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Abstract

We investigate the topological properties of unquenchedQCD on the ba-
sis of numerical results of simulations at fixed topologicalcharge, recently
reported by Borsanyi et al.. We demonstrate that their results for the mean
value of the chiral condensate at fixed topological charge are inconsistent
with the analytical prediction of the large volume expansion around the sad-
dle point, and argue that the most plausible explanation forthe failure of the
saddle point expansion is a vacuum energy densityθ-independent at high
temperatures, but surprisingly not too high(T ∼ 2Tc), a result which would
imply a vanishing topological susceptibility, and the absence of all physi-
cal effects of theU(1) axial anomaly at these temperatures. We also show
that under a general assumption concerning the high temperature phase of
QCD, where theSU(Nf )A symmetry is restored, the analytical prediction for
the chiral condensate at fixed topological charge is in very good agreement
with the numerical results of Borsanyi et al., all effects ofthe axial anomaly
should disappear, the topological susceptibility and all the θ-derivatives of
the vacuum energy density vanish and the theory becomesθ-independent at
anyT > Tc in the infinite volume limit.
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1 Introduction

Understanding the role of theθ parameter in QCD and its connection with the
strong CP problem is one of the major challenges for high energy theorists [1].
The aim to elucidate the existence of new low-mass, weakly interacting particles
from a theoretical, phenomenological and experimental point of view is intimately
related to this issue. The light particle that has gathered the most attention has
been the axion, predicted by Weinberg [2] and Wilczek [3] in the Peccei and Quinn
mechanism [4] to explain the absence of parity and temporal invariance violations
induced by the QCD vacuum. The axion is one of the more interesting candidates
to make the dark matter of the universe, and the axion potential, that determines
the dynamics of the axion field, plays a fundamental role in this context. At high
temperature, the potential can be calculated in the dilute instanton gas model [5],
but at medium and low temperatures interactions become non-perturbative, and a
lattice QCD calculation is needed.

The calculation of the topological susceptibility in QCD isalready a challenge,
but calculating the complete potential requires a strategyto deal with the so called
sign problem, that is, the presence of a highly oscillating term in the path integral.
Indeed Euclidean lattice gauge theory, our main non-perturbative tool for QCD
studies from first principles, has not been able to help us much because of the
imaginary contribution to the action coming from theθ-term, that prevents the
applicability of the importance sampling method [6]. This is the main reason why
the only progress in the analysis of theθ-dependence of the vacuum energy density
in pure gauge QCD, from first principles, reduces to the computation of the first few
coefficients (up to orderθ6) in the expansion of the free energy density in powers of
θ [7], [8], [9], and the maximum temperature at which quenchedsimulations seem
to give reliable results for the topological susceptibility is of the order of 1.5Tc

[10] [11], [12], with Tc the critical temperature for the chiral symmetry restoration
phase transition. The situation in full QCD with dynamical fermions is, on the
other hand, even worst [13], [14], [15].

TheQCD axion model relates the topological susceptibilityχT at θ = 0 with
the axion massma and decay constantfa through the relationχT = m2

a f 2
a . The

axion mass is, on the other hand, an essential ingredient in the calculation of the
axion abundance in the Universe. Therefore a precise computation of the temper-
ature dependence of the topological susceptibility inQCD becomes of primordial
interest in this context. This is the reason why several calculations of the topolog-
ical susceptibility in unquenchedQCD have been published in recent times [13],
[14], [15].

The authors of reference [13] exploreNf = 2+1 QCD in a range of tempera-
ture going fromTc to around 4Tc, and their results for the topological susceptibility
differ strongly, both in the size and in the temperature dependence, from the dilute
instanton gas prediction, giving rise to a shift of the axiondark matter window
of almost one order of magnitude with respect to the instanton computation. The
authors of reference [14] observe however, in the same model, very distinct temper-
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ature dependences of the topological susceptibility in theranges above and below
250 MeV: while for temperatures above 250 MeV, the dependence is found to be
consistent with the dilute instanton gas approximation, atlower temperatures the
fall-off of topological susceptibility is milder. On the other hand a novel approach
is proposed in reference [15], the fixed Q integration, basedon the computation
of the mean value of the gauge action and chiral condensate atfixed topologi-
cal chargeQ, and they find a topological susceptibility many orders of magnitude
smaller than that of reference [13] in the cosmologically relevant temperature re-
gion.

We want to show in this paper that an analysis of some of the numerical results
reported in reference [15], concerning the mean value of thechiral condensate at
fixed topological charge, suggest that the vacuum energy density is θ-independent
at high temperatures, but surprisingly not too high(T ∼ 2Tc), a result which would
imply a vanishing topological susceptibility, and the absence of all physical effects
of theU(1) axial anomaly at these temperatures. Since our analysis is based on
the computation of physical quantities at fixed topologicalcharge, we summarize
some peculiar features of such a computation and derive an expression for the ratio
of partition functions in different topological sectors insection 2. In section 3 we
show, provided that the vacuum energy density has a non-trivial θ-dependence,
that the difference of gauge actions and of chiral condensates between theQ and
vanishing topological sectors are of the order of the inverse lattice volume 1

VxLt
,

and proportional to the square of the topological charge Q, in both cases. In this
section we also compare our analytical results with the numerical results reported
in reference [15]. The absence of the typical effects of theU(1)A anomaly in
the chiral symmetry restored phase ofQCD at high-temperature was suggested
years ago [16], [17], and investigated later on in [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27]. In section 4 we show, under very general assumptions, that
all effects of the axial anomaly should disappear in the hightemperature phase
of QCD, where theSU(Nf )A symmetry is restored. The topological susceptibility
and all theθ-derivatives of the vacuum energy density should vanish andthe theory
should becomeθ-independent. Our conclusions are reported in section 5.

2 QCD with θ-term

Quantum Field Theories with a topological term in the actionare a subject of in-
terest in high energy particle physics and in solid state physics. In particle physics,
these models describe particle interactions with aCPviolating term. The inclusion
of this term in theQCD Lagrangian was the result of the discovery of theU(1)
axial anomaly, which solved theU(1)A problem but generated a new problem, the
strongCPproblem.

The Euclidean continuum Lagrangian ofNf flavorsQCDwith a θ-term is
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L = ∑
f

L f
F +

1
4

Fa
µν (x)Fa

µν (x)+ iθ
g2

64π2 εµνρσFa
µν (x)Fa

ρσ (x) (1)

with L f
F the fermion Lagrangian for thef -flavor, and

Q=
g2

64π2

∫
d4xεµνρσFa

µν (x)Fa
ρσ (x) (2)

is the topological charge of the gauge configuration, which takes integer values.
In this section I want to summarize a few interesting features, some of them

well known, ofQCD with a topological term in the action. One of these features
concerns the fact that the mean value of any intensive operator in QCD at θ = 0
can be computed in any fixed topological sector [28], [29], inparticular in the
Q= 0 topological sector. Even if this result seems a paradox, since the zero charge
topological sector is free from theU(1)A anomaly and breaks spontaneously chiral
symmetry, I will show how one can re-conciliate the absence of theU(1)A anomaly
with a finite non-vanishing mass for theη meson. I will discuss separately the one-
flavor model and the case of several flavors, and will derive a expression for the
ratio of partition functions in different topological sectors, which will be useful in
the next section.

2.1 The one flavor model

Concerning the one flavor model, where the only axial symmetry is an anomalous
U(1) symmetry, the standard wisdom on the vacuum structure of this model in the
chiral limit is that it is unique at each given value ofθ, the θ-vacuum. Indeed,
the only plausible reason to have a degenerate vacuum in the chiral limit would
be the spontaneous breakdown of chiral symmetry, but since it is anomalous, ac-
tually there is no symmetry. Furthermore in contrast to whathappens when chiral
symmetry is spontaneously broken, the infinite volume limitand the chiral limit
commute. In fact, due to the chiral anomaly, the model shows amass gap in the
chiral limit and therefore all correlation lengths are finite in physical units.

An elegant realization of all these ideas is the Leutwyler and Smigla (L-S) ap-
proach [30]. This approach is based, for the one-flavor model, on the assumption
that the vacuum energy or free energy density can be expandedin powers of the
fermion mass m, treating the quark mass term as a perturbation. Indeed, as previ-
ously stated, the spectrum of the one-flavor model, due to thechiral anomaly, does
not contain massless particles and therefore the perturbation series in powers of the
fermion massm should not give rise to infrared divergences. This expansion will
be then an ordinary Taylor series

−E(m,θ) =−E0+Σmcosθ+O(m2), (3)

giving rise to the following expansions for the scalar and pseudoscalar condensates
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〈ūu〉= Σcosθ+O(m) (4)

〈iūγ5u〉= Σsinθ+O(m) (5)

The resolution of the U(1) axial problem is obvious in this approach. Indeed the
expression for the free energy density (3) tell us that the topological susceptibility
χT has the following expansion

χT = Σmcosθ+O(m2) (6)

and then the divergence in the chiral limit of the first term inthe right-hand side of
the equation relating the pseudoscalar susceptibility

χp =

∫
〈iū(x)γ5u(x)iū(0)γ5u(0)〉d4x

with the chiral condensate andχT

χp =
〈ūu〉
m

−
χT

m2 (7)

is compensated with the divergence of second term in this equation, giving rise to a
finite pseudoscalar susceptibility or equivalently a finitemass for the ¯uγ5u meson.

All these features can be understood in simple words. Due to the chiral anomaly
a non-vanishing value of the chiral condensate does not break any symmetry. The
Goldstone theorem is not fulfilled because there is no spontaneous symmetry break-
ing.

The (L-S) formalism was developed in the continuum. However, there is a
lattice regularization, the Ginsparg-Wilson (G-W) fermions [31] from which the
overlap fermions [32] are an explicit realization, which shares with the continuum
all essential ingredients and gives at the same time mathematical rigor to all de-
velopments. Indeed G-W fermions have aU(1) anomalous symmetry [33], good
chiral properties, a quantized topological charge, and allow us to establish and
exact index theorem on the lattice [34]. Furthermore G-W fermions, contrary to
Wilson fermions, are free from phases where parity an flavor symmetries are spon-
taneously broken [35]. We will use this lattice regularization in what follows.

With this in mind we can write for the free energy densityE, scalarS and
pseudoscalarP condensates, pseudoscalar susceptibilityχp and topological sus-
ceptibility χT the same expressions as in the L-S approach,

−E(β,m,θ) =−E0(β)+Σmcosθ+O(m2), (8)

〈S〉= Σcosθ+O(m) (9)

〈P〉= Σsinθ+O(m) (10)
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χT = Σmcosθ+O(m2) (11)

χp =
〈S〉
m

−
χT

m2 (12)

where these expressions are now valid at finite lattice spacing a and finite lattice
volumeV, andΣ depends on both parameters with a finite non-vanishing value
in the infinite volume limit. β is the inverse gauge coupling and we omit theβ-
dependence ofΣ for simplicity.

The partition function of the model can be written as a sum over all topological
sectorsQ of the partition function in each topological sector times aθ-phase factor
as follows

Z(θ) = ∑
Q

ZQeiθQ (13)

where Q takes all integer values, and it is bounded at finite volume by the number
of degrees of freedom.

At large lattice volumeV the partition function should behave as

Z(θ) = e−VE(β,m,θ) (14)

with E (β,m,θ) given by (8). On the other hand the mean value of any intensiveop-
eratorO, as for instance the scalar and pseudoscalar condensates orany correlation
function, in a given topological sectorQ, can be computed as follows

〈O〉Q =

∫
dθ〈O〉θ Z(θ,m)e−iθQ∫

dθZ(θ,m)e−iθQ . (15)

Since the vacuum energy density, as a function ofθ, has its absolute minimum
atθ = 0, equations (8) and (15) tell us that the mean value of any intensive operator
atθ = 0 and non-vanishing fermion mass can be computed in any fixed topological
sector. Indeed, equation (15) gives in the infinite lattice volume limit the following
relation

〈O〉Q = 〈O〉θ=0 (16)

We can apply equation (16) to the computation of the pseudoscalar correlation
function < P(x)P(0) >θ=0 by computing it in the vanishing charge topological
sector. But this sector is anomaly free, and breaks spontaneously chiral symmetry
in order to give a non-vanishing valueΣ for the chiral condensate in the chiral limit.
The pseudoscalar meson susceptibility diverges and the Goldstone theorem should
tell us that the pseudoscalar meson is massless in the chirallimit. The loophole
in this argument is that in systems with a global constraint,the divergence of the
susceptibility does not necessarily implies a divergent correlation length. Indeed
the susceptibility must be computed by integrating out the correlation function over
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all distances, and then taking the infinite volume limit, in this order. In systems
with a global constraint, the infinite volume limit and the space-integral of the
correlation function do not necessarily commute. A very simple example of that
is the Ising model at infinite temperature with an even numberof spins and with
vanishing full magnetization as global constraint. In sucha case one has for the
spin-spin correlation function

〈

s2
i

〉

= 1

〈

sisj
〉

=−
1

(V −1)

The integral of the infinite volume limit of the correlation function is equal to 1,
whereas the infinite volume limit of the integrated correlation function vanishes.
The correlation function has a contribution of order 1/V that violates cluster at
finite volume and vanishes in the infinite volume limit, but that gives a finite con-
tribution to the integrated correlation function. This example, even if very simple,
is illustrative because this is in fact what happens for the pseudoscalar correlation
function.

Coming back to QCD with aθ-term, the standard wisdom on this model is
that it has no phase transition atθ = 0. Then we can expand the pseudoscalar
correlation function in powers of theθ angle as follows

< P(x)P(0) >θ=< P(x)P(0)>θ=0 +h(x,mu)θ2+O(θ4) (17)

where

h(x,mu) = 〈S(x)S(0)〉θ=0−〈P(x)P(0)〉θ=0+O(mu) (18)

The vacuum energy density (8) can also be expanded in powers of θ as

−E(β,mu,θ) =−E0(β,mu)−
1
2

χT (β,mu)θ2+O(θ4) (19)

with

χT (β,mu) = muΣ+O(m2
u) (20)

Taking into account equations (16) and (17-19) and making anexpansion around
the saddle point solution we can write the following equation for the pseudoscalar
correlation function in the zero-charge topological sector

< P(x)P(0) >Q=0=< P(x)P(0)>θ=0 +

1
V
〈S(x)S(0)〉θ=0−〈P(x)P(0)〉θ=0+O(mu)

χT
++O

(

1
V2

)

(21)

Equation (21) shows, as in the simple Ising model case, a violation of cluster
at finite volume for the pseudoscalar correlation function in the zero-charge topo-
logical sector. In the infinite volume limit, the pseudoscalar correlation function in
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the zero-charge topological sector and inQCD at θ = 0 agree, as expected. Con-
cerning susceptibilities we can write, by integrating out equation (21) and taking
the infinite volume limit the following relation

χp,Q=0 = χp+
Σ2+O(mu)

χT
(22)

where we have made use of the fact that in the infinite volume limit intensive
operators do not fluctuate

〈

(

1
V ∑

x
S(x)

)2
〉

=

〈

1
V ∑

x
S(x)

〉2

〈

(

1
V ∑

x
P(x)

)2
〉

=

〈

1
V ∑

x
P(x)

〉2

The dominant contribution of the second term in equation (22) in the chiral
limit diverges with the quark mass asΣ/mu, whereas

χp,Q=0 =
〈S(x)〉

mu

Combining these results we get, notwithstanding the pseudoscalar susceptibility
diverges in the zero charge sector in the chiral limit, that the pseudoscalar suscep-
tibility in one-flavor QCD is finite and the pseudoscalar meson is massive. The
pseudoscalar susceptibility in theQ= 0 sector diverges in the chiral limit not be-
cause of a divergent correlation length but as a consequenceof the cluster violating
contributions to the pseudoscalar correlation function (21), which are singular at
m= 0 and of order1V , and which give a finite singular contribution toχp,Q=0.

To conclude the discussion on the one-flavor model, we want toremark that the
validity of the commutation of the infinite volume limit and the chiral limit in this
model does not apply to the zero charge topological sector. Indeed, as previously
stated, the zero charge topological sector breaks spontaneously chiral symmetry,
and even if all correlation lengths are finite in this sector,there are divergent sus-
ceptibilities in the chiral limit. We have seen that the pseudoscalar susceptibility
diverges in this sector, but also the scalar susceptibilityχs at vanishing quark mass
can be computed as

χs,Q=0,mu=0 =
1
2
(χs,mu=0+χp,mu=0)+

V
2

Σ2 (23)

which shows explicitly the divergence with the lattice volumeV, and makes the
perturbative expansion of the chiral condensate in powers of mu ill-defined in the
infinite volume limit.
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2.2 Several flavors

QCD with several flavors shows some important differences with respect to the
one flavor case. The model also suffers from the chiral anomaly but has a spon-
taneously brokenSU(Nf ) chiral symmetry in the chiral limit at any temperature
below the critical temperature of the chiral transitionTc. There are divergent cor-
relation lengths forT < Tc in this limit and, contrary to the one flavor case, the
infinite volume limit and the chiral limit do not commute ifT < Tc. However the
essential features previously described for the one-flavormodel still work in the
several flavors case. Equation (12) reads now

χp =
〈S〉
m

−N2
f
χT

m2 (24)

whereχp stands now for the flavor singlet pseudoscalar susceptibility andS is the
flavor singlet scalar condensate. The vacuum energy densitycan also be expanded
in this case in powers of theθ-angle as

E(β,mf ,θ) = E0−
1
2

χT (β,mf )θ2+O(θ4) (25)

and equations (13), (14), (15) and (16) also work for severalflavors.
Let us write the expression, that we will use in the following, for the ratio of the

partition functions in theQ topological sectorZQ and in the vanishing topological
sectorZ0

ZQ

Z0
=

∫
dθe−iQθZ(θ,m)∫

dθZ(θ,m)
(26)

and its expansion around the saddle point solution

ZQ

Z0
= 1−

1
VxLt

Q2

2χT
+O

(

1
V2

)

(27)

whereVx is the spatial lattice volume andLt the number of lattice points in time
direction. Equation (27) implies that all topological sectors have the same proba-
bility in the infinite spatial volume limit at any temperature T = 1/Lt . Otherwise
the saddle point expansion breaks down, the most plausible reason for that being
that the vacuum energy density (25) beθ-independent.

3 The finite temperature chiral transition

We want to explore in this section the physical consequencesof equation (27) on
the temperature dependence of the topological susceptibility.

Taking the logarithm in (27) we get

log
ZQ

Z0
=−

1
VxLt

Q2

2χT
+O

(

1
V2

)

(28)
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and the following expressions for the logarithmic derivatives respect to the inverse
square gauge couplingβ and fermion massesmf

〈Sg〉Q−〈Sg〉Q=0 =
Q2

VxLt

1

2χ2
T

∂χT

∂β
+O

(

1
V2

)

(29)

〈

∑
x

Sf (x)

〉

Q

−

〈

∑
x

Sf (x)

〉

Q=0

=
Q2

VxLt

1

2χ2
T

∂χT

∂mf
+O

(

1
V2

)

(30)

whereSg andSf (x) in (29) are the lattice pure gauge action and the scalar chiral
condensate respectively.

There are two remarkable properties of the difference of gauge actions and of
chiral condensates between theQ and vanishing topological sectors in (29), (30):
they are of the order of the inverse lattice volume1

VxLt
and proportional to the square

of the topological chargeQ in both cases.
The numerical results for〈Sg〉Q−〈Sg〉Q=0 and

〈

∑xSf (x)
〉

Q −
〈

∑xSf (x)
〉

Q=0
reported in reference [15] show a finite non-vanishing contribution in the infinite
volume limit, linear in|Q| for both quantities. These results have been obtained
from numerical simulations of lattice QCD withNf = 3+1 staggered dynamical
quarks atT ∼ 5Tc andNf = 2+1 overlap fermions, the last in a range of temper-
atures running from 2Tc to 4Tc [15], and also in the quenched model [36]. The
numerical results of reference [15] show furthermore a value of

〈

∑xSf (x)
〉

Q=1−
〈

∑xSf (x)
〉

Q=0,
〈

∑
x

Sf (x)

〉

Q=1

−

〈

∑
x

Sf (x)

〉

Q=0

≈
1

mf
(31)

independent of the temperature, in the range of temperatures reported (300MeV−
650MeV).

Summarizing, the results reported in [15] for the difference of the gauge action
and of the chiral condensate between theQ and vanishing topological sectors, ob-
tained from numerical simulations ofQCDatT > Tc, are in contradiction with the
corresponding results obtained from the expansion around the saddle point (29),
(30), which should hold in the large volume limit.

There are only two plausible explanations for such a contradiction:

• The results of reference [15] are afflicted from strong volume corrections.

• The saddle point expansion fails to reproduce the correct behavior of physi-
cal quantities in the large volume limit

Since the authors of reference [15] exclude, from their numerical analysis of the
difference of the gauge action and of the chiral condensate between theQ and
vanishing topological sectors, large finite size corrections to these quantities (see
Figures S19 and S22 of [15]), the only plausible explanationis the failure of the
expansion around the saddle point. But the only reason for the failure of the saddle
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point expansion is that the main ingredient of this expansion, the fact thatZ(θ)
defines in (26) an integration measure extremely sharped around θ = 0, does not
work. SinceZ(θ) = e−VxLtE(β,mf ,θ) andE(β,mf ,θ) has its absolute maximum at
θ = 0 for any non-vanishing value of the fermion massmf , and gauge coupling
β, we should conclude, as previously stated, that the vacuum energy density is
θ-independent at high temperatures, but surprisingly not too high (T ∼ 2Tc). A θ-
independent vacuum energy density for physical temperatures above a given tem-
peratureTch would imply a vanishing topological susceptibility, and the absence of
all physical effects of theU(1) axial anomaly at these temperatures.

Years ago Thomas Cohen [16], [17] showed, assuming the absence of the zero
mode’s contribution, that all the disconnected contributions to the two-point corre-
lation functions in theSU(2)A chiral symmetry restored phase at high-temperature
vanish in the chiral limit. The main conclusion of this work was that the eight
scalar and pseudoscalar mesonsσ, π̄,η, ρ̄, should have the same mass in the chiral
limit, the typical effects of theU(1)A anomaly being absent in this phase. This is-
sue has been investigated both analytically and from numerical simulations in [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27]. In particular Sinya Aoki and col-
laborators have reported numerical results from simulations ofQCD with overlap
fermions [23], [25] which show a degeneracy of theπ̄ andη correlators. In ad-
dition they have also shown in [24], by studying multi-pointcorrelation functions
in various channels, that theU(1)A anomaly becomes invisible in susceptibilities
of scalar and pseudo-scalar mesons in theSU(2)A chiral symmetric phase ofQCD
with two overlap quarks.

In the next section I will argue that the effects of the chiralanomaly on the
meson spectrum, and in any physical observable, should disappear in the high tem-
peratureSU(Nf )A chiral symmetric phase ofQCD.

4 The restoration of theU(1)A symmetry at anyT > Tc

We want to show in this section, on very general grounds, how all effects of the
axial anomaly should disappear in the high temperature phase of QCD, where
the SU(Nf )A symmetry is restored. The topological susceptibility and all the θ-
derivatives of the vacuum energy density should vanish and the theory should be-
comeθ-independent.

The only general assumption of this section is that in the high temperature
phase ofQCD, where theSU(Nf )A symmetry is restored, the spectrum shows a
mass gap even in the chiral limit. All correlation lengths are finite in physical
units, none symmetry is spontaneously broken, the model is free from infrared di-
vergences, and the perturbative expansion of the vacuum energy density and of the
chiral condensate in powers of the quark mass converges for every θ (phase tran-
sitions inθ are not expected atT > Tc [37], [9]). A finite spatial lattice volume of
linear size much larger than the inverse mass gap should be enough to reproduce
the correct physical results, and contrary to what happens in the low temperature
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broken phase, the infinite volume limit and the chiral limit should commute. The
situation is similar to that of the one-flavor model previously discussed, where the
chiral anomaly, and therefore the absence of spontaneous chiral symmetry break-
ing, was the responsible for the mass gap in the spectrum of this model. However,
contrary to the one-flavor case, the zero charge topologicalsector does not show
spontaneous symmetry breaking, and all susceptibilities are finite in the chiral limit
in this sector. This suggests that the validity of the perturbative expansion in pow-
ers of the quark massm, and of the commutation of the infinite volume limit and
the chiral limit, applies also to this sector, and we will make use of this in what
follows.

We will first discuss the two-flavor case and will comment on the extension
of the results toNf ≥ 3. We will also show that equation (31) holds in the chiral
symmetry restored phase, up to ordermf corrections, a result which, as previously
stated, has been observed in the numerical simulations reported in [15] atT = 2Tc.
As always along this paper, we work in a lattice with a fermionregularization that,
as the overlap fermions, obey the Ginsparg-Wilson relation.

4.1 The two flavor model

To fix the notation let beS(x) = Su(x)+Sd(x) andP(x) = Pu(x)+Pd(x) the sum
of the up and down scalar and pseudoscalar condensates respectively, andχs,m=0,V

andχp,m=0,V the flavor singlet scalar and pseudoscalar susceptibilities atm= mu =
md = 0, and finite lattice volumeV = L3

sLt . Taking into account thatS(x) andP(x)
transform like a vector underUA(1) chiral anomalous rotations we can write for
the expansion of the mean value of the chiral condensate in powers ofm

〈S(x)〉θ = χs,m=0,Vm−sin2 θ
2
(χs,m=0,V −χp,m=0,V)m+O

(

m3) (32)

which gives the following expression for the vacuum energy density

−EV (β,m,θ) =−E0,V (β)+
1
2

χs,m=0,Vm2−
1
2

sin2 θ
2
(χs,m=0,V −χp,m=0,V)m2

+O
(

m4) (33)

whereE0,V(β) is the vacuum energy density atm= 0, which depends only on the
inverse gauge couplingβ.

Equation (33) gives for the topological susceptibility atθ = 0 the following
relation with the scalar and pseudoscalar flavor-singlet susceptibilities

χT,V =
m2

4
(χs,m=0,V −χp,m=0,V)++O

(

m4) (34)

which is of the order ofm2, as expected.
Equations (32) and (33) allow us to write the following expansion in powers of

m for the mean value of the chiral condensate in theQ= 0 topological sector
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〈S(x)〉Q=0 = χs,m=0,Vm−
1
2
(χs,m=0,V −χp,m=0,V)m+O

(

m3) (35)

As previously discussed, the large lattice volume expansion around the saddle
point predicts, provided that the vacuum energy density shows a non-trivialθ-
dependence, that the chiral condensate in any fixed topological sector equals the
chiral condensate in the full theory atθ = 0, in the large volume limit, up to of the
order of 1

V corrections. Then the only way to keep the validity of the expansion of
the chiral condensate and the vacuum energy density in powers of the quark mass
m is thatχs,m=0,V −χp,m=0,V is O

(

1
V

)

χs,m=0,V −χp,m=0,V ∼ O

(

1
V

)

(36)

Equation (36) implies that the topological susceptibility(34) vanishes, the
scalar and pseudoscalar susceptibilities are equal in the chiral limit, and therefore
the eight scalar and pseudoscalar mesonsσ, π̄,η, ρ̄, should have the same mass in
this limit.

The analysis here performed can be extended to higher ordersin the expansions
(32)-(35), getting as a result new conditions, analogous to(36), which show that
the theory should beθ-independent in the infinite volume limit and that all the
effects of the chiral anomaly are missed.

There is a simpler way to understand all these features. The vacuum energy
density can be parameterized as follows

EV (β,m,θ)−EV (β,m,0) = m2θ2 f
(

β,m,θ2) (37)

with f
(

β,m,θ2
)

> 0 for every θ ∈ (−π,π], sinceθ = 0 is assumed to be the
only absolute minimum of the vacuum energy density. It is an even function of
θ ( f

(

β,m,θ2
)

is also an even function ofm in the two-flavor model) that vanishes
at m= 0. The subtracted full chiral condensate〈∑xS(x)〉θ=0−〈∑xS(x)〉Q=0 is on
the other hand finite in the infinite volume limit, and can be computed as follows

〈

∑
x

S(x)

〉

θ=0

−

〈

∑
x

S(x)

〉

Q=0

=

VxLt

∫
dθ
(

2m f
(

β,m,θ2
)

+m2∂m f
(

β,m,θ2
))

θ2e−VxLtm2θ2 f(β,m,θ2)
∫

dθe−VxLt m2θ2 f (β,m,θ2)
(38)

which obviously vanishes atm= 0.
We can compute the subtracted full chiral condensate at any non-vanishing

quark massmby doing the expansion of (38) around the saddle point, and the final
result for the dominant contribution in them→ 0 limit is

〈

∑
x

S(x)

〉

θ=0

−

〈

∑
x

S(x)

〉

Q=0

=
1
m

(39)
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Then, if we want to keep the validity of the expansion of the vacuum energy density
in powers of the quark massm, and of the commutation of the infinite volume limit
and the chiral limit, we need to invalidate the saddle point expansion, and this
requires that theθ-dependent part of the vacuum energy density (37) be at leastof
the order of1V .

We can also compute the mean value of the chiral condensate inthe Q = 1
topological sector under this condition (or condition (36)). The final result is

m〈S(x)〉Q=1 = χs,m=0,Vm2+
1
V

(

2+O
(

m2)) (40)

which gives for the difference between the full condensatesin theQ= 1 andQ= 0
topological sectors the following expression

m

(

〈

∑
x
(Su (x)+Sd (x))

〉

Q=1

−

〈

∑
x
(Su (x)+Sd (x))

〉

Q=0

)

= 2+O
(

m2) (41)

4.2 Three or more flavors

The generalization of the results of the previous subsection to Nf ≥ 3 is straight-
forward but with some peculiar features which we want to remark.

In the two flavor model the scalarχs,m=0,V and pseudoscalarχp,m=0,V suscepti-
bilities in the chiral limit get contributions from theQ= 0 andQ= 1 topological
sectors. TheQ= 0 sector is free from the anomaly, and then gives the same con-
tribution to both susceptibilities, but theQ= 1 sector contributions toχs,m=0,V and
χp,m=0,V are opposite. ForNf ≥ 3 however only theQ= 0 sector gives contribution
to the scalarχs,m=0,V and pseudoscalarχp,m=0,V susceptibilities in the chiral limit,
and therefore we get

χs,m=0,V = χp,m=0,V , i f N f ≥ 3. (42)

The expansion of the mean value of the chiral condensate in powers ofm for
Nf = 3

〈S(x)〉θ = χs,m=0,Vm−sin2 θ
3
(χs,m=0,V −χp,m=0,V)m+O

(

m2) (43)

is thereforeθ-independent at orderm, its first θ-dependent contribution being of
the order ofm2. In general the firstθ-dependent contribution to the expansion
of the scalar condensate in powers of the quark massm is of the order ofmNf −1,
and therefore of the order ofmNf in the expansion of the vacuum energy density,
analogous to equation (33). This is the reason why the generalization of equation
(41) toNf flavors reads now as follows

m





〈

∑
f ,x

Sf (x)

〉

Q=1

−

〈

∑
f ,x

Sf (x)

〉

Q=0



= Nf +O(m) (44)
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5 Summary and Conclusions

The axion mass, an essential ingredient in the calculation of the axion abundance
in the Universe, is related in theQCD axion model with the topological suscepti-
bility χT at θ = 0. The temperature dependence of the topological susceptibility is
therefore just that of the axion mass.

Three papers reporting numerical results for the temperature dependence of
the topological susceptibility in unquenchedQCD have been recently published
[13], [14], [15], and their conclusions seem not to be in agreement with each other,
reflecting the high level of difficulty in measuring the topological susceptibility in
the high temperature regime.

In this paper we have shown that an analysis of some of the numerical results
reported in [15], concerning the mean value of the chiral condensate at fixed topo-
logical charge, suggests that the vacuum energy density isθ-independent at high
temperatures, but surprisingly not too high(T ∼ 2Tc), a result which would imply
a vanishing topological susceptibility, and the absence ofall physical effects of the
U(1) axial anomaly at these temperatures. More precisely we haveshown that the
results of the numerical simulations ofQCD at T > Tc in [15], [36], are in contra-
diction with the results of the large volume expansion around the saddle point (29),
(30), but in very good agreement with the analytical perturbative expansion of the
chiral condensate given by equation (44).

The only reason for the failure of the saddle point expansionis that the main in-
gredient of this expansion, the non-trivialθ-dependence of the vacuum energy den-
sity E(β,mf ,θ), does not work. Other intermediate solutions, like a vacuumenergy
density with non trivialθ dependence for|θ| ≤ θc, which becomesθ-independent
at |θ| > θc, would imply the existence of a phase transition at(T,θc), and such
a situation seems to be ruled out ifT ≥ Tc, at least in the pure gauge model, by
the results of [37], [9], which show that the critical temperature of the deconfine-
ment phase transition decreases withθ. Therefore aθ-independent vacuum energy
density seems the most plausible explanation for the failure of the saddle point
expansion.

In section 4 we have made a general assumption concerning thehigh tempera-
ture phase ofQCD, where theSU(Nf )A symmetry is restored. Basically we assume
that in this phase all correlation lengths are finite in physical units, none symme-
try is spontaneously broken, the model is free from infrareddivergences, and the
perturbative expansion of the chiral condensate in powers of the quark mass con-
verges. A finite spatial lattice volume of linear size much larger than the inverse
mass gap should be enough to reproduce the correct physical results, and contrary
to what happens in the low temperature broken phase, the infinite volume limit
and the chiral limit should commute. Under this assumption we have shown that
all effects of the axial anomaly should disappear in the hightemperature phase
of QCD, where theSU(Nf )A symmetry is restored. The topological susceptibility
and all theθ-derivatives of the vacuum energy density should vanish andthe theory
should becomeθ-independent at anyT > Tc.
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Incidentally, the commutativity of the chiral and infinite volume limits is im-
plicitly assumed by the authors of reference [15], since their calculations in the
high temperature regime are based on the assumption that thetopological suscepti-
bility, χT , can be computed in this phase from the relationVχT = 2Z1

Z0
, which is just

the result that follows from the dilute instanton gas approximation in theVχT ≪ 1
limit.

An analysis of the physical implications of these results onthe axion cosmol-
ogy seems therefore worthwhile.

The author thanks Giuseppe Di Carlo, Eduardo Follana and Alejandro Vaquero
for very long and deep discussions on the topological properties of QCD, and Javier
Redondo for very useful discussions on the results of reference [15]. The author
also thanks the referee of this paper for his criticisms and comments. This work
was funded by MINECO under grant FPA2015-65745-P (MINECO/FEDER).
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