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PROBABILISTIC ESTIMATES FOR TENSOR PRODUCTS OF

RANDOM VECTORS

DAVID ALONSO-GUTIÉRREZ, MARKUS PASSENBRUNNER, AND JOSCHA PROCHNO

Abstract. We prove some probabilistic estimates for tensor products of ran-
dom vectors, generalizing results that were obtained by Gordon, Litvak, Schütt,
and Werner [Ann. Probab., 30(4):1833–1853, 2002], and Prochno and Riemer
[Houst. J. Math., 39(4):1301–1311, 2013]. As an application we obtain em-
beddings of certain matrix spaces into L1.

1. Introduction

In [11] and [12] Kwapień and Schütt studied combinatorial and probabilistic in-
equalities related to Orlicz norms to investigate certain invariants of Banach spaces
such as the positive projection constant of a finite-dimensional Orlicz space and
to characterize the symmetric sublattices of ℓ1(c0) as well as the finite-dimensional
symmetric subspaces of ℓ1.

Building upon that, in the last decade these techniques initiated further re-
search, were extended, and successfully used in several different areas of mathe-
matics. Those include the local theory of Banach spaces, when studying symmetric
subspaces of L1 [20, 22, 23, 18, 15, 16], probability theory, to obtain uniform es-
timates for order statistics [9] (see also [7, 8, 6, 13]) as well as converse results on
the distribution of random variables in connection with Musielak-Orlicz norms [1],
or convex geometry, to obtain sharp bounds for several geometric functionals on
random polytopes [2, 4, 3] such as the support function, the mean width and mean
outer radii.

Let X1, . . . , Xn be independent copies of an integrable random variable X . In
[9, Lemma 5.2], it was proved that, if we define the Orlicz function MX by

MX(s) =

∫ s

0

∫

|X|≥1/t

|X | dP dt, s ≥ 0,

then,

E max
1≤i≤n

|aiXi| ≃ ‖(ai)
n
i=1‖MX , a ∈ R

n.(1)

In the following, let ξ1, . . . , ξn be independent copies of an integrable random
variable ξ such that the collection (ξ1, . . . , ξn, X1, . . . , Xn) is a family of independent
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random variables, and let (aij)
n
i,j=1 ∈ R

n×n. In view of (1) it is a natural question
to ask whether we can find estimates for

(2) EξEX max
1≤i,j≤n

|aijξiXj| ,

for these expressions naturally appear, for example, in the study of certain matrix
subspaces of L1. Note that, since the random variables ξi · Xj, i, j = 1, . . . , n are
no longer independent on the product probability space, [9, Lemma 5.2] cannot be
applied.

In [17], among other things, sharp estimates (up to constants independent of the
dimension n) in the case of p- and q-stable random variables (q < p) as well as for
Gaussians were obtained. To be more precise, it was shown that if ξ is a q-stable
and X a p-stable random variable, then

(3) EXEξ max
1≤i,j≤n

|aijξiXj | ≃p,q

∥∥(‖ (aij)nj=1 ‖p
)n
i=1

∥∥
q
.

Note that instead of r-stable random variables one can choose log γ1,r distributed
random variables or random variables with density r(r − 1)x−r−1

1[(r−1)1/r,∞)(x),
since only the tail behavior is important. Those random variables give

(4) Eξ max
1≤i≤n

|aiξi| ≃r ‖a‖r.

The advantage of the two latter distributions over an r-stable one is that we do not
need to restrict ourselves to parameters r ≤ 2.

In the second case, where X is a standard Gaussian, the authors proved that

(5) EXEξ max
1≤i,j≤n

|aijξiXj | ≃q

∥∥(‖ (aij)nj=1 ‖MX

)n
i=1

∥∥
q
,

where MX is a suitable Orlicz function.
However, the case of arbitrarily distributed random variables is not covered in

that work. This paper serves two purposes. On one hand, to fill that gap and
provide estimates of the same flavor as (3) and (5), but for arbitrary distributions
of X . On the other hand, we consider the converse setting in which a certain Orlicz
norm is given and we find a distribution of a random variable X that corresponds
to this norm. In addition, we study a more general setting, namely, expressions of
the form

EξEX

(∑

i,j

|aijξiXj |
p
)1/p

, 1 < p ≤ ∞.

In the special case that p = 2, these expressions naturally appear in Banach space
theory when studying the local structure of L1. Although there are a number of
sophisticated criteria at hand, to decide whether a given Banach space is a subspace
of L1 might still be non-trivial. In fact, it is well known that the finite-dimensional
symmetric subspaces of L1 are averages of 2-concave Orlicz spaces [11] (see [5] for
the infinite-dimensional version), but, as can be seen in the case of Lorentz spaces,
this is not easy to apply (cf., [22]). Nowadays it is still an open question what these
symmetric subspaces of L1 really are and a goal of Banach space theory to find
characterizations that can be easily applied. While improving on the results from
[17], we also hope to provide a better understanding of the techniques as well as
new estimates on the way to achieve that goal.
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In the following, an Orlicz function M is called normalized if
∫ ∞

0

xdM ′(x) = 1,

where M ′ is the right derivative of M .
The first main theorem of this work is the following:

Theorem 1.1. Let 1 < q < p ≤ ∞. Let M ∈ C3 be a normalized Orlicz function
with M ′(0) = 0 that is linear on [M−1(1),∞) and satisfies

(6) lim
t→0+

M ′′(t)

tq−2
= 0 exists (in R),

(7)

∫ s

0

M(t)

tq
dt

t
≤ C ·

M(s)

sq
, 0 < s ≤ M−1(1),

(8) f(s) :=
(
1−

2

p

)
s−3M ′′(s−1)−

1

p
s−4M ′′′(s−1) is non-negative for all s > 0.

Then, f is a probability density and for all (aij)
n
i,j=1 ∈ R

n×n,

EξEX‖(aijξiXj)
n
i,j=1‖p ≃p,q

∥∥(‖(aij)nj=1‖M
)n
i=1

∥∥
q
,

where (ξi)
n
i=1, (Xj)

n
j=1 are independent collections of independent copies of random

variables ξ and X with densities fξ(x) = q(q− 1)x−q−1
1[(q−1)1/q,∞)(x) and fX = f

respectively.

We will clarify the meaning of (7) by presenting an equivalent pointwise inequal-
ity related to the well-known ∆2-condition in Section 3. Moreover, we will see that
condition (7) implies that the limit in (6) is zero if it exists.

If independent copies X1, . . . , Xn of a q-integrable random variable X are given
(1 < q < p ≤ ∞), where |X | has a continuous density, then we obtain the following
theorem in the flavor of the results in [9, 1, 17] (cf., Theorems 2.1, 2.5 below, and
the discussion above).

Theorem 1.2. Let 1 < q < p ≤ ∞ and X1, . . . , Xn be independent copies of a
q-integrable random variable X, where |X | has a continuous density. For all s > 0
let

MX,p(s) =
p

p− 1

∫ s

0

(∫

|X|≤1/t

tp−1 |X |
p
dP+

∫

|X|≥1/t

|X | dP

)
dt,

or, if p = ∞,

MX(s) = MX,∞(s) =

∫ s

0

∫

|X|≥1/t

|X | dP dt.

Assume that

(9) lim
t→0+

M ′′
X,p(t)

tq−2
exists (in R),

(10)

∫ s

0

MX,p(t)

tq
dt

t
≤ C

MX,p(s)

sq
, 0 < s ≤ M−1

X,p(1),

Then, for all (aij)
n
i,j=1 ∈ R

n×n,

EξEX‖(aijξiXj)
n
i,j=1‖p ≃p,q

∥∥(‖(aij)nj=1‖MX,p

)n
i=1

∥∥
q
,
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where ξ1, . . . , ξn are independent copies of a random variable ξ with density fξ(x) =
q(q − 1)x−q−1

1[(q−1)1/q,∞)(x).

The proofs of these theorems will be carried out for p < ∞. For p = ∞ they are
very similar and will be omitted here. The statements of the theorems therefore
remain true if we formally set p = ∞.

The paper is organized as follows: in Section 2 we present some basic facts
about Orlicz functions, known results and their consequences that will be used
throughout the paper. In Section 3 we will discuss the conditions imposed on the
Orlicz function in Theorem 1.1. In Section 4 we will prove Theorems 1.1 and 1.2
in the case 1 < p < ∞. In Section 5 we will show an application of our results to
Banach space theory in which we show how to use Theorem 1.1 to give a uniform
isomorphic embedding of certain matrix spaces into L1. Finally, in the last section,
we generalize a result that was obtained in [1] (Theorem 2.5 in this paper) to an
arbitrary Orlicz norm instead of the ℓp-norm (Theorem 6.1). Note that this is a
simplification of [7, Theorem 1].

2. Preliminaries

A convex function M : [0,∞) → [0,∞) with M(t) > 0 for t > 0 and M(0) = 0
is called an Orlicz function. For an Orlicz function M we define the Luxemburg
norm ‖ · ‖M on R

n by

‖x‖M = inf

{
t > 0 :

n∑

i=1

M

(
|xi|

t

)
≤ 1

}
,

and the Orlicz space ℓnM to be the vector space R
n equipped with the norm ‖ · ‖M .

Moreover, a Luxemburg norm ‖ · ‖M is uniquely determined by the values of M on
the interval [0,M−1(1)]. We say that an Orlicz function M is normalized if

∫ ∞

0

xdM ′(x) = 1,

where M ′ is the right derivative of M . We say that two Orlicz functions M and N
are equivalent if there are positive constants a and b such that for all t ≥ 0

a−1M(b−1t) ≤ N(t) ≤ aM(bt).

If two Orlicz functions are equivalent, so are their norms. For a detailed and
thorough introduction to Orlicz spaces see, e.g., [19] or [14].

Let X and Y be isomorphic Banach spaces. We say that they are C-isomorphic
if there is an isomorphism T : X → Y with ‖T ‖‖T−1‖ ≤ C. We define the Banach-
Mazur distance of X and Y by

d(X,Y ) = inf
{
‖T ‖‖T−1‖ : T ∈ L(X,Y ) isomorphism

}
.

Let (Xn)n be a sequence of n-dimensional normed spaces and let Z be a normed
space. If there exists a constant C > 0 such that for all n ∈ N there exists a
subspace Yn ⊆ Z with dim(Yn) = n and d(Xn, Yn) ≤ C, then we say (Xn)n embeds
uniformly into Z. The monograph [24] gives a detailed introduction to the concept
of Banach-Mazur distances.

Throughout this paper, we will write A(t) ≃ B(t) to denote that there are
absolute constants c1 and c2 such that c1A(t) ≤ B(t) ≤ c2A(t) for all t, where t
denotes all implicit and explicit dependencies that the expressions A and B might
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have. If the constants depend on a certain parameter p, we denote this by ≃p.
By c, C... we denote positive absolute constants. We write cp, Cp if the constants
depend on some parameter p. The value of the constants may change from line to
line.

In [9, Lemma 5.2], the authors proved the following theorem:

Theorem 2.1. Let X1, . . . , Xn be independent copies of an integrable random vari-
able X. For all s ≥ 0 define

(11) MX(s) =

∫ s

0

∫

|X|≥1/t

|X | dP dt.

Then, for all vectors a = (ai)
n
i=1 ∈ R

n,

c1‖a‖MX ≤ E max
1≤i≤n

|aiXi| ≤ c2‖a‖MX ,

where c1, c2 are absolute constants.

Note that MX as defined in (11) is non-negative, convex, and can be written in
the following way:

(12) MX(s) = s

∫ ∞

1/s

xdP|X|(x) − P(|X | ≥ 1/s).

Moreover, in many cases, MX is normalized and MX(0) = M ′
X(0) = 0. For in-

stance, this is the case if P|X| is absolutely continuous with respect to Lebesgue
measure.

The next proposition (cf., [1, Proposition 4.1]) is a converse result to Theo-
rem 2.1:

Proposition 2.2. Let M be a normalized Orlicz function with M ′(0) = 0 such that∫∞

0 dM ′(s) is finite. Let X1, . . . , Xn be independent copies of the random variable
X with distribution

(13) P(X ≥ t) =

∫

[0,1/t]

s dM ′(s), t > 0.

Then, for all x = (xi)
n
i=1 ∈ R

n,

c1‖x‖M ≤ E max
1≤i≤n

|xiXi| ≤ c2‖x‖M ,

where c1, c2 are constants independent of the Orlicz function M .

Remark 2.3. Note that in the previous proposition X is integrable if and only if∫∞

0 dM ′(s) is finite. This is the case, for instance, if M ′ is absolutely continuous
and M ′′ is integrable.

If M is “sufficiently smooth”, we get that the density fX of X is given by

(14) fX(t) = t−3M ′′(t−1).

To generate an ℓp-norm in Proposition 2.2, i.e., to consider the case M(t) = tp, one
needs to pass to an equivalent Orlicz function so that the normalization condition is

satisfied. The function M̃ with M̃(t) = tp on [0, (p−1)−1/p] which is then extended
linearly does the trick.

Note that the assumption for M to be normalized in Proposition 2.2 is natural,
since in many cases the function MX of Theorem 2.1 is.
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The next result was recently obtained in [1, Theorem 1.1] and holds in the more
general setting of Musielak-Orlicz spaces, though we only state it here for Orlicz
spaces:

Theorem 2.4. Let 1 < p < ∞ and M ∈ C3 be a normalized Orlicz function that
is linear on [M−1(1),∞) and satisfies M ′(0) = 0. Moreover, assume that for all
x > 0

f(x) =
(
1−

2

p

)
x−3M ′′(x−1)−

1

p
x−4M ′′′(x−1) is non-negative.

Then f is a probability density and for all x ∈ R
n,

c1(p− 1)1/p‖x‖M ≤ E‖(xiXi)
n
i=1‖p ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants and X1, . . . , Xn are independent copies
of a random variable X with density fX = f .

Observe that in the latter theorem, for all x > 0,

(15) P(X ≥ x) = −M(x−1) + x−1M ′(x−1)−
1

p
x−2M ′′(x−1).

Another theorem that was obtained in [1, Theorem 3.1] is the following:

Theorem 2.5. Let 1 < p < ∞, X1, . . . , Xn be independent copies of an integrable
random variable X. For all s ≥ 0 define

(16) MX,p(s) =
p

p− 1

∫ s

0

[ ∫

|X|≤1/t

tp−1 |X |
p
dP+

∫

|X|>1/t

|X | dP

]
dt.

Then, for all x = (xi)
n
i=1 ∈ R

n,

c1(p− 1)1/p‖x‖MX,p ≤ E‖(xiXi)
n
i=1‖p ≤ c2‖x‖MX,p ,

where c1, c2, are positive absolute constants.

Obviously, MX,p(0) = 0 and, as can be checked by direct computation, the
integrand in (16), i.e., the function

t 7→

∫

|X|≤1/t

tp−1 |X |
p
dP+

∫

|X|>1/t

|X | dP,

is increasing in t. Therefore, the function MX,p is indeed an Orlicz function.
Note that, using Fubini’s theorem, we can rewrite the function MX,p as

(17) MX,p(s) =
sp

p− 1

∫ 1/s

0

xp dP|X|(x)+
p

p− 1
· s

∫ ∞

1/s

xdP|X|(x)−P(|X | ≥ s−1).

In the last section, we will generalize Theorem 2.5 to a setting where the ℓp-norm
is replaced by an arbitrary Orlicz norm.

A natural question concerning Theorems 2.4 and 2.5 is: given an Orlicz function
M according to Theorem 2.4 and the generating distribution (15) of a random
variable X , is the function MX,p in (16) equivalent to M? As it turns out, the
functions are not only equivalent, but we even have MX,p = M . We state this in
the following lemma:
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Lemma 2.6. Let 1 < p ≤ ∞ and M be as in Theorem 2.4. Assume that X is a
random variable with density

(18) fX(x) =
(
1−

2

p

) 1

x3
M ′′

(1
x

)
−

1

px4
M ′′′

( 1
x

)
, x > 0.

Then, for all s ≥ 0,

MX,p(s) = M(s),

where MX,p is given by (16) for 1 < p < ∞ and by (11) for p = ∞.

The proof of this result is a straightforward calculation using integration by
parts, the definition of MX,p, and (18).

The following result, which relates the density of a given random variable with
its associated Orlicz function is, in a certain way, a converse to the previous lemma:

Lemma 2.7. Let 1 < p ≤ ∞ and X be an integrable random variable such that
|X | has continuous density f|X|. Then MX,p ∈ C3 and

f|X|(x) =
(
1−

2

p

) 1

x3
M ′′

X,p

( 1
x

)
−

1

px4
M ′′′

X,p

( 1
x

)
, x > 0,

where MX,p is given by (16) for 1 < p < ∞ and by (11) for p = ∞.

Proof. First note that since f|X| is continuous, MX,p is at least twice continuously
differentiable. Assume 1 < p < ∞. Then, for all s ≥ 0,

MX,p(s) =
p

p− 1

∫ s

0

[ ∫ 1/t

0

tp−1rpf|X|(r) dr +

∫ ∞

1/t

rf|X|(r) dr

]
dt,

M ′
X,p(s) =

p

p− 1

[
sp−1

∫ 1/s

0

rpf|X|(r) dr +

∫ ∞

1/s

rf|X|(r) dr

]
,

M ′′
X,p(s) = psp−2

∫ 1/s

0

rpf|X|(r) dr.

Hence, MX,p ∈ C3 and

M ′′′
X,p(s) = p(p− 2)sp−3

∫ 1/s

0

rpf|X|(r) dr − ps−4f|X|(1/s).

Therefore, combining the equalities, we find that for all x > 0

f|X|(x) =
(
1−

2

p

) 1

x3
M ′′

X,p

( 1
x

)
−

1

px4
M ′′′

X,p

(1
x

)
.

Similarly, we obtain the result for p = ∞. �

3. Discussion of the conditions

The integral condition (7) that appears in Theorem 1.1 can be interpreted as
a growth condition on M , related to the well known ∆2 condition. To be more
precise, we have the following:

Proposition 3.1. Let 1 ≤ q < ∞ and M be an Orlicz function. Then (7) holds if
and only if there exists a constant c < 1 and some γ < 1 such that for all s ≥ 0

(19) M(cs) ≤ γcqM(s).
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Proof. We first show that (19) implies (7). If s ≥ 0, then

∫ s

0

M(t)

tq+1
dt =

∞∑

k=0

∫ cks

ck+1s

M(t)

tq+1
dt =

∞∑

k=0

∫ s

cs

M(cku)

(cku)q+1
ck du.

Using (19) inductively, we deduce the inequality

∫ s

0

M(t)

tq+1
dt ≤

∞∑

k=0

∫ s

cs

γkckqM(u)

(cku)q+1
ck du =

(
∞∑

k=0

γk

)∫ s

cs

M(u)

uq+1
du.

Since this last integral can be estimated by
∫ s

cs

M(u)

uq+1
du ≤

sM(s)

(cs)q+1
= c−q−1M(s)

sq
,

the implication (19) ⇒ (7) is proved (with constant C = c−q−1).
Now we prove that (7) implies (19). Let s ≥ 0. Then we obtain from (7)

C
M(s)

sq
≥

∞∑

k=0

∫ 2−ks

2−k−1s

M(t)

tq+1
dt ≥

∞∑

k=0

2−k−1 sM(2−k−1s)

2−k(q+1)sq+1
=

1

2sq

∞∑

k=0

2kqM(2−k−1s).

Thus

(20)

∞∑

k=0

2kqM(2−k−1s) ≤ 2CM(s).

Using this inequality twice, we see

M(s) ≥
1

2C

∞∑

k=0

2kqM(2−k−1s) ≥
1

(2C)2

∞∑

k=0

2kq
∞∑

ℓ=0

2ℓqM(2−k−ℓ−2s).

Observe that by rearranging the sums,
∞∑

k=0

2kq
∞∑

ℓ=0

2ℓqM(2−k−ℓ−2s) =

∞∑

r=0

∑

(k,ℓ):k+ℓ=r

2qrM(2−r−2s).

Hence

M(s) ≥
1

(2C)2

∞∑

r=0

∑

(k,ℓ):k+ℓ=r

2qrM(2−r−2s) =
1

(2C)2

∞∑

r=0

(r + 1)2qrM(2−r−2s).

Thus, choosing r0 > 0 such that γ−1 := r0+1
(2C)2 2

−2q > 1 (γ as in in (19)) and taking

c = 2−r0−2 (which depends on C and q), we obtain condition (19) by estimating
the latter sum from below by the term with index r0. �

Recall that an Orlicz function M satisfies the ∆2-condition if and only if

M(Ks) ≤ CKM(s),

where K can be any number larger than 1 and CK is a constant only depending
on K. The ∆2-condition at zero is equivalent to ℓM being separable on the one
hand, and to the fact that the standard unit vectors form a boundedly complete
symmetric basis of ℓM on the other.

Since (19) is equivalent to

M∗(γ−1c−q+1s) ≤ γ−1c−qM∗(s), s ≥ 0,
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where M∗ is the conjugate function of M (cf., [10, Theorem 4.2]), we can interpret
the integral condition (7) as a special ∆2-condition on M∗, where CK satisfies
some kind of homogeneity condition of degree q∗ = q/(q − 1). Note that, in order
to carry out this duality argument formally, M needs to be an N -function, where
an N -function is an Orlicz function M such that additionally

lim
s→0

M(s)

s
= 0 and lim

s→∞

M(s)

s
= ∞.

If M is an Orlicz function such that t 7→ M(t)t−q−ε, ε > 0, q > 1 is an increasing
function, then condition (7) is satisfied. Note that in particular (q + ε)-convexity

of M , i.e., the convexity of t 7→ M(t(q+ε)−1

), implies inequality (7) (with constant
C(ε) = ε−1). However, it seems that neither of them implies the other one.

Let us now briefly discuss the limit conditions in Theorems 1.1 and 1.2. We will
frequently make use of the fact that conditions (6) and (7) imply that the limit in
(6) and corresponding limits for the derivatives must be 0. We state this in the
following lemma:

Lemma 3.2. Let 1 < q < ∞ and M ∈ C2 be an Orlicz function satisfying M(0) =
0 = M ′(0) such that limt→0+ M ′′(t)/tq−2 exists and

∫ s

0

M(t)

tq+1
dt ≤ C

M(s)

sq
, 0 < s ≤ M−1(1).

Then

lim
t→0+

M(t)

tq
= lim

t→0+

M ′(t)

tq−1
= lim

t→0+

M ′′(t)

tq−2
= 0.

Proof. By L’Hospital’s rule and the existence of limt→0+ M ′′(t)/tq−2, the following
limits exist and are equal:

lim
t→0+

M(t)

tq
= lim

t→0+

M ′(t)

qtq−1
= lim

t→0+

M ′′(t)

q(q − 1)tq−2
.

Notice that for any 0 < s ≤ M−1(1)

1

s

∫ s

0

M(t)

tq
dt ≤

∫ s

0

M(t)

tq
dt

t
≤ C

M(s)

sq
.

Since the last expression is finite, we have

1

s

∫ s

0

M(t)

tq
dt ≤

∫ s

0

M(t)

tq
dt

t
< ∞.

The mean value theorem for integrals implies that there exists a point ξ = ξ(s) ∈
(0, s] such that

M(ξ)

ξq
=

1

s

∫ s

0

M(t)

tq
dt.

Taking limits (since this limit exists), we get

lim
s→0+

M(s)

sq
= lim

s→0+

M(ξ(s))

ξ(s)q
≤ lim

s→0+

∫ s

0

M(t)

tq
dt

t
= 0.

Therefore,

lim
t→0+

M(t)

tq
= lim

t→0+

M ′(t)

tq−1
= lim

t→0+

M ′′(t)

tq−2
= 0. �
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4. The expected value of ℓp-norms of tensor products of random

vectors

Before we present the proofs of Theorems 1.1 and 1.2 for p < ∞, we need a
generalization of (4) from p = ∞ to arbitrary p ∈ (1,∞].

Lemma 4.1. Let 1 < q < p < ∞ and f : (0,∞) → R be defined as

f(x) = q(q − 1)x−q−1
1[(q−1)1/q,∞)(x).

Then f is a probability density and for all a ∈ R
n,

(21) E

( n∑

j=1

|ajξj |
p
)1/p

≃p,q ‖a‖q,

where ξ1, . . . , ξn are independent copies of a random variable ξ with density fξ = f .

Proof. By Theorem 2.5, for all a ∈ R
n,

(22) c1(p− 1)1/p‖a‖Mξ,p
≤ E‖(ajξj)

n
j=1‖p ≤ c2‖a‖Mξ,p

,

where c1, c2 are positive absolute constants and the function Mξ,p is given by

Mξ,p(s) =





(
1 + q

p−1 + q(q−1)
(p−1)(p−q)

)
sq − q(q−1)p/q

(p−1)(p−q)s
p, if s ≤ (q − 1)−1/q,

pq

(p−1)(q−1)
1− 1

q
s− 1, if s ≥ (q − 1)−1/q.

This follows from (16) by direct computation if we insert fξ. It can be checked that

in [0,M−1
ξ,p (1)], Mξ,p is equivalent to x 7→ xq up to constants depending only on p

and q. �

Before we continue to prove a uniform estimate for the expected value of general
ℓp-norms of tensor products of random vectors, we state a simple lemma which
follows by integration by parts:

Lemma 4.2. Let 1 < p < ∞ and M ∈ C3 be a function such that

f(x) =

(
1−

2

p

)
1

x3
M ′′(x−1)−

1

px4
M ′′′(x−1), x > 0,

is the probability density of a random variable X. Then, for all 0 < a < b < ∞ and
all r ∈ R, we have

∫ b

a

xr dPX(x) =
1

p

(
M ′′(b−1)br−2 −M ′′(a−1)ar−2

)

+

(
1−

r

p

)(
M ′(a−1)ar−1 −M ′(b−1)br−1

)

+ (1− r)

(
1−

r

p

)(
M(b−1)br −M(a−1)ar

)

− (1− r)r

(
1−

r

p

)∫ a−1

b−1

M(y)

yr+1
dy.

Lemma 4.3. Let 1 < q < p < ∞, M be as in Theorem 1.1, and X be a positive
random variable with density

f(x) =

(
1−

2

p

)
1

x3
M ′′(x−1)−

1

px4
M ′′′(x−1), x > 0.

Then Xq is integrable.
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Proof. Using Lemma 4.2, Lemma 3.2, condition (7), and the fact that M is linear
in the interval [M−1(1),∞) gives the result. �

Proof of Theorem 1.1 for p < ∞. The lower bound follows using (21), the triangle
inequality, and Theorem 2.4. To prove the upper bound, we first observe that

EξEX

∥∥ (aijξiXj)
n
i,j=1

∥∥
p
= EXEξ

( n∑

i=1

|ξi|
p

n∑

j=1

|aijXj |
p
)1/p

≃p,q EX

∥∥∥∥
(( n∑

j=1

|aijXj |
p
)1/p)n

i=1

∥∥∥∥
q

,

where we used (21). Thus, applying Jensen’s inequality,

EX

∥∥∥∥
(( n∑

j=1

|aijXj |
p
)1/p)n

i=1

∥∥∥∥
q

≤

( n∑

i=1

EX

( n∑

j=1

[
|aijXj |

q
]p/q)q/p

)1/q

.

By definition, X is positive and by Lemma 4.3, Xq is integrable. Hence, Theorem
2.5 applied to the random variables Xq

1 , . . . , X
q
n and parameter r = p/q (instead of

parameter p) gives

EX

∥∥(|aijXj|
q
)n
j=1

∥∥
p/q

.
∥∥(|aij |q

)n
j=1

∥∥
MXq,p/q

,

where

MXq,p/q(s) =
p

p− q

∫ s

0

[ ∫

|X|q≤1/t

tp/q−1 |X |
p
dP+

∫

|X|q>1/t

|X |q dP

]
dt

or, as we saw in (17),

MXq,p/q(s) =
q · sp/q

p− q

∫ s−1/q

0

xp dPX(x) +
p · s

p− q

∫ ∞

s−1/q

xq dPX(x)− P(X ≥ s−1/q).

Since ∥∥(|aij |q
)n
j=1

∥∥
MXq,p/q

=
∥∥(|aij |

)n
j=1

∥∥q
MXq,p/q◦tq

,

we obtain

EξEX

∥∥(aijξiXj

)n
i,j=1

∥∥
p
.p,q

∥∥(‖(aij)nj=1‖MXq,p/q◦tq
)n
i=1

∥∥
q
.

Thus it is left to show that MXq,p/q(s
q) ≤ cp,qM(s) for all s ≥ 0. We have

MXq,p/q(s
q) =

q

p− q
sp
∫ 1/s

0

xp dPX(x) +
p

p− q
sq
∫ ∞

1/s

xq dPX(x) − P(X ≥ s−1).

By Lemma 4.2, the fact that M is C3 and linear in the interval [M−1(1),∞), by
Lemma 3.2, and condition (7), we obtain that

q

p− q
sp
∫ 1/s

0

xp dPX(x) =
q

p(p− q)
s2M ′′(s),

p

p− q
sq
∫ ∞

1/s

xq dPX(x) = (q − 1)M(s) + sM ′(s)−
1

p− q
s2M ′′(s)

+ q(q − 1)sq
∫ s

0

M(y)

yq+1 dy
,

and

P(X ≥ s−1) = −M(s) + sM ′(s)−
1

p
s2M ′′(s).
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Combining these equalities, we find that

MXq,p/q(s
q) = qM(s) + q(q − 1)sq

∫ s

0

M(y)

yq+1 dy
.

By condition (7), we can estimate this from above as

MXq,p/q(s
q) ≤ q(1 + C(q − 1)) ·M(s). �

Let us now continue with the proof of Theorem 1.2, which follows the same lines
as the previous proof.

Proof of Theorem 1.2 for p < ∞. From (21) we obtain

EXEξ‖(aijξiXj)
n
i,j=1‖p ≃p,q EX

∥∥∥∥∥

(( n∑

j=1

|aijXj|
p
)1/p

)n

i=1

∥∥∥∥∥
q

.

The lower bound follows from the triangle inequality and Theorem 2.5.
For the upper bound we use Jensen’s inequality and obtain

EXEξ‖(aijξiXj)
n
i,j=1‖p .p,q

(
n∑

i=1

EX

∥∥∥
(
|aijXj|

q
)n
j=1

∥∥∥
p/q

)1/q

.

Since, by assumption, |X |q is integrable, we have by Theorem 2.5 (used with pa-
rameter p/q) that

EXEξ‖(aijξiXj)
n
i,j=1‖p .p,q

(
n∑

i=1

∥∥∥
(
|aij |

q
)n
j=1

∥∥∥
M|X|q,p/q

)1/q

=

(
n∑

i=1

∥∥∥
(
aij
)n
j=1

∥∥∥
q

M|X|q,p/q◦tq

)1/q

.

Again, M|X|q,p/q ◦ tq is the Orlicz function x 7→ M|X|q,p/q(x
q). It is left to show

that for all s ≥ 0, M|X|q,p/q(s
q) ≤ Cp,qMX,p(s). In order to prove it, we use that

(by formula 17)

M|X|q,p/q(s
q) =

q

p− q
sp
∫ 1/s

0

xp dP|X|(x)+
p

p− q
sq
∫ ∞

1/s

xq dP|X|(x)−P(|X | ≥ s−1).

By Lemma 2.7, we can use Lemma 4.2 to compute the integrals. Taking into
account that by the expression obtained in the proof of Lemma 2.7 for M ′′

X,p, we

obtain that lims→∞ M ′′
X,p(s)/s

p−2 = 0. Using this in combination with conditions

(9) and (10), we obtain, as in the proof of Theorem 1.1, that

M|X|q,p/q(s
q) ≤ q(1 + C(q − 1)) ·MX,p(s),

which finishes the proof. �

5. An application to Banach Space Theory

As already mentioned in the introduction, expressions of the form studied in
this work naturally appear in Banach space theory when studying subspaces of
the classical Banach space L1. We will use Theorem 1.1 with p = 2 to obtain a
uniform embedding of the sequence of spaces ℓnq (ℓ

n
M ) (1 < q < 2) into L1, where

M is given as in Theorem 1.1. In what follows, rij , i, j = 1, . . . , n will denote
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an independent sequence of Rademacher random variables. For any n ∈ N, the
asserted isomorphism is given by

Ψn : ℓnq (ℓ
n
M ) → L1[0, 1]

3, Ψn

(
(aij)

n
i,j=1

)
(t, s, u) =

n∑

i,j=1

aijrij(t)ξi(s)Xj(u),

where rij , ξi, Xj, i, j = 1, . . . , n are independent collections of i.i.d. random vari-
ables defined on the probability space ([0, 1],B[0,1], dx), where ξ1 and X1 have the
distributions given by Theorem 1.1. Khintchine’s inequality implies

∥∥Ψn

(
(aij)

n
i,j=1

)∥∥
1
=

∫ 1

0

∫ 1

0

∫ 1

0

∣∣∣
n∑

i,j=1

aijrij(t)ξi(s)Xj(u)
∣∣∣ dt ds du

≃

∫ 1

0

∫ 1

0

( n∑

i,j=1

|aijξi(s)Xj(u)|
2
)1/2

ds du

= EξEX

( n∑

i,j=1

|aijξiXj|
2
)1/2

.

Now, from Theorem 1.1, we obtain

EξEX

( n∑

i,j=1

|aijξiXj|
2
)1/2

≃q

∥∥(‖(aij)ni=1‖M
)n
j=1

∥∥
q
,

i.e., the sequence of spaces
(
ℓnq (ℓ

n
M )
)
n∈N

embeds uniformly into L1[0, 1]
3. Since

p = 2, it is necessary that M ′′′ ≤ 0 for X to have density fX as given in (8), which
immediately implies that M is 2-concave (cf., [1, Lemma 8.1]). To embed these
spaces directly into L1[0, 1], we refer the reader to the proof of [1, Corollary 6.1].
Note that this application is in the same spirit as the main result in [18], but with
an integral condition instead of pointwise ones (cf., discussion in Section 3). At
this point, it is important to mention the recent paper [21] by G. Schechtman on
embeddings of spaces E(F ) into L1, where he proved that if E and F are spaces
with 1-unconditional bases such that E is r-concave and F is p-convex for some
1 ≤ r < p ≤ 2, then the matrix space E(F ) embeds into L1. The techniques are
different from the ones used in [18] or here.

6. The expectation of arbitrary Orlicz norms of random vectors

One of the key tools we used throughout this paper is Theorem 2.5. As it turns
out, one can rather easily prove a generalization of Theorem 2.5, therefore providing
a simplification of Theorem 1 from [7]. For the sake of completeness, also in view
of the work [1], we include it here.

Theorem 6.1. Let N be an almost everywhere twice differentiable, normalized
Orlicz function such that N ′′ is integrable and N ′(0) = 0. Let X1, . . . , Xn be inde-
pendent copies of an integrable random variable X. For all s ≥ 0 define

M(s) =

∫ ∞

0

N(sx) dP|X|(x).

Then M is a normalized Orlicz function and for all a = (ai)
n
i=1 ∈ R

n,

c1‖a‖M ≤ E‖(aiXi)
n
i=1‖N ≤ c2‖a‖M ,

where c1, c2 are absolute positive constants.
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Proof. First of all, applying Proposition 2.2 to the function N , we find independent
copies Y1, . . . , Yn of a positive integrable random variable Y (which is integrable
because N ′′ is), independent of the Xi’s, with density

fY (y) = y−3N ′′(y−1), y > 0,

satisfying

EXEY max
1≤i≤n

|aiXiYi| ≃ EX‖(aiXi)
n
i=1‖N .

On the other hand, Theorem 2.1 applied to the sequence of random variables
X1 ·Y1, . . . , Xn ·Yn (which are integrable due to independence of X and Y gives us
a normalized Orlicz function NXY , satisfying

EXEY max
1≤i≤n

|aiXiYi| ≃ ‖a‖NXY .

In order to show NXY = M , we first observe that

NXY (s) =

∫ s

0

∫

|XY |≥t−1

|XY | dP dt

=

∫ s

0

∫

|xy|≥t−1

|xy| dP|X|(x) dPY (y) dt

=

∫ s

0

∫ ∞

0

x

∫ ∞

(tx)−1

y dPY (y) dP|X|(x) dt.

Using the form of the density, a change of variable, and Fubini’s theorem, we obtain

NXY (s) =

∫ s

0

∫ ∞

0

xN ′(tx) dP|X|(x) dt =

∫ ∞

0

N(sx) dP|X|(x) = M(s). �

Remark 6.2. Observe that in the case where N is the continuously differentiable,
normalized Orlicz function

N(t) =

{
tp, if t ≤ (p− 1)−1/p,

p(p− 1)1/p−1 · t− 1, if t > (p− 1)−1/p,

we have that ‖ · ‖N is equivalent to ‖ · ‖p, and Theorem 6.1 recovers Theorem 2.5.
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