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CORRECTIONS ON REPEATING GROUND-TRACK ORBITS AND
THEIR APPLICATIONS IN SATELLITE CONSTELLATION DESIGN

David Arnas∗, Daniel Casanova†, and Eva Tresaco‡

The aim of the constellation design model shown in this paper is to generate
constellations whose satellites share the same ground-track in a given time, making
all the satellites pass over the same points of the Earth surface. The model takes
into account a series of orbital perturbations such as the gravitational potential
of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third
bodies or the solar radiation pressure. It also includes a new numerical method
that improves the repeating ground-track property of any given satellite subjected
to these perturbations. Moreover, the whole model allows to design constellations
with multiple tracks that can be distributed in a minimum number of inertial orbits.

INTRODUCTION

Space has become a strategic resource that offers an unlimited number of possibilities. Scientific
and military missions, telecommunications or Earth observation are some of its most important
applications and have led the sector to a quick expansion with an increasing number of satellites
orbiting the Earth.

Satellites lie in a very advantageous position that allows the observation of vast regions of
the Earth in short periods of time, an objective which is difficult to achieve with human and
technical means in ground. This advantage can be improved even further with the concept of
satellite constellations. Satellite constellations are groups of satellites that, having the same mission,
work cooperatively to achieve it. This concept increases the complexity of the celestial mechanics
problem to solve, but opens new and interesting possibilities for future missions.

Satellite constellation design has been since its beginning a process that required a high number of
iterations due to the lack of established models for the generation and study of constellations. This
situation resulted in the necessity of specific studies for each particular mission, being unable of
extrapolate the results from one mission to another. Fortunately, in the last decade, new theoretical
models have been developed that include in their formulation all of the former configurations. One
of these models is the Flower Constellations Theory.

The Flower Constellations were introduced for the first time by Mortari1 in the year 2004. The
most relevant feature of this model consists of the visualization and study of the constellations
using a rotating frame of reference instead of an inertial frame of reference. That way, a relative
orbit whose geometry reminds the shape of the petals of a flower is obtained.
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The initial Flower Constellations model was later reformulated in the 2-D Lattice2 and 3-D
Lattice3 models which improved the parametrization of the problem. However, due to the strictly
keplerian formulation of the model, the inclusion of orbital perturbations is required to enhance the
precision. In Casanova4 the perturbation created by the J2 term of the gravitational potential of the
Earth was introduced in the model. Nevertheless, other orbital perturbations are also significantly
modifying the orbits, so it is important to include them in the design process of the constellation.

The goal of the model introduced in this work is to generate satellite constellations that include
the effects of orbital perturbations such as the gravitational potential of the Earth, the atmospheric
drag, the Sun and the Moon as disturbing third bodies or the solar radiation pressure. The proposed
constellation design allows to generate a configuration in which a number of different ground-
tracks is defined, each of these ground-tracks containing a number of satellites that present the same
instantaneous ground-track over time. Moreover, in order to decrease the number of orbital launches
to build the constellation, another constraint will be set: satellites from different ground-tracks have
to share the same inertial orbit, allowing a decrease in the number of inertial orbits.

Furthermore, the repeating ground-track property is introduced in the constellation model, taking
into account the orbital perturbations considered. In that respect, Wagner5 developed a numerical
method to achieve this by modifying the semi-major axis of the orbits. However, a new numerical
method has been developed to improve the precision obtained no matter the orbital configuration
used. The numerical orbit correction method proposed also modifies the semi-major axis as in
Wagner’s method, but in this case the methodology is different, focusing the study on the rotational
frame of reference and considering all the orbital parameters non constant.

ANALYTICAL MODEL FOR CONSTELLATION DESIGN

Throughout this paper, the so called classical orbital elements will be used, namely: a the semi-
major axis, e the eccentricity, i the inclination, ω the argument of perigee, Ω the right ascension
of the ascending node and M the mean anomaly. Other common parameters used are: f the true
anomaly, ω⊕ the angular velocity of the Earth, µ the Earth gravitational constant, R⊕ the Equatorial
Earth radius and J2 the second order term of the gravitational potential of the Earth.

In an unperturbed dynamic model, the classical orbital parameters (a, e, i, ω, Ω) are constant
whilst the true anomaly (f ) varies through time. This property will be used to show in a clear way
the analytical model behind the constellation design proposed in this paper.

During this section, three different constellation designs will be shown. First, a constellation
design model in which satellites share the same relative trajectory will be presented. Second,
this model will be expanded with the possibility of distribution of the satellites in several different
relative trajectories. And finally, a constraint will be set in order to reduce the number of inertial
orbits to a minimum.

Constellation design with a common relative trajectory

The objective of this design model is to generate a constellation whose satellites share the same
relative trajectory over time. The first thing required to achieve this condition is to define that
particular relative trajectory.

The position of a satellite along its trajectory in the perifocal frame of reference is:

[x] = (r cos f, r sin f, 0) , (1)
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where r is the radium of the orbit in each instant of time:

r =
a
(
1− e2

)
1 + e cos f

. (2)

These positions can be expressed in the inertial frame of reference (ECI: Earth Centered Inertial)
using rotational matrices (R3 and R1):

[x]ECI = R3 (Ω)R1 (i)R3 (ω) [x] , (3)

and it can also be expressed in the ECEF (Earth Centered - Earth Fixed) frame of reference:

[x]ECEF = R3 (−ψG0 − ω⊕t) [x]ECI , (4)

where ψG0 is the longitude of Greenwich at the time of reference t0 and ω⊕ is the angular velocity
of rotation of the Earth.

Thus, using Equation (1), (3) and (4), the position of a certain satellite is obtained in the ECEF
frame of reference:

[x]ECEF = R3 (−ψG0 − ω⊕t)R3 (Ω)R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (5)

Furthermore, combining the first two matrices, the following expression is obtained:

[x]ECEF = R3 (Ω− ψG0 − ω⊕t)R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (6)

The aim now is to create a constellation of satellites whose trajectories in the ECEF frame of
reference are the same. Let a, e, i, ω, Ω0 be the orbital parameters of the reference trajectory and
let t0 be the reference time of the constellation which also locates ψG0 (a, e, i and ω are common
for all the satellites of the constellation). This reference trajectory can be expressed in the relative
frame of reference as:

[x0]ECEF = R3 (Ω0 − ψG0 − ω⊕t)R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (7)

where r and f are a function of (t0 + t). This relative trajectory must be fulfilled by every satellite
in the constellation, so it is fixed in the design of the constellation. If another point of this relative
trajectory is considered, a satellite that shares the same relative trajectory can be obtained. If the
value of t0 is modified, this relative trajectory remains the same. Let t1 be the changed value of
t0, then, the right ascension of the ascending node suffers a variation of ∆Ω = −ω⊕(t1 − t0) due
to the fact that ψG0 has its reference in t0. Thus, the relative trajectory of the satellite when t1 is
considered is:

[x1]ECEF = R3 (Ω0 − ψG0 − ω⊕(t1 − t0 + t))R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (8)
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where r and f are now a function of (t1 + t). Varying t, the inertial orbit of this second satellite can
be obtained through:

[x1]ECI = R3 (ψG0 + ω⊕t) [x1]ECEF , (9)

so the inertial orbit is:

[x1]ECI = R3 (Ω0 − ω⊕(t1 − t0))R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (10)

Note that the right ascension of the ascending node Ω1 and the mean anomaly M1 of the second
satellite can be expressed as a function of the values of the first one:

Ω1 = Ω0 − ω⊕(t1 − t0);

M1 = M0 + n(t1 − t0); (11)

where:

n =

√
µ

a3
. (12)

As it can be seen, combining both equations, there exists a function between M1 and Ω1:

M1 =

(
M0 +

n

ω⊕
Ω0

)
− n

ω⊕
Ω1; (13)

which represent a straight line as it can be seen in the (Ω, M)-space6 representation of the relative
trajectory shown in Figure 1, where each vertical line represents the inertial orbit and the diagonal
represents the relative trajectory of the satellite.

Figure 1. (Ω, M)-space representation of a relative trajectory.

If instead of only one satellite, a certain number of them are taken, it is possible to generate a
constellation whose satellites share the same relative trajectory. Let tq be the temporal positions in
the relative trajectory (in the same sense as t1 worked) and let Nst be the number of satellites in the
relative trajectory, where q = 1, ..., Nst represent each particular satellite of the constellation. Then,
for each q:

Mq =

(
M0 +

n

ω⊕
Ω0

)
− n

ω⊕
Ωq; (14)
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and the inertial orbits can be expressed as:

[xq]ECI = R3 (Ω0 − ω⊕(tq − t0))R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (15)

As Equation (15) shows, the first matrix corresponds to a rotation in a modified right ascension
of the ascending node for each satellite. Let Ωq be the right ascension of the ascending node of the
satellite q, then:

Ωq = Ω0 − ω⊕(tq − t0). (16)

Note that (tq−t0) represent a distribution over time with respect of the reference trajectory defined
in the beginning, and as such, it does not depend on the time (t) used in the propagation. Moreover,
Ωq and ω⊕ are also constant in time, so it can be concluded that Ωq is fixed for each satellite of
the constellation. On the other hand, the initial value of the true anomaly of each satellite of the
constellation (fq) only depends on tq. Then, it is possible to generate the full constellation by the
only use of the parameter of distribution tq. Each inertial orbit of the constellation is obtained by:

[xq]ECI = R3 (Ω0 − ω⊕(tq − t0))R1 (i)R3 (ω)


a
(
1− e2

)
1 + e cos fq

cos fq

a
(
1− e2

)
1 + e cos fq

sin fq

0

 . (17)

Equation (17) allows to design a distribution of satellites in which all have the same relative
trajectory (and thus, they share the same ground-track, its projection over the Earth surface). This
distribution is done over time, with no constraints in the selection of the different values of tq which
is the parameter of distribution in the configuration.

Constellation design with multiple relative trajectories

The objective now is to distribute the satellites in several different relative trajectories instead
of just one. The methodology is similar to the one seen before, but in this case, other degrees of
freedom are added in the spacing of the relative trajectories in the ECEF frame of reference. Let Nt

be the number of relative trajectories in which the constellation is distributed and let k = 1, ..., Nt

be the parameter that names each one of this trajectories. Therefore, the total number of satellites
in the constellation Ns is:

Ns = NstNt, (18)

where Nst is the number of satellites in each relative trajectory.

Furthermore, the satellites named with the sub-index k0 are the leading satellites of each k relative
trajectory, that is, the reference satellites that define the trajectories in the ECEF frame of reference.
Moreover, the leading satellite, named with the sub-index 00, represents the reference origin of the
whole constellation. Thus, as seen before, the relative trajectories can be defined as:

[xkq]ECEF = R3 (Ω0 +∆Ωk − ψG0 − ω⊕(tkq − t0 + t))R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (19)
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where ∆Ωk is the space distribution of the relative trajectories in the ECEF frame of reference
and tkq represents the distribution parameter related to the initial time t0 (required to locate the
longitude of Greenwich). Note that r and f are now functions of tkq. The parameter tkq distributes
the satellites in a k relative trajectory and the q position in that relative trajectory. As it can be seen,
two degrees of freedom control the distribution of the constellation: ∆Ωk and tkq.

Transforming those coordinates to the ECI frame of reference, and naming fkq the true anomaly
of the satellite q of the k relative trajectory at the initial time, the following inertial orbits for each
satellite of the constellation are obtained:

[xkq]ECI = R3 (Ω0 +∆Ωk − ω⊕(tkq − t0))R1 (i)R3 (ω)


a
(
1− e2

)
1 + e cos fkq

cos fkq

a
(
1− e2

)
1 + e cos fkq

sin fkq

0

 . (20)

As it can be seen, the right ascension of the ascending node of each constellation satellite is:

Ωkq = Ω0 +∆Ωk − ω⊕(tkq − t0), (21)

which means that each satellite presents a different inertial orbit, a fact that increases the expenses
of building the constellation in orbit. Therefore, in the next subsection the constraint of minimum
number of inertial orbits will be set in order to correct this situation.

This distribution can also be represented in the (Ω, M)-space. As done before:

Ωkq = Ω0 +∆Ωk − ω⊕(tkq − t0),

Mkq = M0 + n(tkq − t0), (22)

and the relation between Ωkq and Mkq is:

Mkq =

(
M0 +

n

ω⊕
Ω0

)
+

n

ω⊕
∆Ωk −

n

ω⊕
Ωkq; (23)

which is a distribution of points over a family of straight lines that have the same slope. Figure 2
shows a particular case of a satellite with respect to the reference trajectory (named 0). There, the
satellite 11 (k = 1, q = 1) is located in the relative trajectory 1 which presents a rotation of ∆Ω1

with respect to the reference trajectory.

Constellation design with minimum number of inertial orbits

Once a distribution over different relative trajectories is done, it is time to impose the restriction
that the constellation has to be built in the least number of inertial orbits. As tkq is a distribution,
it can be separated in two different contributions, one depending on the inertial orbit (parameter q)
and the other depending on the relative trajectory (parameter k). This separation is made in order
to avoid the dependence in the right ascension of the ascending node with the number of relative
trajectory. That way:

tkq = tk + tq, (24)
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Figure 2. (Ω, M)-space representation of the configuration for multiple relative trajectories.

where tk represents the different distribution of each relative trajectory and tq the distribution over
the same relative trajectory. Thus, Equation (21) can now be written as:

Ωkq = Ω0 +∆Ωk − ω⊕(tk + tq − t0). (25)

In Equation (25) is possible to eliminate the dependence on k imposing:

tk =
∆Ωk

ω⊕
, (26)

and thus, introducing this value for tk in Equation (20) the following equation is obtained:

[xkq]ECI = R3 (Ω0 − ω⊕(tq − t0))R1 (i)R3 (ω)


a
(
1− e2

)
1 + e cos fkq

cos fkq

a
(
1− e2

)
1 + e cos fkq

sin fkq

0

 . (27)

With this formulation it can be seen how the first matrix corresponds to the right ascension of the
ascending node of each satellite, that is:

Ωkq = Ω0 − ω⊕(tq − t0). (28)

Note that now, Ωkq does not depend on the terms in k, and as such, is the same for every satellite
that shares the value of tq, one for each relative trajectory. That leads to a distribution in which
the satellites with the same q are distributed in the same inertial orbit whilst the satellites with the
same k are distributed in the same relative trajectory (remember that fkq is a function of tq + tk).
Figure 3 shows how the distribution works in the ECEF and the ECI frames of reference for two
generic relative trajectories.

Moreover, using the two time distributions tq and tk, it is possible to achieve the configuration
desired with no limitations on any parameter due to the fact that the distribution parameters are real
numbers and it can be freely chosen.

7



Figure 3. Constellation distribution in the ECEF (left) and ECI (right) frames of reference.

The (Ω, M)-space representation can be defined as before:

Ωkq = Ω0 − ω⊕(tq − t0),

Mkq = M0 + n(
∆Ωk

ω⊕
+ tq − t0), (29)

obtaining the same expression as in Equation (23):

Mkq =

(
M0 +

n

ω⊕
Ω0

)
+

n

ω⊕
∆Ωk −

n

ω⊕
Ωkq. (30)

The difference now is that the right ascension of the ascending node is shared by one satellite of
each relative trajectory as seen in Figure 4. In fact it is a particular case of the one presented before.

Figure 4. (Ω, M)-space representation of the configuration for minimum number of inertial orbits.
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SEMI-ANALYTICAL MODEL FOR CONSTELLATION DESIGN

It has previously been seen how to generate the constellation design in a keplerian model. The
objective now is to apply that theory to the case of orbital perturbations. Orbital perturbations
such as the gravitational potential of the Earth, the solar radiation pressure, the Sun and Moon as
disturbing third bodies or the atmospheric drag, will destroy the analytical configuration proposed in
a short period of time, so other complementary model has to be developed to solve this problem. The
semi-analytical model proposed in this paper achieves the sharing of the projection of the relative
trajectory over the Earth surface, that is, the ground-track, despite of being the satellites subjected
to certain known orbital perturbations.

As done in the latter section, three different constellation designs will be presented, corresponding
to the ones studied previously in the analytical model. However, due to the nature of the
perturbations considered, it is more practical to design the constellation around the concept of
the ground-track instead of the relative trajectory. This is the case due to the circumstance that
perturbations such as the atmospheric drag will decrease the altitude of the orbit.

Constellation design with a common ground-track

The objective is to generate a constellation whose satellites share the same ground-track despite
of being subjected to several known orbital perturbations. Note that sharing the same ground-track
does not mean that their ground-track has to be closed, this is a property that will be presented
afterwards in this paper.

The idea behind the semi-analytical model is to propagate first a reference satellite [x0], which
will be called the leading satellite, taking into account all the perturbations of the dynamical
model chosen, and keeping the propagation results of times, positions and velocities of its relative
trajectory for the instants in which the times of propagation correspond to:

t = tq − t0, (31)

where as before, t0 is the reference time useful to locate Greenwich, and tq represents the parameter
of distribution of each particular satellite compared to the leading satellite t0. Moreover, using the
nomenclature used in the analytical model, q = 1, ..., Nst.

Then, a transformation of this positions and velocities will be made in order to define the initial
positions and velocities of the satellites of the constellation. Therefore, two transformations will
be required: the first one to obtain the relative trajectory, and the second one to obtain the inertial
orbits of the constellation. A schematic diagram of this two transformations can be seen in Figure 5,
where it is clear that [xq]ECI and [x̃q]ECI are not the same due to the different rotation performed.

Figure 5. Schematic diagram of the two different frame transformations.
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Note that each satellite requires a different rotation in the first transformation due to the fact that
the position of each satellite is defined in a different time: the parameter of tq is different for each
satellite in Equation (31).

Let [x̃q]ECI and [ṽq]ECI be the positions and velocities of the leading satellite in the inertial
frame of reference. The relative positions ([xq]ECEF ) and velocities ([vq]ECEF ) are obtained from
the inertial ones by using the following expressions:

[xq]ECEF = R3 (−ψG0 − ω⊕(tq − t0)) [x̃q]ECI , (32)

[vq]ECEF = R3 (−ψG0 − ω⊕(tq − t0)) [ṽq]ECI − ω⊕ × [xq]ECEF . (33)

However, the initial inertial positions [xq]ECI and velocities [vq]ECI are required in order to
define the constellation, thus, the second transformation of frames of reference is needed:

[xq]ECI = R3 (ψG0) [xq]ECEF , (34)

[vq]ECI = R3 (ψG0) [vq]ECEF + ω⊕ × [xq]ECI . (35)

One important thing to notice is that, having included the perturbations in the orbital propagation,
the constellation designed presents the same ground-track for all its satellites for the perturbations
considered in the constellation design. Thus, the more realistic the orbital perturbation model is, the
better the constellation will perform in the reality.

Constellation design with multiple ground-tracks

The next step in complexity in the design of a constellation is to include multiple ground-tracks in
the configuration. The process is similar as before, but now, several leading satellites are required in
order to define the different ground-tracks, one leading satellite for each ground-track. Furthermore,
the distribution of the satellites is done using two parameters: the time distribution over the different
ground-tracks tkq and the angular distribution of the relative trajectories in the ECEF frame of
reference ∆Ωk.

As it has been said, each ground-track requires a leading satellite. Those satellites have the same
values of a0, e0, i0 and w0, whilst the right ascension of the ascending node follows:

Ωk0 = Ω0 +∆Ωk, (36)

where Ωk0 are the right ascension of the ascending nodes of the leading satellites and each ground-
track is named as k = 1, ..., Nt.

Once the leading satellites are defined, each one of them is propagated numerically or analytically.
This generates a number of relative trajectories equal to Nt, the number of different ground-tracks
of the constellation. As before, the values of the positions and velocities of each ground-track are
kept and two transformations are required:

[xkq]ECEF = R3 (−ψG0 − ω⊕(tkq − t0)) [x̃kq]ECI ,

[vkq]ECEF = R3 (−ψG0 − ω⊕(tkq − t0)) [ṽkq]ECI − ω⊕ × [xkq]ECEF ;

[xkq]ECI = R3 (ψG0) [xkq]ECEF ,

[vkq]ECI = R3 (ψG0) [vkq]ECEF + ω⊕ × [xkq]ECI . (37)
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The values of the inertial positions [xkq]ECI and velocities [vkq]ECI of each satellite determine
the initial configuration of the constellation. This configuration distributes the constellation in Nt

different ground-tracks and Ns = NstNt (the number of satellites) number of inertial orbits (in
general), that is, each satellite has a different inertial orbit. That is why it is required to include the
constraint of minimum number of inertial orbits to decrease the expenses of the mission.

Constellation design with minimum number of inertial orbits

The latter configuration distributes the constellation in Ns different inertial orbits, which is a
design decision that carries a lot of expenses to build the constellation in orbit. In order to solve
that, as done in the analytical model, the distribution parameter can be separated in two different
distribution parameters tk and tq where tkq = tk + tq. Then, a relation can be established between
tk and Ωk using Equation (26). However, due to the orbital perturbations, it is concluded that the
configuration obtained in that way does not share the inertial orbits. That is why a correction over
the analytical solution is required.

The orbital perturbations make the right ascension of the ascending node to shift, which means
that the orbit sees the rotation of the Earth with a different angular velocity than the inertial one.
Thus, if the movement of the right ascension of the ascending node is included in the formulation,
the following expression is obtained:

tk =
∆Ωk

ω⊕ − Ω̇kq

, (38)

where Ω̇kq is the derivative of the right ascension of the ascending node for each satellite, which
can be obtained using the secular value of the perturbation. The value of tk is introduced in
Equation (37) leading to a constellation based on Ns satellites distributed in Nt ground-tracks and
Nst inertial orbits. All this design includes the orbital perturbations considered in the propagations
that were made.

EXAMPLE OF APPLICATION

As an example of application, a constellation whose satellites are equally spaced in time will be
introduced. Moreover, the satellites will present the repeating ground-track property and will be
distributed in the least number of inertial orbits using the semi-analytical model.

During this example the following perturbations have been taken into account: the gravitational
potential of the Earth7 to 4th order terms (including tesserals), the Sun and Moon as disturbing third
bodies,8 the solar radiation pressure9 and the atmospheric drag (Harris-Priester10, 11 model).

It will be supposed that the parameters Np, Nd, Nst and Nt are know as part of the mission
requirements. Furthermore, the eccentricity and the inclination will be free for the orbit designer to
be chosen, so they will be considered already known.

Moreover, as a mission requirement, the pass of the constellation over a certain point of the Earth
surface with coordinates in longitude and latitude (ψr, ϕr) will be imposed. This local coordinates
are related to the inertial ones (ψi, ϕi) by:

ψi = ψG + ψr,

ϕi = ϕr, (39)
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where ψG is the position of the Greenwich meridian in the ECI frame of reference. Furthermore,
a relation between the coordinates of Equation (39) and the orbital parameters exist through the
spherical trigonometry as shown in Figure 6 and Equation (40) (Bessel’s equations):

Figure 6. Spherical triangle visualization

 cos(ϕi)
sin(ϕi)

0

 =

 cos(ψi − Ω) 0 sin(ψi − Ω)
0 1 0

sin(ψi − Ω) 0 − cos(ψi − Ω)

 cos(θ)
sin(θ) sin(i)
sin(θ) cos(i)

 . (40)

Equation (40) allows to obtain the right ascension of the ascending node (Ω) and the argument
of latitude (θ = ω + f ). These values are calculated as a function of the inclination (i) and the
coordinates of the point in the Earth surface (ψi, ϕi):

sin θ =
sinϕi
sin i

, (41)

tan (ψi − Ω) = tan θ sin i, (42)

whilst ω and f can be chosen in order to orientate the initial orbit in the orbital plane. That way, if
the point that has been defined in the Earth’s surface (ψi, ϕi) is required to have a maximum time
of covering, the point above that region can be chosen as the apogee of the orbit by just imposing
f = π. Thus, the argument of perigee can be calculated using the relation:

θ = ω + f. (43)

On the other hand, a proper semi-major axis is required to achieve the repeating ground-track
property and obtain a closed ground-track. In the example proposed and due to the fact that several
orbital perturbations are considered, a numerical method for achieving the ground-track property
will be used.

Let a cycle be the time that a satellite requires to repeat its ground-track, and let Tc be the period
of this cycle. In order to achieve the repeating ground-track property, the orbital parameters have to
fulfil a relation with the rotation of the Earth, given by:

Tc = NpTΩ = NdTΩG, (44)
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where Np is the number of orbital revolutions to cycle repetition, Nd is the number of sidereal days
to cycle repetition, TΩ is the nodal period of the orbit and TΩG is the nodal period of Greenwich.

The basis of the numerical method is to correct the value of the semi-major axis by adjusting the
orbit of the satellite in the ECEF frame of reference. This correction is achieved by using a basic
property in celestial mechanics: if the semi-major axis of an orbit increases, its period also increases
and vice versa. Therefore, the goal of the correction is to find the value of the semi-major axis that
allows the closing of the ground-track in a period of time equal to a cycle: Tc = TNp (being T the
orbital period and Np the number of orbital periods to complete a cycle). This is done by a series
of iterations in which the secant method and the intermediate value theorem are used to find the
value of the semi-major axis that allows the closing of the ground-track for the orbital perturbations
considered.

Once the orbital parameters are established for one satellite, it is time to generate the initial
configuration of a constellation with minimum number of inertial orbits. In order to do so, a
constellation distribution must be chosen. For the sake of simplicity, the value of t0 is fixed as
t0 = 0. Let Nst be the number of satellites in each different ground-track, and let q = 1, ..., Nst be
the integer that names each satellite of each ground-track of the constellation. The configuration is
made using a time distribution, assigning a certain tq < Tc to each constellation satellite. Due to
the equally spaced time distribution, the values of tq are given by Equation (45):

tq = (q − 1)
Tc
Nst

. (45)

Furthermore, let Nt be the number of different ground-tracks, and let k = 1, ..., Nt be the integer
that names each different ground-track of the constellation. The right ascension of the ascending
nodes of the leading satellites of each relative trajectory are expressed as:

Ωk = Ω0 + (k − 1)
2π

Nt
, (46)

where:
∆Ωk = (k − 1)

2π

Nt
. (47)

Note that the right ascension of the ascending node of the leading satellites in not shared with the
rest of the satellites situated in the same ground-track (see Equation (16)).

Using Equation (38), the distribution of tk is obtained:

tk =
(k − 1)

2π

Nt

ω⊕ − Ω̇kq

, (48)

thus, the distribution of each satellite (tkq = tk + tq) for an equally spaced in time configuration is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

Nt

(
ω⊕ − Ω̇kq

) . (49)

One thing to notice is that due to the possible symmetries of the configuration, it has to be assured
two conditions by the designer. The first one is that the parameters Nd and Np are relatively primes.
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This imposes that the definition of the cycle is the minimal relation between both numbers Nd and
Np, other way, the configuration is multi-generated by several pairs of parameters.

The second condition is that the parameters Np and Nt are relatively primes. This aims to
avoid the overlapping of satellites in the configuration. This happens if the configuration is
very symmetrical in time and space, and thus, reduces the number of practical satellites of the
constellation due to the overlapping. There is also another way to solve this condition by slightly
modifying the distribution formulation. Let Nf be the maximum common divisor between Np and
Nt. Then, the distribution over space is:

Ωk = Ω0 + (k − 1)
2π

NtNf
, (50)

and therefore, the distribution over time is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

NtNf

(
ω⊕ − Ω̇kq

) . (51)

Equations (50) and (51) substitute Equations (46) and (49) in order to avoid the overlapping of
satellites due to the high symmetry of the distribution. Note that the overlapping could have been
solved by just taking into account that depending on the distribution, two different leading satellites
can define the same relative trajectory, so it is of no use defining the same relative trajectory twice.

Once it has been defined the equally spaced in time configuration, it is time to apply this concept
to a particular case and show the results. A constellation consisting of 24 satellites has been taken
as an example. The constellation repeats its ground-track each two orbital revolutions (Np = 2) and
each day (Nd = 1). Furthermore, all satellites have an inclination of i = 63.435o and an eccentricity
of e = 0.5. A high eccentricity orbit has been selected in order to show the possibilities of the
constellation design model. The constellation is distributed in 6 different ground-tracks (Nt = 6)
and 4 inertial orbits (Nst = 4), thus Ns = NtNst = 24.

Note that Nt = 6 and Np = 2 have a maximum common divisor of Nf = 2, so, Equations (50)
and (51) must be used to perform the distribution. As a further requirement, it has been imposed
that one ground-track of the constellation passes over the city of Zaragoza (Spain) with coordinates
(ϕr = 41.698169o and ψr = −0.874295o).

With these conditions, the constellation is designed following the semi-analytical model proposed
in this work obtaining the initial positions and velocities shown in Table 1. These results are given
in the inertial frame of reference and generate a constellation whose satellites are distributed in 4
different inertial orbits and 6 ground-tracks. The satellites are subjected to the orbital perturbations
named at the beginning of this section: the gravitational potential of the Earth, the Sun and Moon
as disturbing third bodies, the solar radiation pressure and the atmospheric drag.

This configuration can be seen in Figure 7, where the ground-track of the whole constellation is
presented. There, it can be observed that the constellation is distributed in 6 different ground-tracks,
being them completely closed and shared by 4 satellites each.

Figure 8 shows the inertial (left) and relative (right) trajectories of all the satellites in the
constellation. There, it can be seen how the constellation is distributed in only 4 different inertial
orbits, and how the relative trajectory is shared by groups of satellites (4 for each relative trajectory).
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Table 1. Initial positions and velocities of the constellation.

Sat. (k,q) x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]

1,1 29742.291461 -453.882562 26500.795390 -1.170867 1.357686 1.337337
1,2 154.757740 9918.577275 -8829.517691 -4.072424 -3.511337 -4.013089
1,3 -29744.258831 452.556797 26498.609462 1.170722 -1.357541 1.337610
1,4 -160.230634 -9924.332897 -8822.957115 4.071962 3.509064 -4.015544
2,1 16921.729936 8809.410393 31186.380496 -2.343357 1.134970 -0.134496
2,2 -14103.295941 -21475.851654 -5338.235302 -0.094244 -2.9690372 2.558953
2,3 -16924.509567 -8809.572429 31186.599923 2.343266 -1.134808 -0.134081
2,4 14100.582686 21472.679186 -5342.417411 0.094398 2.969823 2.558760
3,1 -2593.920310 13813.973852 22164.558045 -2.883874 -0.004426 -2.654988
3,2 -9567.104875 -32767.409591 13084.071119 1.092862 -0.422175 2.329501
3,3 2590.853241 -13813.672025 22168.896630 2.883967 0.004272 -2.654190
3,4 9564.986068 32767.859269 13080.263462 -1.092785 0.422482 2.329676
4,1 -9918.577275 154.757740 -8829.517691 3.511337 -4.072424 -4.013089
4,2 -452.556797 -29744.258831 26498.609462 1.357541 1.170722 1.337610
4,3 9924.332897 -160.230634 -8822.957115 -3.509064 4.071962 -4.015544
4,4 451.230563 29746.225806 26496.423089 -1.357397 -1.170578 1.337883
5,1 21475.851603 -14103.295946 -5338.235358 2.969037 -0.094244 2.558953
5,2 8809.572392 -16924.509661 31186.599943 1.134808 2.343266 -0.134081
5,3 -21472.679042 14100.582688 -5342.417547 -2.969823 0.094398 2.558760
5,4 -8809.734988 16927.289198 31186.818695 -1.134646 -2.343176 -0.133665
6,1 32767.409572 -9567.104748 13084.071327 0.422175 1.092862 2.329501
6,2 13813.671999 2590.853697 22168.896165 -0.004272 2.883967 -2.654190
6,3 -32767.859301 9564.985811 13080.263949 -0.422482 -1.092785 2.329676
6,4 -13813.370286 -2587.786786 22173.233127 0.004118 -2.884060 -2.653391

Figure 7. Ground-track of the constellation.

Finally, in Figure 9 the three-dimensional structure of the constellation in the ECEF frame of
reference can be observed. It can be concluded that the satellites are able to share their relative
trajectories (4 satellites in each trajectory) despite of being subjected to orbital perturbations. The
figure allows to see the possibilities that the definition of the constellation in the relative frame of
reference brings, generalizing the orbits from a conic shape in the inertial frame of reference into a
more diverse group of configurations in the relative frame of reference.
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Figure 8. Inertial (left) and relative (right) trajectories of the constellation.

Figure 9. Three-dimensional structure of the constellation in the ECEF frame of reference.

CONCLUSIONS

This paper has shown a new design model to create constellations whose satellites share the same
ground-track using time as parameter of distribution in the configuration. This design allows to
distribute satellites in several relative trajectories without no restrictions at all in their distribution,
a property that can be used to configure missions in which the satellites have to pass consecutively
over a certain point of the Earth’s surface.

This design model opens a wide variety of possibilities in the configuration of satellite
constellations, and it is able to handle any combination of orbital parameters, being the model
applicable even with constellations based on high eccentricity orbits.

Furthermore, two different approaches have been presented for this design model, an analytical
model in which no orbital perturbation was considered, and a semi-analytical model that can handle
orbital perturbations. These two methodologies represent the same idea, but each one has its
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own peculiarities and uses. Specifically, the semi-analytical model allows to include the orbital
perturbations inside the design process, improving the results obtained.

Moreover, this constellation design model allows to include orbital properties to the basic design.
In that respect, a semi-major axis correction has been applied to the example presented in the paper
in order to achieve the repeating ground-track property in the constellation despite of being the
satellites subjected to certain known orbital perturbations. The ability to include other properties
such as the sun-synchrony will be studied in future work.

Finally the decrease on the number of inertial orbits to a minimum, represents a big design
advantage, due to the fact that the reduction of inertial orbits allows to group satellites in their
launches, therefore reducing the costs of the mission.
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