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Understanding the H-T phase diagram of the monoaxial helimagnet
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Some unexpected features of the phase diagram of the monoaxial helimagnet in presence of an applied magnetic
field perpendicular to the chiral axis are theoretically predicted. A rather general Hamiltonian with long-range
Heisenberg exchange and Dzyaloshinskii–Moriya interactions is considered. The continuum limit simplifies the
free energy, which contains only a few parameters which in principle are determined by the many parameters of
the Hamiltonian, although in practice they may be tuned to fit the experiments. The phase diagram contains a
chiral soliton lattice phase and a forced ferromagnetic phase separated by a line of phase transitions, which are of
second order at low T and of first order in the vicinity of the zero-field ordering temperature, and are separated
by a tricritical point. A highly nonlinear chiral soliton lattice, in which many harmonics contribute appreciably
to the spatial modulation of the local magnetic moment, develops only below the tricritical temperature, and
in this case, the scaling shows a logarithmic behavior similar to that at T = 0, which is a universal feature of
the chiral soliton lattice. Below the tricritical temperature, the normalized soliton density curves are found to
be independent of T , in agreement with the experimental results of magnetorresistance curves, while above the
tricritical temperature they show a noticeable temperature dependence. The implications in the interpretation of
experimental results of CrNb3S6 are discussed.
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I. INTRODUCTION

Chiral magnets are very promising ingredients for spin-
tronic based devices since they support peculiar magnetic
textures that affect the charge and spin transport properties
in different ways. As these magnetic textures can be deeply
altered by magnetic fields, the transport properties can be
magnetically controlled [1,2]. The chiral topological nature
of these magnetic textures endows them with a protective
mechanism, since they cannot be continuously deformed to
more conventional magnetic states like ferromagnetic order
[3]. This robustness makes chiral magnets excellent candidates
as the main components of information storage devices [4]. On
the other hand, it is worthwhile to stress that, besides the ap-
plications to spintronics, chiral magnets are interesting from a
fundamental point of view, as chiral symmetry and its breaking
and restoration are ubiquitous phenomena appearing virtually
in any domain of science, from particle physics to astrophysics,
and including chemistry, biology, and geology [5].

In the monoaxial helimagnet, the competition between
the ferromagnetic (FM) and Dzyaloshinskii–Moriya (DM)
interactions at low T results in a magnetic helix propagating
with period L0 along a crystallographic axis, which is called
here the DM axis. At a certain ordering temperature T0, a
magnetic transition to a paramagnetic (PM) phase takes place.
For temperatures lower than T0, application of a magnetic
field perpendicular to the DM axis deforms the helix and
a chiral soliton lattice (CSL) appears [6–10]. This CSL,
which is realized [11] in CrNb3S6, supports dynamical modes
like coherent sliding [12] and gives rise to phenomena very
interesting for spintronics, like spin motive forces [13] and
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tuneable magnetoresistance [14–17]. By increasing the field
the period of the CSL increases and, eventually, as the period
diverges, a transition takes place continuously to a forced FM
state (FFM). The nature of the transition in the vicinity of T0 is
not fully understood and considerable effort is being devoted
to clarify this interesting question [15–20].

DeGennes [21] introduced a classification of the continuous
transitions that take place between spatially homogeneous
and modulated states. He named nucleation transitions those
in which the period of the modulated state diverges when
the transition point is approached from the modulated phase.
Transitions in which the intensity of the Fourier modes with
nonzero wave vector tend to zero, while the fundamental wave-
vector remains nonzero were called instability transitions.
The transition mechanisms for nucleation and instability
transitions are very different. In the monoaxial helimagnet,
the transition between the CSL and the FFM states as a
perpendicular magnetic field increases at zero temperature
is of nucleation type [8]. On the other hand, mean field
theory predicts an instability type continuous transition at
the ordering temperature T0 for zero field. Hence, by varying
the temperature from 0 to T0, the transition changes from
nucleation to instability type. How this change of regime
takes place is a very interesting question which may also have
interesting phenomenological consequences.

In this paper, the magnetic phase diagram with magnetic
field perpendicular to the DM axis and the nature of the transi-
tion from the CSL to the FFM states are theoretically studied.
The question posed in the above paragraph, how the transition
changes from nucleation to instability type, is answered. The
thermal fluctuations are treated classically and therefore the
results are not valid at very low T , where it is well known
that a quantum treatment of thermal fluctuations is necessary,
for instance, to reproduce the behavior of the specific heat.
At T = 0, however, the semiclassical approximation seems
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to describe well the ground state structure of these kind of
systems.

II. MODEL AND METHOD OF SOLUTION

Let us consider a classical spin system with FM exchange
and monoaxial DM interactions, and single-ion easy-plane
anisotropy, at temperature T and in presence of an applied
magnetic field �H . The Hamiltonian H is the sum of four terms

HFM = −
∑
�r,�r ′

J�r ′ �S�r · �S�r+�r ′ , (1)

HDM = −
∑
�r,z′

Dz′ ẑ · (�S�r × �S�r+z′ ẑ), (2)

HA = K
∑

�r
(ẑ · �S�r )2, (3)

HZ = −gμB �H ·
∑

�r
�S�r , (4)

where �r runs over the sites of the magnetic ions lattice and
�r ′ (with �r ′ �= 0) over the differences between the sites of
the magnetic ions lattice. Therefore J�r ′ is the long-range
Heisenberg coupling constant between the spins at sites �r and
�r + �r ′. We denote by ẑ the unit vector pointing along the
DM axis and by z′ẑ the vectors that join pairs of ions which
interact via the long-range DM interaction, and thus Dz′ is the
long-range DM coupling constant between the magnetic ions at
positions �r and �r + z′ẑ. Notice that we ignore any temperature
dependence of the magnetic coupling constants. Finally, K is
the single-ion anisotropy strength, g the gyromagnetic factor of
the magnetic ion, and μB the Bohr magneton. This is a general
model with long-range interactions that contains (infinitely)
many free parameters. Nevertheless, we will see that in the
continuum limit the free energy contains only a small number
of effective parameters which in principle might be computed
from the microscopic parameters entering the Hamiltonian. It
is widely accepted that the magnetic properties of compounds
like CrNb3S6 are described by the kind of Hamiltonians
proposed here [6,19]. In what follows, we use a cartesian
coordinate system with right-handed axes (x̂,ŷ,ẑ) and the
convenient notation for the coordinates, (x,y,z) = (x1,x2,x3),
and derivatives, ∂i = ∂/∂xi .

The statistical properties are given by the partition function,

Z =
∫

[dn̂] exp(−H[n̂]/kBT ), (5)

where n̂ = �S/S is a unit vector in the spin direction, [dn̂] =∏
�r d2n̂�r , and d2n̂ is the invariant measure over the unit sphere.

To evaluate Z , we use the variational mean field approxi-
mation, which is the lowest-order term of a systematic loop
expansion [22]. It has been successfully applied to the study
of the double-exchange model of itinerant ferromagnetism
[23–25] and, in combination with ab initio techniques, to
the study of the temperature dependence of thermodynamic
quantities in itinerant ferromagnets [26–28]. Let us describe
it briefly. Consider the trial “Hamiltonian” H0 = ∑

�r �M�r · n̂�r ,
where the mean field �M�r is, in principle, arbitrary, and define

the expectation value 〈·〉0 of any functional O of {n̂�r} as

〈O〉0 = (1/Z0)
∫

[dn̂] exp(−H0)O, (6)

where Z0 = ∫
[dn̂] exp(−H0). Obviously we have Z =

Z0〈exp(H0 − H/kBT )〉0, and, due to the convexity of the
exponential function, the Jensen inequality [29] holds in the
form

Z � Z0 exp(〈H0〉0 − 〈H〉0/kBT ). (7)

In terms of the free energy, F = −kBT lnZ , the inequality is
sometimes called the Jensen-Feynman inequality or the Gibbs-
Bogoliuvov inequality, and reads F � F0, where

F0 = 〈H〉0 − kBT (〈H0〉0 − lnZ0) (8)

is a functional of the mean field configuration. Hence the best
approximation to the true free energy F is obtained with the
mean field configuration which minimizes F0. The key point
is that it is easy to compute F0, which in the continuum limit
reads

F0 = (JS2a2/v)
∫

d3rf0(�r), (9)

where J = ∑
�r ′ J�r ′ is an effective Heisenberg interaction

constant, v is the volume of the elementary cell, and a an
effective average distance between magnetic ions in the ẑ

direction, in which the ion distances are weighted by the
magnetic exchange couplings:

a2 = (1/J )
∑
�r ′

z′2J�r ′ . (10)

The free energy density f0(�r) has the form

f0 = 1

2

∑
i

(ξi∂i �m)2 − μ2q2
0

2
m2 − q0ẑ · ( �m × ∂z �m)

+ γ [m/M + (1 − 3m/M)M2
z /M2] − �β · �m

−α[ln(sinh M/M) − Mm], (11)

where �m = 〈n̂〉0, ξ=(1/Ja2)
∑

�r ′ x
′2
i J�r ′ , so that ξz = 1 and by

symmetry ξx = ξy = ξ (see Appendix). The parameter q0,
which has the dimension of inverse length, measures the
importance of the DM interaction relative to the exchange
interaction, and thus sets the spatial scale of the modulation of
�m. It is given by

q0 = (D/Ja2)
∑
z′

z′Dz′/D, (12)

where D = ∑
z′ Dz′ is the effective DM coupling constant.

Finally, μ2 = 2/a2q2
0 , and the parameters γ, �β, and α are

proportional to K, �H , and T , respectively, and are given in
Eqs. (A11)–(A13) of the Appendix. We also use the notation
�m = 〈n̂〉0 = F �M and

F = coth(M)/M − 1/M2. (13)

Some details about the continuum limit and the origin of the
parameters appearing in f0 are given in the Appendix.

In the case that only first-neighbor interactions are present,
calling Jz and ξJz the exchange couplings in the DM
direction (ẑ) and in the transverse directions (x̂ and ŷ),
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respectively, we get J = (1 + 2ξ )Jz, a2 = a2
0/(1 + 2ξ ), μ2 =

2(1 + 2ξ )/(q2
0a2

0), and q0 = D/Jza0, where a0 is the interionic
distance in the ẑ direction. These are the expressions for μ2

and q0 given in a first short version of this paper.1

It is worthwhile to stress that, in spite of the complexity of
the microscopic Hamiltonian, the continuum limit of the mean
field free energy contains only a few independent parameters
which can be tuned to describe the experimental results. The
continuum limit is thus universal in the sense that it describes
the physics of very complicated Hamiltonians with a large
number of parameters in terms of an effective free energy
with only a few parameters. It is a valid approximation when
the local magnetic moment �m�r varies only appreciably over
distances long in comparison to the range of the magnetic
interactions. This condition clearly implies q0a � 1, since a

measures the range of the magnetic interactions and q0 sets
the scale of the spatial variation of �m�r . The continuum limit is
obtained by expanding �m�r+�r ′ in Taylor series around �r and
keeping only the terms up to two derivatives. The drastic
reduction in the number of parameters is due to the fact
that in the continuum limit, we only keep the lowest-order
derivatives of �m�r , while the exact free energy contains terms
with any number of derivatives. We also used symmetry to
further reduce the number of parameters. The neglected terms
are of the order q3

0a3 = (2/μ2)3/2 or higher and the accuracy
of the continuum limit is of the order of 1/μ3 (see Appendix).
Equation (12) shows that q0a scales as the ratio of the DM and
Heisenberg coupling constants, so that the continuum limit
is accurate if the DM interaction is much weaker than the
Heisenberg interaction.

The presence of disorder, magnetic vacancies, etc., will
merely have the effect of changing the value of the parameters
entering the free energy (11), as far as the condition which
guarantees the validity of the continuum limit is not violated.
Hence, the continuum model can describe different samples
of the same material by tuning properly the parameters
entering f0, which can be used to fit the experimental results
corresponding to each individual sample. In particular, μ2

has to be large to ensure the validity of the continuum limit,
but otherwise can be adjusted to reproduce the experimental
phase diagram. Reproducing the experimental results directly
from the full Hamiltonian given by Eqs. (1)–(4), without any
simplification, is extremely difficult.

We only deal with magnetic fields perpendicular to the
DM axis, so that Hz = 0, and without any loss we can take
Hy = 0 and consider only Hx , since the continuum free
energy has rotational symmetry around the DM axis (ẑ).
The strength of the single-ion anisotropy is chosen in such
a way that the relation Hz0 ≈ 10Hx0 between the parallel and
perpendicular critical fields observed in CrNb3S6 holds, what
is ensured by setting γ = 2.58q2

0 . This value is obtained from
the low T critical perpendicular and parallel fields [31], given
respectively by βx0 = (π2/16)q2

0 and βz0 = q2
0 + 2γ .

Computations performed with γ = 0 showed that, as the
field is purely perpendicular, the single-ion anisotropy does
not have much influence on the results. In the computations

1See Ref. [30].

we set q0 = 1, what merely amounts to a choice of the unit
length.

The minimum of F0 is a solution of the corresponding
Euler-Lagrange equations. As the minimum depends only on
z, and Mz = 0, they read

�M ′′ = � �M ′ + 	 �M + 2q0ẑ × [ �M ′ − (�/2) �M] − (βx/F )x̂,

(14)
where the prime stands for the derivative with respect to z and,
with Fk = dkF/dMk,G = F + MF1, and M ′ = dM/dz, we
have � = −2(F1/F )M ′ and

	 = (F1/MG)[M ′2 − �M ′2 + (2F1/F − F2/F1)MM ′2

+ 2q0ẑ · ( �M × �M ′) + γ /G + �β · �M/F ]

+ (
α − μ2q2

0F
)/

G. (15)

The general solution of the system of two second-order
differential equations for Mx and My (14) contains four
arbitrary integration constants. The task is to find the particular
solution which minimizes F0 following the method described
in Ref. [31]. On physical grounds, we expect a periodic
ground state, with period L. Hence, the free energy density
f̄0 = F0/V , where V is the volume, is equal to the free energy
averaged over one period, that is f̄0 = (1/L)

∫ L

0 f0(z)dz, and
the boundary conditions are �M(0) = �M(L). Since the equa-
tions are second-order periodicity requires also the equality
of the first derivatives at the boundaries, i.e., �M ′(0) = �M ′(L).
These additional conditions cannot be generally imposed on
the boundary value problem, since it would be overdetermined.
We used then the following strategy: with no loss, set My(0) =
My(L) = 0, and for given L and Mx(0), solve numerically
the boudary value problem; for fixed L, tune Mx(0) until
periodicity is reached; then, compute f̄0 via a numerical
quadrature algorithm. The physical period L is the minimum
of f̄0.

III. PHASE DIAGRAM

To obtain the phase diagram we compare the free energies
of the FFM (or PM) and CSL states. The FFM state is always a
solution of Eqs. (14) and its magnetization obeys the equation

γF1/G − M
(
μ2q2

0F − α
) = βx. (16)

For βx = 0, the problem can be analytically solved. At low α

the free energy is minimized by an helix with pitch L0 = 2π/q0

independent of α, and modulus M0, which is the solution of
F (M0) = α/(μ2q2

0 ) and decreases monotonically with α from
M0 = ∞ (what implies saturation of magnetization) at α = 0
to M0 = 0 at

α0 = (μ2 + 1)q2
0/3 + 2γ /15. (17)

Above α0, the ground state is PM. The transition takes
place continuously and M0 vanishes as a power law: M0 ∼
(α0 − α)1/2. It is obviously an instability type transition. For
α = 0 the problem has also been analytically solved [8].
The transition from the CSL to the FFM state takes place
continuously as the period of the CSL diverges at critical field
βx0 = (π2/16)q2

0 . It is a nucleation type transition.
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FIG. 1. H -T phase diagram calculated for μ2 = 120 and γ =
2.58q2

0 . The blue and red lines correspond, respectively, with a
second- and first-order phase transitions. The pink dotted line marks
the onset of the highly nonlinear CSL. The transition lines described
with the dimensionless variables T/T0 and Hx/Hx0 are almost
insensitive to μ2 if this parameter is large. The position of the
tricritical point, however, varies appreciably μ2 (see Fig. 2). The
zero-temperature critical field Hx0 also depends on μ2.

The phase diagram for large μ2 is displayed in Fig. 1. The
magnetic field is normalized by the critical field at T = 0,

Hx0 = (kBT0/gSμB)βx0/α0, (18)

where T0 is the zero-field critical temperature. At low T , the
CSL state continuously approaches the FFM as its period
diverges, and the transition is continuous, of nucleation type. In
the vicinity of T0, however, the transition is discontinuous, the
two states coexist on the transition line, and both are present
in its neighborhood, one as stable and the other as metastable
state. The continuous and discontinuous transition lines are
separated by a tricritical point, (Tt ,Hxt ). The other end of the
discontinuous transition line is the zero-field critical point,
T0, where the transition is of instability type. The appearance
of first-order transitions and tricritical points is thus related
to the change from nucleation to instability type continuous
transitions. A similar behavior has been obtained in the zero
temperature phase diagram with oblique magnetic field [31].

We shall denote by Hxc(T ) or by Tc(Hx) the transition field
or temperature at given T or Hx , respectively. In terms of
the dimensionless magnitudes T/T0 = α/α0 and Hx/Hx0 =
βx/βx0 the shape of the transition line is nearly independent
of μ2 for large μ2. However, the position of the tricritical
point (Tt/T0,Hxt/Hx0) on the line does depend appreciably
on μ2. Figure 2 displays Tt/T0 and Hxt/Hx0 as a function of
μ2. A fit of the computed points (open squares) shows that
to high accuracy the position of the tricritical point is given
by the equations Tt/T0 = 1 − 3.8/μ2,Hxt/Hx0 = 2.4/

√
μ2.

These functions are represented by the continuous lines in
Fig. 2. The complete information about the phase boundary
for large μ2 is thus contained in Figs. 1 and 2. Unless stated
otherwise, the results shown from now on are obtained for
μ2 = 120.

Two tricritical points appear in the magnetic phase diagram
defined by the perpendicular and parallel magnetic field
components (Hx,Hz) at zero temperature [31]. The one labeled
as TC2 in Ref. [31] has the same features as the tricritical point

 0.96

 0.97

 0.98

 0.99

1.00

 100  200  300  400  500
0.10

0.15

0.20

0.25

T
t /

 T
0

H
xt

 / 
H

x0

μ2

FIG. 2. The position of the tricritical point as a function of μ2 for
γ = 2.58q2

0 . The open squares are computed points and the solid lines
the result of fits. Tt/T0 is given by the red squares and corresponds
to the left ordinate scale. The red solid line is Tt/T0 = 1 − 3.8/μ2.
Hxt/Hx0 is given by the blue squares and corresponds to the right
ordinate scale. The blue solid line is Hxt/Hx0 = 2.4/

√
μ2.

found here, as it separates a line of continuous transtions of
nucleation type from a line of discontinuous transitions. A
tricritical line connecting these two points is then expected
in the tridimensional phase diagram (T ,Hx,Hz). Although the
method of this work is not valid at very low T , the qualitative
features of the phase diagram will probably remain valid as
they interpolate from the zero-T limit to the high-T regime.

IV. STRUCTURE OF THE CHIRAL SOLITON LATTICE

At zero field and T < T0, the ground state is a helix with
a period L0 = 2π/q0. The effect of the field is to deform
the helix to a CSL and to increase the period, L, which, at
nonzero field, increases also with temperature. Initially, the
growth of L is very modest. However, beyond a certain field,
or temperature, it increases rapidly. The crossover takes place
roughly in the region where the curve defined by the period as
a function of field (or temperature) has maximum curvature.
Figure 3 illustrates the behavior of L for T/T0 = 0.86. In this
case, the crossover takes place around Hx/Hxc ≈ 0.95.

The presence of two regimes suggested by the behavior of
the period and other quantities as magnetization (see Sec. VI),
can be understood by an analysis of the spatial variation
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0  0.2  0.4  0.6  0.8 1.0

L 
/ L

0

Hx / Hxc

μ2 = 120

γ = 2.58
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FIG. 3. The period of the CSL as a function of the magnetic
field at constant temperature, below the tricritical point. Notice that
it diverges at the critical field Hxc. The period is normalized by the
zero-field period, L0 = 2π/q0.

094439-4



UNDERSTANDING THE H -T PHASE DIAGRAM OF THE . . . PHYSICAL REVIEW B 94, 094439 (2016)

0

 0.2

 0.4

 0.6

 0.8

1.0

 0.4  0.6  0.8 1.0

I n
 / 

I 1

Hx / Hxc

10-9

10-6

10-3

100 

 0.4  0.6  0.8 1.0

FIG. 4. The intensity of the zero mode (black circles) and the
second (red), third (green), fourth (blue), and fifth (pink) harmonics
of the local magnetization ( �m) normalized by the intensity of the first
harmonic (fundamental wave vector), as a function of the magnetic
field for fixed temperature (T/T0 = 0.86). The intensity of the third-
and higher-order harmonics starts to be appreciable when the intensity
of the second harmonic reaches roughly 20% (lower dashed line) of
the intensity of the first harmonic. Notice that the intensity of all
harmonics becomes equal as the transition point is approached. The
inset displays the same data in logarithmic scale.

of the local magnetic moment, �m(z). Let us expand it in
Fourier modes, �m(z) = ∑

n �mn exp(in2πz/L), and define the
intensity of the nth harmonic as In = | �mn|2. The behavior
of the intensity of the first five Fourier modes, including the
zero-mode, n = 0, normalized by the first harmonic intensity,
is displayed in Fig. 4 as a function of the field for T/T0 = 0.86.
The relative intensities of the higher-order harmonics are
very small for Hx/Hxc < 0.5 and the CSL is actually a
slightly distorted helix. In the region from Hx/Hxc ≈ 0.5 to
Hx/Hxc ≈ 0.95, the first and the second harmonics give the
main contribution, and the intensities of the higher harmonics
are negligible. Structures of this kind, characterized essentially
by only one or two harmonic modes plus the zero mode
may be called a quasilinear CSL. Finally, for Hx/Hxc > 0.95
the intensity of the second harmonic grows very rapidly and
higher harmonics also develop rapidly: a highly nonlinear
CSL (HNL-CSL) appears. The onset of highly nonlinearity
coincides approximately with the point of maximum curvature
of the curve defined by the intensity of the second harmonic
versus the field. Notice that it is roughly the point where the
intensity of the second harmonic reaches 20% of the first
harmonic intensity, and it also coincides with the point of
change of regime in the behavior of the period discussed above.

The zero mode remains finite while all the higher harmon-
ics, including the first one, tend to zero as the transition point
is approached, and I0/I1 diverges. That is why on the scale of
Fig. 4 the zero mode is not seen in the vicinity of the transition
point.

Incidentally, notice that these results imply that, for T/T0 =
0.86, perturbative calculations keeping only the zero mode
and the first harmonic will be accurate for Hx/Hxc < 0.5;
if the second harmonic is also taken into account, the
perturbative computation will be accurate for Hx/Hxc < 0.95.
Above Hx/Hxc ≈ 0.95, the full nonperturbative computation
is necessary.
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FIG. 5. The spatial variation of the components of the local
magnetization mx (left) and my (right) for fixed temperature and
several values of Hx/Hxc displayed in the legend, which correspond
to different typical regions of the phase diagram (see Sec. IV).

It is also illustrative to visualize the spatial variation of
�m(z) in some typical cases, displayed in Fig. 5. The black
lines correspond to the helix at zero field; the red lines
(Hx/Hxc = 0.35), to an slightly distorted helix; the green
lines (Hx/Hxc = 0.7) to a quasilinear CSL with only two non-
negligible harmonics; the blue lines (Hx/Hxc = 0.94) roughly
to the HNL-CSL onset; and the pink lines (Hx/Hxc = 0.998)
to a HNL-CSL state. The spatial variation of the modulus of �m,
displayed in Fig. 6 (left), is small, but its importance increases
as the transition point is approached. The right panel of Fig. 6
shows the spatial variation of the free energy density.

The HNL-CSL onset defined above is signaled by the pink
dotted line in Fig. 1. It could be related to some experimentally
detected anomalies of the magnetization and the ac susceptibil-
ity reported in Refs. [16] and [18], respectively. Notice that the
HNL-CSL develops only for fields above the tricritical field
and temperatures below the tricritical temperature in good
agreement with the experimental results of Ref. [18].

V. SOLITON DENSITY

For temperatures below the tricritical point the soliton
densit, L0/L is a nearly universal function, independent of
T , of the dimensionless reduced field Hx/Hxc, as can be
seen in Fig. 7. This fact explains the universality of the
magnetoresistance curves of Ref. [15]. The universality of
the soliton curves below the tricritical temperature can be
understood in the light of the modest spatial modulation of
the local magnetic moment modulus m (Fig. 6, left). Although
in this work the full modulation of m has been taken into
account, an approximate calculation ignoring the z dependence
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FIG. 6. The spatial variation of the modulus of the local magnetic
moment m (left) and the free energy density f0 (right) for fixed
temperature and several values of Hx/Hxc displayed in the legend,
which correspond to different typical regions of the phase diagram
(see Sec. IV).
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FIG. 7. Soliton density (L0/L) versus normalized field for 14
values of T below the tricritical point (colored circles) and one
between the tricritical temperature and T0, where the transition is
discontinuous (open black squares). Observe that the soliton density
curves are universal below the tricritical temperature but not above.

of m is a good approximation except in the close vicinity
of the phase transition line. This approximation leads to a
sine-Gordon equation similar to the zero temperature case [8],
with an effective magnetic field given by βx/m(α). Within this
approximation, which will be discussed further in Sec. VIII,
the soliton density curves at any temperature are given by a
unique function of Hx/Hxc.

Above the tricritical temperature the universality of the
soliton density curves is lost. This is illustrated in Fig. 7 by
the black open squares, which correspond to a temperature
T/T0 = 0.98, higher than the tricritical temperature. In these
cases, the transition to the FFM state takes place discontinu-
ously from a quasilinear CSL, before the HNL-CSL is formed.
The approximation that ignores the spatial modulation of m

fails qualitatively on this part of the phase diagram: it locates
the transition point line rather accurately but it predicts a
second-order nucleation type transition and universality of the
soliton density curves. The lack of universality is thus a signal
of the first-order transition and can be used experimentally
to locate the tricritical point. Strictly speaking, it may also
be the signal a second-order instability type transition. In any
case, if this were the case, a singular point separating the
nucleation and instability transition lines would appear in the
phase diagram.

The soliton density L0/L is an order parameter for the
transition. Its behavior along the transition line, parametrized
by T/T0, is displayed in Fig. 8 (left). Along the first-order
line the soliton density drops discontinuously to zero from a
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FIG. 8. (Left) Soliton density discontinuity along the transition
line; the results suggest that the gap vanishes at the tricritical point as a
power law with exponent 1/4. (Right) Latent heat along the first-order
transition line.
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FIG. 9. Magnetization per magnetic ion as a function of Hx for
fixed T (left) and as a function of T for fixed Hx (right).

finite value. The gap vanishes at the tricritical point with a
power-law singularity, with exponent 1/4 (Fig. 8 left).

VI. SINGULARITIES ALONG THE TRANSITION LINE

The latent heat along the first-order line vanishes at its two
end points, the zero-field critical point T0 and the tricritical
point Tt and therefore it reaches a maximum at some point on
the line. Its behavior for μ2 = 210 and γ = 2.58q2

0 is shown
in Fig. 8.

The behavior of the magnetization,

M = gμBS

∣∣∣∣ 1

L

∫ L

0
�m(z)dz

∣∣∣∣, (19)

as a function of the magnetic field for fixed temperature and as
a function of temperature for fixed field is displayed in Fig. 9.
The unusual increase of the magnetization with temperature is
a distinct feature of the CSL state [6], which can be understood
as follows. As T increases the modulus of the local magnetic
moment, m, decreases. The order of magnitude of the DM
energy is proportional to m2, while the Zeeman energy is
proportional to m. Therefore, as T increases, the relative
importance of the Zeeman energy with respect to the DM
energy increases and the spins tend to be more aligned with the
field, increasing the period of the CSL and the magnetization.
This effect overcomes the decrease of magnetization due to
the decrease of m, and the net effect is the growth of the
magnetization with T .

The magnetization shows a finite jump on the first-order
line, while it is continuous on the second-order line (Fig. 9),
where it presents a singularity which is controlled by the diver-
gence of L, since the difference between the magnetization on
the CSL and FFM phases scales as 1/L. The numerical results
show that when the transition point is approached keeping T

constant L satisfies the scaling law

B(Aq0L + 1) exp(−Aq0L) ∼ (Hxc − Hx)/Hx0. (20)

This scaling law, which also holds along the continuous
transition line in the (Hx,Hz) plane at T = 0 [31], is motivated
by the scaling law at T = 0, given by

(
√

βx0L + 1) exp(−
√

βx0L) ∼ (βx0 − βx)/8βx0. (21)

Figure 10 (left) displays the scaling of L for T/T0 = 0.86. The
same scaling law holds if the transition line is approached by
keeping Hx constant, with the right hand side scaling variable
substituted by (Tc − T )/T0. Figure 10 (right) displays this
scaling for Hx/Hx0 = 0.46422606, which corresponds to the
transition at T/T0 = 0.86. Therefore the scaling of L is a
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FIG. 10. Scaling of the period as the continuous transition line
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constant Hx/Hx0 = 0.46422606 line (right). The blue lines represent
the y = x straight line.

universal feature of the CSL. The coefficient A is independent
of the direction (constant T or Hx) along which the transition
point is approached, and it is thus a feature of the transition
point; B, however, depends on the approaching direction. Both
A and B change continuously along the second-order line,
increasing with temperature, and diverge as the tricritical point
is approached (Fig. 11 left). Thus the behavior of A and B

may be used to locate the tricritical point experimentally. The
divergence of A and B means that the singular behavior at
the tricritical point is different from that along the continuous
line, as expected. Unfortunately, it is not possible to determine
numerically this singular behavior without further insight.

The specific heat diverges on the continuous transition line.
The divergence is seen as a narrow peak also observed by
Shinozaki and collaborators.2 On the first-order line, however,
the narrow peak corresponds to a finite jump (Fig. 11). The
broad shoulder at higher temperature is associated to the
crossover from PM to FFM behavior, which is signaled by
the dashed line in Fig. 1. The crossover temperature is close
T0 for all values of the field, in agreement with Refs. [16] and
[18].

VII. RELATION TO PHENOMENOLOGY

A consequence of the universality of the continuum free
energy is that different samples of the same material are
described with a different set of the free energy parameters.
For each sample, the parameters can be fixed from the
transition point at two temperatures: the zero-field critical
temperature, T0, and some lower temperature T1 at which the
phase transition is well determined. Let the critical field at
this temperature be Hxc1. The phase transition line (Fig. 1) is
described by an equation of the form Hxc/Hx0 = w(T/T0),
where the function w is independent of μ2. Then, we have

μBHxc1

kBT1
= w(T1/T0)

T1/T0

μBHx0

kBT0
. (22)

Using the expression for Hx0 given by Eq. (18), the following
equation for μ2 is obtained:

μ2 = 3

gS

kBT1

μBHx1

w(T1/T0)

T1/T0

π2

16
− 2

5

γ

q2
0

− 1. (23)

2See Ref. [32].
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FIG. 11. (Left) Coefficient A of the scaling law of the period; it
diverges at the tricritical point. (Right) Specific heat as a function
of temperature at fixed field in three cases: first- (red) and second-
(green) order transitions and no transition (blue). The broad shoulder
signals the crossover from PM to FM behavior; the narrow peak to
the CSL-FFM phase transition.

Except for γ /q2
0 , the right hand side of the above equation is

completely determined by the experimental data T0, T1, and
Hxc1. However, γ /q2

0 plays a minor role and for all samples
we may use the value 2.58 obtained at low temperature [31]. A
more accurate value can be obtained from measurements with
a parallel field Hz (for instance, from the ratio of parallel and
perpendicular critical fields). From the value of μ2 the position
of the tricritical point is determined through the fits displayed
on Fig. 2, and we get

Tt = (1 − 3.8/μ2)T0, (24)

Hxt = 2.4√
μ2

3

gS

π2/16

μ2 + 1 + (2/5)γ /q2
0

kB

μB
T0. (25)

Thus different samples of the same material will be described
by different values of μ2 and γ /q2

0 .

VIII. DISCUSSION

The transition line (Fig. 1) can be reproduced in a simple
way by assuming that the only effect of temperature is to
decrease uniformly the value of the modulus of the local
magnetic moment, m(z) = |〈�S(z)〉|/S, so that m is independent
of z. The problem thus is reduced to the solution of a chiral
sine-Gordon equation with an effective field βx/m(α,βx). The
numerical results show that in the CSL phase m is nearly
independent of βx . Thus, neglecting the βx dependence of
m, the approximation gives by Hxc/Hx0 = m0(T ), where
m0(T ) = M0F (M0) and M0 is the zero-field mean field
solution (see Sec. III). This equation describes the transition
line with very high accuracy. However, it does not capture
the nature of the transitions nor the tricritical behavior. The
local magnetic moment m0(T ), obtained in the mean field
approximation, may be not accurate. However, if we consider
its exact value, |〈 �S〉T |, which can be measured by neutron
scattering, the approximation predicts a relationship between
the critical fields and local magnetic moments at two different
temperatures:

Hxc(T )/Hxc(T ′) = |〈�S〉T |/|〈 �S〉T ′ |. (26)

The results about the phase diagram of the monoaxial
helimagnet presented here are compatible with Monte Carlo
simulations recently performed [33]. These simulations point
out that the zero-field transition is of second order and belongs
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to the universality class of the XY model and is thus of
instability type, while a different kind of transition, which
might be a nucleation type second-order transition, takes place
when the perpendicular magnetic field is strong enough.

Also recently Shinozaki et al. [20] addressed the problem
of analyzing theoretically the phase diagram of the monoaxial
helimagnet with a mean field technique combined with Monte
Carlo simulations. They used a discrete model with FM
exchange and DM interactions restricted to first neighbors
and a perpendicular external magnetic field. It is difficult
to compare their results with ours, as both are presented in
different ways. They also briefly reported some signal of
first-order transition in the vicinity of T0 but do not locate
any tricritical point.

The recent experimental findings on the phase diagram
of CrNb3S6 can be understood in the light of the present
theoretical study. For this material, we have gS ≈ 3. The
formulas of Sec. VII can be used to make definite predictions.
For instance, the results of Ref. [11] for a crystal with T0 ≈
127 K and Hxc ≈ 2300 Oe at 110 K are reproduced with μ2 ≈
210. Then, the tricritical point is predicted to be at Tt ≈ 125 K
and Hxt ≈ 910 Oe. The first-order transition in the vicinity of
T0, the second-order transition at lower T , the presence of a
tricritical point at the predicted location, and the absence of
HNL-CSL for fields below Hxt are consistent with the phase
diagram reported in Ref. [18]. Furthermore, the universality
the soliton density curves below the tricritical temperature
found here explains the universality of the magnetoresistance
curves of Ref. [15]. The lost of such universality is a signal of
the first-order transition and can be used to locate the tricritical
point experimentally. In Ref. [15], magnetoresistance curves
are reported up to 120 K, below the predicted tricritical point.
The phase diagram drawn in Ref. [16], which has T0 ≈ 120 K
and Hxc ≈ 1300 Oe at 110 K, is reproduced with μ2 ≈ 310
and a tricritical point is predicted at 119 K and 490 Oe, in a
region which has not been fully explored in Ref. [16].
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APPENDIX: SOME DETAILS ABOUT THE
CONTINUUM LIMIT

Let us sketch in this appendix how the continuum limit is
taken. Let us consider first the contribution of the FM term (1)
to the mean-field free energy F0, which is given by

−S2
∑
�r,�r ′

J�r ′ �m�r · �m�r+�r ′ . (A1)

Assume that �m�r only varies appreciably over distances much
larger than the range of the magnetic interaction strengths J�r ′

and D′
z. Then, we can expand �m�r+�r ′ in Taylor series around �r ,

keeping only terms up to second order:

�m�r+�r ′ = �m�r + (�r ′ · ∇) �m�r + (1/2)
∑
i,j

x ′
ix

′
j ∂i∂j �m�r + . . . .

(A2)
Plugging (A2) into (A1) and taking into account that the term
linear in �r ′ can be cast as a total divergence and thus disappears
upon summing over �r , we get, after integrating by parts and
removing again a total divergence, that the FM contribution to
F0 is

−JS2
∑

�r
�m2

�r + (1/2)S2
∑
�r,i,j

a2Jij ∂i �m�r · ∂j �m�r , (A3)

where J = ∑
�r ′ J�r ′ ,a2 is defined in Eq. (10), and

Jij = (1/a2)
∑
�r ′

x ′
ix

′
j J�r ′ . (A4)

The symmetric tensor Jij is diagonal in an orthogonal cartesian
system, which, by symmetry, contains the DM axis, ẑ. Hence,
Jzz = J and, as we only consider anisotropy along the DM
axis, Jxx = Jyy = ξJ where ξ measures the spatial anisotropy
of the Heisenberg exchange interaction and is given by

ξ =
∑

�r ′ x ′2J�r ′∑
�r ′ z′2J�r ′

=
∑

�r ′ y ′2J�r ′∑
�r ′ z′2J�r ′

. (A5)

In the continuum limit,
∑

�r is replaced by (1/v)
∫

d3r , where
v is the elementary cell volume, so that collecting JS2a2/v as
a global factor the free energy takes the form of Eq. (9) and
the FM contribution to the free energy density f0 is

(1/2)

[
−(2/a2) �m2

�r +
∑

i

ξi∂i �m�r · ∂i �m�r

]
, (A6)

with ξx = ξy = ξ and ξz = 1.
Thus, in the continuum limit there appears a contribution

to f0 proportional to �m2
�r , which comes from the Heisenberg

exchange interaction. Its coefficient is 1/a2, as can be seen
in Eq. (A6). We find convenient to define the dimensionless
parameter μ2 = 2/(a2q2

0 ), and the coefficient of the �m2
�r term

reads μ2q2
0/2.

Consider now the DM interaction. The contribution of the
DM term (2) to the mean field free energy F0 is

−S2
∑
�r,z′

Dz′ ẑ · ( �m�r × �m�r+z′ ẑ). (A7)

Plugging (A2) with �r ′ = z′ẑ into (A7), we obtain

−S2
∑
�r,z′

Dz′ ẑ · [ �m�r × ∂z �m�r + (1/2)z′2 �m�r × ∂2
z �m�r

]
. (A8)

The term quadratic in z′ is a total divergence since

�m�r × ∂2
z �m�r = ∂z( �m�r × ∂z �m�r ), (A9)

and therefore vanishes upon summing over �r . Hence the
contribution of the DM interaction to f0 is

−q0ẑ · ( �m�r × ∂z �m�r ), (A10)

with q0 given by Eq. (12).
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The single-ion anisotropy (3) and the Zeeeman term (4) do
not couple spins on different sites and thus its contribution to
the continuum limit of the free energy is straightforward. We
only have to substitute

∑
�r by (1/v)

∫
d3r in 〈HA〉0 and 〈HZ〉0,

and extract the global factor JS2a2/v. The same happens with
〈H0〉0 and lnZ0. In this way we get that the parameters entering
Eq. (11) for f0 are

γ = K/Ja2, (A11)

�β = (gμB/JSa2) �H, (A12)

α = kBT/JS2a2. (A13)

Let us discuss briefly the conditions for the validity of
the continuum limit. In (A2), we neglected terms of the
form x ′

i1
. . . x ′

in
∂i1 . . . ∂in �m�r with n > 2. They would give a

contribution to f0 proportional to �m�r · ∂i1 . . . ∂in �m�r with a
coefficient of the form

∑
�r ′ J�r ′x ′

i1
. . . x ′

in
, which is of order an.

On the other hand, the nth derivative is of the order qn
0 . This

can be seen as follows: �m is a dimensionless quantity, hence it
has to be a function of the dimensionless variable q0�r . It does
not depend on the other dimensionless variable, �r/a, since no
modulation exist if q0 vanishes (in this case the DM interaction
vanishes). Obviously, the nth derivative of a function �m(q0�r)
is proportional to qn

0 . Hence the neglected terms are of order
(q0a)n = (2/μ2)n/2, with n > 2, and thus the validity of the
continuum limit requires a large value of μ2.
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