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Lévy random walks on multiplex 
networks
Quantong Guo1,2,3, Emanuele Cozzo3, Zhiming Zheng1,2,4 & Yamir Moreno3,5,6

Random walks constitute a fundamental mechanism for many dynamics taking place on complex 
networks. Besides, as a more realistic description of our society, multiplex networks have been 
receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, 
inspired by one specific model of random walks that seems to be ubiquitous across many scientific 
fields, the Lévy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing 
on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first 
passage time and the average time to reach a node on these networks. Moreover, we also explore the 
efficiency of Lévy random walks, which we found to be very different as compared to the single layer 
scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by 
comparing with some other important random walk processes defined on multiplex networks, we find 
that in some region of the parameters, a Lévy random walk is the most efficient strategy. Our results 
give us a deeper understanding of Lévy random walks and show the importance of considering the 
topological structure of multiplex networks when trying to find efficient navigation strategies.

The study of networks has experienced a burst of activity in the last two decades1–4. Many diverse dynamical 
processes have been explored on top of networks, including diffusion processes5–7, synchronization8,9, percola-
tion10,11, to cite just a few12. Among these dynamical processes, owning to their wide applications in many sci-
entific fields, including financial time series analysis13, social sciences14, genetics15 among others, random walks 
have been attracting more and more attention16–21. Random walks can be used to study transport and to develop 
different sorts of searching algorithms on networks, with the aim of finding optimal navigation strategies22–24,25.  
A diversity of random walk processes can be defined and studied, however, most of them rely on the classical 
random walk process whose dynamics occurs according to the topology of the network21. In the later scenario, the 
random walker can only hop to one of the nearest neighbours of the node where it is at any given time, with some 
-generally the same- probability. Another common random walk process, named Lévy flight, represents the best 
strategy for randomly searching a target in an unknown environment. This latter kind of random walk dynamics 
has been widely observed in many animal species26,27. In its simplest schematization, this stochastic process could 
drive a walker over very long distances in a single step event that is called ‘flight’28. The length of the jump, l, obeys 
a power-law probability distribution in the form of P(l) ~ l−α 26, which makes it possible for the random walker to 
hop from one node to any other node.

On the other hand, multiplex networks29–31,32, i.e., networks composed by many different layers of interactions, 
are gaining much attention recently. The social and technological revolution brought by the Internet and mobile 
connections, chats, on-line social networks, and a plethora of other human-to-human machine mediated chan-
nels of communications have revealed the need to consider that networks might be made up by many different 
layers of interactions. The same occurs in other fields, like in contemporary biology, where the needs to integrate 
multiple sets of omic data naturally leads to a multiplex network as a schematization of the system under study. 
Also in the traditional field of transportation networks, the concept of multiplex networks has a natural trans-
lation in different modes of transportations connecting the same physical location in a city, a country, or on the 
globe. Finally, in the area of engineering and critical infrastructures, it applies to the interdependence of different 
lifelines. Furthermore, research shows that the topological and dynamical properties of a multiplex network are in 
general different as compared to those of a single layer network33–36,37, as well as the dynamical processes on it38–40. 
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For example, it has been shown that a diffusion process can have an enhanced-diffusive behaviour7 on a multiplex 
network, which means that the time scale associated to it is shorter than that occurring on a single layer network.

All the already existing studies of random walks on multiplex networks adopt a nearest-neighbour navigation 
strategy41,42. The aim of this paper is to generalize Lévy flights random walks to multiplex networks, which means 
that a random walker has a certain probability to move to any other node without the need of a direct connection 
as far as the network is concerned. At each step, the random walker has three options: the first one is to stay at the 
same node, the second one is to jump to other nodes on the same layer and the last one is to switch to one of its 
counterparts on other layers, as illustrated in Fig. 1. According to the definition of the dynamics, we obtain the 
expression for the stationary distribution and the random walk centrality21. Besides, with the help of stochastic 
matrix theory17,43, we derive the exact expression for the mean first passage time (MFPT). The MFPT is used 
to describe the expected time needed for a random walker starting from a source point to reach a given target 
point44. Finally, we also compare the results for Lévy flights with other random walks dynamics obtained also on 
multiplex networks41, finding that, under certain conditions, the Lévy random walk is the most efficient from a 
global viewpoint.

Results
In this work we consider undirected connected node-aligned multiplex networks30. A node-aligned multiplex 
network is made up of L layers with N nodes i =  {1, 2, … , N} on each layer. An adjacency matrix =α

α
×{ }A aij N N

, 
with α =  {1, 2, … , L}, is associated to each layer α. Besides, a coupling matrix = αβ

×{ }C cij NL NL
 describes the 

coupling between nodes in different layers; since each node is coupled only with its counterparts in different lay-
ers, then, only the elements of the type αβcii  are different from zero.

The whole multiplex network can be described by the supra-adjacency matrix = = ⊕ +α×A a A C{ }ij NL NL
30.  

Additionally, we consider another set of matrices associated with the multiplex network, that is, we consider a 
distance matrix Dα =  {dα}N×N associated to each layer α, where the element αdij  encodes the length (number of 
steps) of the shortest path connecting node i to node j in layer α26. We indicate the probability to find a random 
walker in node j of layer β at time t starting from node i of layer α at t =  0 by αβp t( )ij . The discrete-time master 
equation is given:

∑+ =αβ αβ β β

=
p t p t w( 1) ( ) ,

(1)ij
m

N

im mj
1

t t

where αβwij  is the transition probability of moving from node i of layer α to node j of layer β.
To account for the inter-layer connections, we introduce αβDii  to quantify the “cost” to switch from layer α to 

layer β at node i, while ααDii  quantifies the “cost” of staying in the same node and in the same layer.
We can now define the transition probabilities αβwij  to be
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Figure 1. Illustration of the Lévy flight navigation strategy on a multiplex network. In the toy model, we 
consider a three-layer multiplex network and show two different paths that can lead the walker to the yellow 
node (one involves a Lévy flight and the other implies that the walker follows the topological path of the graph). 
The right panel summarizes the different elementary steps that a walker can adopt in our model as indicated.
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where = ∑ + ∑α α θ
β

αβ−s d D( )i j ij ii  is the strength of node i with respect to its connections in the multiplex net-
work, which takes into account the probability of staying at this node and of switching to another layer. As in the 
case of traditional single layer networks26, the transition probabilities αβwij  define a dynamical process where a 
random walker can visit not only the nearest neighbours of a node, but also nodes without direct connections 
with it on the same layer, while the random walker can switch layer only staying at the same node. Since α θ−d( )ij  
has an exponential decay according to the shortest path between the source node and the target node, the farther 
they are, the smaller the probability to hop to one from the other. The parameter θ, which varies in the range  
[0, ∞ ), controls the decay of this probability.

In the following we will derive the mean first passage time (MFPT), that is a characteristic quantity related to 
a random walk17. By iterating Eq. (1), we get an explicit expression for αβp t( )ij :

∑= … .αβ αβ β β

… −
−
−p t w w( )

(3)
ij

j j
i j j j

, t
t

t

1 1
1

1
1

1

Comparing αβp t( )ij  with βαp t( )ji  according to the definition in Eq. (2), we get

=αβ α βα βp t s p t s( ) ( ) (4)ij i ji j

For the stationary solution, which corresponds to the infinite time limit, we can get =αβ β
→∞lim p t p( )t ij j

26. 
Hence, Eq. (4) implies that =β α α βp s p sj i i j  and the probability αpi  reduces to

=α
α

p s
s (5)i
i

where = ∑ ∑α
αs si i  characterises the strength of the whole multiplex network. The expression of the stationary 

distribution αpi  shows that the larger the strength of node i, the more often it will be visited, which is valid for any 
undirected network45.

The average of the MFPT over the stationary distribution is (see Methods for details of the derivation)

∑ λ
=

−=
T 1

1
,

(6)k

NL

k2

whew λk are the eigenvalues of the matrix = αβ
×{ }wW ij NL NL

, with λ λ λ= > −⩾ ⩾ ⩾1 1NL1 2 . Besides, the 
random walk centrality of node i, as introduced in ref. 21, is τ=α α −C ( )i i

1, where ταi  is defined as 
∑ −αα α α
=
∞ p t p p{ ( ) }/t ii i i0 . ταi  is given by (see Methods)
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Hence, we have derived the exact expression of the transition probability αβpij  and the MFPT 〈 T〉 . In addition, 
in order to analyse the navigation of Lévy walks, we average all the ταi ’s over the whole network, which means 
τ τ= ∑ α

α
NL i i
1

, . Note that with respect to the local index τi, which represents the average time needed to reach 
node i from a randomly chosen node, τ gives the average number of steps needed to reach any node inde-
pendently of the initial condition26.

Next, we proceed to characterise Lévy random walks on multiplex networks drawing on the exact analytic 
results given above. For the sake of simplicity, following ref. 41, we assign the same value DX to all the αβDii , i.e., 
switching layers has the same cost at any node. In Fig. 2 we show τ vs θ for different topologies and different values 
of the cost DX. It is worth noting that, while for large values of the parameter DX the behaviour of the time τ when 
varying θ is qualitatively similar to the classical case of single layer networks, for small and intermediate values of 
DX it deviates significantly from the classical case. In particular, the relationship between τ and θ appears to be of 
three different kinds depending on DX: when DX is sufficiently small (DX =  0.1 in panel (a)) τ decreases quickly for 
small value of θ, while it remains more or less constant for large values of θ, when DX is sufficiently large (DX =  10 
in panel (c)) τ increases monotonically with θ, as in classical single layer networks, with the speed of the increase 
being much smaller when θ is small. Furthermore, for intermediate values of DX (DX =  1 in panel (b)) τ shows a 
clear minimum for a given value of θ. This phenomenology, that is, the fact that the efficiency depends on the 
coupling, constitutes the central finding of our study.

In single layer networks, setting θ =  0 is always the best strategy to navigate a network, as the global time τ is 
minimum. However, in multiplex networks the value of θ -it’s optimal- that minimizes τ depends on the value of 
the coupling DX. Interestingly enough, for low values of DX, the limiting case θ →  ∞ , which corresponds to the nor-
mal random walks on networks, can be more efficient than θ =  0. Other scenarios worth inspecting are given by the 
topologies of the networks that made up each layer of the multiplex. In particular, a multiplex network can be made 
up of different combinations of homogeneous (Erdos-Renyi (ER)) and heterogeneous (Scale-Free (SF)) networks. 
We have also explored these scenarios numerically for different regimes of the coupling parameter. For DX ≪ =  1, 
different structures lead to different relationships between τ and θ. When θ is small, a SF-SF multiplex network has 
a much smaller τ than an ER-ER or an ER-SF multiplex network; however, if DX is bigger than 1, the difference is 
evident only when θ ≫  0. Altogether, the previous results show that whether the optimal value of the Lévy walk 
index θ is constant across different multiplex topologies depends on the value of the coupling strength DX.
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In our model τ attains its minimum at a non-zero value of θ, as shown in Fig. 2, while in the case of Lévy ran-
dom walks in single layer networks τ always gets its minimum at θ =  0, i.e., τ is a monotone increasing function 
of θ26. This indicates, as can be seen in Eq. (2), that there exists competition and balance between two different 
dynamics: the random walk inside a given layer and the random switching between layers. Note that τ gives the 
average number of steps needed to reach any node independently of the initial condition. Hence, considering 
a multiplex network as a whole, it’s crucial for the random walker to efficiently jump between different layers 
to efficiently cover all the nodes. Taking the definition in Eq. (2) into consideration, we classify three situations 
according to the values of DX:

•	 DX ≪  1. In this case, when θ is too small, it is difficult for the random walker to switch to other layers, then, 
compared with a single layer setting, the value of τ becomes larger at small values of θ. Especially if θ =  0, 
ααwij  stays the same while ≈αβw 0ii , that is the reason why at this point τ attains a much bigger value.

•	 DX =  1. In this case, when θ is too large, which almost corresponds to normal random walks on networks, 
although the switching between layers becomes easier, without the ‘small world’ effects of Lévy random 
walks26, the process is much more inefficient. However, if θ =  0, since DX =  1 and =α θ−d( ) 1ij , the counter-
part of a node on another layer is just like one of its neighbors in the current layer. The fact that τ is still not 
at its minimum implies that the transition probability between layers should be larger compared with that 
on the same layer. This addresses the importance of the counterpart of a node, because it is the only way for 
random walkers to visit another layer.

•	 DX ≫  1. Just as described in the case DX =  1, the counterpart should be treated not only as a normal neighbor 
to make τ to be the minimum. In this case, DX ≫  1 indicates that the transition probability between a node and 
its counterpart is the largest one since on the same layer α θ− ⩽d( ) 1ij . Hence, τ has its minimum around θ =  0.

From the discussion above, the fact that τ has its minimum at a non-zero value of θ is thus a result of the com-
petition and balance of the two different underlying dynamics. Among these dynamics, whether the transition 
probability between layers is the larger one compared with that between nodes on the same layer is the important 

Figure 2. The quantity τ vs the Lévy flight index θ for different two-layer multiplex networks. Each layer is 
an ER network or a SF network with 1000 nodes as indicated in the legends. The values of the coupling strength 
DX between the two layers are: (a) DX =  0.1, (b) DX =  1, (c) DX =  10.
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characteristic. These results also further explain the effects of the topology of multiplex networks on random walk 
processes.

Next, in order to provide more numerical evidences of what we have found analytically, we present the results 
obtained when the fraction of covered nodes is taken into consideration. Figure 3 shows this magnitude as a 
function of time for different multiplex networks. In the first case (panel a), the network is made up of two ER 
networks with the same structure. For a small value of DX (upmost left figure), it can be seen that the bigger the 
value of θ is, the higher the efficiency of the Lévy random walk is. This also confirms the results in Fig. 2, since a 
larger value of θ leads to a smaller value of τ. With respect to other values of DX, such as DX =  1 (middle figures in 
all panels), DX =  10 (upmost right figures in all panels), the results for τ in Fig. 2 are also confirmed. In the case of 
other kinds of arrangements for the networks at each layer, we obtain the same results, as can be seen from panels 
b and c in Fig. 3. Furthermore, the comparison of the results obtained for different combinations shows that the 
topologies of the networks in each layer do not play a significant role.

The previous results indicate that the coupling strength between layers is a crucial factor determining the 
structure and the dynamical behavior of the system46. In addition, as described above, being used to characterize 
the cost for a walker to switch between layers, the value of DX also has distinct effects on Lévy random walks on 
multiplex networks. In order to further explore the details of these effects, as a function of θ, we show in Fig. 4 the 
time needed to cover the 50% of all nodes as a function of both DX and θ. As shown in the figure, an interesting 
phenomenology appears. Firstly, the highest values of the time needed to cover half of the network locate at the 

Figure 3. Number of visited nodes versus time for Lévy random walks on multiplex networks. The 
structures of the multiplex networks considered are: ER-ER (top panels a), ER-SF (middle panels b) and SF-SF 
(bottom panels c). In each configuration, the synthetic networks of each layer are composed of 103 nodes. From 
left to right, the values of DX are 0.1, 1, 10. The Lévy index θ used are indicated in the legend.
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up-right and down-left corners, where the values of DX and θ are the biggest and the smallest. Moreover, in a 
significant range of values of θ, increasing DX does not change greatly the time needed to cover 50% of the nodes. 
However, if θ is large enough, the increase of DX have a larger impact. Note that these results also confirm the ana-
lytical findings about τ, as can be seen in Fig. 2. Besides, we have also explored the dependence of τ on DX and θ 
in Fig. 5. Just like the fraction of visited nodes, the highest values of τ locate at the up-right and down-left corners.

Another result worth highlighting that connects our results for τ with the structural properties of the mul-
tiplex involves the second largest eigenvalue λ2. As shown for the smallest eigenvalue of the supra-Laplacian46, 
there is a transition point that separates two different regimes in interdependent networks: in one regime, all the 
layers are structurally decoupled and in the other regime, the system behaves as a single layer. The same result 
holds for the second smallest eigenvalue of the generalized supra-Laplacian of a multiplex network when increas-
ing the coupling strength DX. Specifically, the generalized supra-Laplacian is
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Figure 6 shows the dependency of λ2 with DX for different values of the Lévy flight parameter Θ . Also in this 
case (see ref. 41), λ ∝ −DX2

1, regardless of the network structure as showed it can be seen in the different panels of 
Fig. 6. Finally, for the sake of comparison with results obtained for other random walk dynamics, we compare 
their efficiency41 with that of the Lévy flight. In the first case (RWC), the random walker in node i can move to any 

Figure 4. The effects of inter-layer weight DX and Lévy index θ on the efficiency of Lévy random walks. The 
color-coded map describes the time needed to cover 50% of all the nodes (103) in each layer. From left to right, 
the structure of network in each layer is ER-ER, ER-SF and SF-SF, respectively. The rectangles highlights the 
areas that show the largest differences due to the multiplex structure of the system.

Figure 5. The behavior of τ as a function of θ and DX. From left to right, the structure of network in each layer 
is ER-ER, ER-SF and SF-SF, respectively. The rectangles highlight the areas that show the largest differences due 
to the multiplex structure of the system.
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one of its neighbors j on the same layer with the transition probability =ααwij k
1

i
, where ki is the degree of node i. 

Secondly, we also consider the case (RWD) in which the random walker is allowed to jump to any other node with 
probability =αα

α

wij
s

s
i

max
, where = α

αs smaxmax i i{ , } . Lastly, a third scenario (RWP) considers that it is possible for a 
random walker to switch layers and jump to another neighborhood at the same step.

In Fig. 7, we show the time τ needed to cover 50% of all the nodes as a function of the value of DX with respect 
to different topological structures. For the Lévy random walk, we study three different cases where the index θ 
equals 1, 5, 10, respectively. Comparing the Lévy case with the three others mentioned above, one can get further 
insights on the different strategies for navigation, that is to say, there is no strategy that is always the most efficient 
for any network and an arbitrary coupling strength. For instance, taking the Lévy random walk as an example: 
when θ is small (θ =  1), the time τ appears to be the smallest in the range 1 <  DX <  10, but as θ if further increased, 
the time needed to cover the 50% of the nodes of the network is almost the same as compared to that needed for 
a classical random walk, which in its turn is not the most efficient. This is easy to understand because in a Lévy 
random walk, when θ →  ∞ , the transition probability = →

θ−

w 0ij
d

s
ij

i
 if the shortest path dij is larger than 1. 

Therefore, the fist of the cases to which we compare -i.e., the classical random walk- is a special case of a Lévy walk 
when θ →  ∞ 26.

Furthermore, in order to explore the behavior of τ as a function of DX in the studied Lévy walk model and 
other random walk models, we summarize the transition rules for these different kinds of random walk processes 
in a multiplex network in Table 1. Note that in these expressions, = ∑ +α

β
αα αβs a D( )i j ij ii,  and = ∑α

ααs ai j ij, , 
= ∑α β

αβS Di ii, , = αβD DX ij
41, where for RWC, RWD and RWP models, if there is a link between node i and j of 

layer α, =ααa 1ij  else =ααa 0ij . Then, for the RWP model, since all the values of αβDij  are the same, it is known that 
τ is the same for any value of DX. Besides, for the RWD model, if DX is large enough, the main transition activity 
of random walkers is to jump among different counterparts of the same node instead of exploring their neighbors 
on the same layer, which leads to larger values of τ. For the Lévy walk model (RWL), since it has another param-
eter θ, we should consider different values of θ for this model. When θ is small, just as discussed in Fig. 2, small DX 
leads to large τ and much larger DX also leads to the increase of τ. While if θ is large, only if DX is also large τ can 
be large since it takes too many steps for the random walkers to switch among the counterparts of a node. In the 
last scenario, for the RWC model, due to the fact that it is a special case of a Lévy walk when θ →  ∞ , the behavior 
of τ as a function of DX is the same of that of the RWL model with large enough θ.

Discussion
In summary, we have studied Lévy random walks on multiplex networks. With the help of stochastic matrix 
theory, we have calculated analytically the expression of the stationary distribution and MFPT from any node to 
any other node. Besides, we have also obtained an exact expression of the average time τ needed to reach a node 
regardless of the source node. This dynamics on multiplex networks shows a strong dependence on the inter-layer 
weight DX and the Lévy index θ. Our main result is that when DX is small enough, contrary to the case of a Lévy 
random walk on single layer networks, the bigger the index θ is, the more efficient the Lévy random walk is. In 
order words, in that region of parameter values, although it is not very likely for any given walker to jump directly 
to other nodes far away, the total average time τ needed to visit any node independently of the initial condition 
is smaller. Interestingly, if the value of θ is not too large, for instance for θ <  4, DX does not have a significative 
impact on τ. The present results add to previous works that explored other kinds of random walk processes on 
multiplex networks, and allow to have a more complete picture that highlights the importance of considering the 
interconnected nature of many systems if we aim at finding the best navigation strategies and develop searching 
and navigability algorithms for such interdependent networked systems.

Figure 6. The second smallest eigenvalue of the generalized supra-laplacian matrix as a function of the 
inter-layer weight DX for three different multiplex topologies, which from left to right are ER-ER, ER-SF, 
SF-SF, respectively. Each panel describes Lévy random walk with different Lévy index θ (1, 5, 10). The solid line 
corresponds to −DX

1.
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Methods
In the following, by using the formalism of generating functions47, we will get the analytical result for MFPT. The 
first passage probability αβq t( )ij  from node i of layer α to node j of layer β after t steps satisfies the relation

∑= −αβ αβ ββ

=
p t q l p t l( ) ( ) ( )

(8)ij
l

t

ij jj
0

Let αβTij  denote the MFPT from node i of layer α to node j of layer β, then

Figure 7. Time needed to cover 50% of all nodes on three types of multiplex networks, as a function of the 
inter-layer weight DX. We compare the results obtained for the Lévy random walk (RWL) studied here with 
three other scenarios for the walks, as discussed in the text. The values of θ considered are 1, 5, 10, respectively. 
Each layer has 103 nodes and all the simulations were averaged over 100 realizations.

Tr. RWC RWD RWP RWL

ααwii

αα
α

Dii
si

αα α+ −smax Dii si
smax

0
αα
α

Dii
si

αβwii

αβ

α
Dii

si

αβDii
smax

0
αβ

α
Dii

si

ααwij

αα

α
aij
si

ααaij
smax

αα

α

αα

α

aij
si

Dii
Si, ,

αα

α
aij
si

αβwij 0 0
ββ

β

αβ

α

aij
si

Dii
Si, ,

0

Table 1.  Transition probability of four different random walk processes on multiplex networks.
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∑=αβ αβ

=

∞
T tq t( )

(9)ij
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0

here, as proposed in ref. 17, we introduce the following generating functions:
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αβ αβ
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∞
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where |x| <  1, inserting Eq. 8 into 11, we get

=
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Since = ∑ =αβ αβ αβ
=
∞

=
T tq t Q x( ) ( )ij t ij x ij x0

d
d 1

, the problem of solving for the MFPT is reduced to calculate the 
derivative of αβQ x( )ij  and evaluate it at x =  1.

We will address this point making use of the stochastic matrix theory43. For the sake of simplicity, we use the 
matrix = αβ

×{ }wW ij NL NL
 and the matrix = α

   s s s s s sS diag[ , ]N i
L

N
L

1
1

2
1 1

1  to describe the transition probabil-
ities and node strengths, respectively. It is clear that the matrix W is a stochastic matrix, since for any node i its 
elements satisfy that ∑ == w 1j

NL
ij1 . W is an antisymmetric matrix. Because of that, we introduce the matrix

Γ = =− − −S WS S SW S( ) (13)
1
2

1
2

1
2

1
2

which is symmetric and similar to W. Thus, they have the same eigenvalues. Since Γ  can be diagonalized and the eigenval-
ues are all real, we define λ λ λ, , NL1 2  as its eigenvalues. These eigenvalues satisfy that λ λ λ= > −⩾ ⩾ ⩾1 1NL1 2 . 
Let φ φ φΦ = { , , }NL1 2  denote the corresponding normalized, real-valued, and mutually orthogonal eigenvectors. As 
a result, the matrix Γ  can be written as

λ λ λΓ = Φ Φdiag[ , , ] (14)NL
T

1 2

which, together with 13, leads to

λ λ λ= Γ = Φ Φ− −
W S S S Sdiag[ , , ] (15)NL

T1
2

1
2

1
2 1 2

1
2

Then considering the master equation Eq. (1), we can get Γ= = −P t P W S S( ) (0) t t 1
2

1
2 , whose element denoted 

by αβp t( )ij  represents the transition probability from node i of layer α to node j of layer β in t steps. Note that the 
elements of the matrix P(0) fulfill the following relations

α β
=





= =αβp i j(0) 1, ,
0, else (16)ij

Then, inserting Eq. 15 into the expression of P(t), one has

∑λ φ φ=αβ
β

α
=

p t
s
s

( )
(17)ij

k

NL

k
t

ki kj
j

i1

where φ φ φ φ= ( , , )i i i iNL
T

1 2  and they satisfy φ φ =1i
T

j  if i =  j, else φiφj =  0, which means

∑ ∑φ φ φ φ= =
= =

0
(18)k

NL

ik jk
k

NL

ki kj
1 1

We have now an expression for αβp t( )ij , plugging it into Eq. 11, it is easy to obtain
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φ φ

λ
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−
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−
=

−
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β β
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According to the definition given above, the MFPT αβTij  can be calculated by differentiating αβQ x( )ij

∑ λ
φ φ φ=
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−







αβ
β

β

α
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In addition, using Eq. 20, we have
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Using Eq. 18 and the relation φ φ =
β

α

β

i j
s

s

s

s1 1
j

i

j , which means φ =
β

j
s

s1
j , we can get

∑ λ
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−=
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1
,

(22)k

NL
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where the time 〈 T〉  is the average of the MFPT over the stationary distribution, obviously it does not depend on i, 
and it is known as the Kemeny’s constant26. Besides, as introduced in ref. 21, we can calculate the quantity 

τ=α α −C ( )i i
1, that is the random walk centrality of node i, where ταi  is defined as ∑ −αα α α

=
∞ p t p p{ ( ) }/t ii i i0 . 

Combining Eq. 17, ταi  is given by

∑τ
λ
φ
φ

=
−

α

=

1
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