
On the isotropic constant of random polytopes

David Alonso-Gutiérrez1 Alexander E. Litvak2

Nicole Tomczak-Jaegermann3

October 14, 2014

Abstract

Let X
1

, . . . , X
N

be independent random vectors uniformly dis-
tributed on an isotropic convex body K ⇢ Rn, and let K

N

be the
symmetric convex hull of X

i

’s. We show that with high probability
L

KN  C
p

log(2N/n), where C is an absolute constant. This result
closes the gap in known estimates in the range Cn  N  n1+�. Fur-
thermore, we extend our estimates to the symmetric convex hulls of
vectors y

1

X
1

, . . . , y
N

X
N

, where y = (y
1

, . . . , y
N

) is a vector in RN .
Finally, we discuss the case of a random vector y.
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1 Introduction

In this paper we estimate the isotropic constant of some random polytopes
(for the definitions and notations see Section 2). It is known (see e.g. [29])
that among all the convex bodies in Rn the Euclidean ball is the one with
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the smallest isotropic constant, that is L

K

� L

B

n
2
� c, where c is an absolute

positive constant. However, it is still an open problem to determine whether
there exists or not an absolute constant C such that for every convex body
K ⇢ Rn one has L

K

 C. The boundness of L

K

by an absolute constant
is equivalent to the long standing hyperplane conjecture ([10]). The best
general upper bound known up to now is L

K

 Cn

1/4 ([23]). This estimate
slightly improves (by a logarithmic factor) the earlier Bourgain’s upper bound
([11]).

Since remarkable Gluskin’s result [19] random polytopes are known to
provide many examples of convex bodies (and related normed spaces) with
a “pathologically bad” behavior of various parameters of a linear and geo-
metric nature (we refer to the survey [28] and references therein; see also
recent examples in [20] and [22]). Not surprisingly, they were also a natural
candidate for a potential counterexample for the hyperplane conjecture. This
was resolved in [24], where it was shown that the convex hull or the sym-
metric convex hull of independent Gaussian random vectors in Rn with high
probability has the bounded isotropic constant. Some other distributions for
vertices were also considered. In all of them the vertices had independent
coordinates.

Following the ideas in [24], the problem of estimating of the isotropic
constant of random polytopes was considered in [4], for independent random
vectors distributed uniformly on the sphere S

n�1, and in [14], for independent
random vectors uniformly distributed on an isotropic unconditional convex
body. Also in these cases the isotropic constant of random polytopes gen-
erated by these vectors is bounded with high probability. One can check
that the same method works for independent random vectors uniformly dis-
tributed on a  

2

isotropic convex body as well.
In this paper we estimate the isotropic constant of a random polytope in

an isotropic convex body (see Section 2 for the definitions). It is known (see
[6], [21] or [5]) that if K

N

is a polytope in Rn with N vertices then

L

KN  C min

(

r

N

n

, log N

)

,

where C is an absolute constant.
In [15, 16], the authors provided a lower estimate for the volume of a

random polytope K

N

obtained as the convex hull of N  e

p
n random points,
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namely

|K
N

| 1
n � c

s

log N

n

n

L

K

(see end of Section 2 for more precise formulation and details). On the other
hand, the proof of the estimate L

KN  C log N in [5] passes through showing
that if X

1

, . . . , X

N

are the vertices of K

N

, then for any a�ne transformation
T we have

L

KN 
C max

1iN

|TX

i

| log N

n|TK

N

| 1
n

.

Consequently, taking T to be the identity operator and using the concentra-
tion of measure result proved by Paouris [31], we obtain that if K

N

is the
convex hull or the symmetric convex hull of N independent random vectors
(for n + 1  N  e

p
n) uniformly distributed on an isotropic convex body,

then with high probability

L

KN 
C log N

q

log N

n

. (1.1)

Notice that if N � n

1+�, � 2 (0, 1), this estimate does not exceed (C/�)
q

log N

n

.

However, C/� tends to infinity as � tends to 0. On the other hand, if N is
proportional to n the isotropic constant of K

N

is bounded (by an absolute
constant), while the upper bound in (1.1) is not. The following theorem
closes the the gap between N  cn and N � n

1+�.

Theorem 1.1. There exist absolute positive constants c, C such that if n 
N , and X

1

, . . . , X

N

are independent random vectors uniformly distributed on

an isotropic convex body K, and K

N

is their symmetric convex hull, then

P
 (

L

KN  C

r

log
2N

n

)!

� 1� exp (�c

p
n).

Furthermore, we study a natural more general family of perturbations of
random polytopes. Namely, for any X

1

, . . . , X

N

2 Rn and y 2 RN , we define

K

N,y

= conv{±y

1

X

1

, . . . ,±y

N

X

N

}.

As it turns out Theorem 1.1 is valid for this family as well. To describe
this result we need more notations.
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For a vector y = (y
1

, ..., y

N

) 2 RN , let {y⇤
1

, ..., y

⇤
N

} be the sequence of
decreasing rearrangement of {|y

i

|}
i

. For 1  k  N and n  m  N denote

kyk
k,2

:=

 

k

X

i=1

y

⇤2
i

!

1/2

and ↵

y,m

:=

 

m

Y

i=m�n+1

y

⇤
i

!

1
n

� y

⇤
m

.

Our main result is the following theorem.

Theorem 1.2. There exist absolute positive constants c and C such that

the following holds. Let n  N and let X

1

, . . . , X

N

be independent random

vectors uniformly distributed on an isotropic convex body K. Then for every

y 2 RN

the event

L

KN,y  C

kyk
n,2p
n

inf

(

↵

�1

y,m

log(2N/n)
p

log(2m/n)
| n  m  N

)

occurs with probability greater than 1� e

�c

p
n

. Moreover, the event

sup
kykn,21

L

KN,y  C ↵

�1

y,m0

r

log(2N/n)

n

,

where m

0

= N(1� c/ log N), occurs with probability greater than 1� e

�c

p
n

.

Remark 1. Note that if n  N  Cn then L

K

 C for any symmetric
polytope K generated by N vectors ([6]).

Remark 2. Clearly Theorem 1.2 applied to the vector y = (1, . . . , 1)
implies Theorem 1.1.

Finally, we apply Theorem 1.2 to the case when the vector describing the
perturbation is also random. Such a setting has been recently considered in
[7]. In Theorem 4.1 we show that for the Gaussian vector G = (g

1

, ..., g

N

) in
RN with high probability we have

L

KN,G  C

r

log
2N

n

.
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2 Preliminaries

In this paper the letters c, C, c

1

, C

1

, . . . will always denote absolute positive
constants, whose values may change from line to line. Given two functions f

and g we say that they are equivalent and write f ⇡ g if c

1

f  g  c

2

f .
By |·| and h·, ·i we denote the canonical Euclidean norm and the canonical

inner product on Rn. The (unit) Euclidean ball and sphere are denoted by
B

n

2

and S

n�1. Let K be a symmetric convex body in Rn and let k · k
K

be its
associated norm

kxk
K

= inf{� > 0 : x 2 �K}.
The support function of K is h

K

(y) = max
x2K

hx, yi and it is the norm associated

to the polar body of K,

K

� = {y 2 Rn : hx, yi  1 8x 2 K}.

Given convex body K we denote by |K| its volume. We also denote by
|E| the cardinality of a finite set E. For E ⇢ {1, . . . , N} the coordinate
projection on RE is denoted by P

E

.
We say that a convex body K ✓ Rn is isotropic if it has volume |K| = 1,

its center of mass is at 0 (i.e.
R

K

xdx = 0) and for every ✓ 2 S

n�1 one has
Z

K

hx, ✓i2dx = L

2

K

,

where L

K

is a constant independent of ✓. L

K

is called the isotropic constant
of K.

It is known that every convex body has a unique (up to an orthogo-
nal transformation) a�ne image that is isotropic. This allows to define the
isotropic constant of any convex body as the isotropic constant of its isotropic
image. It is also known (see e.g. [29]) that

nL

2

K

= inf

(

1

|TK|1+ 2
n

Z

a+TK

|x|2dx : T 2 GL(n), a 2 Rn

)

. (2.1)

We need two more results on the distribution of Euclidean norms of ran-
dom vectors and their sums. Let X

i

, i  N , be independent random vectors
uniformly distributed in an isotropic convex body K ⇢ Rn. Let A be a
random n⇥N matrix, whose columns are the X

i

’s. For m  N denote

A

m

= sup{|Ay| | y 2 B

N

2

, |supp y|  m}

5



(supp denotes the support of y). Theorem 3.13 in [1] (note the di↵erent
normalization) implies the following estimate.

Theorem 2.1. There is an absolute positive constant C such that for every

� � 1 and every m  N

P
✓⇢

A

m

� CL

K

�

p
m log

2N

m

+ 6 max
i

|X
i

|
�◆

 exp

✓

��
p

m log
2N

m

◆

.

The following theorem is a combination of Paouris’ theorem ([31], see also
[3] for a short proof) with the union bound (cf. Lemma 3.1 in [1]).

Theorem 2.2. There exists an absolute positive constant C such that for

any N  exp(
p

n) and for every � � 1 one has

P
✓⇢

max
iN

|X
i

| � C�

p
n L

K

�◆

 exp
�

��
p

n

�

.

Finally we need the estimate on the volume of the random polytope

K

N

= conv{±X

1

, . . . ,±X

N

},

where X

i

, i  N , are independent random vectors uniformly distributed in
an isotropic convex body K ⇢ Rn. The estimates of the following theorem
were observed in [15] (see Fact 3.2, the remarks following it, and Fact 3.3
there; see also [33] and Chapter 11 of [12], where the assumption N � Cn

was reduced to N � n).

Theorem 2.3. There are absolute positive constants c

1

, c

2

such that for

n  N  e

p
n

,

P
 (

|K
N

|1/n � c

1

r

log(N/n)

n

L

K

)!

� 1� exp(�c

2

p
N).

In fact this theorem is a combination of three results. The first says that
K

N

contains the centroid body. Recall that for p � 1 the p-centroid body
Z

p

(K) was introduced in [27] (with a di↵erent normalization) as the convex
body, whose support function is

h

Zp(K)

(✓) =

✓

Z

K

|hx, ✓i|pdx

◆

1
p

. (2.2)
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In [16] (Theorem 1.1) the authors proved that for every parameters � 2
(0, 1/2) and � > 1 one has the inclusion K

N

� c

1

Z

p

(K) for p = c

2

� log(2N/n)
and N � c

3

�n with the probability greater than

1� exp(�c

4

N

1��
n

�)� P
⇣n

kAk > �L

K

p
N

o⌘

,

where A is the random matrix whose columns are X

1

, . . . , X

N

. The proba-
bility that norm of A (note kAk = A

N

) is large was estimated in [1] (combine
Theorems 2.1 and 2.2 above). Finally, from results of [25] and [31] the bound

|Z
p

(K)|1/n ⇡
p

p/n L

K

(2.3)

follows provided that p 
p

n (it improves the bound provided in [26]).
In the Section 4 we will use the following standard estimate. For the sake

of completeness we provide a proof (cf. Example 10 in [17]).

Lemma 2.4. There exists an absolute positive constant C such that for

Cm  N and independent standard Gaussian random variables g

1

, ..., g

N

one has

P
⇣n

g

⇤
m


p

log(eN/m)
o⌘

 exp

0

@�
p

mN

10
q

log
�

eN

m

�

1

A

Proof. Denote ↵ =
p

log(eN/m). Note, g

⇤
m

 ↵ in particular means that
there exists � ⇢ {1, ..., N} of cardinality ` := N �m such that |g

i

|  ↵ for
every i 2 �. Therefore,

p := P ({g⇤
m

 ↵}) 
✓

N

`

◆

(P ({|g
1

|  ↵}))` .

Using that

P ({|g
1

|  ↵}) = 1�
r

2

⇡

Z 1

↵

e

�x

2
/2

dx  1� e

�↵2
/2

p
2⇡↵

 exp

 

�e

�↵2
/2

p
2⇡↵

!

,

↵ =
p

log(eN/m) and
�

N

`

�

=
�

N

m

�

 (eN/m)m we obtain

p  exp

0

@

m log(eN/m)� `

p

m

eN

q

2⇡ log
�

eN

m

�

1

A

.

As ` = N �m, this implies the result. 2
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3 Proofs

In this section we prove Theorem 1.2. The proof consists of two propositions.

Proposition 3.1. Let n  N  e

p
n

and X

1

, . . . , X

N

are independent ran-

dom vectors distributed uniformly on an isotropic convex body K. Then the

event

sup

(

1

|K
N,y

|

Z

KN,y

|x|2dx | kyk
n,2

 1, y

⇤
n

> 0

)

 C

1

n

L

2

K

log2

2N

n

occurs with probability greater than 1� exp(�
p

n log(2N/n)), where C is an

absolute constant.

To prove this proposition we need the following lemma.

Lemma 3.2. Let 1  n  N be integers and P = conv{P
1

, . . . , P

N

} be a

non-degenerated symmetric polytope in Rn

. Then

1

|P |

Z

P

|x|2dx  1

(n + 1)(n + 2)
sup

E

0

@

X

i2E

|P
i

|2 +

�

�

�

�

�

X

i2E

P

i

�

�

�

�

�

2

1

A

,

where the supremum is taken over all subsets E ⇢ {1, . . . , N} of cardinality n.

Proof. We can decompose P as a disjoint union of simplices (up to sets of
measure 0), say P = [`

i=1

C

i

, where each C

i

is of the form conv{0, P
i1 , . . . , Pin}

for some choice of P

ij ’s. For every such C

i

, denote F

i

:= conv{P
i1 , . . . , Pin}.

Then for any integrable function f we have
Z

Ci

f(x)dx =

Z

Fi

Z

1

0

r

n�1

f(ry)|hy, ⌫(y)i|dydr = d(0, F
i

)

Z

Fi

Z

1

0

r

n�1

f(ry)dydr,

where ⌫(y) is the outer normal vector to P at the point y and d(0, F
i

) is the
distance from the origin to the a�ne subspace spanned by F

i

. Thus, as in
[24], for every i  ` one has

|C
i

| = n

�1|F
i

|d(0, F
i

) and

Z

Ci

|x|2 =
d(0, F

i

)

n + 2

Z

Fi

|y|2dy.

In particular,

|P | =
`

X

i=1

|C
i

| =
1

n

`

X

i=1

|F
i

|d(0, F
i

).
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Therefore,

1

|P |

Z

P

|x|2dx =
1

|P |

`

X

i=1

d(0, F
i

)

n + 2

Z

Fi

|y|2dy

 1

|P |

`

X

i=1

d(0, F
i

)|F
i

|
n + 2

sup
1i`

1

|F
i

|

Z

Fi

|y|2dy

 n

n + 2
sup

F

1

|F |

Z

F

|y|2dy,

where the supremum is taken over all F = conv{P
i1 , . . . , Pin}. Note that

any such F can be presented as F = T�n�1, where �n�1 = conv{e
1

, . . . , e

n

}
denotes the regular n � 1 dimensional simplex in Rn and T is the matrix
whose columns are the vectors P

ij . Since

1

|�n�1|

Z

�

n�1

y

i

y

j

dy =
1 + �

ij

n(n + 1)
,

where �
ij

is the Kronecker delta, for every F = conv{P
i1 , . . . , Pin} we obtain

1

|F |

Z

F

|y|2dy =
1

n(n + 1)

0

@

n

X

j=1

|P
ij |2 +

�

�

�

�

�

n

X

j=1

P

ij

�

�

�

�

�

2

1

A

.

This implies the desire estimate. 2

Proof of Proposition 3.1. Note that if y

⇤
n

> 0 then the cardinality of
support of y is at least n, so K

N,y

is not degenerated with probability one.
Therefore, with probability one K

N,y

is non-degenerated for any countable
dense set in B

0

:= {y 2 RN | kyk
n,2

 1, y

⇤
n

> 0}. Clearly, the supremum
under question is the same over y 2 B

0

and over such a dense set.

Now, by Lemma 3.2 we have that sup
y2B0

|K
N,y

|�1

Z

KN,y

|x|2dx is bounded

from above by

1

(n + 1)(n + 2)
sup
y2B0

sup
|E|=n

0

@

X

i2E

|y
i

X

i

|2 +

�

�

�

�

�

X

i2E

y

i

X

i

�

�

�

�

�

2

1

A

(formally, we should additionally take supremum over "
i

= ±1 and to have
y

i

"

i

X

i

in the formula under suprema, but, since B

0

is unconditional, the
supremum over "

i

’s can be omitted).
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Note that
X

i2E

|y
i

X

i

|2  kyk2

n,2

max
iN

|X
i

|2

and
�

�

�

�

�

X

i2E

y

i

X

i

�

�

�

�

�

= |AP

E

y|  A

n

kyk
n,2

,

where A is the matrix whose columns are X

1

, . . . , X

N

. Therefore, applying
Theorem 2.1 and Theorem 2.2 (with m = n and � = 2 log(2N/n)) we obtain
that

sup
y2B0

sup
|E|=n

0

@

X

i2E

|y
i

X

i

|2 +

�

�

�

�

�

X

i2E

y

i

X

i

�

�

�

�

�

2

1

A  C nL

2

K

log2

2N

n

with probability greater than 1� exp(�
p

n log(2N/n)). 2

Proposition 3.3. There exist absolute positive constants c

1

, c

2

such that if

n  N  e

p
n

and X

1

, . . . , X

N

are independent random vectors distributed

uniformly on an isotropic convex body K, then for every y 2 RN

,

P
 (

8m � n : |K
N,y

| 1
n � c

1

↵

y,m

L

K

r

log(2m/n)

n

)!

� 1� exp (�c

2

p
n).

Moreover, the event

8m � N � c

1

N

log N

8y 2 RN |K
N,y

| 1
n � c

1

↵

y,m

L

K

r

log(2m/n)

n

occurs with probability greater than 1� exp (�c

2

p
N).

The probability estimates in Proposition 3.3 are based on an estimate of
corresponding probability for a fixed y and the union bound. We start with
the following lemma.

Lemma 3.4. There exist absolute positive constants c

1

, c

2

such that the

following holds. Let n  m  N  e

p
n

and X

1

, . . . , X

N

are independent

random vectors distributed uniformly on an isotropic convex body K. Then

for every y 2 RN

with y

⇤
m

> 0 there exists v = v(y) 2 RN

having 0/1
coordinates with exactly m ones such that

|K
N,y

| � ↵

n

y,m

|K
N,v

|

10



and

P
 (

|K
N,v

| 1
n � c

1

L

K

r

log(2m/n)

n

)!

� 1� exp
�

�c

2

p
m

�

.

Proof. Fix y 2 RN with y

⇤
m

> 0 (i.e. |supp y| � m). Let i

1

, . . . , i

m

be the
indices such that y

ij = y

⇤
j

and let v = v(y) 2 RN be the vector with v

k

= 1 if
k = i

j

and 0 otherwise. Decompose the polytope K

N,v

into a disjoint union
of simplices (up to a set of zero measure)

K

N,v

=
`

[

k=1

C

k

,

where C

k

= conv{0, "
k1Xk1 , . . . , "knX

kn} for some "
kj = ±1 and some vectors

X

kj , given by the simplicial decomposition of the facets of K

N,v

. Denote

C

k,y

= conv{0, "
k1|yk1|Xk1 , . . . , "kn|ykn|Xkn} ⇢ K

N,y

.

Clearly, C

k,y

’s are also disjoint up to a set of zero measure and

|C
k

| = | det ("
k1Xk1 , . . . , "knX

kn) | |conv{0, e
1

, . . . , e

n

}|

 1

↵

n

y,m

| det ("
k1|yk1|Xk1 , . . . , "kn|ykn|Xkn) ||conv{0, e

1

, . . . , e

n

}|.

This implies

|K
N,v

| =
`

X

k=1

C

k

 ↵

�n

y,m

`

X

k=1

C

k,y

 ↵

�n

y,m

|K
N,y

|.

This proves the first estimate. The second one follows by Theorem 2.3, since
K

N,v

is a symmetric random polytope in an isotropic convex body generated
by m � n random points. 2

Proof of Proposition 3.3. Without loss of generality we only consider
y’s satisfying y

⇤
n

> 0 (otherwise estimates are trivial).
The first estimate follows from Lemma 3.4 and the union bound, since

X

m�n

e

�c2
p

m  e

�c0
p

n (3.1)

11



for an absolute positive constant c

0

.
To prove the second bound note that the set {v(y)}

y2RN (v(y) is from
Lemma 3.4) has cardinality

�

N

m

�

and that denoting k = N �m

✓

N

m

◆

exp (�c

2

p
m)  exp(�c

2

p
m + k log(eN/k))  exp (�c

2

p
m/2),

provided that k  c

p
N/ log N . Lemma 3.4 and the union bound imply

P
 (

8y 2 RN : |K
N,v

| 1
n � c

1

↵

y,m

L

K

r

log(2m/n)

n

)!

� 1�exp
�

�c

2

p
m/2

�

.

The result follows by the union bound and (3.1). 2

Proof of Theorem 1.2. For n  N  e

p
N Propositions 3.1 and 3.3 imply

the result, since, by (2.1),

nL

2

KN,y
 1

|K
N,y

|1+ 2
n

Z

KN,y

|x|2dx.

For N � e

p
n the theorem follows from the general estimate L

K

 Cn

1/4 for
any n-dimensional convex body ([23]). 2

4 Random perturbations of random polytopes

In this section G = (g
1

, . . . , g

N

) denotes a standard Gaussian random vector
in RN , independent of any other random variables. In the following theorem,
which is a consequence of Theorem 1.2 and Lemma 2.4, we estimate L

KN,G .

Theorem 4.1. Let n  N . Let X

1

, . . . , X

N

be independent copies of a

random vector uniformly distributed on an isotropic convex body. Then

P
G,X1,...,XN

 (

L

KN,G  c

1

r

log
2N

n

)!

� 1� exp
�

�c

2

p
n

�

,

where c

1

and c

2

are absolute positive constants.

12



Proof. Without loss of generality we assume that N � Cn for a su�ciently
large absolute constant (see Remark 1 following Theorem 1.2). It is well-
known (and can be directly calculated) that for the Gaussian vector G =
(g

1

, . . . , g

N

) one has

EkGk
n,2

⇡
r

n log
N

n

.

Using concentration (see e.g. Theorem 1.5 in [32]), we observe that for some
absolute constant C

1

> 0,

P
G

 

kGk
n,2

� C

1

r

n log
N

n

!

 exp (�n log(N/n)).

By Lemma 2.4 with m =
lp

nN

m

we have

P
✓⇢

g

⇤
m


q

log(
p

N/n)

�◆

 exp

0

B

B

@

� N

3/4

n

1/4

10

r

log
⇣

e

q

N

n

⌘

1

C

C

A

.

Since ↵
G,m

� g

⇤
m

, Theorem 1.2 with m =
lp

nN

m

in the infimum implies

L

KN,G  C

2

kGk
n,2p
n

↵

�1

G,m

log(2N/n)
p

log(2m/n)
 C

3

r

log
N

n

.

with probability at least 1 � exp (�c

p
n) � exp(�n) � exp

✓

�c

0N3/4
n

1/4p
log

eN
n

◆

.

This implies the desired result. 2

5 Concluding remarks

In this section we show that under additional (strong) assumption that ran-
dom vectors are  

2

vectors, the polytope K

N,G

contains Z

p

for an appropriate
p (recall that G is a standard Gaussian random vector in RN and the Z

p

body
was defined in (2.2)).

13



We first recall the definition of  
↵

norm. For a real random variable z

and ↵ 2 [1, 2] we define the  
↵

-norm by

kzk
 ↵ = inf {C > 0 | E exp (|Y |/C)↵  2} .

It is well known (see e.g. [13]) that the the condition kzk
 ↵  c

1

is equivalent
to the condition

8p > 1 : (E|z|p)1/p  c

2

p

1/↵ E|z|. (5.1)

Let X be a centered random vector in Rn and ↵ > 0. We say that X is  
↵

or a  
↵

vector, if

kXk
 ↵ := sup

y2S

n�1

k hX, yi k
 ↵ < 1. (5.2)

We also denote
�

p

:= (E|g
1

|p)1/p ⇡ p
p.

Proposition 5.1. There are absolute positive constants C, c

1

and c

2

such

that the following holds. Let � > 2 and N � C(log �)2

n log(3n)/(log log(3n)).
Let X

1

, . . . , X

N

be independent copies of a random vector uniformly dis-

tributed on an isotropic convex body K ⇢ Rn

. Assume that kX
1

k
 2 

� L

K

q

log N

n

. Then

P
G,X1,...,XN

 (

K

N,G

◆ c

1

r

log
N

n

Z

log(N/n)

(K)

)!

� 1� ↵,

where ↵ = exp (�c

2

p
N) for N � (n/ log(3n))2

and ↵ = (N/n)�c2N/n

other-

wise.

Remark 1. We would like to note that for N � n

2 this Proposition (with
slightly worse probability) was proved in [7] (see Lemma 4 there) without
any assumptions on  

2

-norm.

Remark 2. Proposition 5.1 together with Proposition 3.1 and volume esti-
mate (2.3) can be used to obtain the estimate of Theorem 4.1 (under addi-
tional  

2

assumption).

Our proof is very similar to the one given in [7]. We provide it for the sake
of completeness. The main new ingredient is the following lemma, which is
needed to estimate the norm of matrix A in the proof of Proposition 5.1.
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Lemma 5.2. Let g be a standard Gaussian random variable. Let X be uni-

formly distributed on an isotropic convex body K ⇢ Rn

. Assume that X is a

 

2

random vector and that kXk
 2 =  L

K

. Then for every p � 1,

(E|gX|p)1/p  CL

K

(
p

pn + p ) ,

where C is an absolute positive constant.

Proof. We use the following form of Paouris’ theorem, which may be
deduced directly from Paouris’ work [31] (as formulated here it first appeared
as Theorem 2 in [2], a short proof was given in [3])

(E|X|p)1/p  C

 

E|X| + sup
y2S

n�1

(E|hX, yi|p)1/p

!

.

Thus, using assumptions of X, we obtain

(E|gX|p)1/p  �

p

C

�

L

K

p
n +

p
p L

K

 

�

,

which implies the result. 2

Proof of Proposition 5.1. First note that g

i

X

i

, i  N , have  
1

norm
bounded by c

1

� L

K

p

log(N/n). Indeed, for any p � 1 and ✓ 2 S

n�1, one
has

(E|hg
i

X

i

, ✓i|p)1/p = �

p

(E|hX
i

, ✓i|p)1/p  c

2

p � L

K

r

log
N

n

E|hX
i

, ✓i|.

Denote by A the n ⇥ N random matrix whose columns are the vectors
g

i

X

i

. By Theorem 3.13 in [1] (cf. Theorem 2.1),

P
G,X1,...,XN

 (

kAk � c

3

�L

K

r

N log
N

n

+ 6 max
iN

|g
i

X

i

|
)!

 exp
⇣

�2
p

N

⌘

.

Now we estimate max
iN

|g
i

X

i

|. If N � (n/ ln(3n))2 we choose p = 4
p

N ,
otherwise p = 4(N/n) ln(N/n). In both cases,

max
np

pn, p

p

ln(N/n)
o

 4
p

N ln(N/n).
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Then by Lemma 5.2 and Chebyshev inequality we have for every i  N ,

P
⇣n

|g
i

X

i

| � 8eC � L

K

p

N ln(N/n)
o⌘

 E|g
i

X

i

|p
⇣

8eC � L

K

p

N ln(N/n)
⌘

p

 e

�p

.

Union bound implies,

P
✓⇢

max
iN

|g
i

X

i

| � 8eC � L

K

p

N ln(N/n)

�◆

 Ne

�p  e

�p/2

due to conditions on N and n. This implies

P
G,X1,...,XN

 (

kAk � c

5

�L

K

r

N log
N

n

)!

 ↵

0

, (5.3)

where ↵

0

= e

�
p

N for N � (n/ ln(3n))2 and ↵

0

= exp(�(N/n) ln(N/n))
otherwise.

On the other hand, for every � ✓ {1, . . . , N}, q � 1 and ✓ 2 S

n�1, by
Paley-Zygmund inequality,

P
G,X1,...,XN

✓⇢

max
i2�

|hg
i

X

i

, ✓i|  1

2
(E|g

1

|q)
1
q (E|hX

1

, ✓i|q)
1
q

�◆

=
Y

i2�

P
G,X1,...,XN

✓⇢

|hg
i

X

i

, ✓i|  1

2
(E|g

1

|q)
1
q (E|hX

1

, ✓i|q)
1
q

�◆


 

1�
✓

1�
✓

1

2

◆

q

◆

2

(E|g
1

|qE|hX
1

, ✓i|q)2

E|g
1

|2qE|hX
1

, ✓i|2q

!|�|

.

Since �
p

⇡ p
p, and from Borell’s lemma ([9], see also Appendix III in [30]),

E|hX
1

, ✓i|2q  c

q

6

(E|hX
1

, ✓i|q)2

,

the quantity above is bounded by
✓

1� 1

4Cq

◆|�|

 exp

✓

� |�|
4Cq

◆

.

Set m = [N/n]. Let �
1

, . . . ,�

n

be a partition of {1, . . . , N} with m  |�
i

|
for every i and k · k

0

be the norm

kuk
0

=
1

n

n

X

i=1

max
j2�i

|u
j

|.
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Note that k · k
0

 n

�1/2| · |. Since for all 1  i  n and every z 2 Rn

h

KN,G(z) = max
1jN

|hg
j

X

j

, zi| � max
j2�i

|hg
j

X

j

, zi|,

then for every z 2 Rn

h

KN,G(z) � kAt

zk
0

,

where A

t is the transpose of A.

Clearly, if z 2 Rn verifies kAt

zk
0

 1

4

�

q

(E|hX
1

, zi|q)
1
q , then there exists a

set I ✓ {1, . . . , n} with |I| � n

2

such that

max
j2�i

|hg
j

X

j

, zi|  1

2
�

q

(E|hX
1

, zi|q)
1
q

for every i 2 I. Thus, for every z 2 Rn,

P
G,X1,...,XN

✓⇢

kAt

zk
0

 1

4
�

q

(E|hX
1

, zi|q)
1
q

�◆


X

|I|=dn
2 e

P
G,X1,...,XN

✓⇢

8i 2 I : max
j2�i

|hg
j

X

j

, zi|  1

2
�

q

(E|hX
1

, zi|q)
1
q

�◆


X

|I|=dn
2 e

Y

i2I

P
G,X1,...,XN

✓⇢

max
j2�i

|hg
j

X

j

, zi|  1

2
�

q

(E|hX
1

, zi|q)
1
q

�◆


X

|I|=dn
2 e

Y

i2I

exp

✓

� |�
i

|
4Cq

◆

 2n exp
⇣

� nm

4Cq

⌘

 2n exp

✓

� N

8Cq

◆

 exp

 

�
p

Nn

16

!

provided that q := (1/2) log(N/n) and N > 125n.
Now, let

S =

⇢

z 2 Rn | 1

2
�

q

(E|hX
1

, zi|q)
1
q = 1

�

and let U ⇢ S be a �-net (in metric defined by S) with cardinality |U | 
�

3

�

�

n

,

i.e., for every z 2 S there is u 2 U such that 1

2

�

q

(E|hX
1

, z � ui|q)
1
q  �. Then

P
✓⇢

9u 2 U : kAt

uk
0

 1

2

�◆

 exp

✓

n log
3

�

�
p

Nn/16

◆

.
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By isotropicity we have that (E|hX
1

, zi|q)
1
q � L

k

|z| (because we have chosen

q = (1/2) log(N/n) > 2). Thus, assuming kAtk  c

5

�L

K

q

N log N

n

, we have

kAt

zk
0

 1p
n

|At

z|  c

5

�L

K

r

N

n

r

log
N

n

|z|  c

5

�

r

N

n

p

2q (E|hX
1

, zi|q)
1
q

 c

6

� �

q

r

N

n

(E|hX
1

, zi|q)
1
q
.

Therefore, if u 2 U approximates z 2 S, that is if 1

2

�

q

(E|hX
1

, z � ui|q)
1
q  �,

then u also satisfies

kAt

uk
0

 kAt

zk
0

+ c

7

�

r

N

n

�.

Choosing � =
p

n/(4�c

7

p
N) and denoting the event

⌦
0

:=

(

kAk  c

5

�L

K

r

N log
N

n

)

we obtain

P
G,X1,...,XN

✓⇢

! 2 ⌦
0

| 9z 2 Rn : kAt

zk
0

 1

8
�

q

(E|hX
1

, zi|q)
1
q

�◆

= P
G,X1,...,XN

✓⇢

! 2 ⌦
0

| 9z 2 S : kAt

zk
0

 1

4

�◆

 P
G,X1,...,XN

✓⇢

! 2 ⌦
0

| 9u 2 U : kAt

uk
0

 1

2

�◆

 exp

 

n log
12c

7

�

p
Np

n

�
p

Nn/16

!

 exp
⇣

�
p

Nn/20
⌘

,

provided N � C(log �)2

n for a big enough absolute constant C. Since
h

KN,G(z) = kAt

zk1 � kAt

zk
0

, this together with (5.3) and the definition

(2.2), implies that with probability at least 1� ↵

0

� exp
⇣

�
p

Nn/20
⌘

,

K

N,G

◆ 1

8
�

q

Z

q

(K) ◆ c

r

log
N

n

Z

log(N/n)

(K).

2
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