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STATION-KEEPING FOR LATTICE-PRESERVING FLOWER
CONSTELLATIONS

Daniel Casanova∗ and Eva Tresaco†

2D-Lattice Flower Constellations present interesting dynamical features that al-
low us to explore a wide range of potential applications. Their particular initial
distribution (lattice) and their symmetries disappear when some perturbations are
considered, such as the J2 effect. The new lattice-preserving Flower Constella-
tions maintain over long periods of time the initial distribution and its symmetries
under the J2 perturbation, which is known as relative station-keeping. This paper
deals with the study of the required velocity change that must be applied to the
satellites of the constellation to have an absolute station-keeping.

INTRODUCTION

Flower Constellations present beautiful and interesting dynamical features that allow us to ex-
plore a wide range of potential applications, such as telecommunications, Earth and deep space ob-
servation, global positioning systems, distributed space systems, etc. The original theory of Flower
Constellations1, 2, 3 was developed in 2004 by Prof. D. Mortari in response to the need of includ-
ing the eccentricity as another design parameter. Note that previous satellite constellations, such as
Walker Constellations4 around 1970s, consider all the satellites in circular orbits.

The original theory was substantially improved by the 2D-Lattice Flower Constellations5 (2D-
LFCs), making the theory independent of any reference frame (inertial or rotating), and making the
theory works with minimal parametrization. In particular, these constellations can be described by
three integer parameters and six continuous ones. The first three parameters are No, the number
of orbital planes, Nso, the number of satellites per orbit, and Nc ∈ [0, No − 1] a phasing param-
eter. These three integers completely determine the location of all the satellites in a lattice in the
(Ω,M)−space.6 The other six parameters are the longitude of the ascending node and the mean
anomaly of the reference satellite. The semi-major axis, the eccentricity, the inclination and the
argument of perigee, which are the same for all the satellites in the constellation.

In the Keplerian model, 2D-LFCs remain 2D-LFCs in time. That is, the initial lattice of the
constellation and its symmetries are maintained. However, when some perturbation is considered,
such as the J2 effect due to the non-spherical shape of the Earth, the initial structure is destroyed
in a few days. The new theory of Lattice-preserving Flower Constellation7 allows us to control the
lattice and preserve its initial configuration providing a relative station-keeping, which consists of
maintaining only the relative positions of the satellites of the constellation with respect to each other
and not the absolute positions.8 Thanks to the lattice-preserving Flower Constellations it is possible
to maintain during several months the initial properties (observation, global coverage, etc.) of the
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constellation. The relative station-keeping is achieved following two procedures: the first consists of
the modification of the semi-major axis slightly to control their orbital period, and second consists
of the modification of the values of the eccentricity and inclination.

Nevertheless, even in the case where the initial lattice is preserved, some maneuvers must be
applied if it is required an absolute station-keeping, which consists of maintaining each satellite of
the constellation in a predefined mathematical box relative to the Earth or inertial space.8

This paper deals with the required change in velocity that must be applied to the satellites of the
constellation to have an absolute station-keeping. As a first approach, we investigate the ∆v required
to keep the satellites according to the initial lattice when the main perturbation is the J2 effect. As
we will see, the ∆v required for an absolute station-keeping is extremely high, making the relative
station-keeping of the lattice-preserving Flower Constellation the most interesting property. This
kind of constellations become attractive from an economical point of view (low fuel consumption)
and from a practical point of view (fixed initial configuration).

This paper is organized as follows; first we introduce the 2D Lattice Flower Constellation The-
ory, and recall the satellite motion under the J2 effect. Then, the effect of the J2 perturbation on
the (Ω,M)-space is presented, and we show the method applied to correct the lattice of the con-
stellation to obtain the lattice-preserving Flower Constellation (relative station-keeping). After that,
we present an example of design, in particular, the Galileo Constellation is built with the lattice-
preserving Flower Constellation technique. Finally, the ∆v concept is introduced and computed for
the absolute station-keeping that requires the lattice-preserving Galileo Constellation. Furthermore,
a numerical experiment is presented to show that the lattice-preserving technique is still valid even
when the J3 effect and Sun perturbation are considered.

PRELIMINARIES

In this section we describe the main tools used throughout the paper: the theory of Flower Con-
stellations and the dynamics of a satellite orbiting the Earth.

2D-Lattice Flower Constellation Theory

The original theory of Flower Constellations was introduced around 2004 by professor D. Mor-
tari.1 The main purpose of this constellations was having all the satellites in the same (closed)
trajectory with respect to a rotating frame.2, 3 The problem was that the design parameters did not
have a clear physical meaning, making the theory quite difficult for the user. Consequently, it was
improved by the 2D Lattice Flower Constellation theory5 making it independent from any reference
frame (inertial or rotating) and making the theory work with minimal parametrization.

A 2D Lattice Flower Constellation, hereinafter named 2D-LFC, is described by nine parameters:
three integers and six continuous parameters. The first three parameters are the number of inertial
orbits (No), the number of satellites per orbit (Nso) and the configuration number (Nc), which is a
parameter that satisfies Nc ∈ [0, No− 1] and governs the phasing of the constellation. In particular,
the location of the satellites of a 2D-LFC corresponds to a lattice in the (Ω,M )-space.6 This space
can be regarded as a 2D torus (both axes, Ω andM , are modulo 2π), and coincides with the solutions
of the following system of equations:(

No 0
Nc Nso

)(
Ωij − Ω00

Mij −M00

)
= 2π

(
i
j

)
, (1)
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where i = 0, · · · , No − 1, j = 0, · · · , Nso − 1, and Nc ∈ [0, No − 1]. Indices (i, j) represent the
j-th satellite on the i-th orbital plane.

Finally, the other six parameters are the semi-major axis (a), the eccentricity (e), the inclination
(i) and the argument of perigee (ω), which are the same for all the satellites of the constellation,
and the longitude of the ascending node and the mean anomaly of the reference satellite of the
constellation i. e. Ω00 and M00.

Satellite Motion

The dynamic of a satellite orbiting around the Earth is completely determined by the potential
function in terms of the position vector, V (~r), which accounts for the gravitational interaction be-
tween the two bodies. Since the Earth is non-symmetric, the potential of an aspherical body must
be obtained first. The potential function [9, p. 509] is usually split into two parts, the Keplerian part
(spherical) and the perturbative part (aspherical):

V (~r) = VKepler +R. (2)

If we only consider the J2 effect, which is the coefficient corresponding to the first harmonic of the
Earth’s gravitational potential, the previous equation can be simplified into:

V (~r) = VKepler +RJ2

= −µ
r

+ J2

(r⊕
r

)2
P2 (sin(φsat)) . (3)

where µ is the Earth gravitational constant, r = ||~r||, r⊕ is the Earth radius, J2 = −1.0826 · 10−3

is the second zonal harmonic, P2 is the 2nd-order Legendre Polynomial and φsat ∈ [−π/2, π/2]
represents the latitude of the satellite.

The motion of the satellite orbiting the Earth is described by the following first order system of
equations that can be found in any book of astrodynamics:10

{
~̇r(t) = ~v(t),

~̇v(t) = −∇V (~r(t)),
(4)

where ~r(t) and ~v(t) represent the position and velocity of the satellite at time t, respectively. The
system presented in Eq. (4) has six differential equations of order one. Given the initial position and
velocity, the solution of the system at time t is presented through the state vector at time t, ~r(t) and
~v(t).

Once the state vector is known, the classical orbital elements (a, e, i, ω,Ω,M) can be determined.
In the Keplerian motion, a satellite has constant orbital elements except the mean anomaly M .
Then, the evolution of them over time can be represented as a straight line, since M increases
linearly: M(t) = nt. The perturbative effects (aspherical body, solar radiation pressure, etc.) cause
deviations from the two-body (Keplerian) motion. Consequently, the orbital elements are no longer
constant. However, the model can be considered instantaneously as a Keplerian model, i.e. at each
instant of time it is possible to describe the movement as a Keplerian motion, using six orbital
elements which depend on time. These parameters are named osculating elements; a(t), e(t), i(t),
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ω(t), Ω(t) and M(t), whose evolution follow Lagrange Planetary Equations [10, p. 194], presented
in Eq. (5):

ȧ = − 2

na

∂R

∂M
,

ė =

√
1− e2

na2e

∂R

∂ω
− 1− e2

na2e

∂R

∂M
,

i̇ =
1

na2
√

1− e2 sin(i)

∂R

∂Ω
− cos(i)

na2
√

1− e2 sin(i)

∂R

∂ω
,

ω̇ = −
√

1− e2

na2e

∂R

∂e
+

cos(i)

na2
√

1− e2 sin(i)

∂R

∂i
,

Ω̇ = − 1

na2
√

1− e2 sin(i)

∂R

∂i
,

Ṁ = n+
2

na

∂R

∂a
+

1− e2

na2e

∂R

∂e
.

(5)

whereR represents the perturbing part of the potential presented in Eq. (2). Analytical investigations
of the oblateness effects of a central body on a satellite has shown that certain elements, such as
ω,Ω,M , experience secular variations and periodic variations (short and long period variations).
Other elements such as a, e, i are possessed of only periodic variations and, hence, they only vary
about their mean values.

LATTICE-PRESERVING FLOWER CONSTELLATIONS

In this section we describe the problem found in a 2D-LFC when the J2 effect is considered,
which is that the lattice of the constellation is completely destroyed in a few days. However, the
theory of lattice-preserving Flower constellations7 describes a methodology to design a 2D-LFC
in such a way that the initial lattice and symmetries are maintained over a long period of time i.e.
relative station-keeping.

Effect of the Earth Oblateness on a 2D-LFC

In this work we consider only the J2 effect since it is almost 1000 times larger than the next
zonal harmonic coefficient J3. Consequently, the potential function given in Eq. (3) governs the
motion. The standard approach is to consider an averaged potential function RJ2 over an orbital
period, instead of the full expression of RJ2 , to focus only on the non-periodic variation, i.e the
secular terms of the orbital parameters that only affects to ω,Ω,M , as previously mentioned. In
this particular case, all the satellites of the constellation experience the same rate of change and,
consequently, they are perturbed in the same way preserving the lattice and the initial symmetric
configuration of the constellation.

Nonetheless, when the propagation of satellites is done with the full expression of the poten-
tial function, i.e. considering the secular and non-secular terms, the osculating elements show
a slightly different behaviour. In particular, each orbital element can be considered as the sum
of its secular component and its non-secular component a(t) = asec(t) + anon−sec(t), e(t) =
esec(t) + enon−sec(t), etc. (See details in Casanova et al. (2014)7). In this case, where the non-
averaged expression of the potential function is considered, the initial lattice and symmetries are
destroyed in just a few days.
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Method of Lattice-preserving Flower Constellations

The first stage of the method consists of substituting the full expression of the potential function
RJ2 , given in Eq. (3), into the Lagrange Planetary Equations, presented in Eq. (5). Notice that
Lagrange Planetary Equations are strongly reduced and simplified (ȧ = ė = i̇ = 0) if an averaged
potential function is considered (RJ2). However, in our particular case, where the full expression of
the potential function is considered (RJ2) Lagrange Planetary Equations become complex.

All the orbital elements are similar in a 2D-LFC except for the right ascension of the ascending
node and the mean anomaly, which are defined following Eq. (1). We conclude, through different
numerical experiments, that the slopes of the secular component of the osculating elements do not
depend on the initial right ascension of the ascending node, which is different from each satellite.
However, they depend on the initial mean anomaly of each satellite, which is a major problem since
each satellite of a 2D-LFC have different mean anomaly, as defined in Eq. (1).

To overcome this problem we take into account that the secular motion of the mean anomaly and
the semi-major axis are related by the following equation:

Ṁsec(t) = n =
2π

Tp
,

where, n is the mean motion and Tp is the orbital period, directly related to the semi-major axis.
Then, the correction method states that, if we take the semi-major axis and the rate of change of
the mean anomaly corresponding to the reference satellite of the constellation (Ṁ sec

00 ) as reference
values, it is possible to obtain the same rate of change for the mean anomaly of all the satellites of
the constellation by slightly modifying the semi-major axis of all the satellites as follow:7

aij = a

(
Ṁ ij

sec

Ṁ00
sec

) 2
3

,

where ij represents the j-th satellite on the i-th orbital plane. A slightly modification of the semi-
major axis is useful to control the secular variation of the satellites in order to experience all of them
the same secular rate of change. Nevertheless, we should also control the non-secular motion of the
satellites, but this control is unfeasible. Therefore, the solution proposed consists of selecting the
initial conditions of the constellation in such a way that the non-secular variations of the osculating
elements are minimized as much as possible.

To sum up, we have a new procedure to design 2D-LFCs with stable structure even under the
J2 effect, named lattice-preserving Flower Constellations. It is achieved by two procedures, first
by slightly modifying the semi-major axis of all satellites to have all of them the same slope of the
secular part of their osculating elements (i.e. the secular perturbation is the same for all the satel-
lites). The second procedure consists of selecting the values for the eccentricity and the inclination
in such a way that they minimize the non-secular perturbation of the osculating elements as much as
possible. Finally, we obtain a constellation where all the satellites are perturbed but in a similar way,
preserving the initial configuration and the initial symmetries, and having a relative station-keeping
motion.
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Example of Design

We consider a Flower Constellation of 27 satellites. In particular, we take the parametersNo = 3,
Nso = 9, Nc = 2, a = 29600.137 [km], e = 0, i = 0◦, ω = 0◦, Ω00 = 0◦ and M00 = 0◦, which
correspond to the parameters of Galileo constellation.11

We want to analyze the evolution of the initial lattice of the constellation i.e the (Ω,M)-space.
For that purpose we illustrate in Figure 1(a) the initial lattice at time t = 0. Remark that, each point
represents one satellite of the constellation. Figure 1(b) illustrates the position of the satellites after
1 year of propagation when the J2 effect is considered, and it is also illustrated the lattice of the
constellation computed by selecting the right ascension of the ascending node Ω00(t) and the mean
anomaly M00(t) of the reference satellite at time t = 31536000 [sec] following Eq. (1).

We observe that, at time t = 0 [sec] the lattice is perfectly distributed. However, after 1 year, the
position of the satellites, if the J2 is considered (black dots), is far away from the lattice computed
following Eq. (1) and taking the data from the reference satellite, Ω00(t),M00(t) with t = 31536000
[sec] (red dots). We conclude that, if the full expression of the potential function is considered, the
initial lattice and the initial symmetries are completely destroyed. Thus, the relative station-keeping
that states in the Keplerian motion does not state when the J2 effect is included.

(a) Initial distribution of satellites (b) Distribution of satellites after 1 year propagation

Figure 1. Satellite distribution for Galileo Flower Constellation. The (Ω,M)-space
computed from the reference satellite according to Eq. (1), at two different times t = 0
[sec] and t = 31536000 [sec] (1 year)

Therefore, we apply the correction method to this constellation of satellites. First, we correct the
semi-major axis of the satellites to control their secular motion. Through this correction all the satel-
lites will have the same slope for the osculating elements (secular perturbation), and consequently,
they will be perturbed in the same way. Second, we compute the values for the eccentricity and
the inclination that minimize the non-secular component of the osculating elements (non-secular
perturbations) of the satellites in the constellation. According to Casanova et al. (2014),7 the value
for the eccentricity is e = 0.01, and for the inclination is i = 56.0009◦.

Consequently, the new lattice-preserving Galileo constellation will have e = 0.01, i = 56.0009◦,
ω = 0◦ for all the satellites. The values for the right ascension of the ascending node and the mean
anomaly are computed following Eq. (1), and finally, the values of the corrected semi-major axis
are given in Table 1 where satellite (i, j) represents the j-th satellite on the i-th orbital plane.
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Table 1. Semi-major axis of Lattice-preserving Galileo Flower Constellation.

Satellite (i,j) a [km] Satellite (i,j) a [km] Satellite (i,j) a [km]

(0, 0) 29600.137 (1, 0) 29599.524 (2, 0) 29598.167
(0, 1) 29598.872 (1, 1) 29599.976 (2, 1) 29599.978
(0, 2) 29597.165 (1, 2) 29598.165 (2, 2) 29599.522
(0, 3) 29597.843 (1, 3) 29597.085 (2, 3) 29597.553
(0, 4) 29599.783 (1, 4) 29598.519 (2, 4) 29597.329
(0, 5) 29599.784 (1, 5) 29600.101 (2, 5) 29599.216
(0, 6) 29597.845 (1, 6) 29599.218 (2, 6) 29600.101
(0, 7) 29597.166 (1, 7) 29597.329 (2, 7) 29598.522
(0, 8) 29598.874 (1, 8) 29597.554 (2, 8) 29597.085

Finally, Figure 2 illustrates the power of the correction method. We observe that the distribution
of the satellites after 1 year of propagation, where the semi-major axis are corrected and the J2

effect is considered, coincides with the lattice computed from the reference satellite according to
Eq. (1) at time t = 31536000 [sec]. We conclude that the initial lattice and the initial symmetries
are maintained for long periods of time. Thus, the relative station-keeping of the satellites in the
constellation states.

(a) Initial distribution of satellites (b) Distribution of satellites after 1 year

Figure 2. Satellite distribution for the corrected Galileo Flower Constellation. The
(Ω,M)-space computed from the reference satellite according to Eq. (1), at two dif-
ferent times t = 0 [sec] and t = 31536000 [sec] (1 year)

∆V REQUIRED FOR THE STATION-KEEPING

In the previous section was presented a correction method to maintain the symmetries and the
structure of the 2D-Lattice Flower Constellations i.e. the satellites of the constellation present a
relative station-keeping. The main idea of lattice-preserving Flower Constellations is that all the
satellites in the constellation are perturbed but in a similar way, and consequently, the initial lattice
is maintained over time.

However, some missions require absolute station-keeping, which consists of minimizing the nat-
ural drift experienced by a satellite due to the central body’s shape, that in constellation design
means that each satellite of the constellation remains in a predefined mathematical box relative to
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the Earth or inertial space. In this section we analyze if an absolute station-keeping is feasible in a
lattice-preserving Flower Constellation. In particular, we study the required velocity change (∆v)
to have an absolute station-keeping.

Velocity change or ∆v

A space mission always requires a reconfiguration of satellites to maintain a specific structure.
The reconfiguration may consists of putting the satellites in a parking orbit, transferring the satellites
into a different orbit, going through a series of re-phasing, moving the satellites into a final orbit at
the end of its useful life, having an absolute station-keeping, etc. The concept ∆v is usually used
to measure the energy required to make the mentioned changes in the orbit of the satellites of the
constellation. This value, denoted by ∆v, is the sum of the velocity changes that must be applied
to the satellites of the constellation to obtain the desired reconfiguration of satellites.8 In satellite
constellation design we should minimize the ∆v required to reduce the cost of the mission.

In a Flower Constellation, the required ∆v can be computed from the following equation:

∆~v =

No−1∑
i=0

Nso−1∑
j=0

N∑
k=0

∆~v
(i,j)
k , (6)

where ∆~v
(i,j)
k represents the k-th change of velocity applied to the satellite (i, j) in the direction

given by ~vk. However, the usual expression is the norm of the previous quantity, i.e.:

||∆~v|| = ∆v. (7)

Time Evolution of the (Ω,M )-space

As we observed in the previous section, a Flower Constellation without a lattice-preserving de-
sign is destroyed in a few days when some perturbations are included, such as the J2 effect. If
we consider two satellites of the constellation, we numerically obtain that the slopes of the right
ascension of the ascending node are similar for both satellites, and the slopes of the mean anomaly
are also similar for both satellites, as the lattice-preserving technique states. Table 2 shows the sec-
ular variation of the osculating elements of each satellite of the corrected Lattice-preserving Galileo
Flower Constellation.7

In this particular constellation, we compute the time evolution of Sat(0,0) and Sat(0,1) under the
J2 effect, and we observe that the secular variation of the right ascension of the ascending node
is the same for both satellites, and it is equal to −5.228·10−9 [rad/sec]. Actually, Figure 3 shows
the time evolution of this variable where we observe its secular variation as well as the overlay that
occurs in the evolution of the right ascension of the ascending node for both satellites.

The idea is that all the satellites in this constellation are perturbed in a similar way under the J2

effect and the initial lattice and symmetries are maintained, resulting into a perfect relative station-
keeping constellation. However, some missions may require an absolute station-keeping, i.e. not
only maintain the initial lattice in time (relative station-keeping) but also correct the drift experi-
enced by each satellites of the constellation to remain in a predefined mathematical box relative to
the Earth or inertial space. For this purpose several maneuvers must be performed.

If we want to keep the initial 2D-lattice we must perform different maneuvers to control the
drift of the right ascension of the ascending node, but also phasing maneuvers,12 which are used
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Table 2. Slopes of the osculating elements corresponding to the satellites of the Lattice-preserving
Galileo Flower Constellation. Satellite (i, j) represents the j-th satellite on the i-th orbital plane.

Sat. a [km] ȧsec [km/sec] ėsec [sec−1] i̇sec [rad/sec] ω̇sec [rad/sec] Ω̇sec [rad/sec] Ṁsec [rad/sec]
(i, j) corrected

(0, 0) 29600.137 −2.833·10−11 −8.944·10−17 −3.227·10−16 2.661·10−9 −5.228·10−9 1.2398266·10−4

(0, 1) 29598.872 8.298·10−12 −1.198·10−17 9.466·10−17 2.638·10−9 −5.228·10−9 1.2398266·10−4

(0, 2) 29597.165 3.114·10−11 3.891·10−16 3.549·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

(0, 3) 29597.843 2.525·10−12 9.406·10−16 2.883·10−17 2.620·10−9 −5.228·10−9 1.2398265·10−4

(0, 4) 29599.783 −3.029·10−11 8.598·10−16 −3.450·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(0, 5) 29599.784 −1.305·10−11 −3.276·10−16 −1.486·10−16 2.617·10−9 −5.228·10−9 1.2398266·10−4

(0, 6) 29597.845 2.569·10−11 −1.847·10−16 2.928·10−16 2.612·10−9 −5.228·10−9 1.2398265·10−4

(0, 7) 29597.166 2.198·10−11 −4.364·10−16 2.506·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

(0, 8) 29598.874 −1.811·10−11 −1.044·10−15 −2.062·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

(1, 0) 29599.524 −2.764·10−11 −7.800·10−16 −3.148·10−16 2.628·10−9 −5.228·10−9 1.2398266·10−4

(1, 1) 29599.976 −1.926·10−11 −3.502·10−16 −2.194·10−16 2.643·10−9 −5.228·10−9 1.2398266·10−4

(1, 2) 29598.165 2.096·10−11 1.680·10−16 2.389·10−16 2.636·10−9 −5.228·10−9 1.2398266·10−4

(1, 3) 29597.085 2.650·10−11 4.320·10−16 3.020·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

(1, 4) 29598.519 −1.175·10−11 9.635·10−16 −1.338·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

(1, 5) 29600.101 −3.061·10−11 5.169·10−16 −3.488·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(1, 6) 29599.218 1.081·10−12 −5.280·10−16 1.245·10−17 2.612·10−9 −5.228·10−9 1.2398266·10−4

(1, 7) 29597.329 3.094·10−11 1.278·10−17 3.526·10−16 2.607·10−9 −5.228·10−9 1.2398266·10−4

(1, 8) 29597.554 9.650·10−12 −8.179·10−16 1.101·10−16 2.624·10−9 −5.228·10−9 1.2398266·10−4

(2, 0) 29598.167 −4.737·10−12 −1.048·10−15 −5.379·10−17 2.627·10−9 −5.228·10−9 1.2398266·10−4

(2, 1) 29599.978 −3.129·10−11 −2.438·10−16 −3.565·10−16 2.630·10−9 −5.228·10−9 1.2398266·10−4

(2, 2) 29599.522 −6.135·10−12 −1.903·10−16 −6.979·10−17 2.637·10−9 −5.228·10−9 1.2398266·10−4

(2, 3) 29597.553 2.915·10−11 3.121·10−16 3.322·10−16 2.634·10−9 −5.228·10−9 1.2398266·10−4

(2, 4) 29597.329 1.624·10−11 6.098·10−16 1.851·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4

(2, 5) 29599.216 −2.352·10−11 1.012·10−15 −2.680·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(2, 6) 29600.101 −2.443·10−11 7.844·10−17 −2.783·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

(2, 7) 29598.522 1.497·10−11 −3.629·10−16 1.707·10−16 2.609·10−9 −5.228·10−9 1.2398265·10−4

(2, 8) 29597.085 2.962·10−11 −6.970·10−17 3.376·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4

to change the position of the satellite in its orbit (i.e change the mean anomaly) by speeding up or
decelerating the satellite. However, if an absolute station-keeping is required we must control also
the drift of the perigee or the drift in the inclination increasing the cost of the maneuvers.

Outperform phasing maneuvers require a small ∆v since just a retrofire is required to speed the
satellite up or decelerate it. The maneuvers become increasingly complicated when dealing with
the right ascension of the ascending node. We analyze the variation of the right ascension of the
ascending node for one satellite during one year,

Ω̇ =
∆Ω

∆t
. ⇒ ∆Ω = Ω̇ ·∆t = 5.228·10−9 · 3600 · 24 · 365 = 0.16487 [rad] = 9.4464◦. (8)

The ∆v required for such a planar change needs a big fuel consumption just for one satellite. Fur-
thermore, this analysis can be generalized to all the satellites of the constellation, and consequently,
each satellite of the constellation requires a similar ∆v to correct the drift on the right ascension of
the ascending node.

Then, the ∆v required to control the right ascension of the ascending node plus the minimum ∆v
required for the phasing maneuvers are enough to control the 2D-lattice. However, we should apply
other maneuvers to completely control the argument of perigee and the inclination. We can conclude
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Figure 3. Evolution of the right ascension of the ascending node of Sat(0,0) and
Sat(0,1) of the corrected Galileo Constellation when the J2 effect is considered.

that an absolute station-keeping is feasible but it is a high fuel consuming process. Consequently, we
disregard the absolute station-keeping in favor of the relative station-keeping, and we take advantage
of the main characteristic of a lattice-preserving Flower Constellation, whose initial configuration
and symmetries are maintained over time.

Case of Lattice-preserving when J3 and Sun perturbation are considered

In this subsection we analyze if the lattice-preserving Flower constellation concept is still valid
when other perturbations such as the zonal harmonic J3, or Sun perturbation are included.

In particular, we compute numerically the time evolution of the right ascension of the ascending
node of Sat(0,0) and Sat(0,1) of the corrected Galileo constellation under the J2, J3 effects and Sun
perturbation. Figure 4 illustrates the time evolution of the right ascension of the ascending node of
both satellites and we observe a similar evolution as well as the overlay that occurs in the evolution
of the right ascension of the ascending node for both satellites.
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Figure 4. Evolution of the right ascension of the ascending node of Sat(0,0) and
Sat(0,1) of the corrected Galileo Constellation when the zonal harmonic J2 and J3
plus Sun perturbation are considered.

We can observe a similar slope than the one illustrated in Figure 3. In particular the variation of
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the right ascension of the ascending node for one satellite in one year is ∆Ω = 0.16886 [rad]. Note
that, when only the J2 effect is considered the variation of the right ascension of the ascending node
in one year is ∆Ω = 0.16487 rad.

We can expect a similar behavior for the remaining satellites of the constellation proving that
the lattice-preserving Flower Constellation technique is still valid under the zonal harmonics J2,
J3 and the Sun as a third body. This technique becomes into an efficient tool to design 2D-LFCs
whose initial configuration and symmetries are maintained over time under the J2, J3 effect and
Sun perturbation. However a complex analysis is required as a future work.

CONCLUSION

A novel way to design Flower Constellations that maintain the initial distribution of satellites and
the initial symmetries over time i.e. relative station-keeping was presented. This kind of constella-
tions are named 2D lattice-preserving Flower Constellations. The main characteristic is that all the
satellites in the constellation are perturbed in a similar way, and consequently, the initial distribution
of the satellites (initial lattice), and specially its symmetries are time-preserving. We showed that
the ∆v required to have an absolute station-keeping is unfeasible from an economical point of view.
For that reason, the necessity of reconfiguration is disregarded and we should take advantage of the
characteristics of the lattice-preserving Flower Constellations under the J2 effect. Furthermore, nu-
merical experiments showed that the lattice-preserving Flower Constellation technique is still valid
under the J3 effect and Sun perturbation.
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