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Abstract—The proliferation of non-linear loads in both in-
dustrial and residential distribution grids leads to undesirable
non-sinusoidal and fluctuating harmonic pollution on voltage
and current waveforms. New analysis tools, such as wavelets,
are being used to overcome the problems posed by the use
of the Fourier Transform when analyzing complex waveforms.
Nevertheless, the selection of the wavelet basis must be done
carefully to minimize spectral leakage due to the non-exact
frequency discrimination. In this context, this paper proposes
an objective method for comparing different wavelet families
for the measurement of harmonic contents. This methodology
is applicable for determining the best filter among the 53 pre-
selected structures according to the following requirements: fre-
quency selectivity, computational complexity, convolution results
and observed spectral leakage. With all these considerations, the
Butterworth IIR filter of order 29 was found to be the best
wavelet decomposition structure to achieve an effective harmonic
analysis up to the 50th order.

Index Terms—Convolution, FIR digital filters, Harmonic anal-
ysis, IIR digital filters, Wavelet packets, Wavelet transforms.

I. INTRODUCTION

THE recent development of distributed generation systems
brings the integration of a large number of small-scale

generators into distribution grids. The paradigm shift from
centralized to distributed systems poses new challenges to
energy management and control. As a result, small-scale gen-
erators are increasingly incorporating power-electronic based
converters. These converters require distorted currents from
the electrical system resulting in non-linear patterns of energy
consumption [1]. In this regard, several power-quality-related
standards, such as IEC 61000-3-7 [2] and IEC 61000-3-15
[3], have been developed to measure and limit harmonic
emissions for the connection of non linear loads. The use
of these relatively new standards in conjunction with the
traditional ones, IEC 61000-4-7 [4] and IEEE 519 [5], allows
the evaluation of harmonic emissions in distributed systems,
assuming sinusoidal and steady-state nature. However, these
conditions are less likely to be found in practice. As an
example, Pulse-Width Modulation (PWM) techniques, which
are used today as the basis for energy conversion in distributed
power sources, frequently operates under voltage disturbances
like harmonics, flicker fluctuations and unbalances [6]. It is
therefore highly recommended to perform harmonic measure-
ments with methods capable of taking into account these
special characteristics [7].

Harmonic measurement methods are mainly based on the
Fourier transform (FT) and they are only valid under sinusoidal
steady state conditions. The enhanced Fast Fourier Transform
(FFT) is the most widely used method for harmonic mea-
surement. It was developed and adopted for stationary har-
monic analysis; however, it is not appropriate for fluctuating
harmonic assessment due to its excessive spectral leakage
and undesirable picket fence effects [8]. Short-Term Fourier
Transform (STFT) theory can avoid these problems by using
window functions, but the flexibility of harmonic detection is
reduced [9], [10]. Other techniques like the Wavelet Transform
(WT) can also be applied for harmonic analysis. This theory
is currently helping researchers to develop better algorithms
in terms of non-sinusoidal and fluctuating measurements [11].
Moreover, recent studies confirm that the WT is also valid
for the determination of other advanced power quality (PQ)
parameters such as events, unbalance or flicker [12]–[19].

Wavelets are being applied to some different aspects of elec-
trical engineering and in particular to harmonic measurement.
Broadly speaking, mother wavelets are irregular, asymmetric
and with a certain number of vanishing moments (directly
linked with energy concentration after decomposition). This,
in contrast with the FT functions (sine waveforms), allows
WT to analyze distorted signals more accurately than FT
[20]. Therefore, the adequate selection of the mother wavelet
can minimize spectral leakages when decomposing the input
waveform into smaller frequency bands [21].

Over the past, many important contributions have been
made to the use of wavelet decomposition. Nonetheless, no
explanation has been provided on the use of certain types of
wavelet families on a complete harmonic analysis [22], [23].

For example, Zhu et al. [24] listed some aspects to be
considered when choosing the mother wavelet family by
explaining the characteristics of Daubechies mother wavelets
(db1, db4, db24 and db40) applied to power harmonics. One
year later, Yuang et al. [25], who cited Zhu’s work [24],
selected db2 wavelet family without mentioning the technical
justification for that choice. Other works used not only classic
Finite Impulse Response (FIR) filters but also other Infinite
Impulse Response (IIR) structures to decompose the signal
under a Wavelet Packet Transform (WPT) approach to enhance
frequency discrimination performance [26]–[28]. It is clear
that frequency discrimination concerns authors in order to
improve the existent electrical algorithms. For instance, [29],
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[30] used different structures on their harmonic analysis, such
as Daubechies, Vaidyanathan, Coiflet or Johnston’s filters, but
both authors only compared filter’s performances regarding
the obtained deviations. Other authors only studied energy
concentration in the time-frequency plane to detect electrical
disturbances through the determination of adaptive thresholds
[31].

As noted, there are many works related to the use of
wavelets but there is not an objective methodology to be
followed on the selection of the most suitable wavelet family
(or filter) on the first design stages. This paper proposes a
methodology that relies on the selection of the best filter
depending on its intrinsic characteristics such as frequency
selectivity, computational cost and low spectral leakage, con-
sidering not only FIR filters but also IIR ones. This research is
supported by the results obtained through the use of a WPT-
based algorithm which allows the measurement of even and
odd harmonic contents up to 63rd order, beyond the mandatory
requirements of the standards [2], [3].

The paper is structured as follows. First, a general justifi-
cation of the chosen methodology is provided (Section II-A).
Section II-B shows the proposed decomposition tree with a
brief review of the most relevant Quadrature Mirror Filter
(QMFs) characteristics. Besides, the WPT decomposition is
implemented through certain convolution and nodal aggrega-
tion operators. Frequency and computational criteria are also
described in Section III with some considerations prior to
implementation that will guide developers in the first selection
stages. In Section IV the convolution techniques are studied
and the most appropriate is selected. In Section V we present
the results obtained in some of the conducted tests (pure-tone
and fluctuating harmonic analysis) including the most relevant
wavelet filters. Finally, conclusions are presented in Section
VI.

II. DECOMPOSITION STRUCTURE

A. Principle of the decomposition scheme

Advanced harmonic measurements can be performed with
the Discrete Wavelet Transform (DWT) in a similar way that it
is done with the FFT. The analyzed signal is decomposed into
different frequency contents and then, individual harmonics
are computed. In the DWT, the initial waveform is just passed
through a wavelet filter by means of the convolution operator
providing a certain division of the frequency domain.

In this paper, the Wavelet Packet Decomposition (WPD) has
been used to obtain the harmonic spectrum of the input signals.
WPD can be described as a Multiresolution Analysis (MRA)
method where the output of the current level is downsampled
and fed into the next level recursively. The outputs y of
each level are extracted by the wavelet filters through the
convolution process of the input signal f , and they are then
decimated by a factor of 2 [23].

yHP [k] =
∑
n

f [k]g[2k − n] (1)

yLP [k] =
∑
n

f [k]h[2k − n] (2)

All high-pass filtered data give the detail coefficients
whereas the low-pass filtered data are identified as approxi-
mation coefficients, having both half of the original input data
due to downsampling process. This decomposition procedure
halves the time resolution since only half of the samples now
characterize the initial content. On the contrary, this operation
doubles the frequency resolution, since the frequency band of
the signal spans only half of the previous frequency band,
reducing the frequency uncertainty by 2 [32].

As stated by Barros et al. [33], the wavelet packet analysis
is perfectly recursive; in other words, the low-pass and high-
pass filtering process is repeated all over the decomposition
tree, from the first level to the last one. This process gives as
many nodes as 2n, being n the number of levels that integrate
the tree. Thus, with a careful selection of sampling frequency,
measuring window length, convolution technique and decom-
position filter, the output nodes at the last decomposition level
are able to represent the energy contained by each fundamental
harmonic.

B. Implementation methodology

The MRA-based method relies on the use of decomposition
structures called quadrature mirror filters. They are formed
by a pair of complementary filters, one low-pass and one
high-pass, which split the frequency range into two equal
parts (Figure 1). QMF have been extensively used in digital
signal processing (DSP) and especially in the application of
WPD schemes. They are used in this paper to decompose
the input signal into two frequency intervals from 0 to π

2
radians and from π

2 to π radians. After the filtering process,
half of the samples can be discarded according to the Nyquist
sampling theorem since the signal now has a highest frequency
of π

2 radians instead of π. The process of downsampling
is performed by a decimation operator which subsamples
the signal by a factor of 2. This halves (shrinks) the time
resolution but doubles (stretches) the frequency resolution [9]
according to the Heisenberg’s uncertainty principle. Additional
mathematical background of the WT and WPD tools can be
found in several reference publications [34], [35].

Figure 1 illustrates the frequency response of a QMF pair.
It describes both low-pass and high-pass filters used in the
MRA scheme (with magnitude responses forming a mirror-
image symmetric pair around ω = π

2 ).
The final objective of the MRA scheme is the extraction

of frequency information for each harmonic order at the last
decomposition level. The coefficients that allow such calcu-
lation are obtained by a recursive algorithm developed from
the binary tree composed by the selected filters (Figure 2).
The algorithm is built from a decomposition tree of 7 levels
and is capable of measuring up to the 63rd harmonic order.
The Root Mean Square (RMS) information can be obtained by
computing the aggregation of 2 output nodes with a frequency
span of 25 Hz [26], [36]. This gives the centered harmonic
RMS with a bandwith of ±25 Hz (3).

xrms(j, p+ q) =

√∑
k (d

p
j,k)

2
+

∑
k (d

q
j,k)

2

N
(3)
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where d is the wavelet coefficient, p and q are the combined
nodes, N the number of data in the measurement window, k
referes to index counter and j is the level in which the RMS
is calculated.
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Figure 1: Quadrature Mirror Filters

This development is based on the IEC 61000-4-7 standard
guidelines [4] in order to be compliant with its minimum re-
quirements, which are: 10-cycle time interval for 50 Hz power
systems, harmonic measurements up to 2 kHz and use of rect-
angular convolution windows. Then, the sampling frequency
is set to 6 400 S/s with measuring windows of 200 ms. Table I
summarizes the developed method performance at any node,
including information about the number of nodes per level,
samples per node, effective time resolution and bandwidth
for every node at any level. As can be seen in Table I, the
7th decomposition level has a limited bandwidth of 25 Hz.
Following the standard guidelines [4], the harmonic content
must be centered; so, given the aforementioned requirements,
2-nodal-groupings of ±25 Hz per harmonic are mandatory.

Table I: Decomposition tree summary

Level Nodes
Samples
per node

∆t
(ms)

Bandwidth
per node (Hz)

1 2 640 0.312 1600

2 4 320 0.625 800

3 8 160 1.250 400

4 16 80 2.500 200

5 32 40 5.000 100

6 64 20 10.000 50

7 128 10 20.000 25

III. FILTER SELECTION: FREQUENCY SELECTIVITY
AND COMPUTATIONAL COMPLEXITY

The first step when performing a WT decomposition con-
sists in selecting the mother family. Once selected, it is
possible to develop the transform methodology for a particular
application. In this paper we are looking for the optimal
wavelet mother family (filter) for harmonic measurement.
To identify the most suitable one, we have first chosen 53
filters (or wavelet mother families). The following wavelet
families and filters have been selected: Haar (FIR), Daubechies
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Figure 2: Full decomposition tree

(db1-db20) (FIR), Coiflets (coif1-coif5) (FIR), Symlets (sym2-
sym10) (FIR), Discrete Meyer (FIR), Biorthogonal (bior1.1-
bior1.5, bior2.2-bior2.8, bior3.1-bior3.9, bior4.4, bior5.5 and
bior6.8) (FIR), Vaidyanathan (FIR), Elliptic (IIR) and Butter-
worth (IIR). This 53-filter list extensively covers all possible
case studies in terms of type of response to impulses (FIR and
IIR), symmetry, orthogonality, biorthogonality and vanishing
moments.

In terms of frequency selectivity, IIR decomposition filters
perform better than the traditional ones (e.g. db10, db20 or
Vaidyanathan FIR filters) [26]. Complex frequency responses
were obtained through the evaluation of the filter transfer
functions at any given frequency ω (4).

H(ejω) =

∑M−1
k=0 b(k)e−jωk∑N−1
l=0 a(l)e−jωl

(4)

After applying (4), it was found that the Butterworth IIR
filter of order 21 performed similarly to the best filter from
the list, the Elliptic IIR filter (Figure 3). In order to improve
frequency performance, section V includes a complete selec-
tion study for the Butterworth filters ranging from orders 21
to 39.
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Figure 3: Frequency criterion

To reduce this initial list of filters, a simple frequency
criterion has been used. The best decomposition filters have
been selected regarding the similarity between their frequency
response and the ideal behavior (vertical line in Figure 3).
For the sake of clarity, Figure 3 shows only the 8 best
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filters (Butterworth of order 21 overlaps Elliptic’s frequency
response) regarding their superior frequency discrimination:
db15, db20, coif5, dmey, sym10, vaid24, ellip8 and butt21.
The cutoff frequency for all these filters corresponds to the
frequency value where the gain is 0.707 (

√
2
2 ) times the highest

filter gain value (-3.01 dB).
From Figure 3, one can clearly see that the two IIR filters,

Butterworth and Elliptical, are the best ones in terms of
frequency response. Despite their design complexity (output
feedback is always necessary), the main advantage of IIR
filters relies on their implementation efficiency: with a low
number of calculations per time step we get the best frequency
discrimination [37]. The use of filter structures with worse
frequency characteristics will lead to unexpected and undesir-
able spectral leakages on every performed convolution. This
will result in less energy obtained at the last decomposition
level or, in other words, a lower RMS value for the calculated
harmonics.

In addition to frequency response, computational cost is
another parameter to be considered when selecting the optimal
filter for any signal processing application [38]. Figure 4
shows the number of mathematical operations (using the
Matlab command cost) that an input sample suffers during the
application of each filter. As can be seen, the best structures in
order of importance (from less to more number of operations)
are: elip8 (IIR), sym10 (FIR), vaid24 (FIR), coif5 (FIR), db15
(FIR), db20 (FIR), but21 (IIR) and finally dmey (FIR). It
can be noted that the selection of very long structures would
potentially increase the mathematical complexity of the 7-
levels decomposition tree.
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Figure 4: Computational complexity

On the basis of the obtained results, despite its good fre-
quency discrimination, dmey filter was discarded due to its ex-
cessive computational cost. Although db15 and sym10 showed
a limited number of operations, they were also discarded due
to their frequency response far from the ideal behavior. We
would like to highlight that the Butterworth filter shows a
computational cost that could be considered high, but it is
compensated with a good frequency response. To summarize,
frequency response and computational cost criteria allowed
the selection of filters showing the best balanced performance;
these are the Elliptic, Vaidyanathan, Daubechies, Coiflet and
Butterworth filters. These structures will be reassessed based
on their spectral leakage performance (Section V).

IV. CONVOLUTION TECHNIQUE SELECTION

Following the requirements provided in the current IEC
standard for harmonic measurements, IEC 61000-4-7 [4],
the developed algorithm uses a rectangular shaped window.
The most frequent and easiest way to implement the con-
volution process is to assume infinite signals by extending
the waveforms outside the measuring window limits. In this
context, circular convolutions may have some artificial edge
discontinuities as the number of iterations increases [39]. To
overcome these problems at the edges, a symmetric extension
can be used but other discontinuities can appear, creating
problematic and undesirable effects on the borders [40].

Several types of convolution, depending on the border inter-
pretation, were tested during the development of the method to
evaluate their performance [41], [42]: antisymmetric-padding
(half-point) (ASYM), antisymmetric padding (whole-point)
(ASYMW), symmetric-pading (half-point) (SYM), symmetric-
padding (whole-point) (SYMW), smooth-padding of order 1
(SP1) and zero-padding (ZPD). To analyze the best con-
volution strategy to be adopted, these six 1-D convolution
approaches were tested under harmonic evaluation. An ideal
50 Hz sine waveform with an amplitude of

√
2 p.u. and 10

cycles length (1280 samples at frequency rate of 6 400 S/s)
was selected as the test data. The measuring window was
extended 1.5 cycles (192 samples) before and beyond the 10
cycles of the initial waveform, giving a total length of 10±1.5
cycles (1664 samples). This allowed to extend correctly the
waveform depending on the tested strategy (see Figure 5).
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Figure 5: Circular convolution types

The selection of the best convolution strategy was based
on the lowest RMS deviation measured for a pure-tone har-
monic waveform. It is assumed that the presented method
shall calculate, at least, pure-tone harmonics. Those circular
convolution techniques that do not meet this requirement will
be automatically discarded. In this regard, it has been imple-
mented the MRA decomposition tree varying the methodology
of convolution. The selected core filter for this purpose was the
Butterworth IIR of order 21, corresponding to the preliminary
best frequency selectivity. Besides, further analysis was carried
out in Section V to identify the optimal filter order.

The obtained RMS results after running the presented MRA-
based tree are shown in Figure 6.
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Figure 6: Convolution performance

As can be seen, the smooth padding and the zero padding
techniques showed the most accurate RMS evaluation, pre-
senting the last one the smallest undesirable edge effect with
the lowest spectral leakage at the last decomposition level
(εRMS ≈ 0 %). Antisymmetric and symmetric convolution
techniques showed important deviations not compatible with a
smooth operation of the method. With these premises, the zero-
padding method was selected as the most suitable convolution
strategy to be implemented on the final MRA decomposition
scheme.

V. HARMONIC TEST RESULTS: SPECTRAL
LEAKAGE

A. Pure-tone harmonics study

The use of non-ideal filters makes the method imperfect
in terms of frequency discrimination. This section includes
the analysis of the spectral leakage effect for the first 50
harmonic orders. The testing platform is based on the 7-
level MRA structure with a 2-node grouping (3) for the
harmonic evaluation. Although the system is designed for a
real-time harmonic processing, the system performance has
been checked through an iterative frequency sweep along the
first 50 individual pure-tone harmonics (5).

UN = 100
√
2 sin (N 2πft) (5)

where ω is equal to 100π rad/s and N is the test index counter
from 1 to 50.
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This methodology provides very valuable information re-
garding the existing spectral leakage at the last level of the
decomposition (RMS evaluation). Figure 7 shows a qualitative
logarithmic representation of that spectral leakage effect when
the Vaidyanathan-24 (poor), Elliptic-8 (good) and Butterworth-
21 (excellent) filters are applied.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Harmonic decomposition

H
ar

m
on

ic
 te

st
, i

0,05%
0,23%
1,05%
4,78%
21,87%
100,00%

(a) Vaidyanathan filter

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Harmonic decomposition

H
ar

m
on

ic
 te

st
, i

0,05%
0,23%
1,05%
4,78%
21,87%
100,00%

(b) Elliptic filter

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Harmonic decomposition

H
ar

m
on

ic
 te

st
, i

0,05%
0,23%
1,05%
4,78%
21,87%
100,00%

(c) Butterworth filter

Figure 7: Harmonic spectral leakages

As showed in Figure 7a, Figure 7b and Figure 7c, spectral
leakages were representative for any given test. For an ideal
response, all the energy (100 % RMS values) should be con-
centrated on the red 45-degree line. As previously mentioned,
the non-ideal implementation (filters are not ideal) causes
some spectral leakage around the pure tone frequencies, so
any content on the surroundings of that ideal red line is related
to a certain energy loss. This spurious energy distribution
negatively affects the final RMS result, and therefore altering
amplitude, phase and frequency readouts.

Table II shows maximum and minimum deviations consid-
ering the true RMS as a reference (6), as well as the coefficient
of variation (Cv) that measures the extent of variability in rela-
tion to the mean value of the 50 measured pure-tone harmonic
(7). Similarly, the Average Energy Leakage (AEL) index is
defined in (8) to normalize the mean spectral leakage for the
N performed tests (5) across the M-1 measured harmonics.

εRMS (%) = |RMSmeasured −RMStrue
RMStrue

| · 100 (6)

Cv (%) =
σ

µ
(7)

AEL (%) =

N∑
i=1

√√√√ M∑
j=1
j 6=i

RMS(%)j
2


N

(8)

Frequency selection criteria (see Section II-A) demonstrated
that IIR filters (i.e. Elliptic and Butterworth) were more accu-
rate than FIR filters (i.e. db20, coif5 and vaid24). Additionally,
Cv parameter showed energy recovery variability, obtaining
very precise results when using Elliptic or Butterworth IIR
filters in contrast with other FIR filters. Finally, AEL index
showed that the spectral leakage effect is important even for
IIR filters.

Table II: Pure-tone analysis summary

Filter Coeff. εmax(%) εmin(%) Cv(%) AEL (%)

vaid 24 77.300 0.004 41.534 13.899

coif5 30 24.192 0.714 7.185 18.127

db20 40 21.981 0.666 6.070 14.552

ellip 8 6.937 0.039 1.366 7.847

butt 21 5.876 0.000 1.182 8.126

It is important to note that the Butteworth filter’s roll-off
characteristic can be enhanced if the filter order is increased.
A complete study was carried out to get the optimal filter order
to exceed the performances shown in Table II. Figure 8 shows
the results after analyzing the performance of the method using
Butterworth IIR filters from order 21 (frequency response
similar to Elliptic8) to 39.

Minimum values of AEL index (4.345), εmax (3.070)
and εmin (0.017) identified the Butterworth’s optimal order
(29 coefficients) revealing that the spectral leakage effect is
minimized. Additionally, computational cost has also been
determined. The complete algorithm was run into a 2.26 GHz
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Figure 8: WPD performance vs Butterworth filter order

Inter Core 2 Duo processor with 8 GB 1067 MHz DDR3
RAM. Computational time results are referred to only one
iteration (one test), enough to identify performance trends. It
is clear that as long as the filter order increases, computational
effort significantly grows [43]. However, computational costs
for all analyzed Butterworth filters were around 475±25 ms.

In view of the obtained results, it is proved that the optimal
filter order corresponded to the 29th reducing by half the
deviations obtained by the Elliptic IIR filter. For this reason,
this filter will be used on the following subsection for the
analysis of more realistic waveforms.

B. Fluctuating harmonics study

In order to investigate the influence of real fluctuating
harmonics on the filter’s performance, a set of 50 pure-tone
signals with a sharp transition on the amplitude at a certain
instant of the measuring window (similar to the one included
in the Annex C of the standard [4]) was selected.

U
′

N = 100
√
2km sin (N 2πft) (9)

where km, N , f and t are the modulation factor, harmonic
order (from 1 to 50), frequency and time respectively.

For this purpose, two different sets of test were built. In Test
Set I, the amplitude of the pure-tone signal dropped down to
20 % whereas in Test Set II the same waveform was used with
added white Gaussian noise (35 dB). These signals simulate
real analysis conditions where the amplitude change occurs
after 4.054·h cycles of the hth harmonic order.

(Test Set I) km =

 1 if 0 ms ≤ t ≤ 81.08 ms,

0.2 if 81.08 ms ≤ t ≤ 200 ms

(Test Set II) km =

 1 + ε if 0 ms ≤ t ≤ 81.08 ms,

0.2 + ε if 81.08 ms ≤ t ≤ 200 ms

where ε denotes a 35 dB additive white Gaussian noise.
A summary of the obtained results after applying the filters

is shown in Table III and Table IV. Note that all values
were very similar to the ones previously presented in Table

II. Once again, Butterworth IIR filter of order 29 was the
most accurate filter according its reported performance indexes
(Cv and AEL) and maximum/minimum deviations from input
values (εmax and εmin).

Table III: Test Set I results

Filter Coeff. εmax(%) εmin(%) Cv(%) AEL (%)

vaid 24 75.745 0.679 38.974 15.887

coif5 30 24.782 1.444 7.158 19.495

db20 40 22.881 1.448 6.062 16.316

ellip 8 7.889 0.794 1.361 10.496

butt 29 3.878 0.687 0.567 5.579

Table IV: Test Set II results

Filter Coeff. εmax(%) εmin(%) Cv(%) AEL (%)

vaid 24 75.702 0.672 38.964 15.903

coif5 30 24.853 1.447 7.181 19.516

db20 40 22.917 1.398 6.056 16.343

ellip 8 7.938 0.760 1.356 10.522

butt 29 3.916 0.642 0.589 5.593

VI. CONCLUSION

The aim of this research work was the proposal of an
objective methodology for the selection of the most suitable
decomposition structure (filter) for harmonic measurements.
The suggested method relies on a binary tree providing 7 full-
decomposition levels for the measurement of both even and
odd harmonic contents up to 63rd order in contrast with the
partial work developed by the previously mentioned authors.
First, this paper presents a general approach of the quadrature-
mirror filters used. Their special characteristics make the
binary decomposition tree a very valuable tool ready to be
used for harmonic evaluation.

The methodology for calculating harmonic contents at the
lowest decomposition level was also reviewed, being necessary
to arrange the output information to gather centered RMS
values. This methodology is also compliant with the IEC
standard requirements [4] for harmonic measurements.

A preliminary list of 51 FIR filters plus 2 IIR filters was
tested, including the most representative filters according to
relevant scientific papers. Additionally, 6 convolution methods
were considered for the implementation of an accurate MRA
scheme, becoming clear that the zero-padding 1-D convolution
technique showed the best results.

Four performance parameters were defined: εmax, εmin,
Cv and AEL for the analysis of data sets of 50 pure-tone
input signals. These quantified the spectral leakage across
the first 50 harmonic orders. In order to enhance frequency
selectivity, a complete study was carried out to select the
optimal filter order of the Butterworth IIR filter regarding the
previously mentioned indexes and the iteration computational
time. It was found that we can increase the order up to the
29th minimizing the undesirable spectral leakage effect on the
spectrum. Finally, the analysis of 2 test sets corresponding
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to realistic synthesized fluctuating signals confirmed that the
Butterworth IIR filter was the best one compared to the other
tested filters from the 1st to the 50th harmonic order.
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