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We present a way of constructing continuous matrix product states (cMPS) for coupled fields. The cMPS is a
variational ansatz for the ground state of quantum field theories in one dimension. Our proposed scheme is based
on a physical interpretation in which the cMPS class can be produced by means of a dissipative dynamic of a
system interacting with a bath. We study the case of coupled bosonic fields. We test the method with previous
DMRG results in coupled Lieb-Liniger models. Besides, we discuss a novel application for characterizing the
Luttinger liquid theory emerging in the low-energy regime of these theories. Finally, we propose a circuit QED
architecture as a quantum simulator for coupled fields.
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I. INTRODUCTION

Quantum information and quantum technologies are pro-
viding both a new language and a new experimental landscape
for the study of large quantum many-body systems. The
study of entanglement in extended lattice models has made
it possible to tackle the successful numerical renormalization
group (NRG) [1] and the density matrix renormalization group
(DMRG) [2,3] and provide them with a solid theoretical
background based on the distribution of bipartite entanglement
in 1D systems. This understanding made it possible to
introduce new methods based on the matrix product states
(MPS) formalism that allow studying both static [4] and time-
dependent phenomena [5–9], together with generalizations for
critical [10] and two-dimensional systems [11]. As examples
of the success of these methods we can remark the extremely
good accuracy of DMRG studies in studying quantum phase
transitions of lattice models [3], as well as the success in
the quantitative modelization of novel experiments with cold
atoms [12–14], ions [15], and photonic systems [16,17].

The above examples rely on lattice models. Sometimes,
however, physics is best described via continuum 1D field
theories. This includes 1D Bose-Einstein condensates under
strong confinement and interaction, long Josephson junctions
or nonlinear materials [18–21]. In the seminal work of
Verstraete and Cirac [22], the MPS formalism was extended
to treat continuum 1D quantum mechanical systems. The
continuous matrix product state (cMPS) was formulated as
a variational ansatz for obtaining ground states of contin-
uum one-dimensional and nonrelativistic fields [23]. More
recently, the cMPS formalism has been used for tack-
ling excited (one-particle) states [24] and 1 + 1 relativistic
theories [25,26].

In this work, we introduce a natural extension of cMPS
states to study coupled fields. We show that thanks to the cMPS
formalism, the interaction between fields does not have to be
treated perturbatively, developing the appropriate algorithms
to compute ground-state properties. This is the main result
of the paper and, by itself, it has potential applications to
describe systems present experiments with interacting 1D Bose

gases [27], as well as the fermion-fermion or fermion-boson
interactions, occurring in the so-called ladders [18,19].

A well-known peculiarity for one-dimensional models is
their low-energy description as Luttinger liquids [28,29].
These liquids, no matter of the original model, are effective
theories of bosonic character and are described by sine–
Gordon-like models. The parameters in the effective theory
must be extracted from the original (microscopic) model. In
the case of field theories, the parameters are given in terms
of the ground state [30,31]. The second important result in
this work is that cMPS can be used to derive those Luttinger
parameters, both for the single and the coupled field cases.

Finally, we also relate the coupled cMPS ansatz to the
simulation of coupled quantum fields. We provide a recipe for
building cMPS in the laboratory: engineering discrete quantum
systems coupled to transmission lines, as in circuit QED
setups. Those laboratory layouts are nothing but prototypes for
quantum simulators of field theories within cavity QED [32].

The rest of the paper is organized as follows. The following
section, Sec. II, is a (almost) self-contained summary of the
cMPS theory. Next, Sec. III is our first application. We use
the cMPS, still single field, for obtaining the parameters in the
Luttinger liquid theory, explained in Sec. III A and applied to
the Lieb-Linniger model, Sec. III B. Section IV explains our
extension for coupled fields and Sec. V reports our numerical
results for coupled bosonic species. Finally, in Sec. VI, we
comment on the application of cMPS for constructing quantum
simulators and summarize our results.

II. OVERVIEW OF CMPS

We review here the basics of continuous matrix product
states (cMPS) for a single field. The cMPS are trial states for
a variational estimation of ground states in one-dimensional
quantum field theories. We start by considering a quantum
system described in the second quantization by means of the
field operators ψ̂(z). According to the spin-statistics theo-
rem, these operators must satisfy (anti)commutation relations
ψ̂(z)ψ̂†(z′) ± ψ̂†(z′)ψ̂(z) = δ(z − z′) according to whether
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they are fermions or bosons. Our system will be defined in
a length L with periodic boundary conditions.

The explicit form of the state can be written, as introduced
in the seminal work of Verstraete and Cirac [22] (� = 1 is used
through the text),

|χ〉 = traux
{
Pe

∫ L

0 dz (Q(z)⊗1F+R(z)⊗ψ̂†(z))
}|�〉, (1)

where P denotes path ordering (we follow a prescription in
which, for the argument of the exponential, the value of z

increases as we move to the right). Q(z) and R(z) are complex
D × D matrices acting on an auxiliary Hilbert space Haux.
The partial trace traux is taken over Haux. The suffix in 1F
emphasizes that it is the identity for the field. Finally, the state
|�〉 is the vacuum of a free theory,

ψ̂(z)|�〉 = 0. (2)

From now on, we will restrict ourselves to translational
invariant setups in which the matrices R and Q become
independent of z. The cMPS are complete [33], i.e., any
one-dimensional quantum field can be casted in the form (1).
This class of states can be obtained as the continuum limit
of MPS, with bond dimension D. The bond dimension can
be understood as a measure of the block entanglement. In
one dimension, the block entanglement saturates, thus, D is
expected to be sufficiently small. If so, we are able to reach
any quantum state with a relatively small number of variational
parameters (2D2). This, combined with the variational method,
results in a very powerful technique for finding ground states
of one-dimensional theories.

In a relativistic scenario, the block entanglement has a
UV logarithmic divergence. This can be understood since
the ground state of a relativistic theory, also in 1 + 1, will
contain zero-point fluctuations from all energy scales, which
are the ones contributing more to the entropy [34]. A related
argument due to Feynman is quoted in Ref. [25]. The ground
state will be dominated by the high-energy contributions. As
a consequence, in the variational procedure, the accuracy for
describing the low-energy sector is lost. Therefore a cutoff
must be introduced. Though challenging, the description of
relativistic field theories has been successfully described via
cMPS introducing a regularization scheme [25,26]. Here,
we will face the most favorable case of one-dimensional
nonrelativistic theories.

Inherited from their discrete countenparts, the cMPS is not
unique but the gauge transformation Q → gQg−1 and R →
gRg−1 leaves the state |χ〉 invariant [23]. It turns out that the
gauge

Q + Q† + R†R = 0 (3)

is quite convenient. In this gauge, the cMPS state (1) can be
rewritten as

|χ〉 = traux{U (L,0)}|�〉 (4)

with

U (L,0) = Pe−i
∫ L

0 dz(K⊗1F+iR⊗ψ̂†(z)−iR†⊗ψ̂(z)) (5)

and, K = K† Hermitian,

Q = −iK − 1
2R†R , (6)

(a)

(b)

FIG. 1. (Color online) (a) The cMPS can be built by letting an
ancilla (green circle in the figure) be coupled to a continuous field
[ψ(x)]. (b) In a similar way, we propose that coupled fields can also
be constructed by coupling independent ancillas.

which implies the gauge condition (3). The unitary operator U ,
in Eq. (5), is formally equivalent to a evolution in z time for the
field ψ̂(z) and a D-level (auxiliary) system with Hamiltonian
K . Field and ancilla are coupled via iR ⊗ ψ̂†(z) − iR† ⊗
ψ̂(z). The ground state is described in terms of the matrices K

and R, i.e., in terms of an auxiliary zero-dimensional system.
This suggests an holographic interpretation for the cMPS [35].
See Fig. 1(a) for a pictorial interpretation.

It remains to provide operational rules for computing within
the cMPS formalism. To be precise, we must be able to write
any field observable 〈χ |O(ψ̂,ψ̂†)|χ〉 in terms of the matrices
R and Q. As detailed in Ref. [36], the following relations are
found:

〈χ |χ〉 = tr{eT L}, (7)

〈ψ̂†(z)ψ̂(z)〉 = tr{eT L(R ⊗ R∗)}, (8)

〈∂zψ̂
†(z)∂zψ̂(z)〉 = tr{eT L([Q,R] ⊗ [Q∗,R∗])},

(9)

〈ψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z)〉 = tr{eT L(RR ⊗ R∗R∗)}, (10)

here,

T = Q ⊗ 1 + 1 ⊗ Q∗ + R ⊗ R∗. (11)

The Kronecker products in the ancilla space occur because
some identities, e.g., tr{A}tr{B} = tr{A ⊗ B}, have been used.

To avoid those products in the auxiliary space, the isomor-
phism |a〉|b〉 → |a〉〈b∗| is introduced. This allows us to map
vectors in Haux ⊗ Haux into operators acting on Haux. This can
be understood from the fundamental property

tr

{∑
i

∑
abcd

Ai ⊗ B∗
i |a〉|b〉〈c|〈d|

}

= tr

{∑
i

∑
abcd

|d∗〉〈c|Ai |a〉〈b∗|B†
i

}
. (12)

The former also implies that operators acting on Haux are
mapped into superoperators. Therefore the action of T on a
ket |ρ〉 will be mapped into T [ρ], where T is a superoperator
acting on the state (matrix) ρ. Under the isomorphism, it is
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straightforward to show that

T [�] := −i[K,�(z)] + R�R† − 1
2 [R†R,�(z)]+. (13)

This is nothing but the dissipator governing a Linblad-like
evolution dz� = T � for the irreversible dynamics of a system
coupled to a reservoir. In this case, the role of the system is
being played by the ancilla and that of the bath by the field [see
Fig. 1(a) and the discussion above on the holographic inter-
pretation]. The Linbladian is a positive-semidefinite operator,
T � 0, having at least one zero eigenvalue [37]. With this at
hand, Eq. (7) can be rewritten as

〈χ |χ〉 = 〈l|eT Lr〉 = Tr(eT L|r〉〈l|) = Tr(l eT Lr) .

Here, 〈l| and |r〉 are the left and right eigenvectors of T

(respectively) associated with its zero eigenvalue. We have
assumed implicitly the limit L → ∞ where this eigenvalue
yields the principal contribution to the exponential. In the third
equality, the above introduced isomorphism has been used.
Note that the zero eigenvectors of T , under the isomorphism,
are mapped into the stationary solutions of the Linblad
equation (left and right equations). Accordingly, the action
of T into the bra 〈l| can also be mapped into the action of a
superoperator on a matrix: 〈l|T ⇔ Q†l + �lQ + R†lR. It is
easy to see that, under the gauge (3), l∗ = 1 is a solution of the
stationary Linblad-like dynamics (dzl

∗ = 0). Combining all of
this, we end up with

〈χ |χ〉 = tr(r∗) = 1, (14)

where dzr
∗ = 0.

In a similar way, we can re-express the expectation value
of any operator in terms of the steady-state solution �∗ of the
right Linblad equation:

〈ψ̂†(z)ψ̂(z)〉 = tr(R†R�∗), (15)

〈∂zψ̂
†(z)∂zψ̂(z)〉 = tr([Q,R]†[Q,R]�∗), (16)

〈ψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z)〉 = tr((R†)2R2�∗). (17)

With this, we conclude our overview of the cMPS formalism.
In the limit L → ∞, we will be concerned with the ground-
state energy density e0 = 〈χ |Ĥ(ψ,ψ†)|χ〉 (where Ĥ is the
Hamiltonian density operator). The latter can be computed by
minimizing with the matrices R and Q as input and using
the latter relations (and similar ones). Once the minimization
procedure has finished, observables can be computed with the
same relations using the optimized matrices.

III. APPLICATION TO LUTTINGER LIQUIDS

A. Bosonization

At low temperatures, a large class of one-dimensional theo-
ries exhibit excitations of bosonic nature and their correlation
functions are characterized by power laws. An interesting
feature of 1D is that this class makes almost no distinction
between bosons and fermions. Haldane [28,29] termed this
class of theories Luttinger liquids . The bosonic nature of
the low-energy excitations in 1D is due to the enhanced role
quantum fluctuations acquire in low-dimensional systems.

For a given microscopic model, the so-called bosonization
prescription, consists in expressing the original degrees of
freedom in terms of new fields, which capture the collective

behavior characterizing the low-energy regime. For the case
of a bosonic field, we will introduce the density-phase
representation [18]

ψ̂†(x) =
√

ρ̂(x)e−iθ̂ (x), (18)

where ρ̂(x) := ψ†(x)ψ(x) is the particle density field and θ̂ (x)
the phase field. Close enough to the ground state, we can safely
approximate the density operator by

ρ̂(x) ∼ ρ0 − 1

π
∂xφ̂(x), (19)

where ρ0 is the ground-state density and the operator φ̂(x)
characterizes the fluctuations over the ground state. The
commutation relations for bosonic fields will translate into
a canonical commutation relation for the θ̂ and φ̂ fields:[

1

π
∂xφ̂(x),θ̂ (x ′)

]
= −iδ(x − x ′). (20)

B. Calculation for the Lieb-Liniger model

We are going to apply the previous ideas to the Lieb-Liniger
model [38]. The former describes a 1D nonrelativistic bosonic
gas interacting via a repulsive zero-range potential:

Ĥ =
∫ L

0
dx

1

2M
∂xψ̂

†(x)∂xψ̂(x) + c [ψ̂†(x)]2[ψ̂(x)]2. (21)

The Lieb-Liniger model is exactly solvable by means of a
Bethe ansatz. In fact, the solution shows that at low energies,
this model displays a Luttinger liquid behavior [39]. An
excellent agreement between the exact ground-state energy
density and the cMPS solution has already been provided [22].
Finally, note that this model conserves the particle number
density. This quantity will represent a minimization constraint
when finding the ground state numerically.

Following the bosonization scheme, the effective Hamilto-
nian describing the low-energy behavior of the Lieb-Liniger
model is

Ĥeff = v

2π

∫ L

0
dx K[∂xφ̂(x)]2 + 1

K
[∂xθ̂ (x)]2. (22)

Hence, the low-energy regime can be completely characterized
by means of two parameters (Luttinger parameters): the
velocity v and the dimensionless parameter K . These, in turn,
can be related to the ground state energy density e0(ρ) of the
microscopic Hamiltonian (21). The corresponding relations
are [30]

v2 = ρ0

M

∂2e0

∂ρ2

∣∣∣∣
ρ=ρ0

, (23)

K2 = π2ρ0

M

(
∂2e0

∂ρ2

∣∣∣∣
ρ=ρ0

)−1

. (24)

It is possible to obtain asymptotic (analytic) expressions for
the former parameters in terms of the dimensionless coupling
constant γ = Mc/ρ0. In Fig. 2, we compare those asymptotic
limits (small and large repulsion, see Ref. [30]) for v and K

with (23) and (24) as obtained from the ground-state energy
density computed with cMPS. We have performed simulations

235142-3
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FIG. 2. (Color online) Luttinger parameters as a function of the
dimensionless zero-range interaction constant γ = Mc/ρ0 for the
single LL model, Eq. (21) (we choose ρ0 = 1 and M = 1/2). The
full and dashed lines correspond to the weak and strong repulsion
limits, respectively. These are compared with our cMPS results for
bond dimensions D = 4 (open circles), 6 (filled triangles), and 8
(open squares).

for D = 2, 4, 6, and 8. For every bond dimension, the ground-
state energy density was calculated for up to twelve different
densities. By interpolation, we constructed the continuous
function e0(ρ) and the derivatives were calculated from it.
Results show that for a moderately small bond dimension (D =
6), it is possible to match the predicted asymptotic behavior up
to high values of γ . Results for D = 2 are not shown for the
sake of clarity (such a small bond dimension does not capture
correctly the ground state of the Lieb-Liniger model).

IV. EXTENSION/GENERALIZATION FOR
COUPLED FIELDS

The cMPS formalism can be naturally extended to treat a
multispecies system. Let us consider a system of length L in
which coexist q bosonic and/or fermionic particle species,
which are annihilated by the operators ψ̂α, α = 1, . . . ,q.
These operators satisfy (anti)commutation relations

ψ̂α(x)ψ̂β(x ′) − ηαβψ̂β(x ′)ψ̂α(x) = 0, (25)

ψ̂α(x)ψ̂†
β(x ′) − ηαβψ̂

†
β(x ′)ψ̂α(x) = δαβδ(x − x ′), (26)

where ηαβ = +1 if at least one of the fields α or β is bosonic
and ηαβ = −1 if both fields are of fermionic nature.

The q species cMPS state is defined as [23]

|χ〉 = traux
{
Pe

∫ L

0 dz Q̃(z)⊗1+∑q

α=1 R̃α (z)⊗ψ̂
†
α(z)

}|�〉 , (27)

here, matrices R̃α have been introduced for each one of the
fields ψ̂α and a single Hamiltonian K̃ for the auxiliary system.
We will employ the tilde notation for the variational parameters
of the multispecies cMPS state to differentiate them from their
single field counterparts, cf. Eq. (1). The matrix Q̃ is now
defined as

Q̃(x) = −iK̃(x) − 1

2

q∑
α=1

R̃†
α(x)R̃α(x). (28)

At difference with the single field case, a regularity
condition must be imposed on the R̃α matrices in order that

the expectation value of the nonrelativistic kinetic energy, as
computed with (27), will not become divergent. This condition
reads

R̃α(x)R̃β(x) − ηαβR̃β(x)R̃α(x) = 0. (29)

In other words, the matrices R̃α inherit the (anti)commutation
relation of their corresponding fields. With these ideas in mind
we can extend the operational rules for computing expectation
values with cMPS. For example,

〈χ |χ〉 = tr{eT̃ L} , (30)

where the transfer operator (11) has been generalized to

T̃ = Q̃ ⊗ 1 + 1 ⊗ Q̃∗ +
q∑

α=1

R̃α ⊗ R̃∗
α (31)

and translational invariance has been assumed for simplicity.
Special care must be taken into account for systems

where two or more fermionic species coexist. Let us discuss
correlators like 〈ψ̂†

α(x)ψ̂β(y)〉. Expanding the path-ordered
exponential in (27), which acts on the vacuum |�〉 of the
field theory, and taking the annihilation operators to the right
(normal ordering prescription), we obtain [23]

〈ψ̂†
α(x)ψ̂β(y)〉 = tr{eT̃ y(R̃β ⊗ 1)eT̃α (x−y)(1 ⊗ R̃∗

α)eT̃ (L−x)},
(32)

(x > y) where the generalized transfer operator T̃α deals with
the exchange statistics

T̃α = Q̃ ⊗ 1 + 1 ⊗ Q̃∗ +
q∑

β=1

ηαβR̃β ⊗ R̃∗
β. (33)

For the case of bosonic systems, T̃α = T̃ . The transfer operator
T̃ governs the evolution of states in the ancillary space.
Similarly to the single field case, this evolution can be mapped
to a dissipative dynamics corresponding to the following
Linblad quantum master equation:

d�̃(z)

dz
= −i[K̃,�̃(z)] +

q∑
α=1

R̃α�̃R̃†
α − 1

2
[R̃†

αR̃α,�̃(z)]+.

(34)

Thus we have again the picture of the ancilla coupled to a bath
(the fields) by means of the operators R̃α .

Consider now the case of two bosonic fields ψ̂1 and ψ̂2.
We are interested in studying how the matrices (R̃α and K̃),
which define the cMPS state in this two-species system, can be
constructed from the matrices which characterize a single field.
The simplest scenario considers two uncoupled fields. We have
seen how the problem of computing expectation values in the
ground-state can be reduced to a dissipative dynamics going on
in the auxiliary space—where the state of the total auxiliary
system is described in terms of the density matrix ρ̃. In the
absence of a coupling between the fields, we should be able to
recover our single field solutions. This is nothing but to demand
the density matrix to be separable, that is, �̃ = �1 ⊗ �2. Both
fields do not need to be identical, therefore, each of them will
have associated a different set of matrices Rα and Kα which
act on the corresponding auxiliary space Aα . For simplicity,
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we assume that both A1 and A2 have the same bond dimension
D1 = D2 = D. The total auxiliary space for the two fields will
be the tensor product of the individual spaces Ã = A1 ⊗ A2.
Due to the tensor product structure, the bond dimension of
the total auxiliary space is now D̃ = D2. The ancillas evolve
independently according to the total Hamiltonian

K̃ = K1 ⊗ 1 + 1 ⊗ K2. (35)

Similarly, each auxiliary system will couple to its quantum
field by means of the matrices Rα . The extension of these to
the product space is

R̃1 = R1 ⊗ 1, (36)

R̃2 = 1 ⊗ R2. (37)

Notice that the matrices R̃α satisfy the bosonic commutation
relation [R̃1,R̃2] = 0 as it is demanded for a multispecies
system (29). As desired, our construction lets us
recover the results for single fields. For instance,
〈ψ̂†

1ψ̂1〉 = tr(ρ̃∗R̃†
1R̃1) = tr(ρ∗

1R
†
1R1)trρ∗

2 = tr(ρ∗
1R

†
1R1)

(as trρ∗
2 = 1 for a density matrix).

How is this picture modified in the presence of a coupling
between ψ̂1 and ψ̂2? An arbitrary operator C̃, mapping Ã
into itself, can be represented as C̃ = ∑

i ciAi ⊗ Bi , where
Ai acts on A1 and Bi acts on A2. Therefore this defines
the most general structure for the matrices R̃α and K̃ . Those
general matrices must satisfy the regularity conditions (29),
which complicates their construction. A possible solution is
the following. We use the intuitive interpretation for the cMPS
in terms of a system bath, see Fig. 1(b) and the discussion on
the holographic interpretation below Eq. (13). Starting from
the decoupled solution (35), (36), and (37), we switch on the
coupling adiabatically and expect that our solutions will start
to modify. This is depicted schematically in Fig. 1(b). Here,
as one introduces the coupling between the physical fields, the
individual auxiliary spaces will also start to interact . Inspired
by this procedure, we propose the following construction in
the presence of a coupling. First of all, the matrices R̃1 and R̃2

will continue to be described by (36) and (37), respectively.
In this way, we guarantee that they commute, satisfying (29)
trivially. In order to render the state nonseparable, the matrix
K̃ is written in a general way but containing the uncoupled
solution as a limit (35). This is done as follows:

K̃ = K1 ⊗ 1 + 1 ⊗ K2 +
P∑

p=0

Z
(p)
1 ⊗ Z

(p)
2 , (38)

where Z
(0)
1 = Z

(0)
2 = 0. In order to keep K̃ Hermitian, we will

demand that the matrices Z
(p)
i are Hermitian too. The number

P of pairs of Z matrices is arbitrary. In principle, we will
expect it to grow with the strength of the coupling.

We have seen for the single field case, that the cMPS ansatz
is able to map the properties of a continuous one-dimensional
field theory by means of 2D2 variational parameters (with of
course, a relatively small bond dimension D). Doubling the
number of fields, as well as introducing P pairs of the already
defined Z matrices, increases the total number of variational
parameters to (4 + 2P )D2.

V. TWO-SPECIES BOSONIC SYSTEM

The system we have in mind to test the cMPS method for
coupled fields is a two-component bosonic system. Binary
systems of this kind (as well as bosonic + fermionic mixtures)
are Luttinger liquids with a rich phase diagram [40,41]. We
will consider two Lieb-Liniger gases with a density density
coupling. This is described by the following Hamiltonian:

Ĥ = 1

2M

2∑
α=1

∫ L

0
dx ∂xψ̂

†
α(x)∂xψ̂α(x)

+ c

2∑
α=1

∫ L

0
dx (ψ̂†

α(x))2(ψ̂α(x))2 + g

∫ L

0
dx ρ̂1(x)ρ̂2(x).

(39)

In order to obtain the low-energy behavior of this model, we
will use the bosonization technique introduced in Sec. III A.
As already explained, this consists in rewriting the bosonic
fields in terms of the collective fields θ̂α and φ̂α which char-
acterize the bosonic low-energy excitations. Hamiltonian (39)
conserves the individual particle densities, [Ĥ ,ρ̂α] = [Ĥ ,ρ̂] =
0 (α = 1,2). Therefore we can fix these two densities as
minimization constraints in the cMPS procedure. In Eq. (19),
we have considered the lowest order term in a harmonic
expansion of the density operator. A more careful treat-
ment[18] shows that, the correct expansion for the density
operator in terms of the field φ̂α is of the form ρ̂α(x) = [ρ0α −
∂xφ̂α(x)/π ]

∑
p ei2p(πρ0αx−φ̂α (x)). Our former simplification is

justified due to the fact that, at long distances (low energies),
the phase terms oscillate very fast and will average to zero
upon integration. In performing the bosonization, we must
retain the most dominant terms at low energies. For the case
of our interspecies coupling, this supposes to consider also
the first harmonic p = 1. This leads, at low temperatures, to a
coupling contribution of the form: 1/2π

∫
dx [2gx∂xφ̂1∂φ̂2 +

gc cos(2(φ̂1 − φ̂2) + πδx)] (with δ = ρ01 − ρ02). Of particular
interest for us will be the case of equal filling ρ01 = ρ02

(δ = 0). Species 1 and 2 in the low-energy effective Hamil-
tonian can be decoupled by introducing the normal modes
φ̂+ = 1/

√
2(φ̂1 + φ̂2) and φ̂− = 1/

√
2(φ̂1 − φ̂2). In terms of

these, we have that the low-energy excitations of (39) can be
described by the effective Hamiltonian

Ĥeff = 1

2π

∫
dx

[∑
ν=±

vν

(
(∂xφ̂ν)2 + 1

Kν

(∂xθ̂ν)2

)

+ gc cos(
√

8φ̂−)

]
. (40)

Similarly to the single field case, the Luttinger parameters
v± and K± can be related to the ground-state energy
density e0(ρ+,ρ−) (as a function of the normal densities) of
Hamiltonian (39):

v2
± = 2ρ0±

M

∂2e0

∂ρ2±

∣∣∣∣
ρ±=ρ0±

. (41)

K2
± = π2ρ0±

2M

(
∂2e0

∂ρ2±

∣∣∣∣
ρ±=ρ0±

)−1

. (42)
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FIG. 3. (Color online) (a) Ground-state density-density correla-
tions and (b) total energy density for the coupled LL model,
Hamiltonian (39). Both as a function of the interspecies coupling
strength g for equal densities ρ01 = ρ02 = 0.63 and c = 1.5. The
ancilla space for each field has bond dimension D equal to 6. We
couple the ancillas by means of P pairs of Z matrices. Results are
shown for P = 0 (circles), 1 (triangles), 2 (squares) and 3 (diamonds).
(Inset) Ground-state energy density for a single Lieb-Liniger chain
as a function of c (D = 6). The vertical line denotes the value of c at
which we are coupling two fields.

Coupled species have been thoroughly studied [40,41]. In
this work we study coupled bosonic species described by (39).
The range of parameters considered coincides with the one in
Refs. [42,43] where a DMRG study is reported, hence a direct
comparison is possible.

In Fig. 3(a), we plot the ground-state density-density corre-
lations |�ρ2| = |〈ρ̂1(x)ρ̂2(x)〉 − 〈ρ̂1(x)〉〈ρ̂2(x)〉| as a function
of the interspecies coupling g for different values of P . Both,
the repulsion strength c and the bond dimension D are kept
fixed (c = 1.5 and D = 6). As expected, P = 0 renders the
state separable and no correlations are observed. Making
P �= 0, the correlations between the two fields build up. They
grow with the coupling strength. In this range of parameters,
P = 2 seems to be sufficient for account with the physics.

The ground-state energy density as a function of g is shown
in Fig. 3(b). Only the last term of (39) depends on g, therefore,
(for a fixed value of c) the first two terms yield a constant
contribution. The case P = 0 yields a mean-field treatment
where the interaction is replaced by g〈ρ̂1〉〈ρ̂2〉. It was already
mentioned that [Ĥ ,ρ̂1] = [Ĥ ,ρ̂2] = 0. Thus, with P = 0, the
energy as a function of g has a linear dependence with slope
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FIG. 4. (Color online) Charge(+) and spin(−) Luttinger param-
eters as a function of the coupling g between fields. Here we show a
comparison between a weak-coupling approximation (dashed line),
DMRG [42,43], and our results implementing cMPS for coupled
fields with different bond dimensions and values of the parameter P

for fixed c = 1.5. (a) K± (b) velocities v±.

ρ01ρ02. Including quantum correlations (P �= 0), the energy is
not longer a linear function of the coupling, as seen in Fig. 3(b).

As it was already discussed, the low-energy description of
our model is characterized by the Luttinger parameters (41)
and (42). In particular, the difference in normal velocities
v± yields the charge-spin separation—a typical experimental
characteristic in mixtures. In Fig. 4, we compare for both the
v± and K± our cMPS results with the DMRG values extracted
from Refs. [42,43]. Let us remark the excellent agreement in
K+ and v+ and the minor discrepancy in K− or v−. The very
small differences could be attributed to a number of issues:
small bond dimension in the cMPS (D = 6) to be compared
with the DMRG (several hundreds), or the fact that the DMRG
theory is discretized an the cMPS is fully continuous.

VI. QUANTUM SIMULATION OF COUPLED CMPS

There exist two approaches towards the quantum simulation
of continuous or discrete field theories [44]. The conventional
one consists on taking a flexible quantum system, such as a
Bose-Einstein condensate, ultracold atoms in an optical lattice
or a superconductor, and working with it to implement the full
field theory, or an approximate version of it, in the experiment.
This “analogue” quantum simulator therefore evolves and
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equilibrates as the original model dictates and all observables
may be directly studied on the experiment itself.

A second possibility for quantum simulation arises from the
physical interpretation of cMPS. The idea is that there exists
a mapping between a continuous matrix product state and a
physical process operating on a small quantum-mechanical
object. This mapping between states and channels was already
evidenced for discrete MPS [45,46] and has been recently
generalized for cMPS [32], by means of their physical
interpretation in terms of a system (the ancilla) coupled to
a bath (the field). The beauty of this mapping is that it is quite
general and applies to a variety of quantum optical systems.
The prototypical system is an atom-cavity setup (the system
or ancilla in the language of this paper) that interacts with
external input and output fields through the bath (the field
in cMPS) in this case the electromagnetic field. However, any
other quantum discrete system coupled to an outer field, where
different order correlations of the latter can be measured, such
as circuit QED [47,48] would do the job.

Let us now summarize the proposal in Ref. [32]. The atom-
cavity system is described through the well known Jaynes-
Cummings (JC) model,

Ĥancilla = ĤJC = g(â†σ̂− + H.c.) + �(σ+ + σ−). (43)

Here, â (â†) are bosonic annihilation (creation) operators
describing the main stationary mode of a cavity. The atom
(with two relevant states) is coupled to this fundamental mode
with strength g and � is the amplitude of a driving field. The
σ̂− (σ̂+) are lowering (raising) operators for the two-level
system. The atom-cavity is coupled to an EM environment,
that in second quantization is given by the free Hamiltonian,
ĤEM = ∫

dω ω b̂†(ω)b̂(ω). Taking an interaction picture with
respect to the EM field, the system-bath (ancilla-field) coupling
can be written as

Ĥcoupling(t) =
√

κ

2π

∫
dω â†b̂(ω)e−iωt + H.c. (44)

Limiting the integration region to frequencies in resonance
with the cavity, we can safely assume the RWA. Also, assuming
a pointlike interaction in space, the coupling function is flat
in momentum. It is customary to introduce the time depen-
dent operators Ê+(t) = i/

√
2π

∫
dω e−iωt b̂(ω) and Hermitian

conjugate. They correspond to the electric field components
of the EM field. In this way, we can finally write the total
Hamiltonian as

Ĥ (t) = Ĥancilla + i
√

κ(â ⊗ Ê−(t) − H.c.). (45)

The electric field operators can, in turn, be decomposed into
in-out components [49]. The in component corresponds to the
field that impinges on the system while the out component
consists of a reflected part plus a radiated one due to the
interaction of the EM field with the system. If we take the in
state of the EM field to be the vacuum, it can be shown [50]
that the evolution governed by (45) can be reduced to that of
the non-Hermitian Hamiltonian

−iĤeff(t) = −iĤancilla − 1
2κâ†â + √

κâ ⊗ Ê−(t). (46)

This is the same kind of evolution that generates the cMPS
ansatz [see Eqs. (1) and (6)] once we trace over the degrees

of freedom of the ancilla. We thus make the following
identification:

R =
√

κ

c
â K = 1

c
Ĥancilla(g,�) (47)

for x = c t . While we do not have control over R, we can
modify the variational parameter K by properly tuning the
couplings (g,�) of the cavity-atom system. The continuous
field ψ̂(x) will map into the output field operators of the
electromagnetic field: ψ̂(x) = Ê+(t)/

√
c. Being the EM field

in a cMPS state, computing expectation values of operators
will translate into measuring correlations of the EM field itself,
i.e., measuring the normalized correlation functions g(1)(t,t ′),
g(2)(t,t ′),

g(1)(t,t ′) = 〈Ê−(t)Ê+(t ′)〉√
〈Ê−(t)Ê+(t)〉〈Ê−(t ′)Ê+(t ′)〉

, (48)

g(2)(t,t ′) = 〈Ê−(t)Ê−(t ′)Ê+(t)Ê+(t ′)〉
〈Ê−(t)Ê+(t)〉〈Ê−(t ′)Ê+(t ′)〉 , (49)

and higher orders depending on the model we wish to
simulate. Following our previous identification, the corre-
lators 〈Ê−(t)Ê+(t ′)〉 and 〈Ê−(t)Ê−(t ′)Ê+(t)Ê+(t ′)〉 map to
〈ψ̂†(x)ψ̂(x ′)〉 and 〈ψ̂†(x)ψ̂†(x ′)ψ̂(x)ψ̂(x ′)〉, respectively. It
was shown numerically that the atom-cavity setup could sim-
ulate the Lieb-Liniger model giving correlations acceptably
well [32].

With this work at hand, our proposal has also a natural
realization. In our case, we envision two superconducting
cavities interacting each one with one [51–53] or several
superconducting qubits (Fig. 5):

Ĥsys =
∑

α

(gâ†
ασ̂−

α + J â†
αâα+1 + λσ̂+

α σ̂−
α+1 + H.c.

+�(σ̂+
α + σ̂−

α )). (50)

Here, g is the coupling strength between a cavity and a qubit
at the same site, J and λ are the coupling strengths for cavities
and qubits at different sites respectively, and � is the amplitude

FIG. 5. (Color online) Possible circuit QED implementation for
the quantum simulation of a cMPS for two coupled fields. The ancillas
consist on two cavity-qubit setups and the fields are the input and
output of the EM field. The Hamiltonian of the cavity-qubit setups
simulates K̃ and the cavity operators couple to the external field, that
is, they correspond to the matrices R̃α .
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of the on-site driving field. That are coupled to different baths
(different fields) through

Ĥcoupling(t) =
∑

α

√
κα

2π

∫
dω â†

αb̂α(ω)e−iωt + H.c. (51)

Therefore in our case (α = 1,2), the identifications are the
following:

R̃α =
√

κα

c
âα (52)

and

K̃ = 1

c
Ĥsys (53)

with

Kα = ĤJC,α = g

c
(â†

ασ̂−
α + H.c.) + �

c
(σ̂+

α + σ̂−
α ), (54)

Z
(1)
1 ⊗ Z

(1)
2 + Z

(2)
1 ⊗ Z

(2)
2 = J

c
â1 ⊗ â

†
2 + H.c., (55)

and

Z
(3)
1 ⊗ Z

(3)
2 + Z

(4)
1 ⊗ Z

(4)
2 = λ

c
σ̂+

1 ⊗ σ̂−
2 + H.c. (56)

Note that in Sec. IV we demanded that the matrices Z

should be Hermitian. Equation (55) and (56) can always be
brought into a sum of tensor products of Hermitian operators.
The former equations are of the form C = A ⊗ B† + A† ⊗ B.
We can split any operator in terms of its Hermitian components.
In the case of A, the decomposition reads: A = Ar + iAi (and
similarly for B). Here, Ar = 1/2(A† + A) and Ai = i/2(A† −

A). It is straightforward to show that C can be rewritten as
C = 2Ar ⊗ Br + 2Ai ⊗ Bi .

Finally, as for the single field, EM field correlations need
to be computed. In addition, cross-correlations, for instance,
〈Ê−

i (t)Ê+
j (t ′)〉 will be necessary. In circuit QED, this is

possible as reported in the literature [54–58].

VII. SUMMARY AND CONCLUSIONS

In this work, we have proposed an extension of continuous
matrix product states (cMPS) to study the ground-state proper-
ties of 1D coupled fields. Our treatment has been confronted to
previous DMRG numerical results, showing good convergence
properties even for moderately large coupling strengths.
Finally, we have discussed how it could be possible to realize
computations for coupled fields using a quantum simulator to
implement the cMPS ansatz and optimizing over the ansatz
parameters [32]. We believe that extensions of this ansatz,
together with new ideas on time evolution and the study
of quasiparticle excitations [23,59] can provide a valuable
insight on existing experiments with 1D atomic Bose-Einstein
condensates [21,60].
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