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ABSTRACT 

The synthesis and structural characterization of a new dual responsive linear-dendritic 

block copolymer (LDBC) is presented.  The LDBC is constituted by a thermoresponsive 

linear block from polymethacrylate of oligo- and diethylene glycol, and a light 

responsive dendron block of bis-MPA decorated at the periphery with 4-

isobutyloxyazobenzene and alkyl chains in a 50:50 molar ratio.  Blocks are coupled 

together by copper(I) catalyzed alkyne-azide cycloaddition (CuAAC).  The ability of the 

LDBC to form vesicle self-assemblies in water is described, as well as the effect of light 

and temperature on the vesicles morphology, on the basis of transmission electron 

microscopy (TEM), dynamic light scattering (DLS) and UV-vis spectroscopy studies.  

The effect of UV light and temperature on the vesicles structure by SAXS and WAXS 

conducted on real time is also presented.  Finally, the potential use of the vesicles to 

load and stimuli controlled release of small fluorescent molecules is probed. 
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1.  INTRODUCTION 

Amphiphilic block copolymers (BCs), where one block is hydrophilic and the other 

hydrophobic, possess the ability to form self-assembled structures in water whose 

morphology and size depends on the hydrophobic/hydrophilic balance, the length of the 

blocks, their chemical structure and, in general terms, of their overall architecture.  

From the different possibilities, polymeric vesicles or polymersomes are of interest as 

nanocarriers for drug delivery because they are constituted by a particularly robust 

hydrophobic membrane that can be used to locate hydrophobic guests and an internal 

hydrophilic cavity that can accommodate hydrophilic ones.[1][2]  If stimuli responsive 

moieties are introduced in such BCs (for example, units sensitive to light, pH or 

temperature among the most common), morphology changes can be induced on demand 

in the vesicles to control the release of the encapsulated compounds.[3]  Therefore, the 

use of stimuli responsive polymersomes offers advantages such as the reduction of the 

amount of drug needed, a better dissolution of poorly soluble drugs and its controlled 

release. 

From different stimuli, light is a very appealing one because it can be accurately 

operated in time and space.[4]  The light response of certain materials is associated to the 

presence of light active groups such as azobenzene that isomerizes under illumination.  

Temperature is also a very interesting stimulus, in particular for bioapplications, since 

unhealthy tissues might show slightly higher temperature than healthy ones.  There are 

polymers, which are soluble in water, that become insoluble when heated over a certain 

temperature, called lower critical solution temperature (LCST).  Among them, 

poly[oligo(ethylene glycol) methacrylate]s present good thermo-responsive properties 

and biocompatibility, making them ideal for biomedical applications.[5]  Lutz et al. have 

described a family of copolymers from oligo- and diethylene glycol methacrylates 
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(OEGMA and DEGMA, respectively), which have a tunable LCST depending on the 

molar ratio between monomers, being this value close to physiological temperature 

when DEGMA/OEGMA molar ratio is around 85:15.[6] 

In the last few years stimuli responsive linear-dendritic block copolymers (LDBCs) 

have been explored where the well-defined periphery of the dendritic block makes them 

perfect systems to perfectly control the incorporation of functionalization.[7]  From the 

several possibilities, we have focused our attention on the probably most versatile 

synthetic strategy for LDBCs which is the coupling of the two constitutive blocks using 

the copper(I) catalyzed alkyne-azide cycloaddition (CuAAC), where each block is 

synthetized separately having either azide or alkyne functional groups.  Linear polymer 

chains with terminal alkyne groups are easily approachable by atom transfer radical 

polymerization (ATRP) using an appropriate initiator.[8]  The synthesis of a dendron 

with an azide group at the focal point and light sensitive moieties is also affordable even 

if it is more demanding in relation to the number of synthetic and purification steps.  

Accordingly, amphiphilic LDBCs have been reported from 2,2-

di(hydroxymethyl)propionic acid (bis-MPA) dendrons with peripheral 4-cyano or 4-

alkoxyazobenzene units and poly(ethylene glycol) (PEG) as linear block.  These 

LDBCs formed vesicles in water when the 4th bis-MPA dendron generation was coupled 

to a linear PEG having Mn=2000 g/mol.[9][10][11]  The ability of these vesicles to 

encapsulate and release under UV light trigger of both hydrophobic and hydrophilic 

fluorescent probes was confirmed in particular when 4-isobutyloxyazobenzene was used 

as chromophore as facilitates the response to light compared to 4-cyanoazobenzene 

under lower intensity UV illumination.  Furthermore, our results showed that co-

functionalization of the dendron with 4-isobutyloxyazobenzene and long alkyl chains 
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facilitates the azobenzene photoisomerization and, therefore the response to light, 

because chromophore aggregation is restricted.[11] 

This work reports on the synthesis and characterization of light and thermoresponsive 

LDBCs combining ATRP and CuAAC chemistries (Figure 1).  The 4th generation of a 

bis-MPA based dendron functionalized at the periphery with 4-isobutyloxyazobenzene 

and stearic acid in a 50:50 molar ratio will be used as it has been demonstrated optimal 

performance upon illumination.  For the linear block, we intend to prepare a 

thermoresponsive copolymer of DEGMA and OEGMA having a molar mass close to 

2000 g/mol as in the linear PEG of previous works, and a LCST close to physiological 

temperature. 

X-ray scattering techniques provide information about the structure and molecular 

conformations at different length scales.  Wide Angle X-Ray Scattering (WAXS) offers 

the possibility to obtain information about molecular ordering and conformations on the 

scale of tenths of nanometers.  Small Angle X-Ray Scattering (SAXS), on the other 

hand, allows one to analyze the structure developed over the length scale of tens of 

nanometers and it is of particular value when studying supramolecular organization.[12]  

Synchrotron radiation offers the possibility to follow by SAXS and WAXS real time 

changes in both the conformation and the structure.[13]  Therefore, we will explore the 

ability of the polymers to self-assemble into vesicles and their response to external 

stimuli as light and temperature with the aid of X-ray scattering techniques. 

 

2.  EXPERIMENTAL SECTION 

2.1.  Materials 

The 4th generation of a bis-MPA based dendron containing 4-isobutyloxy-4’-

oxyazobenzene units and octadecyl chains randomly distributed at the periphery in a 
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50:50 molar ratio, d(isoAZO/C18), was synthesized as previously reported.[11] 

Oligo(ethylene glycol) methyl ether methacrylate (OEGMA) (Mn = 475 g/mol and 8-9 

ethylene oxide units) and di(ethylene glycol) methyl ether methacrylate (DEGMA) were 

purchased from Sigma-Aldrich and passed through a column of basic alumina to 

remove the radical inhibitor.  The ATRP initiator 3-(trimethylsilyl)prop-2-ynyl 2-

bromo-2-methylpropanoate was prepared according to the procedure described in the 

literature.[14]  Ethanol was dried with KOH and distilled before used.  N,N-

dimethylformamide (DMF) was dried over 4 Å molecular sieves and distilled before 

used.  All other reagents were purchased in Sigma-Aldrich and used as received. 

2.2.  Characterization techniques 

1H NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 MHz.  IR 

spectra were obtained on a Bruker Tensor 27 or a Nicolet Avatar 360-FT-IR 

spectrometer, using KBr pellets for solid compounds and NaCl for oils.  Size exclusion 

chromatography (SEC) was performed on a Waters e2695 Alliance liquid 

chromatography system equipped with a Waters 2424 evaporation light scattering 

detector using two Ultrastyragel® columns (HR4 and HR2) of 500 and 104 Å pore size 

from Waters, THF at a flow rate of 1 mL/min and calibrated against poly(methyl 

methacrylate) (PMMA) standards.  Fluorescence spectra were registered using a Perkin 

Elmer LS 50B spectrometer.  UV-Vis spectra were recorded on an ATI-Unicam UV4-

200 spectrophotometer.  Thermogravimetric analyses (TGA) were performed on a 

Q5000IR from TA instruments under nitrogen at a 10 ºC/min heating rate using 5-10 

mg of the sample.  Differential Scanning Calorimetry (DSC) was performed with a DSC 

Q2000 from TA Instruments with powdered samples (2-5 mg).  Transmission electron 

microscopy (TEM) studies were carried out in a JEOL-2000 FXIII electron microscope 

operating at 200 kV.  DLS measurements were carried out in a Malvern Instrument 
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Nano ZS using a He–Ne laser with a 633 nm wavelength and a detector angle of 173º at 

25 ºC. 

2.3.  Synthesis of the thermoresponsive linear block 

Details are given for the block (OEG-stat-DEG)_3500 as an example: OEGMA (3.15 g, 

6.6 mmol), DEGMA (5.0 g, 26.6 mmol), CuBr (478 mg, 3.3 mmol), 2,2’-bypyridine 

(bipy) (1.037 g, 6.6 mmol) and 3-(trimethylsilyl)prop-2-ynyl 2-bromo-2-

methypropanoate (920 mg, 3.3 mmol) were dissolved in deoxygenated ethanol (9 mL) 

into a Schlenk flask.  The flask was degassed by three freeze-pump-thaw cycles and 

flushed with argon.  The polymerization was conducted at 60ºC for 10 min.  Then, flask 

was opened to the air and cooled into liquid nitrogen to quench the reaction. The 

reaction crude was diluted with THF and passed through a column of neutral alumina to 

remove the catalyst.  THF was evaporated and the residue dialyzed against water with a 

SpectraPor3 membrane (MWCO = 1000 g/mol) for 5 days at room temperature.  Finally 

water was eliminated by lyophilization to yield the polymer as colorless oil.  IR (NaCl, 

cm−1): 2877 (Csp3-H), 1732 (C=O), 1246 (C-O). 1H NMR (400 MHz, CDCl3) δ (ppm): 

4.63-4.52 (m, 2H, -COO-CH2-C≡C-Si(CH3)3), 4.06 (s, COO-CH2-), 3.60 (m, -CH2-O), 

3.52 (m, -CH2-O), 3.35 (s, O-CH3), 1.86 (s, -CH2-), 1.77 (s, -CH2-), 1.10 (s, -CH3), 1.00 

(s, -CH3), 0.84 (s, -CH3), 0.12 (s, 9H, -Si(CH3)3) 

2.4.  Synthesis of the LDBC (OEG-stat-DEG)_3500-block-d(isoAZO/C18) 

Previous to the coupling reaction, the trimethylsilyl protective group of the terminal 

alkyne of (OEG-stat-DEG)_3500 was removed using the following procedure:  (OEG-

stat-DEG)_3500 (500 mg, 0.156 mmol) and acetic acid (140 mg, 0.234 mmol) were 

dissolved in dry THF (2 mL) under argon atmosphere.  The flask was immersed into an 

ice bath and then, tetrabutylammonium fluoride (TBAF) (407 mg, 1.560 mmol) in dry 

THF (1 mL) was dropwise added.  The reaction was maintained for 48 h.  The reaction 
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crude was diluted with THF and passed through a neutral alumina column to remove 

TBAF excess. THF was evaporated to render the alkyne terminated polymer coded as 

(OEG-stat-DEG)_3500-C≡CH as a colorless oil.  Yield: 95%. IR (NaCl, cm−1): 2877 

(Csp3-H), 1732 (C=O), 1246 (C-O). 1H NMR (400 MHz, CDCl3) δ (ppm): 4.65-4.55 

(m, 2H, -COO-CH2-C≡CH), 4.06 (s, COO-CH2-), 3.60 (m, -CH2-O), 3.52 (m, -CH2-O), 

3.35 (s, O-CH3-O), 1.86 (s, -CH2-), 1.77 (s, -CH2-), 1.10 (s, -CH3), 1.00 (s, -CH3), 0.84 

(s, -CH3).  For the CuAAC coupling reaction, (OEG-stat-DEG)_3500-C≡CH (137 mg, 

0.042 mmol), d(isoAZO/C18) (150 mg, 0.021 mmol), CuBr (6.05 mg, 0.042 mmol) and 

N,N,N’,N’’,N’’-pentamethyldiethylene triamine (PMDETA) (7.3 mg, 0.042 mmol) were 

dissolved in DMF (2 mL) into a Schlenk tube. The reaction mixture was degassed by 

three freeze-pump-thaw cycles and flushed with argon. The reaction was carried out for 

72 h at 40ºC.  Then, reaction mixture was diluted with dichloromethane and filtered 

through a column of neutral alumina to eliminate copper.  Dichloromethane was 

evaporated and the residual DMF solution precipitated into cold ethanol.  Yield: 82%. 

IR (NaCl, cm−1) 2921 (Csp3-H), 1734 (C=O), 1599 (C-CAr), 1471 (C-CAr), 1245 (C-

O). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.83, 6.95, 5.14, 4.24, 4.20, 4.10, 3.97, 3.76, 

3.64, 3.55, 3.39, 2.33, 2.27, 2.10, 1.79, 1.66, 1.56, 1.48, 1.25, 1.04, 0.86 

2.5.  LCST determination 

LCST of the thermoresponsive block were measured by DSC during the heating of a 

10% w/w aqueous polymer solution at 10 ºC/min from 10 ºC to 80 ºC [15] and 

determined from temperature of the peak maximum in the first derivate of the heat flow 

curve and corroborated by visual inspection when heating the polymer solution in a 

thermostatized bath. 

2.6.  Formation and characterization of self-assemblies 
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Self-assemblies were prepared by the co-solvent method using THF/water. (OEG-stat-

DEG)_3500-block-d(isoAZO/C18) (5 mg) was first dissolved in THF (1 mL) and 10 µL 

portions of Milli-Q water were gradually added, while measuring the loss of intensity of 

transmitted light (turbidity) at 650 nm due to aggregation as a function of the water 

content.  When turbidity suddenly increased and once a constant value was reached, the 

suspension was dialyzed against water for 4 days. 

Morphology of the self-assemblies was determined by transmission electron microscopy 

(TEM) by casting 10 µL of a 1 mg/mL assemblies suspension over a TEM grid.  Water 

was removed by capillarity using a filter paper, the sample was stained with uranyl 

acetate and the grid was dried under vacuum overnight. 

Thermodynamic stability of the self-assemblies was evaluated determining the critical 

aggregation concentration (CAC) by monitoring fluorescence of Nile Red as probe.  

Accordingly, 120 µL of a 5x10-6 M Nile Red solution in dichloromethane were added to 

a series of vials, and then the solvent evaporated.  Afterwards, to each vial, 600 µL of a 

self-assemblies suspension of concentration ranging from 1 to 10-4 mg/mL were added 

so the final concentration of Nile Red was 10-6 M.  The suspensions were stirred 

overnight to reach equilibrium, and then fluorescence was measured. Emission spectra 

were registered from 560 to 700 nm by exciting at 550 nm. The emission intensity at 

606 nm was represented against logarithm of the LDBC concentration showing a non-

linear dependence.  The CAC was determined at the intersection point of the lower 

horizontal and the slope tangent. 

The particle size and distribution of the assemblies were determined by dynamic light 

scattering (DLS). The self-assemblies concentration was close to 0.05 mg/mL and size 

measurements were performed at least three times on each sample to ensure 

consistency. 
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2.7.  Irradiation studies 

Assemblies suspensions were irradiated for different time periods under ambient 

conditions using a Phillips PL-S 9W lamp placed at a distance of 10 cm.  After 

irradiation, samples were kept at room temperature in the dark. 

2.8.  Loading of Rhodamine B into the vesicles 

LDBCs were dissolved in THF and a solution of Rhodamine B in water was added 

gradually to induce the self-assembly. Concentration of Rhodamine B must be adjusted 

so that the end the dye concentration was 5:1 respect the LDBC. The final solution was 

dialyzed against water in order to remove THF and non-encapsulated Rhodamine B. 

2.9.  Confocal microscopy studies 

5 µL of vesicles suspension was deposited onto a glass slide and a coverslip was placed 

over the sample. The sample was sealed to avoid water evaporation. Samples were 

observed with an Olympus FV10i confocal microscope. Measurements of the 

fluorescent spots were performed with the ImageJ software. 

2.10.  Small and wide angle X-ray scattering experiments (SAXS and WAXS) 

Experiments were performed at beamline BL11-NCD (ALBA, Spain) using a 

wavelength of 0.1 nm.  The SAXS detector (ADSC, Quantum 210r CCD, pixel size 102 

μm) was located at 6.430 m distance from the sample position.  For the WAXS 

measurements a LX255-HS Rayonix detector (40x40 μm pixel size) was used.  The 

exposure time was 2 s.  For experiments performed upon heating and cooling ramps, a 

capillary containing the sample was inserted into a Linkam THMS600 hot stage.  

Simultaneous WAXS and SAXS patterns were acquired while the sample was heated 

from 20 ºC to 60 ºC at a controlled rate of 1 ºC/min.  Experiments under UV irradiation 

were performed at room temperature in the following way.  WAXS and SAXS patterns 

were collected while the sample was irradiated with a UV lamp (Phillips PL-S 9W) 
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placed at a distance of 10 cm. The angular (q-axis) calibration was obtained by 

measuring standard samples of Silver Behenate for SAXS and Cr2O3 for WAXS 

respectively.  In these experiments the scattering from water and that of the containing 

capillary was subtracted from the total scattering contribution.  

 

3.  RESULTS AND DISCUSSION 

3.1.  Synthesis and characterization of thermoresponsive linear polymers 

Thermoresponsive copolymers, (OEG-stat-DEG), were synthetized by ATRP using 

CuBr/bipy in ethanol at 60ºC, as described by Lutz, but using an initiator having an 

alkyne-protected group.[6]  Several polymerization experiments were carried out in order 

to adjust the composition of the linear block to the desired value (see supporting 

information Table S1).  Mn and OEGMA/DEGMA molar proportion were determined 

by 1H RMN by comparing relative integration of the peak at 0.12 ppm corresponding to 

–Si(CH3)3 end chain radicals (labelled as ‘a’ in Figure 2) and that of those at 3.35 ppm 

(labelled as ‘b’ in Figure 2) and 3.45-3.70 ppm, (labelled as ‘c’ in Figure 2) 

corresponding to methyloxy –OCH3 protons and methylenoxy –CH2O– protons of the 

repeating units. In this set of experiments, it was possible to adjust Mn to 3500 after 10 

min limiting the monomer/initiator ratio, obtaining a 76:24 DEG/OEG repeating units 

proportion.  The LCST of this (OEG-stat-DEG)_3500 is 42 ºC as was detected by DSC 

and in accordance with previous results.[5] 

 

3.2. Synthesis and characterization of the LDBC (OEG-stat-DEG)_3500-block-

d(isoAZO/C18) 

According to the initial approach of work, the block (OEG-stat-DEG)_3500 was chosen 

for next step in the synthesis of the aimed LDBC.  First, the terminal alkyne was 
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deprotected using TBAF while effectiveness of the reaction was verified by 1H RMN by 

following the disappearance of the signal at 0.12 ppm.  Then, the LDBC (OEG-stat-

DEG)_3500-block-d(isoAZO/C18) was prepared by CuAAC using the 4th generation of 

a bis-MPA dendron, d(isoAZO/C18), functionalized at the periphery with 4-

isobutyloxyazobenzene units and aliphatic chains in a 50:50 molar proportion (Figure 

1).  A two-fold excess of the linear block was used to facilitate the completeness of the 

block coupling reaction.  This excess was easily removed and recovered by precipitation 

of the final LDBC into cold ethanol. 

The LDBC and its precursors were analyzed by SEC and the curves show a shifting to 

lower retention time of the LDBC respect to the starting blocks (see supporting 

information Figure S1).  By 1H RMN spectroscopy (Figure 3c), it was observed the 

disappearance of the signal at δ = 3.25 ppm corresponding to –CH2–N3 protons of the 

dendron block (Figure 3a, inset), as well as the signal at δ = 4.62 ppm corresponding to 

methylenic protons –COO–CH2–C≡CH of the linear block (Figure 3b, inset).  By IR 

spectroscopy, neither a band corresponding to an azide at 2097 cm-1 nor a band 

corresponding to an alkyne at 2260-2100 cm-1 was observed (see supporting 

information Figure S2).  On the whole, traces of residual blocks were discarded. 

 

3.3. Self-assembly properties of (OEG-stat-DEG)_3500-block-d(isoAZO/C18) in 

water and effect of light and temperature on the self-assemblies morphology 

LDBC were assembled by the co-solvent method using THF-water while measuring 

turbidity (see supporting information Figure S3).  TEM photographs of stained samples 

showed the formation of vesicles (Figure 4a) with hydrodynamic diameter (Dh) values 

of around 70 nm and a minor population of 300 nm according to DLS (see supporting 

information Figures S4). 
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The critical aggregation concentration (CAC) in water was determined by fluorescence 

using Nile Red, which exhibit a high fluorescence when solubilized into hydrophobic 

environments such as the interior of the vesicle membrane.  Accordingly, Nile Red was 

equilibrated with dispersions of the LDBC of different concentration and the 

fluorescence spectra registered from 560 to 700 nm obtaining a CAC of 35 µg/mL, 

which is in concordance with values for similar LDBCs.[16] 

The UV-vis spectrum of the vesicles suspension in water (0.5 mg/mL) was recorded 

(Figure 5) and compared with that recorded for the polymer in chloroform solution.  

The maximum absorption band was located at 360 nm, which matches the LDBC main 

band in chloroform solution due to a π-π* transition.  Besides, two shoulders at 344 and 

380 nm were attributed to the presence of H- and J- aggregates, respectively. 

After exposure to UV-light, a significant decrease and blue-shift of main absorption 

band, accompanied by an increase of the absorbance at 450 nm, was observed in the 

UV-vis spectra due to E-to-Z photoisomerization (Figure 5).  Minor changes were 

observed after 2 min and a stationary state was reached after 5 min of irradiation.  After 

24 h in the dark, a partial recovery of original absorption spectra was observed.[11] 

The effect of the light and the temperature on the vesicles morphology was investigated 

by TEM.  Upon UV irradiation for 10 min, TEM images showed how vesicles got 

disrupted and large amounts of unstructured were detected (Figure 4b). 

To evaluate the effect of the temperature, an aqueous suspension of the vesicles was 

heated for 1 hour above the LCST of the thermoresponsive block, assuming that LCST 

for the linear block of LDBC has a similar value than the block before coupling. A 

sample for TEM inspection was prepared by casting a drop onto a TEM grid without 

cooling and images showed the destruction of the vesicles (Figure 4c). Additionally, 
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vesicles were heated above LCST and slowly cooled to room temperature, but fully 

recovery of the vesicles was not observed (Figure 4d). 

 

3.5.  Effect of the UV light and temperature on the vesicles structure by X ray 

scattering techniques 

(a)  Modifications in the vesicles structure due to UV illumination.  Figure 6 shows 

the small angle scattering profile as a function of the module of the reciprocal lattice 

vector q (q = 4π/λsin(θ), being 2θ the scattering angle) from the (OEG-stat-

DEG)_3500-block-d(isoAZO/C18) polymeric vesicles, after subtraction of the water 

and capillary scattering, before and after 10 min UV illumination time.  In the studied q-

range, no Bragg peaks were observed.  The main features of the SAXS profile were the 

existence of an initial region at low q, where the intensity follows a q–2 trend, followed 

by an intermediate q region, where q–4 dependency was observed.  Finally a bump 

centered at q = 0.8 nm–1 was also detected. 

In a first approach, this type of scattering is compatible with the presence of the vesicle 

observed by TEM.[17][18]  Due to the limited q range of the experiment, the scattering 

curve could not be fitted properly.  However, based on TEM, a globular shape of the 

scattering objects can be considered and, therefore, SAXS profiles can be analyzed by 

using the Guinier approach for globular objects.[19]–[22]  At lower q, there should be a 

Guinier region, from which the radius of gyration of the particle can be estimated.  The 

scattering for this regime follows the so called Guinier law  

where G is the Guinier prefactor and Rg is the radius of gyration.[12][21][22]  The inset in 

figure 6 shows the Guinier plot from which Rg is estimated.  By assuming the vesicle 

shape to be an sphere, the diameter of it can be obtained as D = 2·(5/3)1/2Rg.[19]–[22]  In 



- 15 - 

our case a value for the diameter of ≈ 79 nm was obtained at room temperature.  This 

value agrees rather well the estimates obtained by TEM and DLS. 

Figure 7 shows the dependency of the vesicle diameter, as estimated from SAXS, with 

UV illumination time.  The size of the vesicles was modified during UV illumination by 

exhibiting a decrease on increasing the illumination time. 

Simultaneous with the previously described SAXS experiments under UV illumination, 

WAXS profiles, after water subtraction, are presented in figure 8.  The WAXS profile 

of the vesicles presents a broad and composed maximum, which is typical from 

amorphous polymers.  The main peak (located at q = 19 nm–1 for the initial sample) 

correspond to interchain structural correlations, that indicates an average correlation 

distance of dinter = 2π/qinter of 3.3 Å.  Higher q peaks can be attributed to intrachain 

structural correlations.[23]  Several authors have used dinter to study changes occurring 

around the glass transition temperature.[24][25]  In the present case, we observed that, UV 

illumination induced a shift of the main peak (the interchain correlation peak) towards 

higher q values (smaller correlation distances).  The dependency of the average inter-

chain correlation distances with UV illumination time is shown in Figure 9.  The 

average distance between chains, dinter, decreases with UV irradiation by approximately 

6.5%.  This fact could be associated to some sort of distortion of the vesicle wall by the 

action of the UV illumination, and it is parallel to the decrease in the vesicle size 

observed by SAXS (Figure 7). 

(b)  Modifications in the structure due to temperature.  Increasing temperature had 

also a significant effect in the WAXS profiles of the polymer assembled in vesicles.  

Figure 10 shows WAXS patterns at different temperatures on heating and cooling runs.  

Increasing temperature produced changes in the intermolecular distance between chains.  

However, as temperature increased dinter decreased, indicating that the behavior cannot 
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simply be explained by thermal expansion.  Increasing the temperature seems to 

produce a densification of the polymer chains probably due to the hydrophilic-to-

hydrophobic transition at the LCST of the thermoresponsive block and the consequent 

collapse of the vesicles.  Upon cooling, the initial dinter was recovered.  Within the 

experimental limit, this change was monotonic, and no special transition temperature 

was observed (see Figure 11a). 

However, the intensity of the peak followed a more complex variation with temperature 

(see Figure 11b).  As temperature increased, the intensity initially increased slightly up 

to 29 ºC, to suddenly decrease, in the temperature range between 30-40 ºC and finally 

kept on decreasing slightly.  This trend in intensity was nearly reversible, observing the 

same step like behavior in the temperature range between 30-40 ºC upon cooling.  The 

fact that trend was not completely reversible might be related with TEM observations 

where fully recovery of the vesicles upon cooling below LCST was not observed.  

 

3.6. Encapsulation and thermo- and photoinduced release of molecular probes 

As it was mentioned, vesicles are able to encapsulate Nile Red, a hydrophobic 

fluorescent probe, in the interior of the membrane.  A suspension of vesicles loaded 

with Nile Red was irradiated with UV light and the fluorescence spectra recorded at 

different exposure times.  The initial emission markedly decreased upon irradiation 

during the first 5 min (Figure 12a).  Decreasing of the emission is indeed related to the 

increase in polarity of the medium where Nile Red is located, which can be either due to 

the diffusion of the Red Nile to aqueous medium or to the great increase of polarity of 

the membrane associated with the E-to-Z photoisomerization.  Because after storing the 

irradiated sample at room temperature for 24 h in the dark the initial emission intensity 
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is only partially recovered, it can be assumed that Nile Red is at least partially released 

by light stimulation. 

A suspension of vesicles loaded with Nile Red was also heated above LCST for 30 min. 

However in this case, the emission spectra recorded before and after heating (Figure 

12b) are identical, despite the morphological changes of the vesicles detected by TEM.  

However, it should be taken into account than above LCST the amphiphilic LDBC 

became entirely hydrophobic and Nile Red tends to keep trapped into the bigger clusters 

of unstructured material, and it might be not release of the fluorescent probe to the 

aqueous environment. 

Encapsulation in the hydrophilic cavity of the polymeric vesicle and release of 

Rhodamine B, a fluorescent hydrophilic probe, was also investigated.  Vesicles were 

formed in presence of the cargo fluorescent molecules and light-stimulated release of 

Rhodamine B was followed by confocal microscopy (Figure 13).  Before UV 

irradiation, many fluorescents spots were visible in the sample due the encapsulation of 

Rhodamine B (Figure 13a).  A region of the sample was selected to follow changes on 

fluorescence after UV illumination during different times, measuring the average 

emission intensity of different fluorescent spots, taking approx. 200 pixels per spot.  It 

was observed that fluorescence intensity decreased due to the release of the Rhodamine 

B to the aqueous media (Figure 13b).  No fluorescence was detected after 5 min. 

An additional experiment was carried to study the effect of temperature.  Vesicles were 

heated over LCST for 1h and no fluorescent dots were observed by confocal 

microscopy.  This should be related again to the release of Rhodamine B into aqueous 

media, due to the stimulated morphological changes induced in the polymeric 

assemblies by the temperature.  
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4. Conclusions 

A new LDBC was prepared by coupling a thermoresponsive linear polymer, with a 

LCST close to physiological temperature, and the 4th generation of a photoresponsive 

bis-MPA based dendron that was co-functionalized at the periphery with an alkyl chain 

and 4-isobutyloxyazobenzene in a 50:50 molar ratio.  This LDBC was affordable by 

CuAAC and characterized by 1H-RMN, FTIR and GPC to ensure the adequate coupling 

of the preformed blocks. 

This LDBC self-assembled in water to form vesicles whose morphological changes 

upon UV-light irradiation or when heated above the LSCT of the thermoresponsive 

linear block were studied by TEM.  Using UV-vis spectroscopy changes upon UV 

illumination were associated to E-Z photoisomerization of the azobenzene. 

The effect of light and temperature was real-time monitored by SAXS and WAXS. 

SAXS measurements were consistent with the presence of polymeric vesicles having a 

diameter in accordance with TEM and DLS.  By SAXS the effect on the vesicles size 

upon light stimulation was observed.  By WAXS both, the effect of the light and the 

temperature, on the interchain distances was tracked.  Results point to a densification of 

the polymer chains triggered by UV illumination or by overpassing the LCST, and 

associated to the morphological changes observed by TEM. 

Finally, it was demonstrated the ability of the vesicles to encapsulate both, hydrophobic 

and hydrophilic molecules and the possibility of controlling their release under light and 

temperature stimuli. 

 

Acknowledgements 

This work was supported by the MINECO, Spain under the projects MAT2014-55205-

P, MAT2014-59187-R, MAT2012-33517 and FEDER. Financial support from 



- 19 - 

Gobierno de Aragón and Fondo Social Europeo is also acknowledged.  The authors 

would like to acknowledge the Servicios Generales de Apoyo a la Investigación – SAI 

and the Advanced Microscopy Laboratory – LMA of the Universidad de Zaragoza for 

the TEM observations. The authors additionally acknowledge the use of the CEQMA 

Services of the Universidad de Zaragoza-CSIC.  H. García-Juan acknowledges 

Gobierno de Aragón for his PhD grant. 

  



- 20 - 

REFERENCES 

[1] W. Jiang, Y. Zhou, D. Yan, Chem. Soc. Rev. 2015, 44, 3874. 

[2] F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197. 

[3] R. Cheng, F. Meng, C. Deng, H.-A. Klok, Z. Zhong, Biomaterials 2013, 34, 3647. 

[4] D. Bléger, S. Hecht, Angew. Chem. Int. Ed. 2015, 54, 11338. 

[5] G. Vancoillie, D. Frank, R. Hoogenboom, Prog. Polym. Sci. 2014, 39, 1074. 

[6] J.-F. Lutz, A. Hoth, Macromolecules 2006, 39, 893. 

[7] E. Blasco, M. Piñol, L. Oriol, Macromol. Rapid Commun. 2014, 35, 1090. 

[8] K. Matyjaszewski, Macromolecules 2012, 45, 4015. 

[9] -H. Li, 
J. Am. Chem. Soc. 2010, 132, 3762. 

[10] E. Blasco, J. del Barrio, C. Sánchez-Somolinos, M. Piñol, L. Oriol, Polym. Chem. 
2013, 4, 2246. 

[11] E. Blasco, J. L. Serrano, M. Piñol, L. Oriol, Macromolecules 2013, 46, 5951. 

[12] F. J. Balta-Calleja, C. G. Vonk, X-ray Scattering of Synthetic Polymers; 

ELSEVIER: Amsterdam, 1989. 

[13] Applications of Synchrotron Light to Scattering and Diffraction in Materials and 

Life Sciences. Lecture Notes in Physics 776.  T. A. Ezquerra, M. C. García-

Gutiérrez, A. Nogales, M. Gómez Eds., Springer-Verlag: Berlin, 2009.  

[14] R. H. Staff, J. Willersinn, A. Musyanovych, K. Landfester, D. Crespy, Polym. 
Chem. 2014, 5, 4097. 

[15] H. G. Schild, D. A. Tirrell, Langmuir 1991, 7, 665. 

[16] J. L. Mynar, A. P. Goodwin, J. A. Cohen, Y. Ma, G. R. Fleming, J. M. J. Fréchet, 
Chem. Commun. 2007, 2081. 

[17] A.P. Lopez-Oliva, N. J. Warren, A. Rajkumar, O.O. Mykhaylyk, M. J. Derry, K. 

E. B. Doncom, M. J. Rymaruk, S. P. Armes, Macromolecules 2015, 48, 3547. 



- 21 - 

[18] N. J. Warren, O. O. Mykhaylyk, A. J. Ryan, M. Williams, T. Doussineau, P. 

Dugourd, R. Antoine, G. Portale, S. P. Armes, J. Am. Chem. Soc. 2015, 137, 

1929. 

[19] L. A. Feigin, D. I. Svergun, Structure analysis by small angle X-ray and neutron 

scattering; Penum Press: New York, 1987. 

[20] O. Glatter, O. Kratky, Small angle X ray scattering; Academic Press: London, 

1982. 

[21] G. Beaucage, J. Appl. Crystallography 1995, 28, 717. 

[22] R. Hernández, J. Sacristán, A. Nogales, T.A.Ezquerra, C.Mijangos, Langmuir 

2009, 25, 13212-13218. 

[23] G.R. Mitchell, In Comprehensive Polymer Science, G. Allen, J. C. Bevington, C. 

Booth, C. Price, Eds.; Pergamon Press: London, 1989; Vol. 1. 

[24] J. J. del Val, J. Colmenero, J. Non-Cryst. Sol. 1998, 232–234, 377. 

[25] J. J. del Val, J. Colmenero, B. Rosi, G. R. Mitchell, Polymer 1995, 36, 3625. 

  



- 22 - 

FIGURE CAPTIONS 

Figure 1.  Chemical structure of (OEG-stat-DEG)_3500-block-d(isoAZO/C18) 

Figure 2.  1H RMN spectrum (400 MHz, CDCl3) of (OEG-stat-DEG)_3500. Values of 

x and y were calculated from peaks labelled b and c, by using the following system of 

equations: Ib = 3x + 3y = and Ic = 32x + 6y 

Figure 3.  1H NMR spectrum (400 MHz, CDCl3) of (a) d(isoAZO/C18), (b)(OEG-stat-

DEG)_3500 and (c) (OEG-stat-DEG)_3500-block-d(isoAZO/C18). Amplification of 

terminal group peaks are represented in the insets of (a) and (b) corresponding to the 

preformed blocks. Initial peaks are not observed after coupling, see insets in (c). 

Figure 4.  TEM images of (OEG-stat-DEG)_3500-block-d(isoAZO/C18) self-

assemblies: (a) original self-assemblies, (b) after UV illumination for 10 min, (c) heated 

above LCST and (d) heated above LCST and slowly cooled down to room temperature. 

Figure 5.  UV-vis spectra of the vesicles suspension before and after irradiation with 

UV light for different times 

Figure 6.  SAXS intensity, after substraction of water scattering, as a function of the 

scattering vector. (z) Before UV illumination, and ({) after 10 min of UV illumination.  

Inset, example of the Guinier plot to estimate the vesicle diameter. 

Figure 7.  Dependence of the estimated vesicle diameter D as a function of the UV 

illumination time.  Continuous line is a guide to the eyes.  

Figure 8.   WAXS intensity as a function of the scattering vector, after water 

subtraction, before UV illumination (black), and after 10 min of UV illumination (red). 

Figure 9. Evolution of the interchain average distance dinter, obtained from the first 

maximum of the WAXS profile, as a function of UV illumination time. 

Figure 10. WAXS profile of the vesicles suspension including water contribution 

during heating (up) and cooling scan (down). 
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Figure 11.  Dependence with temperature of (a) the average interchain distance, dinter,, 

and (b) the intensity of the main peak in WAXS (q around 19 nm-1), upon heating (�), 

and upon cooling (z). 

Figure 12.  Emission spectra evolution of Nile Red loaded vesicle upon illumination (a) 

and on heating (b) 

Figure 13.  (a) Confocal image of Rhodamine B loaded vesicles, (b) average 

fluorescence intensity of selected spots at different irradiation times. 
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Figure 1.  Chemical structure of (OEG-stat-DEG)_3500-block-d(isoAZO/C18) 
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Figure 2.  1H RMN spectrum (400 MHz, CDCl3) of (OEG-stat-DEG)_3500. Values of 
x and y were calculated from peaks labelled b and c, by using the following system of 
equations: Ib = 3x + 3y = and Ic = 32x + 6y  
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Figure 3.  1H NMR spectrum (400 MHz, CDCl3) of (a) d(isoAZO/C18), (b)(OEG-stat-

DEG)_3500 and (c) (OEG-stat-DEG)_3500-block-d(isoAZO/C18). Amplification of 

terminal group peaks are represented in the insets of (a) and (b) corresponding to the 

preformed blocks. Initial peaks are not observed after coupling, see insets in (c). 
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Figure 4.  TEM images of (OEG-stat-DEG)_3500-block-d(isoAZO/C18) self-

assemblies: (a) original self-assemblies, (b) after UV illumination for 10 min, (c) heated 

above LCST and (d) heated above LCST and slowly cooled down to room temperature. 
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Figure 5.  UV-vis spectra of the vesicles suspension before and after irradiation with 

UV light for different times 
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Figure 6.  SAXS intensity, after substraction of water scattering, as a function of the 

scattering vector. (z) Before UV illumination, and ({) after 10 min of UV illumination.  

Inset, example of the Guinier plot to estimate the vesicle diameter. 
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Figure 7.  Dependence of the estimated vesicle diameter D as a function of the UV 

illumination time.  Continuous line is a guide to the eyes.  
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Figure 8.   WAXS intensity as a function of the scattering vector, after water 

subtraction, before UV illumination (black), and after 10 min of UV illumination (red).  
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Figure 9. Evolution of the interchain average distance dinter, obtained from the first 

maximum of the WAXS profile, as a function of UV illumination time. 
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Figure 10. WAXS profile of the vesicles suspension including water contribution 

during heating (up) and cooling scan (down). 
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Figure 11.  Dependence with temperature of (a) the average interchain distance, dinter,, 

and (b) the intensity of the main peak in WAXS (q around 19 nm-1), upon heating (�), 

and upon cooling (z). 
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Figure 12.  Emission spectra evolution of Nile Red loaded vesicle upon illumination (a) 

and on heating (b) 
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Figure 13.  (a) Confocal image of Rhodamine B loaded vesicles, (b) average 

fluorescence intensity of selected spots at different irradiation times. 


