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Abstract1

Let P be a set of n points in the plane in general position. A2

subset H of P consisting of k elements that are the vertices of a convex3

polygon is called a k-hole of P , if there is no element of P in the interior4

of its convex hull. A set B of points in the plane blocks the k-holes of5

P if any k-hole of P contains at least one element of B in the interior6

of its convex hull. In this paper we establish upper and lower bounds7

on the sizes of k-hole blocking sets, with emphasis in the case k = 5.8

1 Introduction9

Let P be a set of n points in the plane in general position, i.e., such no three10

of them are collinear. All point sets considered in this paper are assumed11

to be in general position, and therefore this assumption is mentioned only12

occasionally hereafter. The convex hull of P , denoted as CH (P ), is the13

smallest convex set containing all of the elements of P . A set of points is14

in convex position, if its elements are the vertices of a convex polygon. A15
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subset H of P with k elements is called a k-hole of P if it is in convex16

position, and no element of P belongs to the interior of CH (H).17

Counting and finding k-holes of point sets has been a very active area of18

research since Erdős and Szekeres [9, 10] asked about the existence of k-holes19

in planar point sets. Harborth proved that any point set with at least ten20

points always contains at least one 5-hole [13]. Horton [14] proved that for21

k ≥ 7 there are point sets containing no k-holes. Recently Nicolás [17] and22

independently Gerken [12] proved that any point set with sufficiently many23

points contains at least one 6-hole.24

Let fk(n) be the minimum number of k-holes that every point set has.25

Katchalski and Meir [16] proved that
(
n
2

)
≤ f3(n) ≤ kn2 for some k < 200;26

see also Purdy [20]. Their lower bounds were improved by Dehnhardt [6] to27

n2 − 5n + 10 ≤ f3(n), who also proved that
(
n−3
2

)
+ 6 ≤ f4(n). Point sets28

with few k-holes for 3 ≤ k ≤ 6 were obtained by Bárány and Valtr [4].29

Chromatic variants of the Erdős-Szekeres problem were introduced by30

Devillers, Hurtado, Károly, and Seara [7]. They proved among other results31

that any bichromatic point set contains at least n
4 −2 compatible monochro-32

matic empty triangles (i.e., having pairwise disjoint interiors). Aichholzer et33

al. [1] proved that any bichromatic point set always contains Ω(n5/4) empty34

monochromatic triangles; this bound was improved by Pach and Tóth [18]35

to Ω(n4/3). For a thorough survey on this topic, the reader is referred to36

B. Vogthenhuber’s doctoral’s thesis [2], where new variations on these and37

other problems (e.g. dropping the convexity condition on holes) are studied.38

In this paper we consider the problem of, given a point set P , finding a39

second set of points, as small as possible, that pierce, stab, or block all the40

holes of a certain size in P . More precisely: A point q /∈ P blocks a hole41

H of P if it belongs to the interior of CH (H). A set of points B such that42

B ∩ P = ∅ is called a k-hole blocking set of P , for short a k-blocking set of43

P, if for any k-hole H of P , there at least one element of B in the interior44

of CH (H). In the rest of this paper, P will always be a point set in general45

position with n elements, n ≥ 3.46

Given a point set P , let cP be the number of elements of P on the bound-47

ary of CH (P ). The problem of finding 3-blocking sets has been studied for48

some time now. It is known that any point set P always has a 3-blocking49

set with exactly 2n − cP − 2 elements, and since any triangulation of P50

contains exactly 2n − cP − 2 elements, this bound is tight; see Katchalski51

and Meir [16], and Czyzowicz, Kranakis and Urrutia [5].52

Sakai and Urrutia proved in [21] that there are point sets for which53

2n − o(n) points are necessary to block all their 4-holes; as 2n − cP − 254

points are always sufficient to block all the 3-holes of any point set, and55

2



thus its 4-holes, this bound is essentially tight. In fact, we believe that in56

general, the number of points needed to block the 4-holes of any point set57

P is essentially the same as the number of points needed to block the 3-58

holes of P (i.e., that the asymptotically dominating terms are the same). In59

Section 2, we prove that this is the case for point sets in convex position:60

We prove that to block the 4-holes of any set of n points in convex position,61

we need at least n−O(
√
n) points, while it is known that n− 2 points are62

sufficient and necessary to block the 3-holes.63

Remarkably, blocking the k-holes of a point set changes substantially for64

k ≥ 5, a problem that, to the best of our knowledge, had not been considered65

before. In Section 3, the core of this paper, we show that there are point66

sets, both in general and in convex position, for which the number of points67

needed to block their 5-holes is as low as a fifth of the number of triangles68

in a triangulation of the respective point set. We also prove the somehow69

surprising fact that the number of points needed to block the 5-holes of70

a point set depends on the geometry of the specific point set, unlike the71

case of blocking its triangles which only depends on the number of points72

in the convex hull: We show point sets of the same cardinality, with the73

same number of points on their convex hulls, for which their 5-blocking sets74

with minimum cardinality have different sizes. What is more, we show that75

even for point sets in convex position the size of the 5-blocking sets may be76

different and depends on the specific geometry.77

Finally, in Section 4, we give results on blocking the k-holes of point sets78

in convex position, for general values of k, and we conclude in Section 5 with79

some observations and open problems.80

As a final remark in this introduction, it is worth mentioning that the81

case k = 2, i.e., blocking the visibility between pairs of points, has also82

received attention recently, see [19] and the references therein.83

2 Blocking the 4-holes of convex point sets84

Is is well known that n − 2 points are sufficient and necessary to block the85

3-holes of any set of n points in convex position [16, 5]. In this first section86

we show that for 4-holes the same amount is essentially needed, in the sense87

that n−o(n) blocking points are always necessary. More precisely, our main88

goal in this section is to prove the next result1:89

1Another proof of this result has independently been found recently by P. Valtr, inspired
by discussions during a meeting in Spain in May 2011 (personal communication).

3



Theorem 2.1. Let P any set of n points in convex position. Then, any90

4-blocking set for P has at least n−O(
√
n) elements.91

To prove this, we use a result on the chromatic number of a certain geo-92

metric type Kneser graph. Araujo, Dumitrescu, Hurtado, Noy, and Urrutia93

[3] introduced the following graph: Let P be a set of n points in convex94

position. The convex segment disjointness graph of P , denoted by Dn, is95

the graph whose vertex set is the set of all line segments with endpoints96

in P , two of which are adjacent if they are disjoint. Clearly Dn does not97

depend on the choice of P .98
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Figure 1: Graph D′7.

Let χ(Dn) denote the chromatic number of Dn. A lower bound on this99

value was obtained by Fabila-Monroy and Wood in [11], while an upper100

bound was obtained by Dujmović and Wood in [8]. Both bounds combine101

into the following theorem:102

Theorem 2.2 ([11, 8]).

n−
√

2n+
1

4
+

1

2
≤ χ(Dn) < n−

√
1

2
n− 1

2
(log n) + 4.

Let D′n be the graph obtained from Dn by removing the vertices of Dn103

corresponding to the edges of the convex hull of P , see Figure 1. Then D′n104

has
(
n
2

)
− n vertices. It is easy to see from the proof of Theorem 2.2 in [11],105

that the chromatic number of D′n satisfies:106
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χ(D′n) ≥ n−
√

4n+
1

4
+

1

2
.

We now use this bound to obtain a lower bound on the number of points107

blocking all the 4-holes of P that have two edges on the boundary of the108

convex hull of P . We call 2-quadrilateral of P any convex quadrilateral109

having two sides that are non-consecutive edges of the convex hull of P (see110

Figure 2)111

ej

ei

mimj

Figure 2: Two intersecting 2-quadrilaterals of P .

Let ei be an edge in the convex hull of P , and mi be its mid-point. Let112

P ′ the set of all mid-points of the edges of the convex hull of P . Let ei113

and ej be two non-consecutive edges of the convex hull of P . We denote114

by Q(i, j) the 2-quadrilateral of P induced by ei and ej . It is obvious115

that Q(i, j) ∩Q(r, s) 6= ∅ if and only if the line segments mimj and mrms116

intersect. Clearly, two 2-quadrilaterals of P can be simultaneously blocked117

by a point if and only if their interiors intersect.118

Let G′(P ) be the graph whose vertex set is the set of the 2-quadrilaterals119

of P , two of which are adjacent if their interiors do not intersect. Observe120

that D′n and G′(P ) are isomorphic graphs: if the elements of P are the121

points p1, ..., pn, labelled as they appear clockwise ordered on the convex122

hull of P , diagonal pipj (with j 6= i+ 1) corresponds to the 2-quadrilateral123

Q(i, j) defined by the edges ei = pipi+1 and ej = pjpj+1.124

Suppose that we can block all the 4-holes of P using a set of points125

S = {q1, . . . , qt} with less than t < χ(D′n) = χ(G′(P )) points. For each126
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2-quadrilateral C of P , pick a point qr ∈ S that blocks C, and assign color r127

to C. This induces a valid coloring of D′n, and hence t ≥ n−
√

4n+ 1
4 + 1

2 .128

Theorem 2.1 follows.129

3 Blocking 5-holes130

Given a set of n points P in general position, let us recall that we denote by131

cP the number of elements of P that are vertices of CH (P ). In this section132

we study the problem of blocking the 5-holes of point sets in the plane. As133

announced in the introduction, 5-holes behave, both for convex and general134

position, quite differently that 4-holes and 3-holes do.135

3.1 Point sets in convex position136

3.1.1 Piercing the 5-holes137

The main objective of this section is to prove the following result, which138

requires several intermediate lemmas:139

Theorem 3.1. n
2 − 2 points are always necessary and sometimes sufficient140

to block the 5-holes of a point set with n elements in convex position and141

n = 4k.142

We start by proving a more general result:143

Lemma 3.2. Let P a set of n points in convex position. Then any 5-blocking144

set for P has at least 2dn4 e − 3 elements.145

Proof. Let B be a 5-blocking set of P with r elements andM a crossing-free146

geometric matching of maximum cardinality of the elements of B; that is, a147

set of disjoint pairs of elements ofB such that the line segments {`1, . . . , `b r
2
c}148

joining them do not intersect. Note that if r is odd, we are left with an149

isolated element of B. One at a time, extend `1, . . . , `b r
2
c until they hit a150

line segment in M or a previously extended segment. Observe that some151

`i’s might be extended to semi-lines or lines. When r is odd, start with a152

tiny line segment containing the unmatched element of B and extend it as153

before; see Figure 3.154

This process yields a decomposition of the plane into exactly d r2e + 1155

convex regions. If one of these regions contains five or more points, it would156

contain a 5-hole of P not blocked by B. Thus each of these regions contains157

at most 4 elements of P , and therefore |B| = r ≥ 2
⌈
n
4

⌉
− 3.158
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Figure 3: Illustration of Theorem 3.2.

For n = 4k, we can improve slightly on the previous bound:159

Lemma 3.3. Let P a set of n points in convex position with n = 4k. Then160

any 5-blocking set for P has at least n
2 − 2 elements.161

Proof. Suppose that we have a 5-blocking set B for P with n
2 −3 points and162

n = 4k. Obtain a decomposition of the plane as in the proof of Lemma 3.2163

by an almost perfect geometric matching of the elements of B. Clearly each164

cell of such decomposition contains exactly 4 elements of P . Since |B| is165

odd, there is one element b of B unmatched and then, there is an edge ` of166

the decomposition that only contains b, rotate ` around b until it hits one167

element of P , now there are 5 points in one of the cells incident to ` that168

contains 5 elements of P in its closure, and clearly those 5 points define a169

5-hole that does not contains b in its interior, so we need at least one more170

point to block all the 5-holes of P . We conclude that any 5-blocking set of171

P contains at least n
2 − 2 points.172

A point set P is called almost convex if any triangle whose vertices are173

in P contains at most one element of P in its interior. Almost convex sets174

were introduced by Károlyi, Pach and Tóth in [15]. They constructed a175

family Xj of almost convex point sets as follows.176

Let Z1 be the end-points of a horizontal line segment `1 of length two,177

and define X1 = R1. Let R2 be the set of endpoints of two vertical line178

segments `2 and `3 of length one whose mid-points are very close to the179

endpoints of `1, and let X2 = R1 ∪R2. See Figure 4(a).180
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Figure 4: In (a) we show point set X2, in (b) point set X3.

Assume that we have already defined R1, . . . ,Rj , X1, . . . ,Xj ,j ≥ 2, such181

that they satisfy the following conditions:182

(1) Xj := R1 ∪ . . . ∪Rj is in general position,183

(2) the vertices of CH (Xj) are the elements of Rj , and184

(3) any triangle determined by three elements of Rj contains precisely one185

point of Xj−1 in its interior.186

Clearly X1 and X2 satisfy the preceding conditions. Observe that condi-187

tion (3), implies that Xj−1 is a 3-blocking set of Rj , j ≥ 2.188

The set Xj+1 is constructed as follows. Let z1, . . . , zr denote the vertices189

of CH (Xj) in clockwise order around CH (Xj). For every 1 ≤ i ≤ r, let `i190

denote the line through zi orthogonal to the bisector of the angle of CH(Xj)191

at zi. Let z′i and z′′i be the two points in `i at infinitesimal distance ε from192

zi. Now move simultaneously z′i and z′′i away from CH (Xj) in the direction193

orthogonal to `i by another infinitesimal distance δ, with ε� δ, and denote194

the resulting points u′i and u′′i , respectively.195

It is proved in [15] that ε and δ camn be chosen small enough such that196

Rj+1 = {u′i, u′′i |i = 1, . . . , r} and Xj+1 := R1 ∪ . . . ∪Rj+1 satisfy conditions197

1, 2, 3 above. See Figure 4(b).198

With the preceding construction we are ready to prove:199

Lemma 3.4. There is a set P of n points in convex position with n = 2m200

that has a 5-blocking set consisting of n
2 − 2 elements.201

Proof. Let P = Rm and B = Xm−2. Then |P | = n and |B| = n
2 −2. We will202

show that B is a 5-hole blocking set for P . Suppose that B is not a 5-hole203

blocking set of P , then there is a 5-hole H of P such that no point of B lies204
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in the interior of the convex hull of H. Take a triangulation of H; it will205

have three triangles of P . By construction, each of them contains exactly206

one element of Xm−1, since B = Xm−1 \ Rm−1. Then these three points207

have to be elements of Rm−1 and they form a triangle contained in H. By208

construction, such a triangle contains precisely one element q of Xm−2. Thus209

q blocks H, which is a contradiction. Our result follows.210

The proof of Theorem 3.1 follows now immediately from Lemmas 3.3211

and 3.4.212

213

Theorem 3.1 is frankly surprising to us. We believed that a similar result214

to that obtained for blocking the 4-holes of point sets in convex position215

would also hold for 5-blocking sets, i.e., we thought that a 5-blocking set of216

any point set P in convex position would always have n − o(n) elements.217

We have seen that that is not always the case yet, we still believe that for218

some point sets in convex position that may be the right answer. We pose219

explicitly a related open problem:220

Problem 3.5. Is it true that if P is the set of vertices of a regular polygon221

with n vertices, then any 5-blocking set of P has at least n− o(n) elements?222

3.1.2 Blocking 5-holes of regular polygons223

While a solution of Problem 3.5 remains elusive to us, we give in this section224

a proof for a special case, because the technique is used in Section 3.1.3, and225

we also hope that it may inspire a general solution.226

Let Qn = {p0, . . . , pn−1} be the vertices of a regular polygon Rn with227

n vertices, given as they appear on the boundary in clockwise order. The228

arithmetic of their indices is done modulo n. A subset of Qn is called a229

lateral k-hole if its elements are k consecutive elements of Qn. To be more230

precise, we use the notation Si,k = {pi, . . . , pi+k−1} for the i-th lateral k-hole231

of Qn, with 0 ≤ i ≤ n−1 and 3 ≤ k ≤ n. The convex hull of Si,k is a convex232

k-gon, which we denote Ri,k. Abusing slightly the notation, we also say that233

Ri,k is a lateral k-hole of Rn.234

Lemma 3.6. Any 5 blocking set of Q19 has at least eight elements.235

Proof. First, recall that according to Lemmas 3.2 and 3.3, to block the 5-236

holes of any convex polygon with 5, 8, 13, 16, 17, and 19 vertices, we need237

at least 1, 2, 5, 6, 7, and 7 points, respectively.238
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R̂i,5

Figure 5: A regular 19-gon.

We prove now our claim by contradiction: Suppose that there is a 5-239

blocking set B of Q19 consisting of seven points. Observe first that if we240

remove a lateral 4-hole Ri,4 from R19, we obtain a convex 17-gon, namely241

Ri+3,17. As mentioned in the preceding paragraph, to block the 5 holes242

of Ri+3,17 we need at least seven points. It follows that all the elements243

of B lie in the interior of Ri+3,17 and therefore, that no lateral 4-hole Ri,4244

contains any element of B. Let W4 the union of these regions, i.e., W4 =245 ⋃
i=0,...,n−1Ri,4, a polygonal annulus that contains no point from B.246

Let Ri,5 be a lateral 5-hole of R19, and R̂i,5 the subset of Ri,5 obtained247

by removing from Ri,5 all the points that belong to some lateral 4-hole of248

R19: Equivalently, R̂i,5 = Ri,5 \W4 (see Figure 5, upper part). Since the249

elements of B block all the 5-holes of Q19, every lateral 5-hole Ri,5 of R19250

contains at least one element of B, which must belong to R̂i,5.251

Observe that the polygonal region that complements Ri,5 in R19 is pre-252

cisely Ri+4,16. As we know that we need at least six points to block the253

5 holes of the vertices of any convex polygon with 16 vertices, each lateral254

5-hole of R19 must contain exactly one blocking point.255

In a similar way, if we remove a lateral 8-hole Ri,8 from R19, we are256

left with a convex polygon Ri+7,13 with 13 vertices, and thus at least five257

elements of B belong to the interior of Ri+7,13. It follows that each lateral258

8-hole of Q contains exactly two elements of B.259
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Observe that for each lateral 8-hole Ri,8 of R19, there are exactly two260

lateral 5-holes of R19, namely Ri,5 and Ri+3,5, such that their corresponding261

regions R̂i,5 and R̂i+3,5 are disjoint and contained in Ri,8. Let Hi,8 = Ri,8 \262

(R̂i,5∪R̂i+3,5). The preceding discussion implies that the two blocking points263

of B in Ri,8 must be one in R̂i,5 and the other one in R̂i+3,5, and that Hi,8264

is empty of points from B.265

Let RB be the region obtained by removing from R19 all the empty266

regions Hi,8 defined the lateral 8-holes Ri,8 of R19, with 0 ≤ i ≤ n − 1.267

All the points of B must lie in RB. It is easy to see that RB consists of a268

19-regular polygon C19 =
⋂

i=0,...,18Ri,13, with the same center than R19,269

and 19 hexagons, which we call Ai, for 0 ≤ i ≤ n − 1, where we denote by270

Ai the hexagon that is closer to pi. To be precise, Ai = Ri−3,5 ∩ Ri−1,5 ∩271

Ri,12 ∩Ri+1,17 ∩Ri+2,17 ∩Ri+7,12. The twenty connected components of RB272

are shaded in yellow in Figure 5.273

No point in the central 19-gon C19 can block any lateral 5-hole. In274

addition, putting a blocking point in one of the hexagonal regions Ai, we275

only block 3 lateral 5-holes, Ri−3,5, Ri−2,5 and Ri−1,5.276

Therefore, to block the 19 lateral 5-holes of R19, we need to put the277

seven blocking points from B in the hexagonal regions. As every lateral278

5-hole contains three of these hexagons, one of the lateral 5-holes of R19 will279

contain two blocking points, contradicting the fact that each lateral 5-hole280

of R19 contains exactly one point in B.281

3.1.3 Geometry matters282

Lemmas 3.4 and 3.6 indicate that the geometry and distribution of the283

points has to be considered when finding 5-blocking sets for point sets, even284

in convex position. In this section we go deeper in that direction, and show285

two set of 11 points in convex position, for which their smallest 5-blocking286

point sets have different cardinalities.287

Our first point set isQ11, the set of vertices of a regular polygonR11 with288

eleven vertices. With an approach along the lines of the proof of Lemma 3.6289

it is easy to see that the 5-holes of Q11 can be blocked with exactly three290

points, see Figure 6.291

Our second point set, S11 = {p0, . . . , p10} is shown in Figure 7. First292

note that the four blue dots shown in Figure 7, block all the 5-holes of S11.293

We now prove that the 5-holes of S11 cannot be blocked with three points.294

Let P11 be the convex polygon with vertex set S11.295

For any 0 ≤ i ≤ 10 let Ti be the triangle bounded by the segments296

pi−pi+1, pi−pi+4, and pi−3−pi+1, addition taken mod 11. Observe that any297
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Figure 6: A regular 11-gon.

point of the plane can block at most four lateral 5-holes of S11, and that if it298

does, it must belong to some Ti, in which case it blocks the laterals 5-holes299

of S11 with vertex sets {pi−3, . . . , pi+1}, {pi−2, . . . , pi+2}, {pi−1, . . . , pi+3},300

and {pi, . . . , pi+4}. Suppose now that the 5-holes of S11 can be blocked with301

a set of three points {x, y, z}. In particular {x, y, z} also block the eleven302

lateral 5-holes of S11, and thus at least two points among x, y, and z cover303

four lateral 5-holes of S11, and the other point three or four. From this we304

can infer that two points among x, y, and z, say x and y, must belong to305

two triangles Ti and Tj such that j = i + 4 for some 0 ≤ i ≤ 10, addition306

taken mod 11.307

Since blocking the 5-holes of nine points in convex position requires at308

least three blocking points, all the lateral 4-holes of PS must be empty. Since309

T1, T2, T4, T7, T9 and T10 are contained in lateral 4-holes of PS , they cannot310

contain any of the points x, y, or z. Then x and y are in T0, T3, T5, T6, or311

T8.312

But x and y must belong to some Ti and Ti+4, which is not possible:313

Therefore, to block the 5-holes of S11 we need at least four points, as claimed.314

Thus, we have proved:315

Theorem 3.7. There are two different sets of eleven points in convex posi-316

tion such that their smallest 5-blocking sets have different cardinalities.317
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p0

p1

p2
p3 p4

p5

p6

p7
p8p9

p10

T0

Figure 7: A set of 11 points in convex position that requires 4 points to
block its 5-holes.

3.2 Point sets in general position318

3.2.1 Geometry matters319

As mentioned in the introduction, the number of points needed to block the320

set of triangles of a point set P , is exactly 2n− cP − 2, where n = |P | and321

cP is the number of elements from P that are vertices of CH(P ). A similar322

formula does not exist for blocking the 5-holes of a point set: We are next323

constructing point sets of the same cardinality, and having the same number324

of elements on their convex hulls, for which the number of points required325

to block their 5-holes are different.326

In other words, we are giving here a result for points in general position,327

similar to Theorem 3.7, proving that the specific geometry and distribution328

of the points can change the size of the minimal 5-blocking stes.329

We show first that there exist families of point sets with 4m elements,330

with 2m of them on the convex hull, such that all of their 5-holes can be331

blocked with m− 2 points.332

Lemma 3.8. For any m there is a point set P4m in general position with333

|P4m| = n = 4m points and cP = 2m, such that m − 2 points are sufficient334

and necessary to block all the 5-holes of P4m.335

13



p1i p4i

p2i p3i

qi

ε

Figure 8: A point set in general position in which n
4 − 2 points are sufficient

and necessary to block all of its convex 5-holes. The image on the right is a
close up look at each fat point of the regular m-gon at the left.

Proof. Let Rm = {q1, . . . , qm} be a regular m-gon. From the results in [5,336

16], we can choose m− 2 points B = {b1, . . . , bm−2} such that any triangle337

with vertices in Rm contains exactly an element of B in its interior. It is338

not hard to see that given such B, we can move the vertices of Rm around339

some sufficiently small ε > 0, such that any triangle in the perturbed set340

contains exactly one element of B.341

We construct a set P4m with 4m points as follows. We substitute each342

vertex qi of Rm, i = 1, 2, . . . ,m, by a set of 4 points Si = {p1i , p2i , p3i , p4i },343

each of them at distance no more than ε from qi, and consider the set344

P4m = S1 ∪ . . . ∪ Sm. The replacement is as follows: Consider the bisector345

bi of the internal angle of Rm at qi. Let `i be a line orthogonal to bi that346

intersects the edges of Rm, incident to qi, infinitesimally enough to qi. Let347

p1i and p4i be the points of intersection of `i with the circumcircle C of Rm.348

Let p2i and p3i be two points equidistant to qi, below `i, one on each of the349

edges of Rm incident to qi, and such that the angles ∠p1i p
2
i p

3
i and ∠p4i p

3
i p

2
i350

are close to π, see Figure 8. With this replacement, the convex hull of P4m351

has 2m vertices.352

Observe that one can choose p1i and p4i such that one of the open half-353

planes bounded by the line passing trough p1i and p3i (resp. p4i and p2i )354

contains p4i , (resp. p1i ,) and no other point of P4m. See Figure 8.355

Observe next, that no 5-hole can use more than two elements of Si. It356
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follows now that any 5-hole has vertices in at least three different sets Si,357

Sj , Sk.358

Moreover, since the elements of Si are at distance no more than ε from359

qi, any triangle containing a point in any three sets Si, Sj , and Sk contains360

a point of B in its interior. Therefore the elements of B block all of the361

5-holes of P4m.362

Observe now that any 5-blocking set for P4m can not have fewer points363

than m− 2. First, suppose that B′ is a 5-blocking set for P4m with at most364

m − 3 elements, then at least one triangle with vertices in Rm that is not365

blocked (since the number of triangles in any triangulation of Rm is m− 2).366

Assume that the vertices of one such triangle are qi, qj , qk. Then, by taking367

two elements in Si and Sj and one in Sk, we obtain a 5-hole of P4m that is368

not blocked by any element of B′. Thus, P4m requires m− 2 points in order369

to block all of its 5-holes.370

We construct now point sets P ′4m with 4m elements, 2m on its convex371

hull, such that to block all of its 5 holes we need more than 2m points,372

roughly twice as many as for P4m.373

Lemma 3.9. For every positive integer m divisible by 15 there is a point374

set P ′4m in general position with |P ′4m| = n = 4m elements and cP = 2m,375

such that more than 2m are points necessary to block all the 5-holes of P ′4m.376

Proof. Let P ′4m be a set with 4m = 30k points, with 15k on its convex377

hull forming the set of vertices of a regular 15k-gon. We consider on the378

boundary of CH(P ′4m) alternated subsets consisting of 10 and 5 vertices,379

yielding therefore k subsets of each class. For each of the subsets of 5380

vertices, we form a block conecting with a chord the first and last element381

and adding 15 points to the interior of the region, in such a way that the382

region can be decomposed into 11 convex 5-gons (the pattern corresponds to383

the classical plane drawing of the dodecahedron graph). See figure 9, where384

each block is labelled “a”.385

The part of the convex hull of P ′4m that is not in the blocks is an empty386

convex polygon H with 12k vertices: 10k come from the subsets not used387

for the blocks and 2k come from gathering the first and last points of all the388

blocks.389

By Lemma 3.3, H requires at least 12k/2 − 2 points to block all of its390

5-holes, and for the pentagonized blocks we need at least 11k points. Thus,391

any 5-blocking set for P ′4m contains at least (6k− 2) + 11k = 17k− 2 points,392

which is larger than 2m = 15k.393
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a

a

a

a

a

Figure 9:

Thus, combining Lemmas 3.8 and 3.9 we have proved:394

Theorem 3.10. There are two different sets of n = 4m points in non-convex395

position, such that the number of vertices in the convex hull of each set 2m,396

and such that their smallest 5-blocking sets have different cardinalities.397

3.2.2 Piercing the 5-holes of general point sets398

We conclude this section with a general a lower bound on the number of399

points needed to block the 5-holes of any point set. We prove:400

Theorem 3.11. Let P be any set of n points in general position. Then any401

5-blocking set of P has at least 2dn9 e − 3 points.402

Proof. Harborth [13] proved that any set of ten points in general position403

in the plane always contains a 5-hole. Let B be a 5-blocking set of P .404

Take a geometric planar matching of the elements of B, and decompose the405

plane into convex regions by extending the segments in the matching as in406

Lemma 3.2. Then any convex region in our decomposition cannot contain407

more than nine points, otherwise there would be a 5-hole of P not blocked408

by any element of B. It now follows, as in the proof of Lemma 3.2, that409

B ≥ 2dn9 e − 3.410

16



In view of the preceding results we conjecture:411

Conjecture 3.12. The number of points needed to block all the 5-holes of412

any point set with n elements is greater than or equal to n
4 ± c, where c is a413

constant.414

4 Blocking k-holes for points in convex position415

In this last section before the concluding remarks, we consider the problem416

of blocking k-holes for larger values of k. As mentioned in the introduction,417

Horton [14] proved that for k ≥ 7, there exist point sets that don’t have418

any k-hole. Thus the question of finding the minimum number of blocking419

points is properly interesting only for some specific families of point sets420

always having k-holes; here we focus on point sets in convex position.421

Let P be a set of n points in convex position. Using a similar argument422

as in the proof of Lemma 3.2, it can be verified that any k-blocking set for423

P has at least 2
⌈

n
k−1

⌉
− 3 elements. This bound is essentially tight for odd424

values of k, as we show next.425

We construct a point set P as follows: Let Rm, C, B, and ε as in the426

proof of Lemma 3.8, i.e., Rm is a regular m-gon, C its circumcircle, B a427

set of m − 2 points blocking all the triangles of Rm, and ε is the radius of428

infinitesimal disks centered at the vertices of Rm in such a way that if these429

vertices are perturbed each to any position inside their associated disks, the430

set B keeps blocking all the triangles the perturbed vertices determine. Let431

k = 2s + 1. Replace each vertex pi of Rm with a set Si = {pi1, . . . , pis} of s432

points on C within the circle of radius ε centered at pi, see Figure 10. Let433

P = S1 ∪ · · · ∪ Sm. Then P has n = m× s elements,434

ε

Figure 10: The general construction when k = 11.
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Then any k-hole with vertices in P has vertices in at least three of the435

sets Si, and thus the set B blocks all of the k-holes of P . But B has m− 2436

elements, and 2
⌈

n
k−1

⌉
− 2 = 2

⌈
ms
2s

⌉
− 2 = m− 2.437

Therefore, we have proved:438

Theorem 4.1. 2
⌈

n
k−1

⌉
− 3 points are always necessary, and 2

⌈
n

k−1

⌉
− 2439

are sometimes sufficient to block the k holes of a point set with n elements440

in convex position.441

Next we show that when k is even we can give a better lower bound.442

Proposition 4.2. Let P = {p1, . . . , pn} be a set of n = mh points in convex443

position, with h ≥ 2. Then, n
h − O(

√
(n)) points are necessary to block all444

the 2(h+ 1)-holes of P .445

Proof. Let us denote by P ′ the set of points pi·h, for i = 1, 2, . . . ,m. Then,446

the number of points in P ′ is n/h = m. Figure 11 shows the case with h = 2447

(6-holes), in which P ′ is the set of points with even indices.448

x

y

p2i

p2(i+1)

p2j

p2(j+1)

Figure 11: Illustration for Proposition 4.2.

Take two arbitrary edges pi·h−p(i+1)·h and pj·h−p(j+1)·h, with i+1 < j,449

and let Hi,j be the 2(h+ 1)-hole of P determined by the set of points {pi·h,450

pi·h+1, . . . , p(i+1)·h, pj·h, pj·h+1, . . . , p(j+1)·h}. Consider now the 4-hole H
′
i,j451

of P ′ determined by pi·h, p(i+1)·h, pj·h and p(j+1)·h. Observe that two edges452
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of this 4-hole are on the convex hull of P ′ and that the other two edges are453

diagonals (see Figure 11).454

Therefore, we can define a bijection between the set Q′ of 4-holes in455

P ′ defined by pairs of edges pi·hp(i+1)·h and pj·hp(j+1)·h, and the set Q of456

2(h+ 1)-holes Hi,j defined above.457

Now, take a set B of points blocking the 2h-holes of Q. Suppose that one458

of the blocking points x is inside the polygon with vertices pi·h, pi·h+1, . . . , p(i+1)·h459

(a triangle in the case h = 2). Let R be the set of 2(h+1)-holes of Q blocked460

only by x. Note that this point can only block the 2(h+1)-holes of Q formed461

using edge pi·hp(i+1)·h.462

Then, we can remove x and we can add a point y very close to the463

midpoint of the edge pi·hp(i+1)·h, inside the convex hull of P ′, such that y464

blocks at least the 2(h+ 1)-holes in R (see Figure 11).465

Then we can assume that, for any set B blocking the 2(h + 1)-holes of466

Q, all the blocking points are inside the convex hull of P ′. In this case, note467

that, if a point z blocks a 2(h+ 1)-hole of Q, then its corresponding 4-hole468

in Q′ is also blocked by z and vice versa.469

Since there is a bijection between Q and Q′ and since we need n
h −470

O(
√

(n)) points to block all the 4-holes in Q′ (as proved in Section 2), it471

is impossible that the size of a 2(h + 1)-blocking set for Q is smaller than472

n
h −O(

√
(n)), for otherwise we could block the 4-holes of Q′ with less than473

n
h −O(

√
(n)) points.474

5 Final remarks475

Closing the gaps between the lower and upper bounds for this family of476

problems is obviously a main open problem for future research. Yet to be477

more specific, we would like to end this paper emphasizing the interest of478

bringing more light into two specific bounds.479

As repeatedly mentioned in this paper, it is known that any point set S480

that blocks the set of triangles of any n-point set P in convex position, has481

at least n− 2 points; moreover, if |S| = n− 2, which is achievable, then any482

triangle with vertices in P has exactly one element of S in its interior. This483

gives a trivial upper bound on the number of elements sufficient to block484

the k-holes of P : Simply remove k − 3 elements from S. However, we do485

not know a better upper bound than that! In fact, we conclude with an486

apparently simpler question:487

Question 5.1. Is it true that to block all the k holes of the set of vertices488

of a regular n-gon, we need n− c(k) points?489
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We believe that the answer to the preceding question should be positive,490

but a proof is still elusive to us.491
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