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Cabueñes, Gijón, Spain, 11 Department of Otolaryngology, Hospital Universitario Salamanca, Salamanca, Spain, 12 Department of Otorhinolaryngology, Hospital San

Agustin, Linares, Jaen, Spain, 13 Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain, 14 Department of Otolaryngology, Hospital de

Poniente, El Ejido, Almerı́a, Spain

Abstract

Meniere’s disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients
with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus,
ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several
genes involved in the NF-kB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more
immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in
MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array
containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no
single nucleotide polymorphism (SNP) reached a genome-wide significant association (p,1028), we selected allelic variants
in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort.
None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential
regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in
patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011
had a shorter mean time to reach hearing stage 3 (.40 dB HL) (log-rank test, corrected p values were p = 0.009 for
rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that
the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.
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Introduction

Meniere’s disease (MD) is a chronic disorder affecting the inner

ear characterized by fluctuating sensorineural hearing loss

(SNHL), episodes of vertigo, tinnitus, and aural fullness and it

can affect both ears in 10–40% of cases [1]. The etiology and

pathogenesis remain unknown, although one-third of MD cases

may have an aberrant response of the adaptive or innate immune

system, the immunological mechanisms involved have not been

investigated [2].

Several mechanisms may explain the development of immune-

mediated inner ear disease (IED): a) cross-reactions with a cross-

reactive epitope (antibodies cause accidental inner ear damage

because the ear shares epitopes with a potentially harmful

substance, virus or bacteria) as suspected for some inflammatory

diseases [3], b) damage to the inner ear caused by pro-
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inflammatory cytokines such as IL-1B [4], [5] or TNF [6] as in

some autoimmune diseases, or c) inappropriate immune response

or intolerance to harmless unrecognized substances combined with

genetic factors that modify the immune response as in allergies [2].

IED and MD may have an overlapping phenotype and

autoimmune mechanisms could be associated with the pathophys-

iology of MD. Some evidence support this hypothesis including the

response to steroids therapy, the finding of elevated levels of

autoantibodies or circulating immune complexes (CIC) in the

serum of some patients with MD against inner ear antigens and

the association of allelic variants of MHC class I polypeptide-

related sequence A (MICA) and Toll-like receptor 10 (TLR10,

rs11096955) gene with hearing loss progression in patients with

MD [7], [8].

These findings together with the elevated prevalence of several

autoimmune diseases such as rheumatoid arthritis (RA), systemic

lupus erythematosus (SLE), ankylosing spondylitis (AS), and

psoriasis in patients with MD, suggest an autoimmune component

[9], [10].

Nuclear factor kB (NF-kB) is a crucial pleiotropic transcription

factor (TF) which regulates inflammation and the innate and

adaptive immune response [11]. Five members of this transcrip-

tion factor family have been identified: RELA (p65), RELB, REL

(c-Rel), NF-kB1 (p105) and NF-kB2 (p100). Of note, p105 and

p100 are pro-forms proteolytically processed to p50 and p52 [12].

All members of the NF-kB family harbor an N-terminal Rel

homology domain (RHD), which interacts with DNA elements

and mediates homo- and heterodimerization. The complex p65–

p50 is the most abundant form of heterodimer of the NF-kB family

and it keeps in an inactive state in the cytoplasm bound to proteins

of the IkB family, which are inhibitors of NF-kB [13].

In its canonical pathway, excitatory signaling can be mediated

through Toll-like receptors (TLRs), Interleukin-1 receptor (IL-1R),

tumor necrosis factor receptor (TNFR) and antigen receptors.

Several genes involved in the regulation of NF-kB pathway have

been associated with autoimmune disorders. So, ubiquitin-

conjugating enzyme E2L3 (UBE2L3), which ubiquitylates p105

for its degradation, tumor necrosis factor alpha-induced protein 3

(TNFAIP3, also known as A20), an ubiquitin-editing enzyme with

determines NF-kB activity or TNFAIP3-interacting protein

(TNIP1) which inhibits TNF-induced NF-kB -dependent gene

expression have genetic variants associated with several autoim-

mune diseases [14].

The genotyping of large cohorts of patients with several

autoimmune diseases in genome-wide association studies has

shown that most of these diseases share multiple susceptibility loci

(www.immunobase.org) [14]. Among them, several genes in the

NF-kB pathway are associated with two or more immune-

mediated diseases, such as inflammatory bowel disease (REL,

TNFAIP3 and NFKB1), psoriasis (REL, TNFAIP3, NFKB1 and

TNIP1), coeliac disease (REL and TNFAIP3), rheumatoid

arthritis (REL and TNFAIP3), type 1 diabetes (T1D) (TNFAIP3),

systemic lupus erythematous (SLE) (TNFAIP3 and TNIP1),

multiple sclerosis and primary biliary cirrhosis (NFKB1) (Table 1).

We have used the ImmunoChip, a high-density genotyping

array which includes 186 loci previously associated with 12

autoimmune diseases, to explore the association of these loci with

MD and to evaluate the role of functional variants of genes

involved in the NF-kB pathway with MD and their potential effect

on the hearing outcome of the disease [14].

Materials and Methods

Study samples
This study was approved by the ethics committees of all the

recruiting centers and all participating individuals gave written

informed consent. This study was approved by the ethics

committee for clinical research from Almerı́a (Comité Ético de

Investigación provincial de Almerı́a), Jaén (Comité Ético de

Investigación provincial de Jaén), Galicia (Comité Autonómico de

Ética de la Investigación de Galicia), Asturias (Comité Ético de

Investigación Clı́nica Autonómico de Asturias), Las Palmas (CEIC

del Hospital de Gran Canaria Dr. Negrin), Navarra (Comité Ético

de Investigación Clı́nica Autonómico de Navarra), Extremadura

(Comité Ético Autonómico de Extremadura), Madrid-Getafe

(CEIC Área 10 - Hospital Universitario de Getafe), Aragón

(Comité Ético de Investigación Clı́nica de Aragón) and Salamanca

(Comité Ético de Investigación Clı́nica Área de Salud de

Salamanca). All the procedures described were performed in

accordance with the highest ethical standards on human

experimentation, the Helsinki Declaration of 1975.

We recruited a total of 716 patients who were diagnosed with

definite MD according to the diagnostic scale for MD of the

American Academy of Otolaryngology Head and Neck Surgery

(AAO-HNS) [15] and 1628 control volunteers in a case–control

study.

The diagnosis of MD was established according to the clinical

guidelines defined by the Committee on Hearing and Equilibrium

of the AAO-NHS in 1995 [15]. A complete neuro-otological

evaluation including otoscopy, a pure-tone audiometry, nystagmus

examination and caloric testing was carried out in all cases.

Moreover, the protocol of diagnosis included a brain MRI to

exclude other possible causes of neurological symptoms. Patients

were followed with serial audiograms at each visit to monitor

hearing loss from the initial diagnosis. The following clinical

variables were studied in our series: gender, age, hearing stage,

duration of the disease, bilateral SNHL, age of onset, type of

headache, history of autoimmune disease, smoking, Tumarkin

crisis and the functional scale of the AAO-HNS. Hearing staging

was calculated by the audiogram obtained the day of inclusion for

each patient with definite MD and was defined as the mean of

four-tone average of 0.5, 1, 2 and 3 kHz according to the AAO-

HNS criteria: stage 1, #25 dB; stage 2, 26–40 dB; stage 3, 41–

70 dB; stage 4, .70 dB.

DNA extraction and genotyping
Blood samples from each subject were collected and genomic

DNA was isolated from peripheral blood leukocytes using the

QIAamp DNA Mini Kit (Quiagen), according to the manufac-

turer’s instructions. All genomic DNA was re-suspended in

nuclease free water for the following study.

The concentration of genomic DNA was measured using the

Qubit dsDNA BR Assay Kit (Invitrogen) and concentrations were

standardized to 50 ng/mL for genotyping. All samples were

genotyped using the ImmunoChip, a custom Illumina Infinium

high density genotyping array containing 196524 markers across

186 known autoimmunity risk loci [14],in the iScan genotyping

platform (Illumina Inc., San Diego, CA).

Quality controls
Samples were clustered together by using the Illumina Genome

Studio algorithm. Clusters were manually inspected and verified,

removal of single nucleotide polymorphisms (SNPs) with poor

clustering quality metrics (call frequency ,0.98, cluster separation

,0.4) was performed, and all SNPs with GenCall scores less than
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0.15 were excluded. Quality controls (QC) were applied for all

individuals and genotyped SNPs by using PLINK software

(version 1.07) [16].

Samples with a genotype success rate of ,90% were excluded

from the analysis. The remaining samples were then evaluated for

duplicates or related individuals and one individual from each pair

was removed if the proportion of alleles share identical by descent

(IBD) .0.5. Samples with increased heterozygosity rate (,0.18

and . 0.45) and missing data between cases and controls P value

,1025, were then removed from the analysis. Finally, genetic

outliers determined by principal component analysis (PCA) were

removed from the analysis (. 3 standard deviation around the

mean). All familial cases were also excluded.

All the SNPs that did not meet the following criteria were

excluded from further analysis: genotype success rate ,90%,

minor allele frequency (MAF) ,5%, Hardy-Weinberg equilibrium

,1024 in controls and missing-genotype rate ,0.5%. All markers

Table 1. Single nucleotide polymorphisms in the NF-kB pathway with reported associations.

Chr Positiona rsID GENE (variant type) Phenotype Association P-Value Reference

6 138199417 rs610604 TNFAIP3 (intron) Psoriasis 5.5361025 [39]

5 150440097 rs2233287 TNIP1(intron) Asthma, systemic sclerosis 0.039, 6.1761024 [40,41]

5 150438988 rs1422673 TNIP1(intron) Asthma 0.011 [40]

2 61136129 rs13031237 REL (intron) Rheumatoid Arthritis 7.2961023 [42]

22 21939675 rs5754217 UBE2L3 (intron) SLE 0.012 [43]

22 21917190 rs131654 UBE2L3 (intron) SLE 1.1261027 [44]

22 21932068 rs181362 UBE2L3 (intron) HDL cholesterol 3.7261024 [45]

4 103434253 rs3774937 NFkB1 (intron) Primary biliary cirrhosis, Body Weight 1.5610210 0.041 [46, dbGaPb]

4 103475444 rs4648011 NFkB1 (intron) Body Weight 0.040 [dbGaPb]

aNCBI human genome build 37 coordinates.
bhttp://www.ncbi.nlm.nih.gov/gap [38].
doi:10.1371/journal.pone.0112171.t001

Table 2. Clinical features of patients with Meniere’s disease and uni or bilateral sensorineural hearing loss.

VARIABLES BILATERAL (n = 168) UNILATERAL (n = 548) P-value

Age of onset, mean ± SD 46.6612.5 46.9612.1 0.743

Gender (% women) 60.4 56.6 0.404

Time course (years), mean ± SD 11.268.7 7.966.7 1.561025

Affected ear (%) Left (50.6) Right (49.4)

Hearing loss at diagnosis, mean ± SD 53.9616.6 48.9617.3 0.003

Migraine, n (%) 25 (14.8) 56 (10.2) 0.719

History autoimmune disease, n (%) 36 (21.4) 62 (11.3) 0.003

Smoking, n (%) 40 (23.8) 134 (29.9) 0.882

Hearing stage, n (%)

1 7 (4.2) 58 (12.6) 8.061026

2 28 (16.6) 116 (21.2)

3 78 (46.4) 260 (47.4)

4 48 (28.5) 69 (12.5)

Hearing stage, mean ± SD 3.0160.8 2.6860.9 3.061026

Turmakin crisis, n (%) 44 (26.1) 77 (14.1) 0.001

Functional scale, n (%)

1 28 (16.6) 98 (17.9) 0.964

2 46 (27.3) 158 (28.8)

3 36 (21.4) 104 (18.9)

4 25 (14.8) 79 (14.4)

5 16 (9.5) 46 (8.3)

6 3 (1.7) 7 (1.2)

Age of onset, time course years and hearing loss at diagnosis were compared by unpaired Student’s t test. Qualitative variables were compared by
Chi-squared test.
doi:10.1371/journal.pone.0112171.t002
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in chromosome X were also excluded. After QC, 96899 SNPs

remained with a MAF.0.05 for statistical analysis.

Statistical analysis
After all QC, 689 cases (521 unilateral, 168 bilateral) and 1475

controls remained for further analyses. We have evaluated the

association between each SNPs and patients with uni or bilateral

MD. Allelic and genotype frequencies were compared between

patients and controls by using x2 test and calculating the odds

ratios (OR) and 95% confidence intervals (CIs) using PLINK

(version 1.07). P-values were adjusted by genomic control. The

power was computed as the probability of detecting an association

at the 0.05 significance level, assuming an OR = 1.5 (small effect

size). Power analysis was estimated using the Quanto v1.2.4

software (Department of Preventive Medicine University of

Southern California, CA, USA).

Moreover, among the SNPs compared above, we selected those

SNPs which have been previously associated with other immune-

mediated diseases, in the following genes: NFKB1 (rs3774937,

rs4648011), REL (rs13031237), UBE2L3 (rs5754217, rs131654,

rs181362), TNFAIP3 (rs610604) and TNIP1 (rs2233287,

rs1422673) (Table 1). To assess if any of these variants have any

effect on the clinical course of patients with MD. The median time

to reach hearing loss .40 dB (hearing stage 3 or 4) for each

genotype/allele was calculated according to the Kaplan–Meier

method and survival curves were compared using the log-rank test

(IBM SPSS Statistics 20.0). The p values were corrected, according

to the Bonferroni’s method, for the number of comparison made

for each gene. p,0.05 was considered statistically significant.

Validation of rs3774937 and rs4648011 genotyping
Case samples were also genotyped for two SNPs in the NFKB1

gene (rs3774937 and rs4648011) with a TaqMan 59 allelic

discrimination assay according to manufactures’ instructions (Life

Technologies). Amplifications were performed in an ABI 7500

Fast Real-Time PCR System (LT) for continuous fluorescence

monitoring. The alleles were determined using the SDS 2.2.1

software (LT). Functional evaluation of these regulatory variants

was performed in silico by using the bioinformatics tools

HaploReg (http://www.broadinstitute.org/mammals/haploreg/

haploreg.php), seeQTL (http://www.bios.unc.edu/research/

genomic_software/seeQTL/) and RegulomeDB (http://

regulomedb.org/) to explore annotations of the noncoding

genome such as candidate regulatory SNPs, conservation across

mammals and its potential effects on regulatory motifs [17–19].

Results

Table 2 compares the basic clinical features of 716 patients with

uni and bilateral MD in our series. As we expected, patients with

bilateral SNHL had a longer duration of disease (p = 1.561025),

worse hearing loss at diagnosis (p = 0.003) and worse hearing stage

(p = 361026), a higher frequency of Tumarkin crises (p = 0.001)

and autoimmune disease comorbidities (p = 0.003). However, no

differences were observed in the age of onset or frequency of

migraine between patients with uni or bilateral SNHL.

Principal-component analysis (PCA) showed that cases and

controls had similar distributions of the top two eigenvectors in

both sets, suggesting a common genetic background for these study

subjects (Figure S1 in File S1). We found no evidence of

population stratification in the PCA.

Table 3. Effect of allelic variants in the NF-kB pathway on hearing loss progression in patients with Meniere’s disease.

Long-rank test (p-value)

GENE SNV UNILATERAL BILATERAL

TNFAIP3 (intron) rs610604 genotype 0.469 0.431

allele 0.045 0.385

TNIP1 (intron) rs2233287 genotype 0.806 0.505

allele 0.612 0.521

TNIP1 (intron) rs1422673 genotype 0.849 0.729

allele 0.303 0.365

REL (intron) rs13031237 genotype 0.276 0.053

allele 0.613 0.449

UBE2L3 (intron) rs5754217 genotype 0.779 0.276

allele 0.992 0.360

UBE2L3 (intron) rs131654 genotype 0.738 0.208

allele 0.606 0.196

UBE2L3 (intron) rs181362 genotype 0.779 0.276

allele 0.992 0.360

NFKB1 (intron) rs3774937 genotype (CC) 0.018* 0.160

allele (C) 0.009* 0.995

NFKB1 (intron) rs4648011 genotype (GG) 0.018* 0.420

allele (G) 0.003* 0.956

Mean time to reach stage 3 (.40 dB) was compared by Kaplan –Meier survival curves and long-rank test.
*corrected p values after Bonferroni’s method.
doi:10.1371/journal.pone.0112171.t003
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No single marker reached a genome-wide significant (p,1028)

when all cases and controls were compared. The top ten signals

found in patients with MD are shown in Table S1 in File S1. The

allelic frequencies of the selected variants in genes NFKB1, REL,
UBE2L3, TNFAIP3 and TNIP1 in patients and controls are

shown in Tables S2, S3, S4, S5, and S6 in File S1. There was no

significant difference among patients with uni or bilateral SNHL

for any of the SNPs studied (p.0.05). We also stratified patients in

two groups according to the presence of uni or bilateral SNHL

and compared each group with controls, but none of the allelic

variants reached a genome-wide significance. Moreover, none of

the selected variants were associated with comorbidities such as

autoimmune disorder or migraine.

We also analyzed the time course of hearing loss in patients with

uni or bilateral SNHL for all the functional allelic variants

previously selected in the NF-kB pathway. Kaplan-Meier analysis

showed that functional allelic variants on REL, TNFAIP3, REL
and TNIP1 genes did not influence the auditory prognosis in MD

(Table 3). However, two SNP in the NFKB1 gene (rs3774937 and

rs4648011) were associated with a faster hearing loss progression

in patients with unilateral SNHL (n = 490). So, patients carrying C

allele in rs3774937 and G allele in rs4648011, respectively,

reduced in 2 years the mean time to reach hearing stage 3 (.

40 dB HL) (log-rank test, corrected p values were p = 0.009 for

rs3774937 and p = 0.003 for rs4648011, respectively; Figure 1).

So, the median of years to reach hearing stage 3 was 8, 8 or 11

years since the onset of disease for carriers of the genotype CC,

CT or TT in rs3774937, respectively (log-rank test, corrected p

value was p = 0.018). For rs4648011, we also found that the

median time to reach stage 3 was 7, 8 or 11 year since the onset of

disease for carriers of the genotype GG, GT or TT, respectively

(log-rank test, corrected p value p = 0.018). Remarkably, these

variants in the NFKB1 gene did not influence hearing in patients

with bilateral SNHL (p.0.05, 2N = 290). The allelic frequencies

of rs3774937-C and rs4648011-G were 0.31 and 0.37, respective-

ly. Both SNPs were validated in all cases by Taqman assays and

the correlation coefficient between both methods was 98%. These

variants showed high linkage disequilibrium (r2 = 0.67, D’ = 0.95;

Figure 2). The haplotype CG has a frequency of 32% and carriers

of this haplotype reached 40 dB 30 months earlier than the rest of

the haplotypes carriers (p = 0.002, Table 4). We also compared if

carriers of the CG haplotype had a faster hearing loss progression

than patients with either rs3774937-C or rs4648011-G alleles, but

no additive effect was found.

Finally, in silico analysis of these variants predicted changes in

the interaction with the following transcription factors: DMRT1,

LUN-1, YY1 for rs3774937 and Foxc1, Zfx for rs4648011.

Discussion

MD is probably a syndrome including a heterogeneous group of

patients with an immune-mediated disease and non-immune

mediated mechanisms. The 1995 clinical definition of the AAO-

HNS does not discriminate these clinical variants [15].

Our results show that allelic variants in the NFKB1 gene

influence the hearing outcome in patients with unilateral MD.

Although these markers are not associated with an increased

susceptibility to develop MD, they probably modify the interaction

of NFKB1 with other transcription factors conditioning the

inflammatory response in the inner ear. Our study has enough

power to detect an association between rs3774937 and rs4648011

and unilateral SNHL patients (.98% for both SNPs). However,

the lack of association found in bilateral SNHL patients can be due

to the smaller sample size in this cohort, resulting in a lack of

power to detect a susceptibility association (power 70% and 66%,

respectively). These intronic markers in the NFKB1 gene are

located in chromosome 4q24 and they have been strongly

associated with primary biliary cirrhosis [45].

Genetic association studies in MD have been limited to case-

control studies based on candidate-gene approaches in small series

Figure 1. Variants in NFKB1 gene and hearing outcome in patients with MD were compared by Kaplan-Meier survival curves and the
log-rank test. A. Carriers of the C allele in rs3774937 showed a shorter time to reach hearing stage 3 (.40 dB). B. Carriers of the G allele in rs4648011
also reduced in 2 years the mean time to reach hearing stage 3 (log-rank test, p = 0.009 for rs3774937 and p = 0.003 for rs4648011).
doi:10.1371/journal.pone.0112171.g001
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with low power and replication studies have failed to confirm

previous associations [20–22]. The introduction of technology of

genotyping-based arrays after finishing the Human Genome

Project [23] and the International HapMap Project [24] have

changed the approach for gene discovery in complex diseases to

large-scale testing where every gene in the human genome is tested

for association with a disease of interest.

The Immunochip project was a collaborative Consortium

among 12 immune-mediated disease groups (autoimmune thyroid

disease, ankylosing spondylitis, celiac disease, Crohn’s disease, IgA

deficiency, multiple sclerosis, primary biliary cirrhosis, psoriasis,

rheumatoid arthritis, SLE, type 1 diabetes and ulcerative colitis)

and the Welcome Trust Case Control Consortium (WTCCC).

The result was a high-density array containing 186 distinct

susceptibility loci associated with one or more immune-mediated

diseases [14]. The ImmunoChip has revealed mainly common

variants of modest effect size with odds ratios between 1.04 and

3.99 (mean = 1.29), when excluding the MHC region on most of

the immune-mediated diseases listed above [25–28] and other

diseases such as atopic dermatitis [29] or Behcet’s disease [30].

We have performed an exploratory genotyping study by using

the ImmunoChip including 716 patients and 1628 controls (689

and 1475, respectively after QC), but the clinical heterogeneity of

MD anticipates that this sample size is not enough to define the

susceptibility loci associated with MD. Previous findings and these

results suggest that patients with MD and uni and bilateral SNHL

have different genomic background since patients with bilateral

SNHL and MD have more frequent comorbid autoimmune

diseases [9], [10].

Autoimmunity has been proposed as a mechanism in patients

with bilateral SNHL and MD [2] and although preliminary

candidate gene studies found that bilateral MD was associated

with allelic variants of genes HLA-DRB1 [31], PTPN22 [32],

these findings have not been formally replicated in the current

study including 168 patients with bilateral MD, the largest

collection so far.

There are several reasons to explain our findings. The great

clinical heterogeneity of MD advances that several thousands of

patients will be required to perform a genome-wide association

study with enough power to find susceptibility loci with p values ,

1028. Although those numbers are possible by an international

multicenter study for unilateral MD, it is a real challenge to recruit

those numbers for bilateral MD.

Different studies suggest the role of innate immune response in

the hearing outcome of autoimmune inner ear disease [4], [6] and

MD [8]. So, in the present study we have found that two

regulatory variants of NFKB1 gene also influence long-term

progression of hearing loss in unilateral MD. Bioinformatics tools

predicted that these variants changed the interaction with the

following transcription factors: DMRT1, LUN-1, YY1 for

rs3774937 and Foxc1, Zfx for rs4648011. Since the NF-kB

pathway regulates proinflammatory cytokine production and cell

Figure 2. Linkage disequilibrium plot showing the haploblocks with the rs3774937 and rs4648011 (r2 = 0.67, D’ = 0.95).
doi:10.1371/journal.pone.0112171.g002
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survival and it mediates the duration of the inflammatory

response, these variants probably influence gene expression and

inflammation in MD. However, further studies with conditioned

cells (i.e., lymphoblasts with the homozygous variants) will be

necessary to define the effect of these variants in the gene

expression profile, since multiple interactions are possible in the

NF-kB network and the molecular mechanism remains unknown.

We have recently found that rs11096955 in TLR10 gene may

confer susceptibility to bilateral SNHL in patients with MD [8].

TLRs constitute one of primary defense mechanisms in infections

and some noninfectious diseases [33] and inadequate activation of

TLRs pathway has been reported in several autoimmune diseases

[34]. Since TLRs activates an intracellular signal via MyD88,

triggering a complex cascade (IRAK1-IRAK4-TRAF6, TAK1-

TAB1-TRAF6-UBC13, IKK complex) that leads to the induction

of a large range of proinflammatory genes via the transcription

factors NF-kB [35], we have selected functional variants in the

genes NFKB1, REL, UBE2L3, TNFAIP3 and TNIP1 to

evaluate their potential role in the outcome of MD. Overall, we

suggest that allelic variants in some genes of the innate immune

response such as TLR10 and NFKB1 may act as regulatory genes

able to modify the clinical progression of hearing in MD. By using

an NF-kB reporter mouse, it was demonstrated that the protective

action of NF-kB was exerted in connective tissue cells within the

spiral ligament. So, in the spiral ligament, type II fibrocytes are

activated following systemic inflammatory stress and immune-

mediated SNHL in humans may result in part from susceptibility

of type II fibrocytes [36]. An abnormal function of type II

fibrocytes would likely have a significant impact upon hearing

thresholds, since these cells have a critical role in K+ ion uptake

from perilymph. Moreover, the fact that steroids are potent

blockers of NF-kB pathway may explain the observed response to

systemic steroids in patients with sudden SNHL or MD.

Our study design has some limitations: the sample size is not

enough to detect differences for SNPs with MAF,0.05; however is

has been recently demonstrated that the effect of rare variants in

autoimmune loci is negligible [37]. We have only compared SNPs

included in the ImmunoChip and it is necessary to scan the entire

genome in complex diseases. Moreover, the great heterogeneity of

the disorder may raise concerns about the cost-effectiveness of this

approach. An alternative approach is to select multicase families

with MD and combine whole-exome sequencing with segregation

analysis to define novel or rare variants in candidate genes.

Genomic data fusion including phenotype-and pathway-based

analyses may help to decipher the complex genomic architecture

of MD.

Conclusions

Allelic variants rs3774937 and rs4648011 can modify hearing

outcome in patients with MD and unilateral SNHL. A patent

application number P201430716 has been submitted to the

Spanish Patent and Trademark Office.
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File S1 Figure S1, Scatter plot showing the principal

component analysis (PCA) in our Spanish samples compared with

different populations in HapMap. The eigenvalues for the first

three principal components accounted for most of the population

substructure in this analysis (77.5%). All individuals who were not

clustering with the main cluster (. 3 Standard deviation from

cluster center) were excluded from subsequent analysis. Using this

method we identified a total of 48 outliers individuals in our case-

control cohort. X-axis represents Principal Component 1 (PC1)

and Y-axis represents Principal Component 3 (PC3) in our

Spanish samples (diamonds), and the main populations in

HapMap: CEU, Northern European from Utah (squares),

CHB+JPB, Chinese in Beijing+ Japanese in Tokyo (triangles),

MEX (crosses), TSI, Tuscans from Italy (asterisks) and YRI,

Yoruba in Ibadan, Nigeria (circles). Table S1, Minor allelic

frequencies of the top 10 ranked signals obtained with the

Immunochip in patients with Meniere’s diasease. Table S2,

Minor allelic frequencies of 15 single nucleotide variants in the

TNFAIP3 gene in controls and patients with uni and bilateral

sensorineural hearing loss. Table S3, Minor allelic frequencies of

87 single nucleotide variants in the TNIP1 gene in controls and

patients with uni and bilateral sensorineural hearing loss. Table
S4, Minor allelic frequencies of 16 single nucleotide variants in the

REL gene in controls and patients with uni and bilateral

sensorineural hearing loss. Table S5, Minor allelic frequencies

of 34 single nucleotide variants in the UBE2L3 gene in controls

and patients with uni and bilateral sensorineural hearing loss.

Table S6, Minor allelic frequencies of 9 single nucleotide variants

in the NFKB1 gene in controls and patients with uni and bilateral

sensorineural hearing loss.
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Table 4. Effect of rs3774937 (T.C) and rs4648011 (T.G) haplotypes on hearing loss in patients with Meniere’s disease.

Time to reach .40 dB (years, mean ± SD)

HAPLOTYPE (rs3774937, rs4648011) FREQUENCY (%) UNILATERAL BILATERAL

CG 33 860.48 1060.90

GT 5 861.12 1261.20

TT 62 1060.47 1260.67

Time to reach hearing .40 dB was compared by survival curves using the Kaplan-Meier method.
doi:10.1371/journal.pone.0112171.t004
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study on proposed candidate genes in Ménière’s disease, and a review of the
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H, et al. (2007) HLA-DRB1*1101 allele may be associated with bilateral
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