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ABSTRACT
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial 
aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 
3D migration with competing protrusions under a chemotactic gradient. Based on recent 
experimental observations, we identify three main stages that can regulate mesenchymal 
chemotaxis: chemosensing, dendritic protrusion dynamics and cell–matrix interactions. Therefore, 
each of these features is considered as a different module of the main regulatory computational 
algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a 
PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices – 
collagen and fibrin – and under several PDGF-bb concentrations. Validation of the model results 
was provided through qualitative and quantitative comparison with in vitro studies. Our numerical 
predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen 
and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is 
a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment 
of this factor produces a speed increment. At 1 ng mL−1 a speed peak is reached after which the 
migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior 
on migration, significantly affecting the migration efficiency.

Introduction

Cell migration is a fundamental part of cell behavior 
and plays a central role in many aspects of life and biol-
ogy, spanning from embryogenesis (Martin & Parkhurst 
2004), immune response (Bogle & Dunbar 2010),  
angiogenesis (Geris et al. 2008) and wound healing 
(Shaw & Martin 2009; Valero et al. 2014), to the devel-
opment of disease such as cancer and metastasis forma-
tion (Condeelis et al. 2005). Thus, it is really important 
to understand the mechanics of cell migration, given 
the variety of scenarios in which cells have to deploy 
their migratory skills. The process is coordinated by 
a complex set of internal and external factors such as 
temperature (Higazi et al. 1996), adhesion sites in the 
extracellular matrix (ECM) (Cukierman et al. 2001), 
ECM mechanical properties (Lo et al. 2000) and the 
gradient of chemical factors (Devrotes & Janetopoulos 
2003; Cao et al. 2004; Roca-Cusachs et al. 2013). These 
latter chemo-attractants are responsible for chemotaxis, 
a phenomenon where cell movement is typically biased 
towards the chemo-attractant source.

In general, cell migration can be seen as a complex 
multi-physics and multi-scale problem that integrates bio-
chemical reaction kinetics, cell-ECM interactions, and cell 
mechanics (Rangarajan & Zaman 2008; Kim et al. 2013). 
Actually, during chemotaxis, the biochemical interaction 
between a chemo-attractant factor and cell surface recep-
tors triggers a cascade of internal signaling that provides a 
chemo-sensing mechanism. In response to that signaling 
cascade, cells increase their protrusions while attaching 
and pulling their surrounding ECM, thus generating a 
gradual advance. Depending on the cell type, different 
cell dynamics are observed which utterly determine their 
migration efficiency (Evan-Ram & Yamada 2005).

Actually, two distinct migration phenotypes for indi-
vidual cells are described in the literature: amoeboid 
migration and mesenchymal migration (Friedl & Wolf 
2010; Insall 2010; Swaney et al. 2010; Bear & Haugh 2014). 
The amoeboid migration mode, also called fast-migration, 
is observed in cells such as Dictyostelium discoideum, neu-
trophils and T cells (Lämmermann et al. 2008; Swaney 
et al. 2010; Beauchemin et al. 2007). This migration mode 

KEYWORDS
3D mesenchymal migration; 
fibroblast; chemotaxis; 
platelet derived growth 
factor; phosphoinositide 
3-kinase; Gillespie’s 
algorithm

ARTICLE HISTORY
Received 5 January 2016 
Accepted 3 June 2016

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon 
in any way.

CONTACT  J. M. García-Aznar   jmgaraz@unizar.es
 T he supplementary material for this paper is available online at http://dx.doi.org.10.1080/10255842.2016.1198784.

 OPEN ACCESS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jmgaraz@unizar.es
http://www.tandfonline.com


60    F. O. Ribeiro et al.

The premise of this work is to provide a better under-
standing on three-dimensional (3D) mesenchymal migra-
tion during chemotaxis. In particular, we aim to study how 
different chemo-attractant gradients and ECMs, affect cel-
lular speed and migration efficacy during 3D chemotaxis.

Therefore, here we propose a novel in silico 3D model to 
simulate mesenchymal 3D migration on various types of 
fibrous matrices and under different chemical concentra-
tions. Therefore, following the previous multi-physics and 
multi-scale characteristics, we propose the following strat-
egy: (1) first we emulate the initial segment of the signa-
ling cascade triggered by receptor activation; (2) then we 
simulate protrusions occurrence, growth and retraction 
which interact with the ECM; (3) finally cell motion fol-
lows protrusion contraction. The results found in silico – 
speeds, trajectory and persistence – are then quantitatively 
compared with in vitro studies of human fibroblasts under 
a PDGF-bb (platelet-derived growth factor –bb) chemot-
actic gradient (Moreno-Arotzena et al. 2015).

Materials and methods

Mechanical cell model

The 3D structure of the cell is geometrically modeled 
(Figure 1(A)) as a set of bars in 3D, representing the 
three dimensional dendritic protrusions diverging from 
a central connecting point that represents the cell body 
(Figure 1(B)). This central connecting point mostly exists 
for modeling purposes as the point where all the bars are 
connected, it can be associated to the cell nucleus or alter-
natively to the cell centrosome.

The model is based on the in vitro observation of 
migrating fibroblasts, where we can identify three main 
stages: first the chemosensing of the chemo-attractant fac-
tor, then the extension of dendritic protrusions and finally 
their contraction leading to cell progression.

is characterized by a clear cell polarization, with a direc-
tional protrusion of pseudopods and lamillopodia across 
the cell front, which adhere to the ECM through focal 
adhesions (Borau et al. 2011). Actin-myosin complexes 
then contract and make the cell squeeze itself through the 
matrix, forcing cell progression through the ECM.

Conversely, mesenchymal migration, also called 
slow-migration, can be observed in mesenchymal stem 
cells (MSCs), fibroblasts (Deuel et al. 1991; Veevers-Lowe 
et al. 2011) and tumor cells (Giri et al. 2013). During mes-
enchymal migration the migration mechanism is quite 
different, because cells do not present a clear polarization 
as in the previous case (Petri et al. 2009). Instead, multi-
ple competing protrusions emerge in different directions 
(Fraley et al. 2010; Moreno-Arotzena et al. 2014), adhere 
through focal adhesions which are tractioned when lon-
gitudinal stress fibers contract (Even-Ram et al. 2007; 
Vicente-Manzanares et al. 2011). This ‘tug-of-war’ behav-
ior creates a less efficient locomotion of the cell (Friedl & 
Wolf 2009).

Fibroblasts and MSCs directional migration is medi-
ated by the chemosensing of their surroundings through 
different membrane receptors. One known mechanism is 
the one that involves the tyrosine kinase class receptors 
(RTKs) (Pelletier & Boyten 1994; Poukkula et al. 2011). 
After reacting with the ligand the activated form of the 
receptor mediates the recruitment and activation of phos-
phoinositide 3-kinase (PI3K). PI3K is at the center of the 
migration signaling hub as it promotes the WAVE regu-
latory complex that in turn activates the Arp2/3 complex 
(Lebensohn & Kirschner 2009). This chain of events leads 
to the formation of new adhesions, promotes a further 
stabilization of protrusions and enhances the polymeri-
zation of actin. The myosin II, present in cells, will bind 
to the bundled actin stress fibers, ultimately producing 
cell protrusion contraction (Campellone & Welch 2010; 
Rotty et al. 2013).

Figure 1.  (A) Image of a migrating fibroblast under a PDGF-bb gradient (taken from Moreno-Arotzena et al. 2015). (B) Simplified 3D 
scheme used to represent the fibroblast shown on the left.
Note: Briefly, the cell is defined as a set of bars, representing the protrusions, united around a central body, representing the cell nucleus.
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Chemosensing model

During chemosensing cells probe the chemical cues on 
their surrounding micro-environment. Indeed the many 
receptors on the cell membrane surface react with spe-
cific chemo-attractant factors (Devrotes & Janetopoulos 
2003; Cao et al. 2004; Roca-Cusachs et al. 2013; Moreno-
Arotzena et al. 2015) and, by mean of those chemical reac-
tions occurring on the membrane surface the cell is able to 
sense its surroundings. For the purpose of modelling this 
chemosensing phenomenon occurring on the membrane, 
we represent the cell membrane as a spherical surface 
with a radius of 70 μm, centered around the center point 
of the mechanical cell model. This size has been deter-
mined from images of human fibroblasts embedded in 3D  
collagen- and fibrin-based matrices (Moreno-Arotzena 
et al. 2015).

Biochemically, as we can observe in Figure 2(A), 
chemosensing starts with the reaction between the 
chemo-attractant factor and their specific receptors on 
the cell membrane. Switched on, the receptors activate 
other molecules in the cytosol that propagate internally 
the signal received at the membrane level. The triggering 
of the signaling cascade can ultimately regulate protrusion 
growth and retraction.

In this work, we consider the 3D migration of fibro-
blasts under chemotactic conditions. For the purpose of 
simulating chemosensing, we considered the simplified 
set of reactions that occurs at the cell membrane level, as 
represented in Figure 2(B).

For this reaction model, we assume that one chemo-
attractant molecule F binds to one RTK receptor which is 
then, while switched on, able to turn the cytosolic mes-
senger PI3K into its activated form PI3K*(Hatakeyama 
et al. 2003; Hawkins et al. 2006). Although several other 
messengers are involved during chemotaxis, our study 
does not go beyond PI3K activation. In fact, Weiger et al. 
(2010) showed that PI3K activation and cytosolic gradi-
ents are closely related with migration direction and pro-
trusion growth and stabilization. From a time perspective 
only, the scheme in Figure 2 can be fully described by a 
set of ordinary differential Equations in (1), where each  
equation denotes the variation rate of each chemical 
species

 

(1)

⎧⎪⎪⎨⎪⎪⎩

�RTK

�t
= −k1RTK ⋅ [F] + k

−1RTKF
�RTKF

�t
= k1RTK ⋅ [F] − k

−1RTKF
�PI3K∗

�t
= k2RTKF ⋅ PI3K − k3PI3K

∗

�PI3K

�t
= −k2RTKF ⋅ PI3K + k3PI3K

∗

Figure 2. (A) Scheme of a cell membrane. The cross-membrane RTK receptors bind to the factor present in the cell surroundings. Later 
on, the RTK-factor complexes catalyze the activation of the PI3K in the cytosol. This transduction passes the information from the outer 
media into the cell. (B) Schematic representation of the set of reactions that take place next to the membrane.
Notes: 1 –represents the forward and reverse reactions that occur between the factor and the receptor. 2 –represents the activation of PI3K in the cytosol. 3 – 
represents the natural deactivation of PI3K.
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Here the convolution is defined between −∞ and +∞ 
and with the dummy variable u and v as per definition. 
Here st (α, β) represents the amount of activated PI3K* 
across the cell membrane surface at a time t. That signal 
is measured according to the convolution between dPI3K* 
(α, β) – the distribution of PI3K* molecules across the 
membrane – and p(α, β) a convolution windows roughly 
the size of a protrusion. As a first approach, the window 
size for the protrusion was defined as a circular window 
of 10° (degrees) in diameter.

With this definition we now know where PI3K* is 
preferably activated. Yet, how this signal is accumulated 
through time is also important because cell migration is 
a time dependent event. To detect where PI3K* molecules 
persist throughout the time cells migrate, the signal st(α, 
β) was sampled at a frequency of 1 Hz and s(α, β, t) – the 
cumulative signal – was defined as

 

where st(α, β) represents again the amount of activated 
PI3K* across the cell membrane surface at a time t, t0 and 
tf = t define the time period through which the 1 Hz sam-
pling is evaluated and s(α, β, t) is the cumulative signal of 
PI3K*. For practical reasons, from now on s(α, β, t) will 
be denoted by just s.

As we will see in the next section, the persistence of this 
signal is used to determine the spots where protrusions 
are more likely to appear. The birth rate of this protrusion 
is roughly 0.002 Hz as measured in vivo by Weiger et al. 
(2010), and because this happens at such a low rate, sam-
pling the signal at 1 Hz was deemed adequate (according 
to signal sampling standards) as the sampling frequency 
is higher than the corresponding to the protrusion for-
mation rate.

Hence, with the methods described above, we can 
compute the signal of PI3K* generated across the cell 
membrane. In particular, any measured peak of signal s 
would reflect the spatio-temporal persistence of PI3K* and 
thus, this variable will define a likely spot for protrusion 
to appear.

Modeling protrusion dynamics

To describe protrusion dynamics, we consider that each 
protrusion can be represented as a vector. Hence, we 
denote protrusion i as the vector f i, which can be vecto-
rially defined as

 

(4)s(�, �, t) =

tf∑
t=t0

st(�, �)

(5)f i = ‖f i‖e
i

where ki is reaction i forward rate and k-i is reaction i 
reverse rate. Assuming chemical reactions are stochastic 
processes well described by a Poisson distribution (Ueda 
& Shibata 2007), the evolution of this system was com-
puted via Gillespie’s algorithm (Gillespie 1976; Higham 
2007). Gillespie’s algorithm is a numerical method used 
to efficiently emulate the evolution of chemically reactive 
systems; it predicts the system equilibrium while preserv-
ing the randomness of the chemical reactions involved.

So far, we explored chemosensing from a temporal 
perspective. However, gradient sensing presumes the 
detection of the gradient spatial orientation. The reac-
tion between factor F and its RTK receptor (reaction 1) 
is spread across the whole cell membrane. Assuming that 
membrane receptors are homogenously distributed over 
the cell surface, the density of activated receptors would 
only depend on the distribution of factor F on the cell 
surface (see, for example, Figure 5(B) to show the dis-
tribution of the factor on the cell surface, mapping this 
spherical distribution onto a flat surface). In fact, there will 
be more activated receptors where the concentration F is 
greater and there will be less activated receptors where the 
amount of F is lower (Ueda & Shibata 2007). In this way 
cells can sense the gradient spatial orientation.

Mathematically, and maintaining the assumption that 
chemical reactions are well approximated by a random 
Poisson’s process, the receptor activation over a domain 
with varying concentration of factor F can be thought as 
a multivariate non-homogenous Poisson’s distribution, 
which we solved using the Inverse Method described by 
Saltzman et al. (2012).

Therefore, we assume that each activated receptor can 
lead to the generation of PI3K* which, according to Weiger 
et al. (2010), stabilizes protrusion extension and growth. 
Importantly, the amount of PI3K* molecules varies spa-
tially across the cell surface, but also in time following the 
system in (1). Thus, to help to determine the tempo-spatial 
variation we defined the variable s(α, β, t) which gathers 
the information of the spatial persistence of PI3K* acti-
vation across time t, in a space location of the cell surface 
defined by the coordinates (α, β) (since we consider a 3D 
model of a cell, the cell membrane can be represented by a 
flat surface defined by the pair polar coordinates α and β).

First, at a fixed instant of time t, the spatial persistence 
of PI3K* can be captured by performing a 2D convolution 
over the cell surface, as represented in Equations (2) 
and (3):

 

 

(2)st(�, �) = dPI3K∗ (�, �) ∗ p(�, �)

(3)st(�, �) =
+∞

∫
−∞

+∞

∫
−∞

dPI3K∗ (u, v)p(� − u, � − v)dudv
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αgr and βgr are two parameters that regulate protrusion 
growth, αret and βret are two parameters to model protru-
sion retraction, δs is the increment in signal s between 
two time instants. In fact, the mechanism that promotes 
cell motion through myosin contraction also provides 
a negative feedback to PI3K activation (as suggested by 
Weiger et al. 2010). Therefore, we assume that when a 
protrusion is retracted, some signal would be lost due 
to negative feedback. For the loss of signal due to retrac-
tion we consider a simple decay defined by parameter 
λ = 0.21 min−1 (Weiger et al. 2010). In fact, Weiger et 
al. (2010) measured in vivo that from birth to death, a 
protrusion would last 5 or 6 min. Therefore, to give the 
chance for the protrusion – and its signal – to vanish 
within that time frame, we considered half-life decay of 
3.3 min, i.e. defined by a decay parameter = 0.21 min−1. 
We also consider a time-dependent wear of protrusion 
signal, which wore out with time, following 30 min half-
life decay (Weiger et al. 2010).

During dendritic protrusions, they push and exert 
forces on the ECM. Therefore, the mechanical properties 
of the ECM exert a regulatory role on the final exten-
sion or retraction of protrusion, restricting its growth or 
retraction, as was in fact suggested by Liou et al. (2014). 
To simulate this phenomenon, we consider a protrusion to 
be analogous to an elastic ellipsoid inclusion embedded in 
the ECM; from this perspective this ECM can be assumed 
as an infinite elastic body. Hence, the ECM restricts both 
growth and retraction and both protrusion and ECM are 
stressed. Actually, in 1957, Eshelby found the analytical 
solutions of ellipsoidal elastic inclusions in an infinite 
elastic body (Eshelby 1957; Clyne & Withers 1995). 
Therefore, we propose to make the analogy between cell 
protrusions with ellipsoid inclusions, modeling protru-
sion growth as the expansion of small ellipsoid inclusions 
inside a surrounding matrix. Therefore, we propose to  
follow the Eshelby’s description of this phenomenon 
where the growth/retraction of protrusion is set to fol-
low the relation

 

where CI is the elasticity tensor of the protrusion, CM is the 
elasticity tensor of the surrounding ECM, S is the ellipsoid 
shape tensor, the vector �̃ck represents protrusion growth 
or retraction while constrained by the ECM and the vec-
tor �̃f

k
 represents the protrusion stress free expansion or 

retraction (when no matrix restrict the deformation of 
the protrusion). Both �̃ck and �̃f

k
 are in Voigt notation and 

represent the strain second-order tensor �Ck  and �f
k
 respec-

tively. For this approach, we have to consider a linear elas-
tic behavior for the ECM, using as elastic constants the 
values indicated in Table 3.

(8)�̃
c
k = S

[(
CI − CM

)
S + CM

]−1
CI �̃

f

k

where || f i|| is the length of protrusion i and ei is the unit 
vector of the protrusion longitudinal axis.

We consider that protrusion grows and stabilizes 
where the PI3K* signal s is stronger (Weiger et al. 2010) 
and becomes smaller or disappears where the signal s is 
weaker. We assume that a new protrusion is stabilized 
and grows longitudinally whenever the detected sig-
nal s is above the threshold snew_protrusion. Therefore, the 
onset of novel protrusions only occurs at locations of the 
cell surface where the chemical signal s is higher than  
snew_protrusion. This follows the idea suggested by many 
authors that a minimal amount of signal should be 
obtained for cells to react and grow protrusion (Ueda & 
Shibata 2007; Weiger et al. 2010; Jilkine & Edelstein-
Keshet 2011). Also, snew_protrusion, was estimated so as to 
obtain an average protrusion birth rate of roughly 20 min 
as measured in vivo by Weiger et al. (2010).

Once one dendritic protrusion has been formed, the 
dynamics of its length will depend on the level of the 
detected signal s. Thus, if the detected signal s is above 
the threshold sgrowth it will reinforce any pre-existent pro-
trusion and if it is lower than this threshold the protru-
sion will retract. Actually, if the signal s is below sret we 
consider that there is not enough signal remaining to keep 
protrusion growth and adhesion causing the protrusion to 
destabilize and ultimately resulting in retraction. Equation 
(6) summarizes dendritic protrusion (ɛP) or retraction (ɛR) 
behavior depending on cumulative signal strength s:

 

where the scalar ɛP and ɛR define the longitudinal strain 
rate due to the dendritic protrusion or retraction.

To compute this longitudinal strain rate, we first have 
to know the strain field. The tensor �Ck  corresponds to the 
constrained strain rate field (k = p, r; p protrusion and r 
retraction) and contemplates only the strain rate in the 
longitudinal direction �C

k
. �

i
, thus being mathematically 

described as �C
k
= 𝜀C

k
. �

i
⊗ �

i
.

Additionally, we also define the tensor �f
k
 for the stress 

free growth/retraction (it occurs only when there is not 
any ECM surrounding the protrusion). �f

k
 also contem-

plates strain only in the longitudinal direction and can 
be mathematically described as �f

k
= 𝜀

f

k
. �

i
⊗ �

i
. There, 

the scalar strain �f
k
 was defined as a function of the signal 

increment δs:
 

(6)

𝜀P . �
i
=

{
𝜀C
p
. �

i
, sgrowth < s

0, s ≤ sgrowth

𝜀R. �
i
=

{
𝜀C
r
. �

i
, s ≥ sret

−�
i
, s < sret

(7)𝜀
f

k
=

⎧⎪⎨⎪⎩

1

‖f i‖
𝛼gr𝛿s

(𝛽gr+𝛿s)
, 𝛿s ≥ 0 (growth)

1

�‖f i‖�
𝛼ret𝛿s

(𝛽ret+𝛿s)
, 𝛿s < 0 (retraction)
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(12) a relationship between the contractile force magni-
tude (due to myosin heads sliding through the actin) and 
the protrusion length:

 

where F i
trac is the contractile force, αadh is a constant that 

defines adhesion and f i is the vector representing the pro-
trusion. Note that as suggested in Figure 3, in this first 
approach the traction forces F i

trac are assumed identical 
in magnitude to their corresponding reaction forces F i

R.
From experimental observations (Starke et al. 2013; 

Moreno-Arotzena et al. 2014), we remarked that the direc-
tion of each cell haul seems to be aligned with one of its 
protrusion. In fact, it is not difficult to assume that the 
protrusion with which cell motion is aligned is the one 
applying a higher contractile force. Based on this obser-
vation, we consider this assumption where one protrusion 
at the time effectively adheres, tractions and promote cell 
motion. Also, given the assumption taken for Equation 
(12), we consider that at each instant the longest protru-
sion would the one leading cell motion. This hypothesis is 
based on the experimental results observed in the work of 
Moreno-Arotzena, as can be clearly observed in the videos 
provided in this work (Moreno-Arotzena et al. 2014).

Therefore, in this work, we assume two different types 
of protrusions: adherent and non-adherent (Starke et al. 
2013). In fact, we consider that while simply protruding 
and retracting, protrusions adhere to the ECM, causing 
it to deform according to their movement. However, dur-
ing cell motion we assume that only the leading/longest 
protrusion remains adhered, whilst the others become 
non-adherent. So, in this way, the cell is able to drag all 
its protrusions while still migrating.

(12)F i
trac = −�adhf

i

Finally, we can update the protrusion length from one 
time step to another with Equation (9) for each dendritic 
protrusion, taking the value of ɛ from Equation (6):

 

Modelling cell body translocation

Each protrusion is considered to contract independently 
and, when contracting, they generate a traction force 
which reaction is sensed by the cell body, resulting in cell 
progression. As represented in Figure 3, the cell body will 
sense the corresponding reaction forces, which are coun-
tered by the drag generated by the strong adhesion with 
the surrounding ECM (Zaman et al. 2005; Borau et al. 
2011; Kim et al. 2013).

Proceeding with the force equilibrium equation we 
write

 

where Fdrag is the drag force exerted by the ECM on the 
cell body and F i

R are the reaction forces supported by the 
cell body due to the retraction force of each protrusion i. 
The drag force can be simply defined as

 

where r is the cell radius, η is the ECM viscosity and v is 
the cell speed (see Table 3) (Paralkar et al. 1992; Borau 
et al. 2011).

As a simplification, we assume that a longer protrusion 
presents a larger adhesion surface, because there is a high 
probability that adhesion proteins may connect these thin 
protrusions with the ECM. Thus we suggest in Equation 

(9)f in+1 =
�
�
P + �

R
�
.‖f i

n
‖ei

(10)Fdrag +

n∑
i=1

F i
R = 0

(11)Fdrag = 6�r�v

Figure 3. Schematic of the cell depicting the traction forces Fi
trac

, reaction forces Fi
R
 and drag force Fdrag. The identity index i designates 

each filopodia.
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the Gillespie’s algorithm. Hence, the chemosensing mod-
ule provides information on the spatial distribution of the 
activated form of PI3K*, which will determine the pref-
erential spatial directions for protrusion growth. We then 
apply the protrusion mechanical equilibrium Equation (10), 
and going from protrusion to retraction, each protrusion 
reaches its new length. All the mechanical equations are 
solved analytically by means of a computer-based algorithm.

Finally, and according to the motion Equation (13), we 
assume that the longest protrusion is the one that exerts 
most traction force, thus leading cell motion. This equa-
tion is solved explicitly, because from the forces that affect 
one cell, its speed is computed for each time increment.

Thus, we consider the factor F to the PDGF and its 
corresponding RTK receptor, called PDGF-R, which 
mediates PI3K activation. Both the initial amounts of each 
reactant and the reaction rates were obtained from the 
literature and are presented in Tables 1 and 2 respectively.

Also, each concentration case was simulated under the 
influence of two different ECMs – collagen and fibrin – 
(Moreno-Arotzena et al. 2015), whose properties are pre-
sented in Table 3.

Reorganizing these equations, we describe the set {f i} 
as the ensemble of protrusion in one cell. Combining 
Equations (10)–(12) we can write the equation of motion 
for one cell

i.e. f j is the longest protrusion. Basically this approach 
underlines the hypothesis the longest protrusion is the one 
with more adhesion and will thus lead the way.

Computational implementation

The three described mechanisms were numerically imple-
mented in Python following the scheme shown in Figure 4. 
To start the simulation, we need an initial spatial distri-
bution of the chemical factor that regulates cell response. 
In this work, we consider that an initial linear gradient of 
the PDGF-BB factor is distributed in the domain. With 
this concentration as initial stimulus, the chemosensing 
reaction equations are numerically solved by means of 

(13)
�� − �adh ⋅ f

j
= 0

with j = maxi{‖f i‖}

Figure 4. Scheme of the numerical algorithm used to simulate and regulate 3D cell migration under chemotaxis conditions.
Notes: Here we depict the three mechanisms that coordinate cell chemotaxis: chemosensing of the chemical factor, cell protrusion dynamics and the interaction 
between the cell and the ECM. Note that the stochastic aspect of cell migration is preserved mainly through the randomness of the chemosensing.
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chemo-attractant distribution. Then, the cell extends its 
protrusions and anchors them to the ECM. Finally, when 
protrusions contract, the cell-ECM interactions determine 
how the motion will be defined (Fraley et al. 2010).

Based on this observation the proposed model is 
organized as shown in Figure 4, where we combine the 
three mechanisms, each one corresponding to a different 
migration stage. Notably, the proposed model conserves 
the stochastic aspect chemosensing thus introducing ran-
domness to the predicted results.

Comparison with three-dimensional migration 
experiments in collagen and fibrin

Given the stochastic nature of the proposed model, for 
each combination of factor concentration and matrix, 
we simulated the 3D chemotaxis of ten MSCs for a three 
hours period. In this first analysis, we compare the model 
predictions of cell migration trajectories and speeds for 
cells embedded in collagen and fibrin ECMs, i.e. in similar 
conditions to those applied in vitro by Moreno-Arotzena 
et al. (2015).

When a cell is surrounded by a chemical gradient 
(Figure 5(A)) the amount of chemo-attractant surround-
ing the cell is different in each direction (Figure 5(B)). 
Accordingly, if a chemo-attractant gradient is established 
in the 0° direction, i.e. aligned with the cell antero-posterior 

Results

With the novel in silico model, first we aim to verify our 
model against 3D migration experiments of human fibro-
blasts in collagen and fibrin under a specific PDGF-bb gra-
dient (Moreno-Arotzena et al. 2015). Secondly, we observe 
how different PDGF-bb gradient concentrations regulate 
cellular 3D migration chemotaxis. At last, we identify the 
conditions for ECM and factor concentration that pro-
mote a more efficient chemotaxis.

During cell migration, we identify three main mech-
anisms that coordinate cell chemotaxis. First, the cell 
senses its chemical surroundings in order to probe the 

Table 1. Initial conditions.

Molecules Amount
# PDGF-R 4275 (Paralkar et al. 1992; Miller et al. 2000)
# PI3K 75 × 103 (Hatakeyama et al. 2003)
# PI3K* 0

Table 2. Reaction constants for the activation pathway.

Reaction i ki k−i

1 k1 = 735 nM−1 s−1 (Heinecke 
et al. 2009)

k−1 = 0.01 s−1 (Heinecke 
et al. 2009) 

2 k2 = 0.0004 s−1 (Hatakeyama 
et al. 2003)

N.A

3 k3 = 1 s−1 (Hatakeyama et 
al. 2003)

N.A

Table 3. Mechanical properties of the ECM and filopodia (Zaman et al. 2005; Moreno-Arotzena et al. 2014; Moreno-Arotzena et al. 2015).

  Elasticity (Pa) Poisson’s coefficient Viscosity (Pa s)
Collagen 39 (Moreno-Arotzena et al. 2015) 0.3 100 (Zaman et al., 1992)
Fibrin 780 (Moreno-Arotzena et al. 2015) 0.3 300 (Moreno-Arotzena et al. 2015)
Protrusion 2 × 109 (Mofrad & Kam 2006; Li et al. 2014) 0 –

Figure 5. Migration scheme of one cell and factor concentration distribution over its membrane, with a 7% gradient in a 1 ng mL−1 
concentration, idealizing the cell membrane as the surface of a sphere. Cells have three dimensional membranes and when placed 
under a gradient such as in situation (A), the factor producing the gradient will have a characteristic distribution across the membrane 
as shown in (B).
Notes: As a consequence, chemical reactions which coordinate chemosensing will preferentially occur in the membrane surface with higher concentrations. Note 
that in B we represent the distribution of factor concentration over the membrane surface, thus mapping the spherical data onto a flat surface.
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their overall migratory direction tends to be aligned with 
it. Bearing in mind that cell motion depends on pulling 
protrusion (motion Equation (12)), we can say that pro-
trusions appearing in the front part of the cell are the ones 
that tend to pull more frequently, thus leading and reg-
ulating the cell movement. Importantly, one can remark 
right from Figure 6 that cells embedded in a fibrin matrix 
tend to move less and more slowly than cells in a collagen 
matrix (see also Supplementary Video 1 and 2).

For cell migration in both collagen and fibrin ECMs, 
the average speed of fibroblasts is presented in Table 4. 
We can see how the computed average speeds are very 
similar to those measured in vitro by Moreno-Arotzena 
et al. (2015). Similarly to what is observed in vitro, the 
average speed ranges within the same order of magnitude, 
in both collagen and fibrin ECM, although it is clear that 
cells move more rapidly in collagen.

In fact, cells tend to move faster in collagen as it is a 
more compliant matrix. Fibrin gels are stiffer and with a 
higher dynamic viscosity (Moreno-Arotzena et al. 2014), 
thus impairing dendritic protrusions and cell motility 
(Table 3).

axis, as represented in Figure 5(A), the anterior side of the 
cell (270°–90°) will face a greater concentration than the 
rear side of the cell (90°–270°), as illustrated in Figure 
5(B).

In fact, the chemosensing pathway starts at the receptor 
level, as the chemo-attractant will first react with its cor-
responding membrane receptor. Therefore the chemo-
attractant factor activates its receptor more often in the 
front surface of the cell (270°–90°), i.e. signaling the cell 
to move towards that direction.

As we can observe from cell trajectories depicted in 
Figure 6, despite the type of ECM surrounding the cell, 
we notice that most cells ‘advance’, reasonably aligned with 
the gradient direction at 0°. In both ECMs, due to the 
stochastic nature of the chemotactic signal, which feeds 
the chemosensing mechanism, cells do not have a straight-
forward trajectory (Figure 6). Instead, for each haul, cells 
move in a certain direction at a certain speed, which makes 
its path irregular. Similarly to what is observed in vitro by 
Moreno-Arotzena et al. (2015), cells draw their trajectory 
at ±45° around the gradient aligned at 0°. Occasionally, 
cells turn their backs on the gradient, although in the end, 

Figure 6. Trajectories observed in (A) collagen and (B) fibrin.
Notes: In both ECMs cells follow the chemical cue provided by the chemical gradient at 0°. Most trajectories are within the ±45° range meaning that they accurately 
sense the chemo-attractant molecules. However, the effective displacement in fibrin is much lower than in collagen. Note that that the length scale in fibrin is 
more refined than in collagen.

Table 4. Average cell speed (in μm min−1) in collagen and fibrin ECM.

Note: For each entry n = 10, each in silico simulation corresponds to a 3 h migration period in vitro.

PDGF-bb (ng mL−1)

Average cell speed in collagen ECM (μm min−1) Average cell speed in fibrin matrix (μm min−1)

In vitro (Moreno-Arotzena et al. 2015) In silico In vitro (Moreno-Arotzena et al. 2015) In silico

100 0.044 0.048 0.023 0.013
101 0.030 0.043 0.025 0.013
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gradient direction, which causes cell speeds to be more 
aligned with the gradient. This last observation is illus-
trated in Figures 8 and 9, where we clearly see that the 
distribution of cell speed vectors tend to be aligned and 
gathered around the gradient direction.

In terms of the speed amplitudes reached for the 
range of concentrations tested, the average and effective 
speeds are shown in Figure 10. For both cases, the low-
est speeds are always obtained for the lowest concentra-
tion (1 × 10−2 ng mL−1). From there, cell speed increases 
as the amount of factor increases. We remark that cell 
speed peaks around 1 × 100 ng mL−1. After this peak, cell 
speed diminishes for even larger concentration of che-
moattractant factor (1 × 101, 1 × 102 ng mL−1). This speed 
distribution is observed for both the cell average speed and 
the effective speed, which reflects the alignment between 
speed vector and the cell trajectory.

According to Moreno-Arotzena et al. (2015) higher 
cell speeds can be obtained for chemo-attractant concen-
trations as low as 100 ng mL−1 and increasing the factor 
concentration does not always translates into a greater cell 
speed. In fact, the results obtained in silico also suggest this 
feature as shown in Figures 10 and 11. Again, contrarily 
to what one might expect, pouring more factor into the 
cell surroundings does not necessarily imply a greater 
migration speed.

Therefore, chemotaxis induces a bimodal behavior 
on 3D cell migration. For low and high concentration of 
PDGF-bb, low migration speeds are observed, whereas 
for intermediate concentrations higher migration speeds 
are attained.

We also quantitatively predicted the size of the protru-
sions produced by the cell. As we can see on Table 5, the 
size predicted by the numerical simulations are within the 
range obtained in vitro by Moreno-Arotzena et al. (2015). 
As expected, slightly smaller protrusions are grown in 
fibrin as it is a stiffer matrix. Nonetheless, actin polym-
erization seems to be strong enough (Table 3) and allows 
protrusions to pierce through both ECMs although it does 
so more easily in collagen.

Different gradient concentrations produce a 
bimodal migrating response

To provide a better understanding on how fibroblasts 
migrate under a specific chemical factor. We numerically 
test the migratory response of fibroblasts under the 7% 
gradient at different chemo-attractant concentrations: 10−2, 
10−1, 100, 101 and 102 ng mL−1, as illustrated in Figure 7.

In Figures 8 and 9, we can observe the polar distri-
bution of the speed vector for each haul, showing direc-
tionality, in collagen and fibrin respectively. In agreement 
with the trajectory results of Figure 6, we note that, for 
all concentrations, speed vectors align preferentially with 
the 0°, 45° and 315° directions, indicating that the speed 
vector direction is biased towards the direction imposed 
by the gradient.

Bearing in mind that cell motion depends on pulling 
protrusions (see motion Equation (12)), we can say that 
protrusions occurring in the anterior side of cells are the 
ones that tend to pull more frequently. Consequently, 
these protrusions lead cell motion preferentially in the 

Table 5. Average sizes of protrusions obtained in vitro and in silico, in both ECMs: collagen and fibrin.

  Collagen matrix Fibrin matrix

  In vitro (Moreno-Arotzena et al. 2015) In silico In vitro (Moreno-Arotzena et al. 2015) In silico

Protrusion size (μm) 41–79 41.2 38–78 39.7

Figure 7. Initial conditions of gradient and surrounding concentrations imposed before the beginning of fibroblast chemotaxis.
Notes: Within the same concentration gradient, different cells are placed at different concentrations levels.
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difficulty cells have in transducing their chemosensing 
into effective cell motion, they can have rapid hauls but 
overall, it is difficult to leave the initial position. This is 
illustrated in Table 5, where we show the relative amounts 
of average and effective speeds that are aligned with the 
gradient (that we denote by efficiency). As we can see, 
despite the chemosensing mechanism being independent 
from the ECM, we clearly notice that cells can more easily 
align themselves with the gradient when the surrounding 
ECM is more compliant (collagen). Although the average 
speed efficiency in fibrin is not that far apart from the 
average speed efficiency in collagen, this difference accu-
mulates over time and is reflected in the effective speed 
efficiency (Table 6).

In terms of the amount of factor used, the effect of its 
concentration is clearly noticed from Figure 10. Although, 
higher cell speeds are reached for concentration close to 
1 ng mL−1, it is clear that even if we use 100 times less factor 

Cell migration efficiency depends on ECM and 
growth factor concentration

Given the data gather so far, we can try to identify what 
are the conditions that improve 3D cell migration, for 
specific cell type, ECM and factor concentration. If we 
focus first on the role of ECM, we can see the trajecto-
ries presented in Figure 6. Actually, a different pattern 
is found for the trajectories depending on the ECM. So, 
the trajectories in fibrin form some kind of blob, like a 
woolen ball, whilst in collagen trajectories picture a more 
stretched and elongated pattern, which reflects the migra-
tion of a larger effective distance. This fact had also been 
reported by Moreno-Arotzena et al. (2015), and can be 
quantitatively observed in Figure 10. In fact, cells in both 
matrices present average speeds within the same order 
of magnitude, while the effective speeds in collagen are 
one order of magnitude higher. Basically this reflects the 

Figure 8.  Polar histograms with the orientation of the speed vectors in collagen matrix, for different concentrations of PDGF-bb: 
(A) 0.01 ng mL−1 (B) 0.1 ng mL−1 (C) 1 ng mL−1 (D) 10 ng mL−1 (E) 100 ng mL−1.
Notes: In the polar histograms, each bar stands for the speed vectors that are predicted in one of the 8 main directions ±22.5°; each bar amplitude reflects the 
average speed of the speed vectors in each direction; the width of each bar reflects the amount of vectors aligned with that direction.
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Figure 9.  Polar histograms with the orientation of the speed vectors in fibrin matrix, for different concentrations of PDGF-bb: 
(A) 0.01 ng mL−1 (B) 0.1 ng mL−1 (C) 1 ng mL−1 (D) 10 ng mL−1 (E) 100 ng mL−1.
Notes: In the polar histograms, each bar stands for the speed vectors that are caught in one of the 8 main directions ±22.5°; each bar amplitude reflects the average 
speed of the speed vectors in each direction; the width of each bar reflects the amount of vectors aligned with that direction.

Figure 10. Speeds obtained as function of the concentration in (A) collagen and (B) fibrin. Both histograms (A) and (B), show that the 
predicted average and effective cell speed is PDGF-bb dependent.
Notes: Cell motility is reduced in fibrin compared to collagen and, in both ECMs, the average and the effective speed distribution is centered around its peak a 
1 ng mL−1. For higher and lower concentrations the average and effective speeds are reduced. In a nutshell, the predicted cell speeds are factor concentration 
dependent and present a bimodal (or U-shaped) behavior.
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In order to validate the proposed model, we first 
showed that both qualitatively, the presented in silico 
results were in agreement with those obtained in vitro 
by Moreno-Arotzena et al. (2015). Briefly, collagen is a 
more compliant matrix. Thus, it allows for a better cell 
movement causing cells to migrate at higher speeds and 
better aligned with the gradient. Conversely, fibrin is a 
stiffer matrix, with a tighter filament network that consid-
erably entangles and impairs cell motion. By varying the 
concentration of the gradient, we found that contrarily to 
what one might expect, cells do not always move faster in 
a medium with more factor. Instead a bimodal (U-shaped) 
behavior was observed, where initially an increment in 
concentration is followed by an increment in cell speed 
(Lind et al. 1996; Fiedler et al. 2002). After peaking at 
100 ng mL−1, cells’ speed starts decreasing again.

Overall, the effect of ECM and the influence of the 
amount of chemo-attractant on cell migration patterns 
were predicted. Nonetheless, despite capturing some 
important features and patterns of 3D chemotaxis migra-
tion, the proposed model is based on some simplifications 
that should be explained and justified. As a matter of fact, 
compared to the immense complexity of mesenchymal 
migration, the model used is reasonably simplified. Yet it 
considers the fundamental 3D mesenchymal migration 
mechanisms, thus providing a good predictive capability.

First of all, the complex cascade of chemical reac-
tions that regulates chemosensing was simplified. In fact, 
although two central elements of the process are taken 
into account, such as the receptor and the activated PI3K*, 
the intricate system of cytosolic positive and negative 
feedbacks (Hatakeyama et al. 2003) is not considered. 

(0.01 ng mL−1) the cell predicted speeds are still within the 
same order of magnitude. Therefore, it is more efficient to 
use lower concentration of chemo-attractant, particularly 
within the 0.01–1 ng m−1. In particular this would imply 
that, contrarily to higher concentration, small changes on 
the amount of factor would lead to greater variations in cell 
speed, thus allowing a better control over cell migration. As 
a matter of fact, it is interesting to remark that in vivo, the 
observed range of this type of chemical factor ranges within 
this interval (Park et al. 2008; Wang et al. 2009, 2011).

Discussion

Mesenchymal chemotaxis migration in 3D is a complex 
cell process that involves an intricate set of regulatory 
mechanisms, mediated by multiple micro-environmen-
tal cues. Although not comprehensively understood, we 
assume that three central mechanisms can explain mes-
enchymal migration: chemosensing, protrusion dynam-
ics and cell-ECM interaction. In this first approach, we 
simplify this complex process in order to provide a better 
understanding of the influence of ECM and chemo-
attractant concentration on fibroblast 3D chemotactic 
migration.

Figure 11. Boxplots that show the median, 25% percentile and 75% percentile of the mean cell speed numerically predicted in the whole 
chip for collagen (left) and fibrin (right).
Note: Grey area represents the 25–75 percentiles of the experiments and the red discontinuous line its mean value.

Table 6. Average and effective speed efficiency, i.e. their amount 
that is aligned with the gradient direction. We can notice that sys-
tematically, the effective speeds in collagen in collagen are higher 
than in fibrin, meaning that in collagen, a more compliant ECM, 
cells can more easily align with the gradient.

  Collagen Fibrin
Average speed efficiency (%) 44.72 33.16
Effective speed efficiency (%) 78.0 60.5
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