather 0.057  0.057  0.057  

 (1.464)  (1.373)  (1.300)  

HouseWifeMother -0.019 ** -0.019 ** -0.019 * 

 (-2.254)  (-2.008)  (-1.825)  

SmokerFather 0.031 *** 0.031 *** 0.031 *** 

 (3.475)  (3.628)  (3.573)  

SmokerMother 0.047 *** 0.047 *** 0.047 *** 

 (5.243)  (5.019)  (5.152)  

FatherDrinking 0.003  0.003  0.003  

 (0.758)  (0.731)  (0.681)  

MotherDrinking -0.007  -0.007  -0.007  

 (-1.603)  (-1.462)  (-1.407)  

SecondaryStudiesFather -0.016  -0.016  -0.016  

 (-1.467)  (-1.492)  (-1.289)  

UniversityStudiesFather -0.009  -0.009  -0.009  

 (-0.703)  (-0.637)  (-0.629)  

SecondaryStudiesMother -0.010  -0.010  -0.010  

 (-0.917)  (-0.863)  (-0.777)  

UniversityStudiesMother -0.023 * -0.023 * -0.023  

 (-1.891)  (-1.743)  (-1.546)  

Income 0.006 *** 0.006 *** 0.006 *** 

 (11.141)  (7.444)  (7.790)  

IncomeSquaredb -  -  v  

 -  -    

Nº Observations 10102  10102  10102  

Notes: t-statistics within parentheses. * significant at the 10% level. ** significant at the 5% level. *** 

significant at the 1% level. 
a,b Marginal effects are not computed because they have not economic interpretation 

 



Table 3. Estimation results Probit model (Coefficients using fitted values) 

 

 Without correction Normal bootstrap Cluster bootstrap 

Variable       

ClassPeerGroup 2.235 *** 2.235 *** 2.235  

 (2.525)  (2.485)  (1.360)  

Gender -0.341 *** -0.341 *** -0.341 *** 

 (-10.232)  (-8.997)  (-8.207)  

Age15 0.455 *** 0.455 *** 0.455 *** 

 (9.984)  (8.793)  (6.991)  

WithoutFather 0.211 *** 0.211 *** 0.211 *** 

 (3.589)  (3.605)  (3.229)  

UnemployedFather 0.205  0.205  0.205  

 (1.493)  (1.360)  (1.274)  

HouseWifeMother -0.082 ** -0.082 ** -0.082 * 

 (-2.276)  (-2.147)  (-1.944)  

SmokerFather 0.127 *** 0.127 *** 0.127 *** 

 (3.562)  (3.619)  (3.671)  

SmokerMother 0.185 *** 0.185 *** 0.185 *** 

 (5.316)  (5.190)  (5.051)  

FatherDrinking 0.013  0.013  0.013  

 (0.840)  (0.746)  (0.766)  

MotherDrinking -0.028  -0.028  -0.028  

 (-1.529)  (-1.289)  (-1.330)  

SecondaryStudiesFather -0.071  -0.071  -0.071  

 (-1.572)  (-1.539)  (-1.470)  

UniversityStudiesFather -0.038  -0.038  -0.038  

 (-0.729)  (-0.650)  (-0.691)  

SecondaryStudiesMother -0.039  -0.039  -0.039  

 (-0.877)  (-0.830)  (-0.768)  

UniversityStudiesMother -0.098 * -0.098  -0.098 * 

 (-1.851)  (-1.593)  (-1.660)  

Income 0.023 *** 0.023 *** 0.023 *** 

 (11.048)  (7.835)  (7.866)  

IncomeSquared 0.000 *** 0.000 *** 0.000 *** 

 (-6.682)  (-3.360)  (-3.331)  

Intercept -1.569 *** -1.569  -1.569 *** 

 (-4.605)  (-1.323)  (-2.766)  

       

Nº Observations 10102  10102  10102  

Notes: t-statistics within parentheses. * significant at the 10% level. ** significant at the 5% level. *** significant at 

the 1% level.  

 


